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I. INTRODUCTION: SHORT AND LONG RANGE
INTERACTIONS

Physics, as it is conceived today, attempts to interpret the
diverse phenomena as particular manifestation of testable
general laws. Since its inception at the Renaissance, mainly by
Galileo’s revolutionary concepts, this has been an extraordi-
nary successful adventure. To the point that after impressive
developments in the first half of the twentieth century, one
might have even conceived that all phenomena, from the
atomic scale to the edge of the visible Universe, be governed
solely by two fundamental laws, and two known laws.
Namely, classical general relativity, Einstein’s generalization
of Newtonian gravity, and quantum electrodynamics, the
quantum version of Maxwell’s electromagnetic theory.
Gravitational and electromagnetic interactions are long

range interactions, meaning they act on objects no matter
how far they are separated from each other. The progress in the
understanding of such physics applicable to large scales is
certainly tributary to the fact they can be perceived without the
mediation of highly sophisticated technical devices. But the
discovery of subatomic structures had revealed the existence
of other fundamental interactions that are short range, that is
negligible at larger distance scales. In the beginning of the
1960s, there was no consistent theoretical interpretation of
short range fundamental interactions, neither of the “weak
interactions” responsible for radioactive decays, nor of the

“strong interactions” responsible for the formation of nuclear
structures.
Robert Brout and I (Englert and Brout, 1964), and inde-

pendently Peter Higgs (Higgs, 1964a), constructed a mecha-
nism to describe short range fundamental interactions. Robert
Brout passed away in 2011 and left me alone to tell our story. I
will explain how we were led to propose the mechanism, how
it allows for consistent fundamental theories of short range
interactions and for building elementary particle masses. It
became a cornerstone of the standard model and was recently
confirmed by the magnificent discovery at CERN of its
predicted scalar boson.
We became convinced that a consistent formulation of short

range interactions would require a common origin for both
short and long range interactions.
While both classical general relativity and quantum electro-

dynamics describe long range interactions and are both built
upon very large symmetries, labeled “local symmetries,” they
have very different structures: in contradistinction to general
relativity, the long range quantum electrodynamics is fully
consistent at the quantum level and was experimentally
verified at that level, in particular, by the successful inclusion
of chemistry in the realm of known physics. As a valid theory
of short range interactions clearly required quantum consis-
tency, we were naturally driven to take, as a model of the
corresponding long range interactions, the generalization of
quantum electrodynamics, known as Yang-Mills theory.
The quantum constituents of electromagnetic waves are

“photons,” massless neutral particles traveling with the veloc-
ity of light. Their massless character implies that the corre-
sponding waves are polarized only in directions perpendicular
to their propagation. These features are apparently protected
by the local symmetry, as the latter does not survive the
explicit inclusion of a mass term in the theory. Yang-Mills
theory is built upon similar local symmetries, enlarged to
include several massless interacting quantum constituents,
neutral, and charged ones. These massless objects are labeled
gauge vector bosons (or often simply gauge bosons).
To transmute long range interactions into short range ones

in the context of Yang-Mills theory it would suffice to give
these generalized photons a mass, a feature that, as we just
indicated, is apparently forbidden by the local symmetries.
Leaving momentarily aside this feature, let us first recall
why massive particles transmit in general short range
interactions.
Figure 1 is a Feynman diagram whose intuitive appearance

hides a precise mathematical content. Viewing time as running
from bottom to top, it describes the scattering of two electrons
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resulting from the exchange of a massive particle labeled Z of
mass mZ. Classically such a process could not occur as the
presence of the Z particle would violate energy conservation.
Quantum mechanically it is allowed if the violation takes
place within a time span of the order ℏ=mc2. This process then
describes in lowest order perturbation theory a short range
interaction cutoff at a range ∼ℏ=mc.
As local symmetries apparently prevent the introduction

