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The physical origin of the Casimir force is connected with the existence of zero-point and thermal
fluctuations. The Casimir effect is very general and finds applications in various fields of physics. This
review is limited to the rapid progress at the intersection of experiment and theory that has been
achieved in the last few years. It includes a critical assessment of the proposed approaches to the
resolution of the puzzles arising in the applications of the Lifshitz theory of the van der Waals and
Casimir forces to real materials. All the primary experiments on the measurement of the Casimir force
between macroscopic bodies and the Casimir-Polder force between an atom and a wall that have been
performed in the last decade are reviewed, including the theory needed for their interpretation. The
methodology for the comparison between experiment and theory in the force-distance measurements
is presented. The experimental and theoretical results described here provide a deeper understanding
of the phenomenon of dispersion forces in real materials and offer guidance for the application of the
Lifshitz theory to the interpretation of the measurement results.

DOI: 10.1103/RevModPhys.81.1827 PACS number(s): 12.20.Fv, 12.20.Ds, 78.20.Ci, 85.85.+j
CONTENTS 2. Real dielectrics 1840
III. How to Compare Theory and Experiment 1842
L Introduction 1808 A. Niod;hng of tl;(e op'tlcallprf)pertles of real materials 1:;12
A. Fluctuations and the physical origin of the van der 2' Cr?mfrs_ r(f)nlgAre ations 1843
Waals and Casimir forces 1828 - aleuiation for . 4 . )
3. Problem of spatial dispersion 1844

B. Material and geometric properties in the theory of . L.
B. Corrections to the Casimir force due to the

dispersion forces 1829 . . i i
o . imperfect geometry of interacting bodies 1845
C. Modern Casimir force experiments 1830
D. Applicati £ the Casimir effect fund tal 1. Surface roughness 1845
' hpp.lcatlons © . T] a;mmlr chiect om fundamenta 183 2. Finite size and thickness 1847
PHysics to nanotee TIO 08y C. Quantitative comparison between experiment and
E. Structure of the review 1832 . .
o theory in force-distance measurements 1848
II. Lifshitz’s Theory of the Thermal van der Waals and . .
Casimir F 1833 1. Experimental errors and precision 1848
. zésmr.nr. (.)rces . l | 1833 2. Comparison of experiment with theory 1849
- Casimir interaction between two planar plates IV. Casimir Experiments with Metallic Test Bodies 1850
B. Approximations for nonplanar boundary surfaces 1834

A. Measurements of the Casimir force using an atomic

C. Casimir-Polder atom-plate interaction and force microscope 1850

Bose-Einstein condensation 1835 B. Precise determination of the Casimir pressure using

D. Puzzles in the application of the Lifshitz theory to

a micromachined oscillator 1854
real materials 1836 C. Other experiments on the Casimir force between

1. Real metals 1836 metal bodies 1858
1. Torsion pendulum experiment 1858

2. Micromechanical devices actuated by the
*galina.klimchitskaya@itp.uni-leipzig.de Casimir force 1858

fumar.mohideen@ucr.edu 3. The experiment using the parallel plate

ivladimir.mostepanenko@itp.uni-leipzig.de configuration 1859

0034-6861/2009/81(4)/1827(59) 1827 ©2009 The American Physical Society


http://dx.doi.org/10.1103/RevModPhys.81.1827

1828 Klimchitskaya, Mohideen, and Mostepanenko: The Casimir force between real materials: ...

4. The Casimir force between thin metallic
films 1860
5. Dynamic measurement using an atomic

force microscope 1860
6. Ambient Casimir force measurements 1860
7. Related measurements 1861
D. Future prospects to measure the thermal Casimir
force 1862
V. Casimir Force Between a Metallic Sphere and a
Semiconductor Plate 1863
A. Motivation for use of semiconductors 1863
B. Optically modulated Casimir force 1863
C. Doped semiconductors with different charge carrier
densities 1867
1. p-type silicon 1867
2. n-type silicon 1868
D. Silicon plate with rectangular trenches 1870
E. Future prospects to measure the Casimir force with
semiconductor surfaces 1871
1. The dielectric-metal transition 1871
2. Casimir forces between a sphere and a
plate with patterned geometry 1872
3. Pulsating Casimir force 1872
VI. Experiments on the Casimir-Polder Force 1873
A. Demonstration of the thermal Casimir-Polder force 1873
1. The force in thermal equilibrium 1873
2. The force out of thermal equilibrium 1874
B. Future prospects to measure the Casimir-Polder
force in quantum reflection 1875
C. Casimir-Polder interaction of atoms with carbon
nanotubes 1876
VIIL. Lateral Casimir Force and Casimir Torques 1877
A. Lateral Casimir force between corrugated surfaces 1877
B. Demonstration of the lateral Casimir force 1877
C. The Casimir torque 1879
VIII. Conclusions and Outlook 1879
Acknowledgments 1880
References 1880

I. INTRODUCTION

A. Fluctuations and the physical origin of the van der Waals
and Casimir forces

Long-range forces that are different from gravity but
act between electrically neutral atoms or between an
atom and a macrobody or between two macrobodies
have been discussed for centuries. However, only after
the development of quantum mechanics and quantum
field theory has the physical picture of these forces be-
come clear and the first quantitative results obtained.
The origin of both the van der Waals and Casimir forces
is connected with the existence of quantum fluctuations.
For a nonpolar atom the mean value of the operator of
the dipole moment in the ground state is equal to zero.
However, due to quantum fluctuations, the mean value
of the square of the dipole moment is not equal to zero.
This leads to the existence of what are referred to as
dispersion forces (Mahanty and Ninham, 1976; Parse-
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gian, 2005), the generic name for both the van der Waals
and Casimir forces.

For atomic separations between a few angstroms and
a few nanometers (which are much smaller than the
characteristic absorption wavelength) the retardation ef-
fects are negligible. In this separation region the disper-
sion force is usually called the van der Waals force. This
is a nonrelativistic quantum phenomenon and its theory
was pioneered by London (1930). In the separation re-
gion of the van der Waals interaction, a virtual photon
emitted by one atom can be absorbed by another atom
during the lifetime of this photon as determined by the
Heisenberg uncertainty relation. At relatively large
atomic separations, of order of or larger than the char-
acteristic absorption wavelength, relativistic retardation
effects play an important role. At such separations the
dispersion forces are usually called Casimir-Polder (for
atom-atom and atom-wall interactions) or Casimir (for
interaction between two macroscopic bodies) forces.
These are both relativistic and quantum-mechanical
phenomena first described by Casimir and Polder (1948)
and by Casimir (1948), respectively. For atomic separa-
tions |r,—r| of order of the characteristic absorption
wavelength, the virtual photon emitted by one atom can-
not reach the second one during its lifetime. However,
the operators of the quantized electric field at the points
r; and r, in the vacuum state are correlated such that

(E(t,r12)) =0 but (Ei(t,r)E(t,ry)) # 0. (1)

As a result, the atoms situated at points r; and r, are
characterized by fluctuating dipole moments and these
fluctuations are correspondingly correlated, leading to
the Casimir-Polder and Casimir forces.

The theoretical approach to the atom-wall and wall-
wall interactions developed by Casimir and Polder used
ideal metal walls at zero temperature. The finite Casimir
energy per unit area of two infinitely large parallel ideal
metal walls separated by a distance a (and the respective
pressure) was found as a difference between the ener-
gies of zero-point (vacuum) oscillations of the electro-
magnetic field in the presence and in the absence of
walls as

w7 fic

a7 fe
T 20 at

Eola) = T 24044

PO(LI) = (2)

Ideal metals are characterized by perfect reflectivity at
all frequencies which means that the absorption wave-
length is zero. Thus, the results (2) are universal and
valid at any separation distance. They do not transform
to the nonrelativistic London forces at short separations.
Due to the difference in these early theoretical ap-
proaches to the description of the dispersion forces, the
van der Waals and Casimir-Polder (Casimir) forces were
thought of as two different kinds of force rather than
two limiting cases of a single physical phenomenon, as
they are presently understood.

A unified theory of both the van der Waals and Ca-
simir forces between plane parallel material plates in
thermal equilibrium separated by a vacuum gap was de-
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veloped by Lifshitz (1956). Lifshitz’s theory describes
dispersion forces between dissipative media as a physical
phenomenon caused by the fluctuating electromagnetic
field that is always present in both the interior and the
exterior of any medium. According to the fluctuation-
dissipation theorem, there is a connection between the
spectrum of fluctuations of the physical quantity in an
equilibrium dissipative medium and the generalized sus-
ceptibilities of this medium which describe its reaction
to an external influence. Using the fluctuation-
dissipation theorem, Lifshitz derived the general formu-
las for the free energy and force of the dispersion inter-
action. In the limit of dilute bodies these formulas
describe the dispersion forces acting between atoms and
molecules. In the framework of the Lifshitz theory ma-
terial properties are represented by the frequency-
dependent dielectric permittivities and atomic proper-
ties by the dynamic atomic polarizabilities. In the
limiting cases of small and large separation distances, in
comparison with the characteristic absorption wave-
length, the Lifshitz theory reproduces the results ob-
tained by London and by Casimir and Polder, respec-
tively. It also describes the transition region between the
nonrelativistic and relativistic areas. In fact, the fluctuat-
ing electromagnetic field in the Lifshitz theory is some
classical analog of vacuum (zero-point) oscillations in
the field-theoretical approach developed by Casimir. van
Kampen et al. (1968), Ninham et al. (1970), Gerlach
(1971), and Schram (1973) narrowed the distinction be-
tween the Casimir and Lifshitz approaches. They ob-
tained the Lifshitz formulas for the free energy and
force between two nondissipative material plates as the
difference between the free energies of zero-point and
thermal oscillations in the presence and in the absence
of plates. The eigenfrequencies of these oscillations
were found from the standard continuity boundary con-
ditions for the electric field and magnetic induction on
the surfaces of the dielectric plates. Later Barash and
Ginzburg (1975) generalized this approach for the case
of plates made of dissipative materials in thermal equi-
librium with a heat reservoir. This generalization is pre-
sented by Milonni (1994) and by Mostepanenko and
Trunov (1997). The applicability of the Lifshitz formula
to dissipative materials was also demonstrated using the
scattering approach (Genet, Lambrecht, and Reynaud,
2003). The assumption of a thermal equilibrium is basic
for the Lifshitz theory. We repeatedly discuss the role of
this assumption below.

