• Editors' Suggestion

New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay

F. P. An et al. (Daya Bay Collaboration)
Phys. Rev. Lett. 115, 111802 – Published 11 September 2015
PDFHTMLExport Citation

Abstract

We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×105 GWthtondays, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six Am241C13 radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin22θ13 and |Δmee2| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave sin22θ13=0.084±0.005 and |Δmee2|=(2.42±0.11)×103eV2 in the three-neutrino framework.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 13 May 2015

DOI:https://doi.org/10.1103/PhysRevLett.115.111802

© 2015 American Physical Society

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 115, Iss. 11 — 11 September 2015

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×