of massive gauge bosons in the theory, we turn our attention
to a class of theories where the state of a system is
asymmetric with respect to the symmetry principles that
govern its dynamics. This is often the case in the statistical
physics of phase transitions (Launda, 1937). This is not
surprising since more often than not energetic considerations
dictate that the ground state or low lying excited states of a
many body system become ordered. A collective variable
such as magnetization picks up expectation value, which
defines an order parameter that otherwise would vanish by
virtue of the symmetry encoded in the formulation of the
theory (isotropy in the aforementioned example). This is an
example of spontaneous symmetry breaking (SSB) which
frequently occurs in the statistical theory of second order
phase transitions. Could the mass of gauge bosons arise
through a similar SSB? This question arises naturally from
the seminal work of Nambu who showed that SSB could be
transferred from the statistical theory of phase transitions to
the realm of relativistic quantum field theory (Nambu,
1960a, 1960b; Nambu and Jona-Lasinio, 1961a, 1961b),
the mathematical framework designed to analyze the world
of elementary particles.
This raises a deeper question: could SSB be the agent of the

transmutation of long range interactions mediated by massless
gauge fields to short range interactions mediating by massive
ones without impairing the validity of the quantum behavior
that characterize the simplest Yang-Mills theory, namely,
quantum electrodynamics?
As we shall see the answer is yes to both questions

provided the notion of SSB is traded for a more subtle one:
the Brout-Englert-Higgs (BEH) mechanism (Englert and
Brout, 1964; Higgs, 1964a). To prepare for the discussion
of the mechanism, I will first review how SSB can be

transferred from the theory of phase transitions to relativistic
quantum field theory.

II. SPONTANEOUS SYMMETRY BREAKING

A. Spontaneous symmetry breaking in phase transitions

Consider a condensed matter system, whose dynamics is
invariant under a continuous symmetry. As the temperature is
lowered below a critical one, the symmetry may be reduced by
the appearance of an ordered phase. The breakdown of the
original symmetry is always a discontinuous event at the
phase transition point but the order parameters may set in
continuously as a function of temperature. In the latter case the
phase transition is second order. Symmetry breaking by a
second order phase transition occurs, in particular, in ferro-
magnetism, superfluidity, and superconductivity.
I first discuss the ferromagnetic phase transition which

illustrates three general features of the SSB which set in at the
transition point in the low temperature phase: ground state
degeneracy, the appearance of a “massless” mode when the
dynamics is invariant under a continuous symmetry, and the
occurrence of a “massive” mode characterizing the rigidity of
the order parameter.
In the absence of external magnetic fields and of surface

effects, a ferromagnetic substance below the Curie point
displays a global orientation of the magnetization, while
the dynamics of the system is clearly rotation invariant,
namely, the Hamiltonian of the system is invariant under
the full rotation group. This is SSB.
A ferromagnetic system is composed of microscopic atomic

magnets (in simplified models such as the Heisenberg model
these are spin 1=2 objects) whose interactions tend to orient
neighboring ones parallel to each other. No global orientation
appears at high temperature where the disordering thermal
motion dominates. Below a critical “Curie temperature”
energy considerations dominate and the system picks up a
global magnetization. The parallel orientation of neighboring
magnets propagates, ending up in a macroscopic magnetiza-
tion. This selects a direction, which for an infinite isolated
ferromagnet is arbitrary. It is easily proven that for an infinite
system any pair of possible orientations define orthogonal
ground states and any local excitations on top of these ground
states are also orthogonal to each other. Thus the full Hilbert
space of the system becomes split into an infinity of disjoint
Hilbert spaces. This is ground state degeneracy.
The effective thermodynamical potential V whose mini-

mum yields the magnetization in the absence of an external
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FIG. 1 (color). Massive particle mediating short range inter-
actions.

FIG. 2 (color). The ground state of a ferromagnet.
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magnetic field is depicted in Fig. 2. Above the Curie point Tc
the magnetization ~M vanishes. Below the Curie point in a
plane VMz the potential develops in a plane VMz a double
minimum which generates a valley in the Mx;My directions.
Each point of the valley defines one of the degenerate ground
states with the same j ~Mj.
At a given minimum, say, ~M ¼ Mz~1z, the curvature of the

effective potential measures the inverse susceptibility which
determines the energy for infinite wavelength fluctuations.
This is the analog of mass in relativistic particle physics. The
inverse susceptibility is zero in directions transverse to the
order parameter and positive in the longitudinal direction. One
thus obtains from the transverse susceptibility a massless
transverse mode characteristic of broken continuous sym-
metry: these are the “spin waves”whose quantum constituents
are interacting bosons called “magnons.” The longitudinal
susceptibility yields a (possibly unstable) massive longi-
tudinal mode which corresponds to fluctuations of the order
parameter. In contradistinction to the massless mode which
exists only in continuous SSB for which there is a valley, the
massive mode is present in any SSB, continuous or discrete
and measures the rigidity of the ordered structure.
The structure of Fig. 3 is common to many second order