Thus, the theoretical foundations of the Casimir inter-
action are based on two approaches. In one case the
theory of the Casimir effect is based on the theory of
equilibrium electromagnetic fluctuations in the media.
In the second case the Casimir effect is a vacuum quan-
tum effect resulting from the influence of external con-
ditions and described by quantum field theory. In this
case, boundary conditions are imposed (in place of ma-
terial boundaries) which restrict the quantization vol-
ume and affect the spectrum of zero-point and thermal
oscillations. In fact the two different approaches can be
reconciled. There are derivations of the Lifshitz formu-
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las and more general results in different media where
the dispersion force is viewed as a vacuum quantum ef-
fect (Tomas, 2002; Raabe and Welsch, 2006). The com-
mon roots in the theory of electromagnetic oscillations
relate the Casimir effect to other fluctuation phenom-
ena, such as the radiative heat transfer through a
vacuum gap (Volokitin and Persson, 2007). However, its
origin in quantum field theory relates the Casimir effect
to other quantum vacuum effects like the Lamb shift
and the anomalous magnetic moment of an electron,
where virtual particles play an important role (Jaffe,
2005).

During the last few years, far-reaching generalizations
of the Lifshitz formulas were obtained which express the
Casimir energy and force between two separated bodies
of arbitrary shape in terms of matrices of infinite dimen-
sions. This is often referred to as the representation
of the Casimir energy in terms of functional determi-
nants (Emig ef al., 2006; Kenneth and Klich, 2006, 2008)
or in terms of scattering matrices (Bulgac et al., 2006;
Lambrecht et al., 2006). Several applications of new rep-
resentations related to the subject of this review are dis-
cussed in the respective sections.

B. Material and geometric properties in the theory of
dispersion forces

Both Casimir and Lifshitz considered dispersion
forces in the configuration of two closely spaced plane
parallel plates. However, real bodies may possess quite
different geometrical properties. The case of an isolated
body is also of much interest for the physics of disper-
sion forces. One unique feature of the Casimir force that
has attracted widespread attention is its exotic geometry
dependence. For example, it was first realized that the
Casimir force can be repulsive for an ideal metal spheri-
cal shell (Boyer, 1968). Another example of the geomet-
ric dependence was found in ideal metal rectangular
boxes, where the repulsive or attractive nature of the
force depends on the ratio of the size of the sides (Lu-
kosz, 1971). Both these results led to an explosion in
theoretical studies of the shape dependence of the Ca-
simir force with ideal boundaries extensively reviewed
(Milonni, 1994; Mostepanenko and Trunov, 1997; Mil-
ton, 2001). This subject is, however, outside the scope of
our review, which deals only with effects pertaining to
real material bodies.

In addition to the shape dependence mentioned
above, there are more staid but no less important prop-
erties of interest for experimental measurements of the
Casimir force between real bodies. Chief among these
are the effect of the surface roughness on Casimir force,
the role of curvature in the most often used sphere-plate
configuration, the finite-size effects of the bodies used in
the measurement, and the lateral Casimir force from
corrugated surfaces. The last in particular exhibits dif-
fractionlike effects, which can be experimentally ob-
served. All these aspects are covered in the review.

Another feature of real material bodies differentiating
them from ideal metal plates at zero temperature, as
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considered by Casimir, concerns the account of realistic
material properties and thermal effects. As mentioned
in Sec. I.A, in the Lifshitz theory real material proper-
ties are taken into account through the frequency-
dependent dielectric permittivity &(w). In its turn e(w) is
expressed in terms of the complex index of refraction as
&(w)=n*(w). Both quantities are measurable over wide
frequency regions. The magnitude of e(w) depends on
the nature and structure of the material, including its
electrical and optical properties. In the Lifshitz theory of
dispersion forces the free energy and other thermody-
namic quantities are expressed as functionals of &(i§),
where the Matsubara frequencies &=2mkgTl/# are de-
fined for all [=0,1,2,... (kg is the Boltzmann constant
and T is the temperature). In the alternative but math-
ematically equivalent formulation, the free energy is
represented as a functional of e(w) defined along the
real frequency axis (see Sec. II.A). The Lifshitz theory
does not make a distinction among the physical pro-
cesses contributing to the value of the dielectric permit-
tivity. However, the applicability conditions of this
theory, in particular thermal equilibrium, must be fol-
lowed.

As is clear from the above, we call materials real (real
metals, real dielectrics, etc.) to underline that this review
deals with physical surfaces rather than with idealized
ones such as ideal metals or dielectrics with constant
dielectric permittivity and perfect geometric shape.

In the last ten years significant progress has been
made in the measurement of the Casimir and Casimir-
Polder forces. This has added substantial information to
the application of the Lifshitz theory to real materials.
Historically the Lifshitz theory was proposed for ideal
dielectrics, i.e., for materials having zero conductivity at
any temperature. At nonzero temperature dielectrics are
characterized by a small but physically real dc conduc-
tivity. From the start, the first papers (Lifshitz, 1956;
Dzyaloshinskii et al., 1961) neglected this conductivity in
the Lifshitz theory, and at zero frequency dielectric ma-
terials were characterized by a finite static dielectric per-
mittivity g,=¢(0). If, however, the dc conductivity of di-
electrics at T# 0 is included, e(w) goes to infinity in the
limit of zero frequency (see Sec. IL.D). Geyer et al.
(2005b) showed that the inclusion of even a negligibly
small dc conductivity for the configuration of two paral-
lel dielectric plates leads to an enormously large thermal
correction to the Casimir free energy and pressure. If a
physical effect is negligibly small, its inclusion in a gen-
eral theory must not significantly influence the results.
Thus, this thermal correction is surprising and it suggests
that perhaps something is being done incorrectly. One
might think that the dc conductivity of dielectric mate-
rials is not a minor effect that can be neglected in the
theory of dispersion forces and that the discovered large
thermal correction is physically real but was overlooked
by the founders of the Lifshitz theory. However, as
shown by Geyer et al. (2005b), the inclusion of the dc
conductivity in the model of the dielectric response vio-
lates the Nernst heat theorem and thus makes the Lif-
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shitz theory inconsistent with thermodynamics. More-
over, a large thermal correction resulting from the
simple inclusion of the dc conductivity was excluded ex-
perimentally in the experiments by Chen et al. (2007a,
2007b) and Obrecht et al. (2007) (see Secs. 1.C, V.B, and
VI.A). Below we illustrate by many examples that the dc
conductivity of dielectric materials is unrelated to dis-
persion forces and its inclusion contradicts the applica-
bility conditions of the Lifshitz theory.

For the Casimir force between real metals the situa-
tion is closely analogous to that of the dielectrics. Bos-
trom and Sernelius (2000) applied the Lifshitz theory to
describe the free energy and force in the configuration
of two parallel metal plates at a temperature 7. The
dielectric permittivity of the metal was obtained using
the tabulated optical data for the complex index of re-
fraction extrapolated to zero frequency by means of the
Drude model (see Sec. III.A). This takes into account
both the drift current of the conduction electrons includ-
ing relaxation inherent to it and displacement currents
connected with plasma oscillations of free electrons and
interband transitions of core electrons. As a result, an
enormously large thermal correction to the Casimir free
energy and force was obtained from the Lifshitz theory
at short separations below 1 um, in qualitative disagree-
ment with the case of ideal metal plates. The Casimir
force between plates made of ideal metals at nonzero
temperature was first treated independently by Brown
and Maclay (1969) using thermal quantum field theory.
Schwinger et al. (1978) demonstrated that the Lifshitz
theory is in agreement with the case of ideal metals if
the limit (i¢)— o is taken first before the limit £—0.
Bezerra et al. (2002b, 2004) showed that the inclusion of
relaxation processes of conduction electrons in the Lif-
shitz theory violates the Nernst heat theorem for metals
with perfect crystal lattices. This is also in violation of
the classical limit at large separations (Feinberg et al.,
2001; Scardicchio and Jaffe, 2006). The large thermal
correction predicted by Bostrom and Sernelius (2000)
was found to be inconsistent with the measurement data
of the experiments by Lamoreaux (1997), by Decca,
Fischbach, et al. (2003), by Decca, Lopez, Fischbach, et
al. (2005), Decca et al. (2007a, 2007b) (see Secs. 1.C, IV.B,
and IV.C.1). At the same time, the use of the free elec-
tron plasma model for the characterization of a metal
(Dzyaloshinskii et al., 1961; Hargreaves, 1965; Schwinger
et al., 1978; Mostepanenko and Trunov, 1985) leads to
small thermal corrections at short separations in qualita-
tive agreement with the case of ideal metal plates (Bor-
dag et al., 2000b; Genet et al., 2000). The results obtained
by neglecting the role of the conduction electrons con-
nected with the drift current are in agreement with ther-
modynamics and with the classical limit (Bezerra et al.,
2004). As argued below, the inclusion of a drift current is
beyond the applicability conditions of the Lifshitz
theory.

C. Modern Casimir force experiments

There were many measurements of the van der Waals
and Casimir forces made before 1990, of which only the
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experiment by van Blockland and Overbeek (1978) with
metallic surfaces can be considered as an unambiguous
demonstration [a historical survey has been made by
Bordag et al. (2001)]. The modern stage in Casimir ex-
periments is characterized by the use of a new genera-
tion of precise laboratory techniques for the measure-
ment of small forces and short separation distances,
permitting one to determine the experimental preci-
sion and compare data with theory. The experiment by
Lamoreaux (1997) using a torsion balance to measure
the Casimir force between a gold-coated spherical lens
and a plate was the first in this more recent series. The
precision from 5% to 10% that might be achieved at
separations of about 1 um (see Sec. IV.C.1 for more de-
tails) leads to the conclusion that the Drude model is an
inadequate description in the theory of the thermal Ca-
simir force.

A series of measurements with increased sensitivity of
the Casimir force between a metallized sphere and a
plate was performed using the atomic force microscope
(Mohideen and Roy, 1998; Klimchitskaya et al, 1999;
Roy et al., 1999; Harris et al., 2000; Chen, Klimchitskaya,
Mohideen, and Mostepanenko, 2004). These experi-
ments introduced the idea of using metallized polysty-
rene spheres which have very low mass, as one of the
interacting surfaces. Even the first experiment in this se-
ries (Mohideen and Roy, 1998) demonstrated the role of
the skin depth and the surface roughness corrections to
the Casimir force at separations from 120 to 300 nm.
Note that the corrections to the skin depth are often
referred to as the finite conductivity corrections. It was
shown that the data are in disagreement with the ideal
metal Casimir force whereas the inclusion of the finite
conductivity and roughness corrections leads to excel-
lent agreement between the data and theory (thermal
corrections being negligibly small in this experiment).
The experimental error in the measurement of the Ca-
simir force between 1% and 2% depending on the con-
fidence level was justified at the shortest separations
(Chen, Klimchitskaya, Mohideen, and Mostepanenko,
2004).

The gradient of the Casimir pressure between two
parallel metallic plates was measured dynamically by
Bressi et al. (2002). In this experiment small oscillations
were induced on one of the plates at the resonant fre-
quency and the frequency shift due to the Casimir force
was measured. This frequency shift is proportional to
the derivative of the Casimir force with respect to the
separation distance between the plates (see Sec. IV.C.3).

Chen et al. (2002a, 2002b) measured the lateral Ca-
simir force between a metallized sphere and a plate cov-
ered with longitudinal coaxial sinusoidal corrugations of
equal periods (Sec. VIL.B). This force, which was theo-
retically predicted by Golestanian and Kardar (1997,
1998), is a harmonic function of the phase shift between
the corrugations on the sphere and the plate. The dem-
onstrated phenomenon of the lateral Casimir force is
promising for nanotechnology where, together with the
normal Casimir force, it allows one to actuate any trans-
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lations of a device element entirely due to the presence
of the zero-point vacuum oscillations.

The most precise measurements of the Casimir force
between metallic surfaces were performed in a series of
experiments by Decca, Fischbach, et al. (2003), by
Decca, Lopez, et al. (2003), by Decca et al. (2004, 2007a,
2007b), and by Decca, Lopez, Fischbach, et al. (2005)
using a micromechanical torsional oscillator. This new
technique was first used in Casimir experiments by Chan
et al. (2001a, 2001b) as a demonstration of the actuation
of micromechanical and nanomechanical devices by the
Casimir force (see Sec. IV.C.2). Although Decca et al.
exploited the sphere-plate configuration, the application
of the dynamic measurement mode and the proximity
force approximation allowed them to determine the Ca-
simir pressure between two parallel plates. In the last of
this series of experiments (Decca et al., 2007a, 2007b) a
0.2% total experimental error was reported at a separa-
tion of 160 nm. The systematic error was shown to domi-
nate the random one in the total experimental error.
This was achieved here for the first time in Casimir force
measurements. The measurements of the Casimir pres-
sure using the micromechanical torsional oscillator ex-
clude the prediction of large thermal effects at a 99.9%
confidence level for a wide separation region below
1 um (see Sec. IV.B).

The next series of recent Casimir experiments was de-
voted to the investigation of the Casimir interaction be-
tween a metallized sphere and a semiconductor plate
(Chen et al., 2005, 2007a, 2007b; Chen, Klimchitskaya, et
al., 2006; Chen, Mohideen, et al, 2006). In the early
stages of this research it was demonstrated that a change
of the charge carrier concentration in a semiconductor
plate changes the value of the Casimir force. In the ex-
periments by Chen et al. (2007a, 2007b) the Casimir
force between the sphere and the plate was measured in
the presence and in the absence of incident laser light on
the plate. This allowed a fundamental test of the role of
semiconductor conductivity properties in the Casimir
force to be performed. The data were found to be in an
excellent agreement with the Lifshitz theory if the dc
conductivity of the semiconductor plate in the dark
phase (no incident light) is disregarded. If, however, the
dc conductivity of the plate in the dark phase is in-
cluded, the theory was found to be inconsistent with
data at a confidence level of 95% (see Sec. V.B).

Another important experiment was performed by
Obrecht et al. (2007). This is the first measurement of the
thermal Casimir-Polder force made both in thermal
equilibrium and in the nonequilibrium case. The
Casimir-Polder force between Rb atoms and a dielectric
substrate changes the frequency of dipole oscillations
excited in a Bose-Einstein condensate separated from a
wall by a distance of a few micrometers. The fractional
difference of this frequency calculated on the basis of
the Lifshitz theory by disregarding the dc conductivity of
the wall material was found to be in excellent agreement
with data (Obrecht et al., 2007). Klimchitskaya and
Mostepanenko (2008b) showed, however, that with in-
clusion of the small but physically real dc conductivity
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for the dielectric substrate the theory is inconsistent with
data (see Sec. VI.A).

Geometry effects beyond the proximity force approxi-
mation were experimentally demonstrated by Chan et al.
(2008) where the gradient of the Casimir force acting
between a Au-coated sphere and Si plate with deep rect-
angular trenches was measured (Sec. V.D).

D. Applications of the Casimir effect from fundamental
physics to nanotechnology

Both the van der Waals and Casimir forces find many
applications spanning the range from the purely scien-
tific to the mostly technological. The reason lies in the
fluctuation nature of dispersion forces and the universal
role played by fluctuations in different physical phenom-
ena. Here we list only some of the main areas where the
Casimir effect is important. For a detailed discussion of
the applications of the Casimir effect, see Plunien et al.
(1986), Mostepanenko and Trunov (1988), Krech (1994),
Milonni (1994), Mostepanenko and Trunov (1997), Kar-
dar and Golestanian (1999), Bordag et al. (2001), Milton
(2001, 2004), Lamoreaux (2005), Parsegian (2005), Klim-
chitskaya and Mostepanenko (2006), and Milonni (2007).

A number of applications of the Casimir effect belong
to the field of condensed matter physics (Krech, 1994)
and nanotechnology (Buks and Roukes, 2001, 2002;
Chumak ef al., 2004). Areas of impact are multilayered
structures, wetting phenomena, colloids, critical systems,
adhesion of microelements in nanoelectromechanical
systems, and absorption of different gases by nanostruc-
tures. In elementary particle physics the role of the Ca-
simir effect is very important. It is included in the calcu-
lation of hadron masses and provides an effective
mechanism for the compactification of extra spatial di-
mensions in multidimensional physics (Mostepanenko
and Trunov, 1997). In gravitation and cosmology the Ca-
simir effect results in a nonzero vacuum energy in spaces
with non-Euclidean topology, can drive the inflation pro-
cess, and leads to interesting effects in brane models of
the Universe (Saharian, 2006). The Casimir effect has
been actively used for obtaining stronger constraints on
the hypothetical long-range interactions predicted in
many theoretical schemes beyond the standard model
(Bordag et al., 1998, 1999, 2000a; Long et al, 1999;
Fischbach et al., 2001; Mostepanenko and Novello, 2001;
Decca, Fischbach, et al., 2003, Decca, Lopez, Chan, et al.,
2005, Decca, Lopez, Fischbach, et al., 2005; Decca et al.,
2007a, 2007b; Mostepanenko et al., 2008).

Additional physical phenomena where the Casimir ef-
fect is important are the quantum reflection of atoms on
different surfaces and Bose-Einstein condensation.
Casimir-Polder forces depend on real atomic and mate-
rial properties and influence scattering amplitudes and
condensation conditions (Antezza et al., 2004; Babb et
al., 2004). Even in biophysics, a proper account of the
Casimir force is required for understanding the interac-
tion of biological membranes through a liquid layer.

The diverse applications of the Casimir effect in both
fundamental and applied physics demand reliable theo-
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retical methods allowing the calculation of the Casimir
force between real material bodies used in experiments.
Below we demonstrate that the Lifshitz theory can be
adapted to accomplish these ends.

E. Structure of the review

This review is devoted to the experimental and theo-
retical results obtained in the last ten years and related
to the Casimir force between real materials. It is not
intended to cover not less important but alternative re-
sults and methods related to the Casimir effect in ideal
configurations and more complicated geometries. The
latter will be touched on only if they provide important
guidelines for the experimentally oriented theoretical
approaches applicable to real materials.

In Sec. II we present the main results of the Lifshitz
theory for the configurations of two planar plates and an
atom near a plate. Some approximate methods appli-
cable to nonplanar boundary surfaces are also consid-
ered. Section III discusses the problem of how to com-
pare theory and experiment in the Casimir effect. Here
we consider the modeling of the optical properties of
real materials and corrections to the Casimir force due
to surface roughness and the finite size of the interacting
bodies. Special attention is paid to the quantitative mea-
sure of agreement between experiment and theory in
the force-distance measurements. Section IV presents
the main Casimir experiments with metallic test bodies,
including those using an atomic force microscope and a
micromechanical oscillator. The results obtained are
compared with different theoretical computations using
the Lifshitz theory. The prospects for measuring the
thermal Casimir force between metals are also dis-
cussed. In Sec. V the measurements of the Casimir force
between a metallic sphere and a semiconductor plate are
presented. The discussion starts with the crucial experi-
ment on the optically modulated Casimir force. The ex-
periments with heavily doped semiconductors having
different charge carrier densities are also discussed.
Then we consider the recent experiment involving a
semiconductor plate with deep rectangular trenches.
The proposed experiments on the change in Casimir
forces for a dielectric-metal phase transition, between a
sphere and a plate with patterned geometry, and with
the pulsating Casimir force are considered. Section VI is
devoted to the measurements of the Casimir-Polder
force. Here the experiment on the first measurement of
the thermal Casimir-Polder force at large separations is
presented. Section VII deals with the lateral Casimir
force and Casimir torques. After an introduction to the
subject, the first experiment on the measurement of the
lateral Casimir force between corrugated surfaces is con-
sidered. This is followed by consideration of the Casimir
torque between corrugated surfaces at small angles and
between anisotropic surfaces. Section VIII contains our
conclusions.
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II. LIFSHITZ’S THEORY OF THE THERMAL VAN DER
WAALS AND CASIMIR FORCES

A. Casimir interaction between two planar plates

Consider two thick dissimilar plane parallel plates
(semispaces) in thermal equilibrium at equal tempera-
ture 7, separated by an empty gap of width a. The Lif-
shitz formula (Lifshitz, 1956; Dzyaloshinskii et al., 1961)
represents the van der Waals and Casimir free energy
and force per unit area (i.e., the pressure) in terms of the
reflection coefficients r{¥(w,k ) and r¥(w,k,) for the
two independent polarizations of the electromagnetic
field. Here w is the frequency and k | is the magnitude of
the projection of the wave vector onto the plane of the
plates (the z axis is perpendicular to the plates). The
index n=1,2 labels the plates. Transverse magnetic
(TM) polarization means that the magnetic field is per-
pendicular to the plane formed by k, and the z axis,
while for transverse electric (TE) polarization the elec-
tric field is perpendicular to this plane. There are many
different derivations of the Lifshitz formula in the litera-
ture based on different approaches: in the framework of
quantum statistical physics, thermal quantum field
theory in the Matsubara formulation, scattering theory,
etc. [see, e.g., Schram (1973), Milonni (1994), Zhou and
Spruch (1995), Bordag et al. (2001), and Genet, Lam-
brecht, and Reynaud (2003)]. In all the derivations the
condition of thermal equilibrium is used. The final result
is represented in one of two equivalent forms: as a sum-
mation over the Matsubara frequencies along the imagi-
nary frequency axis or as an integral over real frequen-
cies. The first representation is used more often as it is
more convenient for computations. Here the Casimir
free energy per unit area is given by

i
Fa,T) = ZLWE'@E(&), (3)
=0

where the prime on the summation sign means that the
term for /=0 has to be multiplied by 1/2 and

D p(x) = f kydk, >, In[1-rD(ix,k,)
0 «a

Xr D (ix, k | )e 2] (4)

Here « denotes TM or TE, & are the Matsubara fre-
quencies, and

q = qlix,k )= VK* +x*c2. (5)

Note that the function @ in Eq. (3) depends on the real
argument x=§,. In the Lifshitz theory, the material me-
dia are described by the dielectric permittivity, depend-
ing only on the frequency (Lifshitz, 1956; Dzyaloshinskii
et al., 1961; Lifshitz and Pitaevskii, 1980). The descrip-
tion of the dielectric properties by &(w) fully accounts
for temporal dispersion but neglects the possible contri-
butions of spatial dispersion to the van der Waals and
Casimir forces. In the case of homogeneous nonmag-
netic media, the reflection coefficients are
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(n)(; (n)
e"(ix)g -k
r%\),[(ix,kL) = (ix)g

e (ix)q + k"’
— kW
W iv k)= 49—k 6
rTE(lx7 J_) q N k(n) ) ( )
where
n) — n . n .
k" = k"W (ix,k ) = \rkzl + e (ix)x%/c3. (7)

We underline that the reflection coefficients (6) are the
standard Fresnel reflection coefficients calculated, how-
ever, along the imaginary axis ix, where they are real.
They are derived from the standard continuity condi-
tions for the tangential and normal components of the
electric field, magnetic induction, and electric displace-
ment on the boundary planes, E{,=E,, B,=Bj,, D1,
=D,,, and B,=B,, (where the subscripts ¢ and n denote
the tangential and normal components, respectively).
Note that these conditions can be identically reformu-
lated in Casimir spirit such that one deals with fields
only external to the plates (Emig and Biischer, 2004).