phase transitions and leads to similar consequences. However
in superconductivity a new phenomenon occurs. The quantum
phase symmetry is broken by a condensation of electron pairs
bounded by an attractive force due to phonon exchange in the
vicinity of the Fermi surface. The condensation leads to an
energy gap at the Fermi surface. For neutral superconductors,
this gap would host a massless mode and one would recover
the general features of SSB. But the presence of the long range
Coulomb interactions modifies the picture. The massless mode
disappears: it is absorbed in electron density oscillations,
namely, in the massive plasma mode. As will be apparent later,
this is a precursor of the BEH mechanism (Anderson, 1958,
1963; Nambu, 1960a).

B. Spontaneous symmetry breaking in field theory

Spontaneous symmetry breaking was introduced in rela-
tivistic quantum field theory by Nambu in analogy with the
Bardeen-Cooper-Schrieffer (BCS) theory of superconductiv-
ity (Nambu, 1960a). The problem studied by Nambu (1960b)
and Nambu and Jona-Lasinio (1961a), 1961b) is the sponta-
neous breaking of the Uð1Þ symmetry of massless fermions
resulting from the arbitrary relative (chiral) phase between
their decoupled right and left constituent neutrinos. Chiral

invariant interactions cannot generate a fermion mass in
perturbation theory but may do so from a (nonperturbative)
fermion condensate: the condensate breaks the chiral sym-
metry spontaneously. Nambu (1960b) showed that such
spontaneous symmetry breaking is accompanied by a mass-
less pseudoscalar. This is interpreted as the chiral limit of the
(tiny on the hadron scale) pion mass. Such interpretation of the
pion constituted a breakthrough in our understanding of strong
interaction physics. The massless pseudoscalar is the field-
theoretic counterpart of the massless spin-wave mode in
ferromagnetism. In the model of Nambu and Jona-Lasinio
(1961a, 1961b) it is shown that SSB also generates a massive
scalar boson which is the counterpart of the massive mode
measuring in phase transitions the rigidity of the order
parameter in the spontaneously broken phase.
The significance of the massless boson and of the massive

scalar boson occurring in SSB is well illustrated in a simple
model devised by Goldstone (1961). The potential Vðϕ1;ϕ2Þ
depicted in Fig. 4 has a rotational symmetry in the plane of the
real fields ðϕ1;ϕ2Þ, or equivalently is invariant under the Uð1Þ
phase of the complex field ϕ ¼ ðϕ1 þ iϕ2Þ=

ffiffiffi

2
p

. This sym-
metry is spontaneously broken by the expectation value hϕi of
the ϕ field acquired at a minimum of the potential in some
direction of the ðϕ1;ϕ2Þ plane, say hϕ1i. Writing ϕ ¼ hϕi þ φ

ϕ1 ¼ hϕ1i þ φ1; (2.1)

ϕ2 ¼ φ2: (2.2)

For small φ1 and φ2 we may identify the quantum fluctuation
φ1 climbing the potential as the massive mode measuring the
rigidity of the SSB ground state selected by hϕ1i, and the
quantum fluctuation φ2 in the orthogonal valley direction as
the massless mode characteristic of a continuous SSB.
Their significance is illustrated in Figs. 5 and 6 depicting,

respectively, classical φ2 and φ1 wave modes, on the classical
background hϕ1i. The corresponding massless and massive
bosons are the quantum constituents of these waves.
Figure 5(a) represents schematically a lowest energy state (a

“vacuum”) of the system: a constant nonzero value of the field
ϕ1 ¼ hϕ1i pervades space-time. Figure 5(b) depicts the
excitation resulting from the rotation of half the fields in
the ðϕ1;ϕ2Þ plane. This costs only an energy localized near the
surface separating the rotated fields from the chosen vacuum.
SSB implies indeed that rotating all the fields would cost no
energy at all: one would merely trade the initial chosen
vacuum for an equivalent one with the same energy. This

FIG. 3 (color). Effective thermodynamical potential of a ferro-
magnet above and below the Curie point.