The reflection properties of the -electromagnetic
waves on metal surfaces are often described in terms of
the Leontovich surface impedance (Landau et al., 1984).
The corresponding expressions for the reflection coeffi-
cients along the imaginary frequency axis can be found
in Bezerra et al. (2001) and Geyer et al. (2003).

For plates of finite thickness or plates made of several
layers, the reflection coefficients have a more compli-
cated form depending on layer thicknesses [see, e.g.,
Zhou and Spruch (1995), Klimchitskaya et al. (2000), and
Tomas (2002)]. In the literature, one can find the reflec-
tion coefficients for planar multilayer magnetodielectrics
with u# 1 (Buhmann et al., 2005; Tomas, 2005). The re-
flection coefficients have a more complicated form if the
plate material is anisotropic.

The Casimir pressure between two plates in thermal
equilibrium at a temperature 7 is determined from Eq.

3),

[

D) kTS, ®)
da -

P@a,T)=-

where

o eZaq -1
D p(x) = f kidkiq2<r 1) .

0 =\ rWD(ix, ke )rP(ix k)
9)

As mentioned, Egs. (3) and (8) are useful for practical
computations. For some purposes (for example, to inves-
tigate the comparative role of propagating and evanes-
cent waves), the following form of the Casimir free en-
ergy expressed as integrals along the real frequency axis
is convenient (Lifshitz, 1956; Bezerra et al., 2007):
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Fa,T) = 4772f dwcoth2 Im ®p(-iw). (10)

kgT
Here the function @ is defined by Eq. (4) with x=—iw,
where o is the real frequency. The propagating waves
correspond to k|, <w/c, i.e., to a purely imaginary q.
The evanescent waves correspond to k|, =w/c, i.e., to a
real g. These problems, however, are beyond the scope
of this review. They are considered, for instance, by
Henkel et al. (2004), Intravaia and Lambrecht (2005),
Bimonte (2006a, 2006b), and Intravaia et al. (2007).
Using the Abel-Plana formula (Mostepanenko and
Trunov, 1997) or the Poisson summation formula
(Mehra, 1967; Schwinger et al., 1978), one can present
the free energy per unit area and the pressure in the
following forms:

Fla,T)=E(a) + AF(a,T),

P(a,T)=P(a)+AP(a,T). (11)
Here E(a) is given by

Ew)= 7 f dED (0. (12)
0

Similarly, the quantity P(a) in the second equality in Eq.
(11) is

ﬁ 0
Pla)=———=| d&éPp(§). 13
@ WL £0p(® (13)
The second terms on the right-hand sides of equalities

(11) are given by

ikBwa Dp(iéyt) — (- i&y1)
dt 2t >
0 em—-1

AF(a,T) =

o

6271'[_ 1 (14)

AP T) = - ikinw dt‘DP(lfﬂ) - ®p(- iflt).
T Jo
Note that the quantities E£(a) and P(a) in Egs. (12) and
(13) are often referred to as the Casimir energy per unit
area and pressure at zero temperature, and AF(a,T) and
AP(a,T) in Eq. (14) are referred to as the thermal cor-
rections to them. This terminology is, however, correct
only for plate materials with temperature-independent
properties. In this case the Casimir free energy and pres-
sure depend on the temperature only through the Mat-
subara frequencies and the thermal corrections defined
as

ArF(a,T) = Fla,T) - Fa,0),

ArP(a,T) = P(a,T) — P(a,0) (15)

are the same as AF(a,T) and AP(a T) in Eq. (11). In this
case E(a)=F(a,0) and P(a)=P(a,0). If, however, the
properties of the medium (for instance, the dielectric
permittivity) depend on the temperature, then Egs.
(12)—(14) also contain a parametric dependence on the
temperature. Thus, the quantities E(a) and P(a) are
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mixed quantities without a definite physical meaning
(Bezerra et al., 2002b). They do not match F(a,T) and
P(a,0), respectively. As a consequence, the thermal cor-
rections ArF(a,T) and ApP(a,T) do not coincide with
AF(a,T) and AP(a,T) in Eq. (14). Thus, the so-called
zero-temperature Lifshitz formulas (12) and (13) can be
used for the approximate calculation of the free energy
and pressure only at rather small separation distances,
where the computational results using Egs. (3) and (12)
practically coincide [Egs. (8) and (13), respectively].
Usually this is the case for the calculation of the nonrel-
ativistic van der Waals forces (Parsegian, 2005).

B. Approximations for nonplanar boundary surfaces

The Lifshitz theory was formulated for the case of two
parallel plates. Experimentally it is hard to maintain two
plates parallel at short separations. Because of this, most
experiments (see Secs. IV, V, and VII) have been per-
formed using the configuration of a sphere above a
plate. The configuration of a cylinder above a plate also
presents some advantages in comparison with the case
of two parallel plates (see Sec. IV.D). Unfortunately, for
many years it was not possible to obtain exact expres-
sions for the Casimir force in these configurations. Thus,
the approximate method of Derjaguin (1934), later
called the proximity force approximation (PFA) (Blocki
et al., 1977), was used to compare experiment with
theory. According to this method, the Casimir energy in
the gap between two smooth curved surfaces at short
separation can be calculated approximately as a sum of
energies between pairs of small parallel plates corre-
sponding to the curved geometry of the gap. Specifically,
under the condition a<< R, where R is the sphere or cyl-
inder radius, the Casimir forces between the sphere or
cylinder (per unit length) and a plate are given by

F(a,T) =2mRF(a,T), F.a,T)= 15”\/ ~~Fla.1),
(16)

respectively, where F(a,T) is the Casimir free energy
per unit area in the configuration of two parallel plates,
as defined in Eq. (3).

Within the PFA it is not possible to control the error
of the approximation in Eq. (16). From dimensional con-
siderations it is evident (Bordag et al, 2001) that the
relative error in Eq. (16) should be of the order of a/R,
but the numerical coefficient of this ratio is unknown. In
fact, a rigorous determination of the error introduced by
the application of the PFA requires a comparison of the
approximate results in Eq. (16) with the exact analytic
results or with some precise numerical computations in
the respective configurations.

As discussed in Sec. I.B, during the last few years the
finite representation of the Casimir energy for two sepa-
rated bodies A and B in terms of the functional deter-
minants was obtained. In this representation the Casimir
energy can be written as (Kenneth and Klich, 2006,
2008)
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1 o0
E(a) = ;rfo déTrIn(1 - T“QQAB?’?GQ};A

1 ool
= f déIndet(1 - G0, 76040, (17)
0

Here gg}l, g 1s the operator for the free space Green’s

function with the matrix elements (r|G)) 5|r'), where r

belongs to the body A and 7’ to B. T* (7?) is the opera-
tor of the T matrix for body A (body B). The latter is
widely used in light scattering theory, where it is the
basic object for expressing the properties of the scatter-
ers (Bohren and Huffmann, 2004). Using such represen-
tations, Emig et al. (2006) obtained the analytic results
for the electromagnetic Casimir energy for an ideal
metal cylinder above an ideal metal plane. Eventually,
the result is expressed through the determinant of an
infinite matrix with elements given in terms of the Bessel
functions. The analytic asymptotic behavior of the exact
Casimir energy at short separations was found by Bor-
dag (2006). It results in the following expression for the
Casimir force at a<R:

F.0.0) P Rﬁc[l 1(20 7)a] (18)
a0)=———=\/——=|1-=| 5 -—=]=|.
‘ 384\2 V a a® 5\7 12/R

The PFA result in this case matches the first term on the
right-hand side of Eq. (18). It can be obtained by replac-
ing the free energy F(a,0) in the second equality in Eq.
(16) with the zero-temperature Casimir energy in the
configuration of two ideal metal plates, Ey(a) from Eq.
2).

Equation (18) is very important. It demonstrates that
the relative error of the electromagnetic Casimir force
between a cylinder and a plate calculated using the PFA
is equal to 0.2886a/R. Thus, for typical experimental pa-
rameters of R=100 um and a=100 nm, this error is ap-
proximately equal to only 0.03%.

For a sphere above a plate made of ideal metals at
T=0 PFA [Eq. (16)] leads to the result

F(a,0) = — 7w Rhc/360a>. (19)

For this configuration the exact analytic solution in the
electromagnetic case has not yet been obtained. The sca-
lar Casimir energy for a sphere above a plate was found
by Bordag (2006) and by Bulgac et al. (2006). The scalar
Casimir energies for both a sphere and a cylinder above
a plate have also been computed numerically using
the wordline algorithms (Gies and Klingmdiller, 2006a,
2006b), but it was noted that the Casimir energies for the
Dirichlet scalar field should not be taken as an estimate
for those in the electromagnetic case. Another numeri-
cal approach applicable in the electromagnetic case was
developed by Rodrigues, Ibanescu, ef al. (2007). This ap-
proach has not yet been applied at short separation dis-
tances of experimental interest. For an ideal metal
sphere above an ideal metal plane a correction of order
a/R beyond the PFA was computed numerically by
Emig (2008) for a/R=0.075 and by Maia Neto et al.
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(2008) for a/R=0.15. In both cases the extrapolation of
the obtained results to smaller a/R leads to a coefficient
near a/R approximately equal to 1.4.

In addition, the validity of the PFA for a sphere above
a plate has been estimated experimentally (Krause et al.,
2007) and the error introduced from the use of this ap-
proximation was shown to be less than a/R (see Sec.
IV.B for details). This is in disagreement with the ex-
trapolations made by Emig (2008) and Maia Neto et al.
(2008). To solve this contradiction, it is desirable to find
the analytical form of the first correction beyond the
PFA for a sphere above a plane, as in Eq. (18) for the
cylinder-plane configuration.

C. Casimir-Polder atom-plate interaction and Bose-Einstein
condensation

The interaction of atoms with a wall has long been
investigated in different physical, chemical, and biologi-
cal processes including absorption and scattering from
various surfaces [see, e.g., Mahanty and Ninham (1976)
and Israelashvili (1992)]. The general expression for the
free energy of the atom-wall interaction can be obtained
from Eq. (3) by considering one of the plates as a rar-
efied dielectric (Lifshitz, 1956; Lifshitz and Pitaevskii,
1980; Milonni, 1994). In doing so one expands the dielec-
tric permittivity of a rarefied dielectric in powers of the
number of atoms per unit volume N, keeping only the
first-order contribution,

e(i&) =1 +4ma(i&N + O(N?). (20)

Here a(w) is the dynamic polarizability of an atom. We
consider only atoms in the ground (or metastable) state.
The discussion of the interaction of excited atoms with a
wall [see, e.g., Buhmann and Welsch (2007), and refer-
ences therein] exceeds the scope of this review.

As a result, the free energy of atom-wall interaction
with the wall temperature 7 in thermal equilibrium
can be presented in the form (Caride er al., 2005;
Mostepanenko, Babb, et al., 2006)

- “ k,dk
Fla,T) = - kT2, ali€) f ——=®4(&,k,), (1)
=0 0 q

where

2
Dy(&,k ) = €_2aq’[ (26112 - %)rTM(igbkL)

g
-2 rre(ié&ny) | (22)

The reflection coefficient rp(0,k ) in Eq. (22) takes dif-
ferent values for different wall materials. For dielectrics
with finite static dielectric permittivity &, we get
rrv(0,k | )=(gg—1)/(gg+1), and for metals rr(0,k,)=1.
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At zero temperature Eq. (21) results in

(" “ k., dk
E(a)=- f d¢ a(ié) f lq -
0 0

In the nonrelativistic limit Eq. (23) leads to the well-
known result (Lifshitz and Pitaevskii, 1980),

f“ aelié) -1 G

Pa(&k).  (23)

E(a) = - a(ié) dé=-—. (24)

4ma’ J e(ié) + 1 a
If we consider an atom characterized by the frequency-
independent (static) polarizability a(i&)=a(0) near an
ideal metal wall at T=0, Eq. (23) results in

3hc C4
E(a):—8 a(O)E—?.

mwa* @5)

This is the famous result obtained by Casimir and Polder
(1948).

Calculations performed using the exact expression
(21) showed that the approximation [Eq. (24)] is valid
only at very short separation distances a <3 nm. To cal-
culate Cj in this case one should use the highly accurate
N-oscillator model (Shih and Parsegian, 1975),

) N

olit) = =3, Lo (26)

2’
n -1 w0n+§

for the dynamic polarizability of an atom (Caride et al.,
2005). In Eq. (26) m and e are the electron mass and
charge and f;, and w,, are the oscillator strength and
transition frequency from the nth excited state to the
ground-state transition, respectively. With the increase
in the atom-wall distance the retardation effects become
important. Starting from distances of several tens of na-
nometers, however, a more simplified single-oscillator
model for the atomic polarizability is applicable. The
description of an atom with the help of a frequency-
independent static polarizability works well only at
rather large separation distances a>2 um (Babb et al.,
2004). At room temperature, however, the temperature
corrections in Eq. (21) come into play at a=3 um. Thus,
the approximation (25) at room temperature works well
only within a rather narrow separation region from
2 to 3 pm.

From Eq. (21), the Casimir-Polder force acting on an
atom situated near a wall a distance a apart can be rep-
resented in the form (Babb et al., 2004)

F(a,T)= —ZkBTE'a(ié)f kidk, ®4(&.k,).  (27)
=0 0

Calculations of the energy of atom-wall interactions
and of the Casimir-Polder force play an important role
for the interpretation of experiments on quantum reflec-
tion, i.e., above-barrier reflection of slow atoms, with
incident kinetic energy exceeding the barrier height [see,
e.g., Coté et al. (1998), Druzhinina and DeKieviet (2003),
Pasquini et al. (2004), Oberst, Kouznetsov, et al. (2005);
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Oberst, Taashiro, et al. (2005), and references therein].
Results on Casimir-Polder forces from such experiments
are discussed in Sec. VI.B.

The Casimir-Polder interaction leads also to a change
of center-of-mass oscillation frequency w, of a Bose-
Einstein condensate (Antezza et al., 2004),

® 27/ wyy
w(z) —w=— 0 J d7cos(wy7)
WAma 0

RZ
X f dzn (z)Fla + z + A cos(wy7), T].

_RZ

(28)

Here the Casimir-Polder force in thermal equilibrium is
given by Eq. (27); m, is the mass of atoms of the Bose-
Einstein condensate under consideration. The averaging
procedure includes the averaging of time over the pe-
riod of oscillations in the z direction with an amplitude
A (z is perpendicular to the plate) and the density of gas
with a distribution function

15 2\2
(1——2’2) , (29)
16R,\" R

n,(z) =

where R, is the Thomas-Fermi radius in the z direction.

The measurement of the change in the center-of-mass
oscillation frequency (Harber et al., 2005; Obrecht et al.,
2007) is a sensitive test of the Casimir-Polder force. Re-
sults of the recent experiment (Obrecht et al., 2007),
where the thermal effect was measured for the first time
in Casimir physics, are discussed in Sec. VI.A.

D. Puzzles in the application of the Lifshitz theory to real
materials

1. Real metals

In the framework of the Lifshitz theory of the van der
Waals and Casimir forces, discussed above, the calcula-
tional results depend strongly on the model of dielectric
permittivity used to describe real material. Different
problems arise for metals and dielectrics. The source of
the discrepancy is in the different contributions from the
zero frequency term [i.e., from the term with /=0 in Eq.
(3)]. For metals, problems result from the contribution
of the transverse electric mode. For ideal metal plates
the Casimir free energy was found independently of the
Lifshitz theory within the frames of thermal quantum
field theory with electrodynamic boundary conditions
E,=B,=0 on the surface of plates (Mehra, 1967; Brown
and Maclay, 1969). As mentioned in the Introduction,
the Lifshitz theory agrees with the case of an ideal metal
if one takes the limit of infinite dielectric permittivity,
e(i&) =, before putting the frequency equal to zero in
the temperature sum [Eq. (3)] (Schwinger et al., 1978).
Then from Egs. (6) and (7) one obtains

rom(iépk ) =1, rre(ié k) =-1 (30)

for any / including /=0. After the substitution into Eq.
(3) this leads to the same result for the Casimir free
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energy, as obtained independently using thermal quan-
tum field theory. The sequence of limiting transitions
used to obtain Eq. (30) is called the Schwinger prescrip-
tion.

The ideal metal, however, can be obtained as the lim-
iting case of real metals when the conductivity goes to
infinity. It is well known (Landau et al., 1984) that for
real metals g(i§) ~1/& when §—0 (the Drude model is
one particular case). Then from Eq. (6) we get for real
metals

rom(0,k ) =1, rrp(0,k,)=0. (31)

In the limit of infinite conductivity one again obtains Eq.
(30) for the reflection coefficients with /=1, but for the
reflection coefficients with /=0 Eq. (31) remains valid.
This would lead to a different result for ideal metals
than is obtained from the Schwinger prescription. As
shown below, this contradiction arises from the use of
the dielectric permittivity ~1/¢ which is outside the ap-
plicability conditions of the Lifshitz theory.

Conceptually the Lifshitz theory provides a way for
obtaining all the necessary results for any real material.
One may describe the free electrons in metals by the
plasma model [as suggested in the first papers devoted
to the calculation of the finite conductivity corrections to
the Casimir result (Lifshitz, 1956; Hargreaves, 1965;
Schwinger et al., 1978)],

g(w)=1- wlz,/wz. (32)

Here o, is the plasma frequency. The dielectric permit-
tivity (32) is applicable in the frequency region of infra-
red optics (Lifshitz and Pitaevskii, 1981). At room tem-
perature all nonzero Matsubara frequencies belong to
this region. Because of this, the plasma model leads to
rather accurate results for the Casimir force at separa-
tion distances above the plasma wavelength. Below, the
generalized plasmalike dielectric permittivity is also con-
sidered, which takes into account dissipation due to in-
terband transitions of core electrons and can be applied
at shorter separations (see Sec. III.A.1). The results ob-
tained for real metals using the Lifshitz theory with the
permittivity (32) are qualitatively close to those obtained
for ideal metals using thermal quantum field theory
(Bordag et al., 2000b; Genet et al., 2000). Thus, in the
low-temperature limit T<T.; (kT s=hc/2a), the
asymptotic expression for the thermal correction to the
energy for two similar plates, as defined in Eq. (15), is
given by (Bordag et al., 2000b; Geyer et al., 2001)
7Tzﬁc{ 45g(3)( T )3 ( T )4
_ 11+ S I
720a° m \ Teg T st
2c [45g(3)< T )3 1( T )4}
M w,a 773 Teff 2 Teff

p

ATJT(I))(CI,T) =

+oe (33)

Here {(z) is the Riemann zeta function. Note that in this
case the quantity AF(a,T), as defined in Eq. (14), coin-
cides with the thermal correction (15). For an ideal
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metal ®,—« and Eq. (33) reproduces the low-
temperature asymptotic behavior obtained with thermal
quantum field theory (Brown and Maclay, 1969). In the
high-temperature limit 7> T (at room temperature T
=300 K it is achieved at a=6 um) the asymptotic ex-
pression for the Casimir free energy is (Bordag et al,

2000b)

kBTg(s)( 2¢ )

| 1-——+
8ma w,a

Fa,T)=- (34)
Here ¢/w,=9 is the skin depth and &y/a is a small pa-
rameter. The finite conductivity correction in Eq. (34) is
negligibly small. Thus, the high-temperature limit for
real metals described by the plasma model dielectric
permittivity (32) coincides with that obtained for ideal
metals (Brown and Maclay, 1969; Feinberg et al., 2001).
The agreement between the Lifshitz theory combined
with the plasma model and the case of ideal metals, as
described by thermal quantum field theory, has a simple
explanation. It is because for the plasma model with
w,—, it is not Eq. (31) but Eq. (30) that is satisfied for
the reflection coefficients at zero frequency.

A different situation occurs when the Drude dielectric
function

ep(w)=1- wf,/w[w—i— ivT)], (35)

where y(T) is the relaxation parameter, is substituted
into the Lifshitz formula (Bostrom and Sernelius, 2000;
Hgye et al., 2003, 2006; Brevik et al., 2005). In this case
the zero-frequency values of the reflection coefficients
are given by Eq. (31), and the high-temperature limit is
equal to one-half of the corresponding value for ideal
metals, regardless of how large a conductivity is used for
the real metal (Klimchitskaya and Mostepanenko, 2001).