FIG. 4 (color). Spontaneous symmetry breaking in the Gold-
stone model.
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is the characteristic vacuum degeneracy of SSB. Figure 5(c)
mimics a wave of φ2. Comparing Fig. 5(c) with 5(b), we see
that as the wavelength of the wave increases indefinitely, its
energy tends to zero, and may be viewed as generating in that
limit a motion along the valley of Fig. 4. Quantum excitations
carried by the wave reach thus zero energy at zero momentum
and the massmφ2

is zero. Figure 5 can easily be generalized to
more complex spontaneous symmetry breaking of continuous
symmetries. Massless bosons are thus a general feature of
such SSB already revealed by Nambu’s discovery of the
massless pion resulting from spontaneous chiral symmetry
breaking (Nambu, 1960b). They will be labeled massless
Nambu-Goldstone (NG) bosons. Formal proofs corroborating
the above simple analysis can be found in the literature
(Goldstone, Salam, and Weinberg, 1962).
Figure 6 depicts similarly a classical wave corresponding to

a stretching of the vacuum fields. These excitations in the ϕ1

direction describe fluctuations of the order parameter hϕ1i.
They are volume effects and their energy does not vanish
when the wavelength becomes increasingly large. They
correspond in Fig. 4 to a climbing of the potential. The
quantum excitations φ1 are thus now massive. These consid-
erations can be again extended to more general SSB (even to
discrete ones) to account for order parameter fluctuations.
Lorentz invariance imposes that such massive excitations are
necessarily scalar particles. They were also already present in
Nambu and Jona-Lasinio (1961a, 1961b) and will be denoted
in general as massive scalar bosons.

To summarize, φ2 describes massless bosons, φ1 massive
ones, and the “order parameter” hϕ1i may be viewed as a
condensate of φ1 bosons.

III. THE BEH MECHANISM

The above considerations are restricted to spontaneous
symmetry breaking of global continuous symmetries.
Global means that the symmetry operations are independent
of the space-time point x. For instance in the Goldstone model
the global rotations of the fields in Fig. 5(a) in the ðϕ1;ϕ2Þ
plane by angles independent of the space-time point x are
symmetries of the theory (they describe motion in the valley of
Fig. 4): these rotations cost no energy and simply span the
degenerate vacua. We now discuss the fate of SSB when the
global symmetry is extended to a local one.

A. The fate of the Nambu-Goldstone boson and vector boson
masses

We extend theUð1Þ symmetry of the Goldstone model from
global to local. Thus the rotation angle in the ðϕ1;ϕ2Þ plane in
Fig. 5, or equivalently the rotation in the valley of Fig. 4, can
now be chosen independently at each space-time point ðxÞ
with no cost of energy and no physical effect. To allow such a
feature, one has to invent a new field whose transformation
would cancel the energy that such motion would generate in
its absence. This is a “gauge vector field” Aμ. It has to be a
vector field to compensate energy in all space directions and it
has to transform in a definite way under a rotation in the
ðϕ1;ϕ2Þ plane: this is called a gauge transformation and
results in a large arbitrariness in the choice of the Aμ field
corresponding to arbitrary “internal” rotations at different
points of space. The consequence of this gauge symmetry is
that the waves are polarized in directions perpendicular to their
direction of propagation and that there quantum constituents
have to be introduced as massless objects.
LocalUð1Þ symmetry is the simplest gauge field theory and

is the symmetry group of quantum electrodynamics. In the
local generalization (the gauging) of the Goldstone model,
the introduction of the potential of Fig. 4 will deeply affect the
“electromagnetic potential” Aμ.
As in the Goldstone model of Sec. II.B, the SSB Yang-Mills

phase is realized by a nonvanishing expectation value for
ϕ ¼ ðϕ1 þ iϕ2Þ=

ffiffiffi

2
p

, which we choose to be in the ϕ1 direc-
tion. Thus

ϕ ¼ hϕi þ φ; (3.1)

with ϕ1 ¼ hϕ1i þ φ1 and ϕ2 ¼ φ2. As previously, φ2 and φ1

appear to describe a NG massless boson and a massive
scalar boson.
However, a glance at Fig. 5 depicting the NG mode

immediately shows that Figs. 5(b) and 5(c) differ from
Fig. 5(a) only by local rotations and hence in the local
Goldstone model, they are just symmetry (or equivalently
gauge) transformations. They cost no energy and therefore the
NG boson has disappeared: the corresponding fluctuations in
the valley are just a redundant (gauge transformed) description
of the same gauge invariant vacuum. It is easy to see that thisFIG. 6 (color). Massive scalar mode f1.