The low-temperature thermal correction, calculated
with the dielectric permittivity (35), can be presented in
the form (Bezerra et al., 2004)

AT}—(D)(a, T)

kaT (7
= ArFP(a, T) + F(a,T) - =2 zf y dy
167761 0

2,2, 22\2

cy —Vda“w, +c

XIn 1—( ot ) el (G6)
cy + \V4a’w, + c’y?

With the condition that
wT) <&, (37)

the low-temperature behavior of the second term on the
right-hand side of Eq. (36) is F(a,T) ~ Y T)In(T/ Teg)
(Bezerra et al., 2004). For metals with perfect crystal lat-
tices ¥(T)— 0 as T? (Lifshitz et al., 1973) and the inequal-
ity (37) is satisfied down to 7=0. For metals with impu-
rities there exists some residual value 7,..#0 (Kittel,
1996). As a result, at a T of about 10™* K typical residual
relaxation becomes equal to & and for smaller T Eq.
(37) is violated.

For room temperature, at separation distances below
1 um the third term on the right-hand side of Eq. (36) is
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dominant. It describes a rather large linear-in-
temperature thermal correction to the Casimir free en-
ergy and pressure, as predicted by the Drude model.
This thermal correction is positive, i.e., it decreases the
magnitude of the Casimir free energy and pressure. As
shown in Sec. IV.B, such a thermal correction is ex-
cluded by experiments at a high confidence level.

From a theoretical basis the thermal correction (36) is
not appropriate because it is inconsistent with thermo-
dynamics for metals with perfect crystal lattices. To
verify the consistency with thermodynamics, one should
consider the Casimir entropy (Bezerra et al, 2002a,
2002b, 2004)

S(a,T)=-0F(a,T)dT. (38)

In the case of metals described by the plasma model
dielectric permittivity (32) S¥(a,T)~T>—0 when T
—0 (Bezerra et al., 2002b). In the case of Drude metals
with perfect crystal lattices, the Casimir entropy has a
nonzero negative value at 7=0 following from Eq. (36)
(Bezerra et al., 2002a, 2002b, 2004, 2006; Mostepanenko,
Bezerra, et al., 2006)

kg Jm
d

.
—Vad2? + 22 \?
><ln|:1—<cy VGV ) oy
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cy + \“’4a2a)127 + czy2

SP)(a,0) =

T - )

" 16mad®

<0. (39)
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Note that the use of the Drude model in the Lifshitz
formula is usually justified by the fact that it provides
smooth transition between the region of the normal skin
effect and that of infrared optics. This ignores the region
of the anomalous skin effect where the Lifshitz formula
in terms of &(w) is not applicable. With the decrease of T
the application region of the normal skin effect becomes
more narrow and the application region of the anoma-
lous skin effect widens. However, at any 7> 0, there ex-
ists a frequency region including zero frequency where
the normal skin effect is applicable. Thus, it is worth-
while to use the Drude model at low 7" when discussing
the thermodynamic consistency of the Lifshitz theory.
It was shown (Bostrom and Sernelius, 2004; Hgye et
al., 2007; Brevik et al., 2008) that for Drude metals with
impurities the Casimir entropy jumps abruptly to zero at
T<10™* K starting from a negative value [Eq. (39)]. The
corresponding analytic expression for the low-
temperature behavior of the entropy has been obtained
(Hgye et al., 2007; Brevik et al., 2008) under the condi-
tion ;<< y,.s, Which is opposite to the inequality (37). The
application region and the coefficients of this analytic
expression were determined incorrectly because an
overestimated value of y,.,= ¥ (T=300 K) was used. The
correct values of the coefficients were found by Klim-
chitskaya and Mostepanenko (2008a), who also demon-
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strated that the application region of the obtained ex-
pressions is at temperatures below 7=107 K.

According to Hgye et al. (2007) and Brevik er al.
(2008), the formal satisfaction of the Nernst theorem for
the Drude model, as applied to metals with impurities,
resolves the problem of thermodynamic consistency of
that model combined with the Lifshitz theory. Klim-
chitskaya and Mostepanenko (2008a) remarked that a
perfect crystal lattice is a truly equilibrium system with a
nondegenerate dynamical state of the lowest energy. At
zero temperature any part of the system must be in the
ground quantum state (Landau and Lifshitz, 1980;
Rumer and Ryvkin, 1980). As a result, the Casimir en-
tropy computed for a perfect crystal lattice must be
equal to zero, a direct consequence of quantum statisti-
cal physics. Thus, they pointed out that the Drude model
combined with the Lifshitz formula violates the Nernst
heat theorem for a perfect crystal lattice and is in con-
tradiction with quantum statistical physics.

Hgye et al. (2008) argued that the Drude model com-
bined with the Lifshitz formula is thermodynamically
consistent in the case of a perfect crystal lattice also. To
justify this statement they introduced the definition of a
perfect lattice as the limiting case of a crystal lattice with
nonzero residual relaxation v,., when vy,.,— 0. However,
in condensed matter physics (Kittel, 1996), a perfect lat-
tice is commonly defined as a lattice with perfect crystal
structure without impurities, i.e., with v,,,=0 from the
outset. This common definition allows one to develop
the quantum theory of electron-phonon interactions,
which is based on the symmetry properties of the lattice.
Specifically, the relaxation parameter turns out to be
temperature dependent and vanishes with vanishing
temperature. The definition of a perfect lattice intro-
duced by Hgye et al. (2008) violates lattice symmetry
properties. For example, it would not be possible to re-
produce the standard results of the theory of elementary
excitations on the basis of this definition. Recently, In-
travaia and Henkel (2008) independently verified that
the Drude model used in the Lifshitz formula violates
the Nernst heat theorem for metals with perfect crystal
lattices as commonly understood [y(7T) —0 at T—0], in
accordance with original statement by Bezerra et al.
(2002a, 2002b, 2004).

Note that the substitution of the Drude dielectric
function (35) into the Lifshitz formula (3) for metal
plates of finite size is somewhat contradictory (Parse-
gian, 2005; Geyer et al., 2007; Mostepanenko and Geyer,
2008). As pointed out by Parsegian (2005), the Drude
model is derived from the Maxwell equations applied to
an infinite metallic medium (semispace) with no external
sources, with zero induced charge density, and with non-
zero drift current. In such a medium there are no walls
limiting the flow of charges. For real metal plates of fi-
nite size, however, the applicability conditions of the
Drude model are violated. If one admits that the electric
field of the zero-point oscillations with vanishingly small
frequencies (almost zero) creates a short-lived current of
conduction electrons, this leads to the formation of al-
most constant charge densities +3 on the sidewalls of
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the Casimir plates. As a result, both the electric field and
the current inside the plate will vanish due to screening,
in a very short time interval of order of 1078 s (Geyer et
al., 2007). Because of this behavior, for electromagnetic
fields at very low frequency, the finite metal plates
should be described not by the Drude dielectric function
(35), but by the plasma model, which allows for displace-
ment currents only (see Sec. III.A). The role of finite
size effects of the conductors was also illustrated in the
case of two wires of finite length described by the Drude
model and interacting through the inductive coupling
between Johnson currents (Bimonte, 2007). It was
shown that in the thermal interaction between the wires
the Nernst theorem is followed or violated depending on
whether the capacitive effects associated with the end
points of the wires are taken or not taken into account.

Another approach to the resolution of the puzzles
arising in the application of the Lifshitz theory to real
materials includes the effect of screening on the reflec-
tion coefficients (Dalvit and Lamoreaux, 2008). This ap-
proach takes into account both the drift and diffusion
currents of free charge carriers through the use of the
transport Boltzmann equation. It uses the standard Lif-
shitz formulas (3) and (21) for the free energy of wall-
wall and atom-wall interactions with the TE reflection
coefficient ryg as defined in Eq. (6) within the Drude
model approach, but with the modified TM reflection
coefficient

ki e(ix) — &(ix)

e(ix)qg — k -

mod,; nlix)  e(ix)
PGk ) = a—r —.  (40)
) k7 e(ix) — e (ix)
e(ix)qg+k+— -
nlix)  ec(ix)
Here the dielectric permittivity is given by
e(ix) = e.(ix) + wp/x(x + 7). (41)

where e.(ix) is the permittivity of the bound core elec-
trons,

. 8
e(ix) =1+ ——F—— (42)
j (1)] + X"+ 'ij

with nonzero oscillator frequencies w;# 0, oscillator
strengths g;, and damping parameters y;. The quantity
7(ix) is defined as

0 . 12
£.(0) s(lx)(ix)> , 3)

N )
7ix) = (ki MR

where 1/« is the screening length. If the charge carriers
of density n are described by the classical Maxwell-
Boltzmann statistics [Dalvit and Lamoreaux (2008)], one
gets the Debye-Hiickel screening length Rp=1/«
=(gokgT/4me’n)"?. Assuming Fermi-Dirac statistics,
one arrives at the Thomas-Fermi screening length Ryg
=1/k=(ggEp/6me’n)"> (Landau and Lifshitz, 1980;
Chazalviel, 1999). Here e is the electron charge, g,
=g.(0) is the dielectric constant due to the core elec-
trons, and Ep=fiw, is the Fermi energy. It was shown,
however, that the modification of the TM reflection co-
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efficient in accordance with Eq. (40) leads to the viola-
tion of the Nernst heat theorem for those dielectric ma-
terials whose charge carrier density does not vanish
when 7— 0 and conductivity vanishes due to the vanish-
ing mobility (Klimchitskaya, Mohideen, and Mostepa-
nenko, 2008; Klimchitskaya, 2009). For metals with per-
fect crystal lattices this approach violates the Nernst
theorem as discussed above (Mostepanenko et al., 2009).
Note that Dalvit and Lamoreaux (2008) applied their
approach to intrinsic semiconductor media. Bearing in
mind, however, that the classical Drude dielectric per-
mittivity is exploited, the method can be applied for
metals and doped semiconductors as well by substituting
the corresponding screening length. As shown in Secs.
IV.B and V.B, the computational results using the modi-
fied TM reflection coefficient are excluded by the mea-
surement data of two precise experiments (Chen et al.,
2007a, 2007b; Decca et al., 2007a, 2007b).

As shown above, the description of real metals at low
frequencies by the seemingly obvious dielectric permit-
tivity of the Drude model leads to serious difficulties.
Attempts at solving this problem by taking into account
the screening effects due to finite size of the plates or
diffusion currents of free charge carriers also failed. The
latter approach, if successful, would in fact be a recogni-
tion that the standard reflection coefficients, as used in
the Lifshitz theory, expressed in terms of the dielectric
permittivity are incorrect and one of them must be
modified using an additional microscopic quantity, the
density of free charge carriers.