FIG. 5 (color). Massless Nambu-Goldstone mode f2.
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argument remains valid for any local symmetry and hence
Nambu-Goldstone bosons do not survive the gauging of a
global SSB to a local symmetry. The vacuum is no more
degenerate and strictly speaking there is no spontaneous
symmetry breaking of a local symmetry. The reason why
the phase with nonvanishing scalar expectation value is often
labeled SSB is that one uses perturbation theory to select at
zero coupling with the gauge fields a scalar field configuration
from global SSB; but this preferred choice is only a
convenient one.
The disappearance of the NG boson is thus an immediate

consequence of local symmetry. The above argument (Englert,
2005) was formalized much later (Elitzur, 1975) but formal
proofs not directly based on the gauge invariance of the
vacuum were already presented in 1964 (Guralnik, Hagen,
and Kibble, 1964; Higgs, 1964b).
One may now understand in qualitative terms the conse-

quence of the disappearance of the NG boson. Clearly, one
does not expect that the degrees of freedom carried by the NG
ϕ2 field could vanish. As the NG boson disappears because of
its coupling to the gauge field, one expects that these degrees
of freedom should be transferred to it. This can only occur by
adding to the transverse polarization of the gauge field a
longitudinal one. But such polarization is forbidden as
mentioned earlier, for a massless field. Therefore the coupling
of the would be NG boson to the gauge field must render the
latter massive. This is the essence of the BEH mechanism.
These qualitative considerations can be made quantitative

(Englert and Brout, 1964) by considering the Feynman graphs
(time runs horizontally) describing the propagation of the Aμ

gauge field in the vacuum with nonvanishing scalar field
expectation value, say hϕi ≠ 0. This propagation is depicted in
lowest order in Fig. 7 (time runs horizontally) and the
interaction of Aμ with the condensate hϕi amounts to a
“polarization” of the vacuum. The first graph shows the local
interaction of the gauge field with the condensate while
the second one gives a nonlocal interaction due to the
propagation of a NG boson. Here e is the coupling of the
gauge vector to matter, qμ is a four-momentum (q0 ¼ energy;
~q ¼ momentum), q2 ¼ q20 − q⃗2 and gμν has only nonzero
values if μ ≠ ν∶1;−1;−1;−1. The two graphs sum to

Πμν ¼ ðgμν − qμqν=q2ÞΠðq2Þ; (3.2)

where

Πðq2Þ ¼ e2hϕ1i2: (3.3)

The second factor of Eq. (3.2) does not vanish when
q2 ¼ 0. In field theory this means that the gauge field has
acquired a mass

ðM2
VÞ ¼ e2hϕ1i2: (3.4)

The first factor describes the projection at q2 ¼ m2
V of gμν on a

three-dimensional space of polarizations, which, as explained
in qualitative terms above, is required for a massive vector. Its
transversality (i.e., its vanishing under multiplication by qμ) is
characteristic of a “Ward identity” which expresses that the
local gauge symmetry has not been broken and is identical to
the analogous factor in quantum electrodynamics, an impor-
tant fact that will be commented on in the following section.
The generalization of these results to more complicated

symmetries. One gets (for real fields) a mass matrix

ðM2
VÞab ¼ −e2hϕBiTaBCTbCAhϕAi; (3.5)

where TaBC is a real antisymmetric generator coupled to a
gauge field Aa

μ and hϕAi designates a nonvanishing expect-
ation value.
In these cases, some gauge fields may remain massless.

Consider for instance instead of the invariance of the
Goldstone model on a circle in the plane ðϕ1;ϕ2Þ, an
invariance on a sphere in a three-dimensional space
ðϕ1;ϕ2;ϕ3Þ broken by hϕ1i ≠ 0. There are now three gauge
fields associated with the rotations on the sphere, and while A2

μ

and A3
μ acquire mass A1

μ remains massless. This can be
understood in the following way: rotation generators around
the directions 2 and 3 would move hϕ1i if the symmetry were
global and would thus give rise, as in Fig. 5, to NG bosons;
their degrees of freedom are transferred in local symmetries to
the massive gauge vector fields A2

μ and A3
μ, providing their

third degree of polarization. The expectation value hϕ1i is not
affected by rotation generators around direction 1 and does not
generate in the global symmetry case NG bosons and hence
the corresponding A1

μ remains massless.
Thus the BEH mechanism can unify in the same theory

long and short range interactions by leaving unbroken a
subgroup of symmetry transformation (e.g., rotation around
direction 1) whose corresponding gauge fields remain
massless.