The origin of the problem can be understood if one
takes into consideration the fact that the inclusion of the
drift current, as described by the Drude model, violates
the basic applicability condition of the Lifshitz theory.
This is the demand that the dielectric media and the
fluctuating electromagnetic field should be in thermal
equilibrium with the heat reservoir. The point is that the
existence of the drift electric current leads to a violation
of time-reversal symmetry and the introduction of the
interaction between the system and the heat reservoir
violating the state of thermal equilibrium (Bryksin and
Petrov, 2008). This is seen from the fact that the Drude
model is derived from Maxwell equations with the drift
current of conduction electrons on the right-hand side
(see above). In its turn, the drift current leads to the
emergence of Joule losses, i.e., to a heating of the crystal
lattice (Geyer et al., 2003). In order to preserve the tem-
perature constant, the unidirectional flux of heat from
the Casimir plates to the heat reservoir must inevitably
arise. Such an interaction between the system and the
heat reservoir cannot exist in the state of thermal equi-
librium as it is in contradiction with its definition
(Rumer and Ryvkin, 1980; Kondepudi and Prigogine,
1998).

Thus not just any dielectric permittivity can be consid-
ered in combination with the Lifshitz formula. Specifi-
cally, the dielectric permittivity of the Drude model (or
any other that is inversely proportional to the first power
of the frequency at low frequencies) does not belong to
the application region of the Lifshitz theory. In a similar
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way, the approach based on the transport Boltzmann
equation, in addition to the drift current, introduces the
diffusion current determined by a nonequilibrium distri-
bution of free charge carriers. This exacerbates the vio-
lation of thermal equilibrium. Thus, the modified reflec-
tion coefficient (40) obtained from this approach cannot
be substituted into the Lifshitz formula. On the other
hand, the dielectric permittivity of the plasma model
[Eq. (32)] and its generalized version taking into account
the interband transitions [see Eq. (58) in Sec. II1.A.1] do
not admit the drift current but only the displacement
one. Thus, they are compatible with the demand of ther-
mal equilibrium and can be substituted into the Lifshitz
formulas.

2. Real dielectrics

As mentioned in the Introduction, puzzling results
were obtained in the application of the Lifshitz theory
to real dielectrics. It is well known that all dielectric ma-
terials (insulators and intrinsic semiconductors charac-
terized by a band gap of different width, Mott-Hubbard
dielectrics, and doped semiconductors with doping con-
centration below the critical value) have a zero value
of the dc conductivity at zero temperature [see, e.g.,
Shklovskii and Efros (1984) and Mott (1990)]. At non-
zero temperature these materials have a nonzero value
of dc conductivity. Sometimes this conductivity is rather
large, as, for instance, for doped semiconductors with a
doping concentration only slightly below the critical
value. In the commonly used application of the Lifshitz
theory the dc conductivity of dielectrics is neglected.
Their conductivity is assumed to be equal to zero at any
temperature. In this case the dielectric permittivity is
represented in the form [see, e.g., Parsegian (2005)]

g(w)=¢ew)=1+ > —;, (44)

i (J)]—(J) —l'}/]

[5S}

where ;#0 are the oscillator frequencies, g; are the
oscillator strengths, and y; are the damping parameters
[note that when &(i¢) is calculated along the imaginary
frequency axis the damping parameters are often ne-
glected and some approximate formulas are used
(Hough and White, 1980; Bergstrom, 1997; Parsegian,
2005)]. From Eq. (44), the dielectric permittivity at zero
frequency is given by

1+ 8 < (45)
i 9

go=¢(0)

and the reflection coefficients at zero frequency are

e —
rrm(0,k ) = =

=ry, rre0,k,)=0. (46)
80+1

However, if one takes into account the existence of free
charge carriers at nonzero temperature, the dielectric
permittivity can be represented by
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8w, T) =e(w) + idmoy(T)lw, (47)

where o(T) is the dc conductivity at T#0 and e(w) is
given by Eq. (44) (Palik, 1985; Zurita-Sanches et al.,
2004). Then, instead of Eq. (46), the reflection coeffi-
cients at £=0 are given by Eq. (31).

The analysis of the low-temperature asymptotic be-
havior of the Casimir free energy (3) calculated with the
dielectric permittivity (44) for two similar plates shows
that (Geyer et al., 2005b, 2006; Klimchitskaya and Geyer,
2008)

b(a)le(”o) ( )
T)=E(a) - —_—
Fa1)=E@ {3(80 1) \ T
. §<3>ro<so +1) (_) } ’ s
4’7T Teff

where Li,(z) is the polylogarithm function, and the fol-
lowing notation is used:

bla)=> gﬂ% (49)
- 200

From Eq. (48) the Casimir entropy is given by

_ ky T (2b(a)Liy(rg)
St =3 Teff( 362 1)
35(3)r0(80+1) T )

50
4 a Teff ( )

As is seen from Eq. (50), S(a,T) goes to zero when T
—0, i.e., the Nernst heat theorem is satisfied when the
dielectric permittivity is given by Eq. (44) with a finite
static value [Eq. (45)].

A completely different result is obtained if one takes
into account the conductivity of dielectrics at zero fre-
quency that arises at 7>0. Note that in all cases this
conductivity vanishes exponentially, oo(T) ~exp(-C/T),
when T—0 (Shklovskii and Efros, 1984; Mott, 1990).
The reflection coefficients at zero frequency calculated
with the dielectric permittivity (47) do not satisfy Eq.
(46) but Eq. (31). This means that the TM reflection co-
efficient has a discontinuity when the dc conductivity of
the dielectric material is taken into account. Substituting
the dielectric permittivity (47) into the Lifshitz formula
(3), we arrive at (Geyer et al., 2005b)

- k
Fla, 1= Fla, 1)~ < 03) - L1+ R(D), (1)

where the low-temperature behavior of F(a,T) is given
by Eq. (48) and R(T) decreases exponentially when T
vanishes.

From Eq. (51), the Casimir entropy at 7=0 is given by

S(a,0) = (kg/16ma®)[£(3) - Lis(2)] > 0, (52)

in violation of the Nernst theorem. Thus, the inclusion
of a nonzero conductivity arising at 7>0 into the model
of the dielectric response leads to a contradiction be-
tween the Lifshitz theory and thermodynamics for all
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materials which have a zero conductivity at zero tem-
perature, i.e., for all dielectrics. The same happens if we
include the dc conductivity of the dielectric at 7>0
when describing the Casimir force between a metal and
a dielectric plate (Geyer et al, 2005a, 2006; Klim-
chitskaya, Geyer, and Mostepanenko, 2006; Geyer,
Klimchitskaya, and Mostepanenko, 2008). In this case
the Casimir entropy at 7=0 is given by Eq. (52) where
Li3(r(2)) should be replaced with Lis(ry). The above puz-
zling results are in line with those obtained for real met-
als described by the Drude model. They are explained
by the fact that the dielectric permittivity (47) is outside
the application region of the Lifshitz theory. Thus, the
nonzero conductivity arising at 7>0 for all dielectric
materials must be disregarded in theoretical computa-
tions using the Lifshitz formula (3). This rule has already
been confirmed experimentally (see Secs. V.B and
VIA).

Similarly to the case of two dielectric plates, for an
atom near a dielectric wall the Lifshitz theory is thermo-
dynamically consistent if the dc conductivity is ne-
glected. However, the inclusion of the dc conductivity of
the wall material in accordance with Eq. (47) leads to the
violation of the Nernst heat theorem (Klimchitskaya,
Mohideen, and Mostepanenko, 2008). An attempt to
solve this problem beyond the scope of the standard Lif-
shitz theory was undertaken by Pitaevskii (2008). This
attempt makes use of the effect of Debye-Hiickel
screening mentioned above in connection with metals.
The effect of screening is taken into account only for the
static field. It leads to the replacement of the transverse
magnetic reflection coefficient at zero frequency, as
given by Eq. (46), with

r?f,[d((),kj_) = (Sowki_ + 1P - ICJ_)/((c,‘Ovlczl + K+ k),
(53)

where k=1/Rp is defined in Sec. I1.D.1. When the total
density of charge carriers n=0, Eq. (53) leads to the
same result as Eq. (46). For n—oo, at fixed T#0,
#1940,k )=1, as in the standard Lifshitz theory with the
inclusion of the dc conductivity. This solves the peculiar-
ity of the small-o limit, i.e., the abrupt jump from Eq.
(46) to Eq. (31) arising from an arbitrarily small conduc-
tivity. According to Pitaevskii (2008), “the above-
mentioned peculiarity of the small o limit exists only for
the /=0 term.” This permits one to assume that all the
coefficients ryy rg(i§), k) with /=1 under some condi-
tions remain unchanged. This assumption was confirmed
by Dalvit and Lamoreaux (2008), who obtained both the
TM and TE reflection coefficients with account of the
screening effects at arbitrary Matsubara frequencies.
The TE reflection coefficient was found to coincide with
the standard one obtained using the Drude model ap-
proach and the modified TM reflection coefficient is
given by Eq. (40). It is easily seen that for materials with
sufficiently small charge carrier density (for instance, for
Si with n<10"7 cm™3) the modified reflection coefficient
[Eq. (40)] at room temperature 7=300 K takes approxi-
mately the same values as the standard one in Eq. (6) at
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all nonzero Matsubara frequencies. If one takes into ac-
count the fact that the reflection coefficient (53) ob-
tained by Pitaevskii (2008) is just the reflection coeffi-
cient (40) at x=0, this concludes the proof of the above
assumption.

The reflection coefficient (53) can be obtained by the
formal replacement of the dielectric permittivities de-
pending only on frequency with the permittivities de-
pending on both frequency and wave vector in the
Fresnel reflection coefficient of an uniaxial crystal. To
confirm that this is the case, one should introduce dis-
similar permittivities e,=¢, and ¢, and replace the coef-
ficient rpy; in Eq. (6) with

y

Ve (ix)e (ix)qg — k,

(54)

mod -
) = e g k.
Here k, is defined by Eq. (7) with the replacement of
e(ix) for g,(ix). With &, and &, depending only on the
frequency, Eq. (54) is commonly used for the description
of uniaxial crystals (Greenaway et al., 1969; Blagov et al.,
2005). Then Eq. (53) follows from Eq. (54) if one sets

£,(0)=¢g, €,(0)=¢,(0,k,)=¢y(1+ Kz/ki), (55)

where now ¢,(0) depends on the wave vector. Thus, to
obtain Eq. (53) one substitutes into the reflection coeffi-
cient (54) derived from the standard continuity bound-
ary conditions the dielectric permittivity depending on a
wave vector (see Sec. III.A.3 for reasons why this is in-
appropriate).