B. The fate of the massive scalar boson

A glance at Fig. 5 shows that the stretching of (classical)
scalar fields is independent of local rotations of the ϕ field in
the ðϕ1;ϕ2Þ plane. This translates the fact that the modulus of
the ϕ field is gauge invariant. Hence the scalar bosons survive
the gauging and their classical analysis is identical to the one
given for the Goldstone model in Sec. II.B. The coupling of

FIG. 7 (color). Interaction of the gauge field with the conden-
sate.

FIG. 8 (color). Coupling of the scalar boson f1 to massive gauge
bosons.
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the scalar boson φ1 to the massive gauge bosons follows from
the Fig. 7, by viewing the Feynman diagrams with time
going from top to bottom and using Eq. (3.1). One gets the
two vertices of Fig. 8 where the heavy wiggly lines on the
right-hand side represent the massive gauge propagators. The
vertex couplings follow from Eq. (3.4).

C. Fermion masses

Let us couple the Yang-Mills fields to massless fermions in
a way that respects the Yang-Mills symmetry. This coupling
preserves the chiral symmetry of the massless fermions and
fermion mass requires SSB. In the Nambu theory of sponta-
neous breaking of chiral symmetry, this gives rise to NG
bosons which are here eaten up by massive gauge fields. This
can be done by suitable couplings of the scalar fields whose
expectation value breaks the symmetry. Mass generation for
fermions is depicted in Fig. 9.

D. Why is the mechanism needed?

Equation (3.2) expresses that the mass generation from the
BEH mechanism does not destroy the local symmetry, in
contradistinction to a mass term introduced by hand ab initio.
This equation remains valid at higher orders in perturbation
theory and has the same form as the polarization in quantum
electrodynamics. As in the latter case, it implies that in
covariant gauges the gauge vector boson propagator tames
the quantum fluctuations, and suggests therefore that the
theory is renormalizable (Englert, Brout, and Thiry, 1966a;
Englert, 1968). However, it is a highly nontrivial matter to
prove that it does not introduce contributions from unphysical
particles and it is therefore a very difficult problem to prove
quantum consistency to all orders. That this is indeed the case
has been proven by ’t Hooft and Veltman (’t Hooft, 1971; ’t
Hooft and Veltman, 1972) [see also Lee and Zinn-Justin
(1972a, 1972b, 1972c).
The quantum consistency of the BEH mechanism is the

basic reason for its success. Precision experiments predicted
and were indeed verified. The quantum consistency played a
critical role in the analysis of the production of the scalar
boson at the LHC and of its decay products, leading to the
confirmation of the detailed validity of the mechanism.

E. Dynamical symmetry breaking

The symmetry breaking giving mass to gauge vector bosons
may also arise from a fermion condensate. This is labeled as
dynamical symmetry breaking. If a spontaneously broken
global symmetry is extended to a local one by introducing
gauge fields, the massless NG bosons disappear as previously

from the physical spectrum and their absorption by gauge
fields renders these massive. In contradistinction with break-
ing by the scalar field condensate, it is very difficult in this
way to give mass in a renormalizable theory simultaneously to
both gauge vector fields and fermions.

F. The electroweak theory and the standard model

The most impressive success of the BEH mechanism is the
electroweak theory for weak and electromagnetic interactions
applied to all particles of the standard model. These encom-
pass all known particles. These are (a) the fermions which are
listed in Fig. 10, (b) γ andWþ; W−; Z, the gauge vector bosons
transmitting the electromagnetic and the weak interactions,
(c) eight “gluons,” the gauge vectors bosons of the “color
group” SU(3) mediating the strong interactions, and, last but
not least, (d) one massive scalar boson which was recently
discovered and identified as the scalar predicted by the BEH
mechanism.
The first row in Fig. 10 contains the basic constituents of

the proton and the neutron, namely, the electron, the tree up
and down colored quarks building the proton and neutron
bonded by the gluons, to which is added the electron
neutrino. The second (Glashow, Iliopoulos, and Maiani,
1970) and third rows (Kobayashi and Maskawa, 1973) were
completed as predictions in the 1970s and verified after-
ward. Color was also introduced in the 1970s. The particles
in the first and the second row are called leptons. To all
fermions of the table, one must of course also add their
antiparticles.
All the fermions are chiral and their chiral components

have different group quantum numbers. Hence they are, as
the gauge vector bosons, massless in absence of the BEH
mechanism, i.e., in absence of the scalar condensate. The
condensate hϕi ≠ 0 gives mass to the Wþ; W−; Z bosons
and to all fermions except the three chiral neutrinos which
have no opposite chirality counterpart in the conventional
standard model. The photons and the gluons remain mass-
less but the latter become short range due in the conven-
tional description to a highly nonperturbative vacuum
(resulting from a mechanism somehow dual to the BEH
mechanism).
The discovery of the Z and W bosons in 1983 and the

precision experiments testing the quantum consistency of the
standard model established the validity of the mechanism, but
it was still unclear whether this was the result of a dynamical

FIG. 9 (color). Mass generation mf ¼ λfhϕi from a coupling λf
of fermions to the scalar field ϕ.

FIG. 10 (color). Fermion constituents of the standard model.
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symmetry breaking or of a particle identifiable as an elemen-
tary boson at the energy scale considered.

IV. THE DISCOVERY

In the standard model, there is one real massive scalar
boson φ (also labeled H). It couples to the massive W and Z
bosons. This follows from Fig. 8 and the couplings are
depicted in Fig. 11(a). Its coupling to elementary fermions
similarly follows from the couplings in Fig. 9 as shown in
Fig. 11(b). The coupling to the massless photons is a genuine
quantum effect involving loops, even in lowest order, as
indicated in Fig. 12.
The LHC site circling under the French-Swiss borders is

schematically indicated in the picture of Fig. 13. The 27 km
circular tunnel containing two opposite beams of protons
surrounded by guiding superconducting electromagnets
cooled by superfluid helium is pictured in Fig. 14.

Figures 15 and 16 are pictures of the ATLAS and CMS
detectors at diametrical opposite sites of the tunnel. There
collisions occur and were used primarily to detect and identify
the scalar boson of the standard model (and possibly other
ones). At the end of 2012 proton-proton collisions occurred at
the rate of nearly 109 s−1 and the proton energy reached
8 TeV. At these energies, all quarks of Fig. 10 and the gluons
connecting themmay contribute to the production of the scalar
boson. The leading production processes are represented
in Fig. 17.

FIG. 11 (color). Coupling of the scalar boson f to massive gauge
bosons and to elementary fermions.

FIG. 12 (color). Coupling of the scalar boson f to photons.

FIG. 13 (color). Schematic location of the LHC.

FIG. 14 (color). The LHC dipole magnets.

FIG. 15 (color). The ATLAS detector.

FIG. 16 (color). The CMS detector.
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As an example of the data gathered by CMS and ATLAS,
Fig. 18 gives the data obtained by the CMS group of observed
decays into 4 leptons at the end the 2012 run . The blue area is the
expected background, namely, those decayswhichwould follow
from the standardmodel if, at given totalmass, therewould be no
contribution from the scalar boson. The red curve measures the
contribution that could be due to the scalar decaying into two Z
vector bosons which further decay into leptons, as was con-
firmed by further analysis. Note that one of the Z is real but the
other is “virtual,”meaning that this decay is forbidden by energy
conservation but may contribute in the quantum theory.
Consideration of other decay channels and spin analysis show
that the particle detected is consistent with the standard model
scalarwith amassmH ≃ 125 GeV.Theabsenceof newparticles
at comparable energies, as well as the success of the Feynman
graph analysis including loops, points toward an elementary
particle, at least up to the energy range considered. This is the
first elementary spin zero particle ever detected. It raises the
interesting possibility of supersymmetry broken at attainable
energies, although there is no indication of it so far.
The elementary character of the scalar already eliminates

many dynamical models of symmetry breaking and raises

interesting possibilities for extrapolation beyond presently
known energies, up to those close to the Planck scale where
quantum gravity effects might play a dominant role. The
analyses of these speculations are beyond the scope of
this talk.
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FIG. 17 (color). Production of the standard model scalar.

FIG. 18 (color). Decay of the scalar boson into 4 leptons from
two Zs.
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