It was verified (Klimchitskaya, Mohideen, and
Mostepanenko, 2008) that for pure insulators and intrin-
sic semiconductors [i.e., for materials for which n(7) ex-
ponentially decays to zero with vanishing temperature]
the Lifshitz theory with the modified reflection coeffi-
cient (53) satisfies the Nernst heat theorem. However, if
n does not go to zero when T goes to zero (this is true,
for instance, for dielectric materials, such as semicon-
ductors doped below critical doping concentration or
solids with ionic conductivity), the Lifshitz theory with
the reflection coefficient (53) leads to a positive Casimir-
Polder entropy at 7=0, i.e., violates the Nernst heat
theorem (Klimchitskaya, Mohideen, and Mostepanenko,
2008). Note here that the entropy of the fluctuating elec-
tromagnetic field is nonzero at 7=0 and depends on
separation, whereas the entropy of the plates is separa-
tion independent. Because of this, the entropy of the
plates at 7=0 cannot compensate the nonzero entropy
of the fluctuating field so as to make the total entropy
independent of the parameters of the system in accor-
dance with the Nernst theorem. In fact, the conductivity
is given by oy(T)=nl|e|u, where w is the mobility of
charge carriers (Ashcroft and Mermin, 1976). Although
oo(T) goes to zero exponentially fast for all dielectrics
when T goes to zero, for most of them this happens not
due to the vanishing n but due to the vanishing mobility.
One such example is fused silica (SiO,) considered in
Sec. VLA in connection with experiments on the
Casimir-Polder force. Its conductivity is ionic in nature
and is determined by the concentration of impurities
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(alkali-metal ions) which are always present as trace
constituents. Two more examples are doped semicon-
ductors with dopant concentration below critical and di-
electriclike semimetals.

As shown in Sec. V.B, the modification of the trans-
verse magnetic reflection coefficient at zero frequency in
accordance with Eq. (53) is in contradiction with the
data of the experiment on the optically modulated Ca-
simir forces (Chen et al., 2007a, 2007b). This is in line
with the fact that, being the particular case of Eq. (40),
the modified reflection coefficient (53) violates the appli-
cability conditions of the Lifshitz theory.

III. HOW TO COMPARE THEORY AND EXPERIMENT

A. Modeling of the optical properties of real materials

1. Kramers-Kronig relations

To compare theory and experiment one first needs re-
liable theoretical results. These results can be obtained
using the Lifshitz formula (3) with an appropriate dielec-
tric permittivity for the plate material along the imagi-
nary frequency axis. In general, it can be obtained from
the imaginary part of complex dielectric permittivity
e(w)=¢'(w)+ie"(w) and the Kramers-Kronig relations.
The imaginary part of the permittivity is &"(w)
=2n'(w)n"(w), where n'(w) and n”"(w) are the real and
imaginary parts of the complex index of refraction. The
tabulated optical data for n'(w) and n”(w) for the differ-
ent materials can be found in Palik (1985). It should be
noted that the form of Kramers-Kronig relations is dif-
ferent depending on the analytic properties of the di-
electric permittivity under consideration. If e(w) is a
regular function at w=0 [the case of dielectrics with di-
electric permittivity given by Eq. (44)], the Kramers-
Kronig relations take the simplest form (Jackson, 1999),

g"(é)

1 o0
s'(w)=1+—Pf dé,
W —00

S/I(w) - _ lP ) 8,(5)

T ) L é-w

dé, (56)

where the integrals are understood as a principal value.
The third dispersion relation, expressing the dielectric
permittivity along the imaginary frequency axis, in this
case is

© ”n

e =1+ 2] 2@y, (57)
m)y E+w

The optical data for dielectrics are available in a wide
frequency range [®pin,®max] (Palik, 1985). Near wgyin,
&"(w) is almost zero. Bearing in mind that w,,;, is usually
below all the relevant resonances of the respective di-
electric medium, it is possible to extrapolate &"(w) as
zero in the region 0< w=< w,,;,. Regarding w,,,,, it is usu-
ally sufficiently high that no extrapolation to region w
> wnax 18 required. There are also many approximate
analytic expressions for the dielectric permittivity (44)
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[see, e.g., Hough and White (1980), Bergstrom (1997),
and Parsegian (2005)] suggested for the calculation of
the Hamaker constant at short separation distances in
the region of the nonretarded van der Waals force.
These expressions can also be used for calculations of
the retarded Casimir forces using the Lifshitz formula
(3) (Parsegian, 2005).

The description of the dielectric properties of metals
is much more complicated. In calculations of the zero-
temperature Casimir energy and pressure [Egs. (12) and
(13)] the plasma model dielectric permittivity (32) is of-
ten used, following Lifshitz (1956). This model is, how-
ever, applicable only at separation distances larger than
the plasma wavelength, as it does not take into account
the absorption bands due to the core electrons. To ad-
dress this problem, there are two approaches suggested
in the literature. In the first approach the tabulated op-
tical data for the complex index of refraction of the
metal under consideration are used to obtain the imagi-
nary part of the dielectric permittivity. The latter is ex-
trapolated to the region of low frequencies with the help
of the Drude dielectric function (Lamoreaux, 1999;
Klimchitskaya et al, 2000; Lambrecht and Reynaud,
2000). In the second approach the core electrons are de-
scribed by a set of oscillators with nonzero oscillator
frequencies [similar to Eq. (44) (Jackson, 1999)] but the
free conduction electrons are described using the plasma
model (Decca et al, 2007b; Geyer et al. 2007; Klim-
chitskaya et al., 2007a; Mostepanenko and Geyer, 2008).
In this case we obtain the so-called generalized plasma-
like dielectric permittivity,

2
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Egp(®) = 8 (w) — :)% =1-

g, |,ESN

&
25—
w; — 0" — iy

j %
(58)

The values of the oscillator parameters of core electrons
are found from the tabulated optical data for the com-
plex index of refraction (Palik, 1985). Since the Casimir
effect is a broadband phenomenon, it is of utmost im-
portance to use as exact data as possible, determined
over a wide frequency range in the interband absorption
region w>2.5 eV. Presently such data (and also data for
lower frequencies) can be obtained using an ellipsom-
eter. Thus, Svetovoy et al. (2008) found precise optical
properties of several Au films in the frequency region
from 0.73 to 8.86 eV using a vacuum ultraviolet ellip-
someter (and from 0.038 to 0.65 eV using an infrared
variable-angle spectroscopic ellipsometer).

In both approaches the dielectric permittivity along
the imaginary frequency axis can be obtained by means
of the Kramers-Kronig relations. Regardless of which
approach is used, the dielectric permittivity of a metal is
not regular at w=0 but has a pole. This changes the form
of the Kramers-Kronig relations (56). If e(w) has a
simple pole at w=0, e(w)=4mioy/w, the first two
Kramers-Kronig relations are (Landau et al., 1984)

gy

1
g'(w)=1+—P
7 ) o é—w

g’
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FIG. 1. The dielectric permittivity of Au along the imaginary
frequency axis. The solid line is obtained using the generalized
plasmalike model taking into account the optical data related
to the core electrons. The dashed line is obtained using the
optical data extrapolated to low frequencies by the Drude
model.

DO, 4700 (59)

e ®

1
e"(w) = - ;P

The third dispersion relation in this case is given by Eq.
(57), i.e., remains the same as for a dielectric permittivity
regular at w=0.

We now consider the generalized plasmalike dielectric
permittivity (58) having a second-order pole at zero fre-
quency [i.e., an asymptotic behavior &(w) = —wlz;/ o® when
w—0]. The standard derivation (Landau et al., 1984;
Jackson, 1999), when applied to this case, leads to one
more form of the Kramers-Kronig relations (Klim-
chitskaya et al., 2007a),

© ” 2
8'(&))21+le © (g)dg—eg,
T ) L é-w w
2
L g'(&) + EZE
g'(w) =- —PJ —dé&. (60)
T ). é-w

In this case the third Kramers-Kronig relation (57) is
also replaced with (Klimchitskaya et al., 2007a),

2

2 [(e ) e
gid =1+ ), §2+w2d(u+ 2 (61)

i.e., it acquires an additional term.

2. Calculation for Au

We now discuss the application of the above two
approaches to calculations of the dielectric permittivity
along the imaginary frequency axis for Au, a metal
widely used in the recent Casimir force measurements
(see Secs. IV-VI). As discussed, both approaches use the
tabulated optical data for the complex index of refrac-
tion (Palik, 1985). The calculation results are presented
in Fig. 1. The dashed line in Fig. 1 is obtained using
the Kramers-Kronig relation (57) with &"(w) given by
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FIG. 2. Correction factors to (a) the Casimir energy per unit
area and (b) the pressure vs separation between Au plates.
Bold and fine solid lines are computed using the generalized
plasmalike model at 7=300 K and 0, respectively. Long- and
short-dashed lines are calculated using the extrapolation of op-
tical data by the Drude model at 7=300 K and 0, respectively.

the complete tabulated optical data extrapolated to low
frequencies by the imaginary part of the Drude dielec-
tric function with ®,=9.0 eV and y=0.035 eV (Klim-
chitskaya et al., 2000; Lambrecht and Reynaud, 2000).
The solid line in Fig. 1 is obtained using the Kramers-
Kronig relation (61) adapted for the generalized plasma-
like model with £”(w) describing the contribution of core
electrons. In this case &"(w) is given by the tabulated
data with the contribution of free conduction electrons
subtracted (Decca et al., 2007b) using w,=9.0 eV. Note
that for frequencies ¢<10'°rad/s the simple analytic
six-oscillator model can also be used for the description
of core electrons (Decca et al., 2007b; Mostepanenko
and Geyer, 2008). As is seen in Fig. 1, the computational
results for (i) using the two approaches coincide at &
=10" rad/s but have different behavior at lower fre-
quencies.

In Fig. 2 we present the computational results for the
correction factors to the Casimir energy per unit (a) area
and (b) pressure obtained using the dielectric permittivi-
ties presented in Fig. 1 by the solid and dashed lines.
These correction factors are defined as

P(a,T)
Py(a) '

Fa,T)

kgla,T) = m,

KP(a, T) = (62)

where Ey(a) and Py(a) are the Casimir energy and pres-
sure between ideal metal planes defined in Eq. (2). The

solid lines represent the computational results using the
generalized plasmalike model [bold lines are obtained
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using Egs. (3) and (10) at 7=300 K whereas fine lines
using the zero-temperature Egs. (12) and (13); in the
case of the Casimir pressure bold and fine solid lines
practially coincide at all a<1 pum]. The dashed lines cor-
respond to computations using the tabulated optical
data extrapolated by the Drude model [the long-dashed
lines are obtained using Egs. (3) and (10) at 7=300 K
and the short-dashed lines using the zero-temperature
Lifshitz formulas (12) and (13) with the dielectric permit-
tivity at room temperature]. As is seen in Figs. 2(a) and
2(b), there are large deviations between the zero-
temperature short-dashed and 7=300 K long-dashed
lines at all separation distances above 100 nm. This
means that the zero-temperature formulas (12) and (13)
with substituted room-temperature values of the dielec-
tric permittivity accounting for the relaxation processes
of conduction electrons can only be approximately used
at short separation distances, i.e., in the region of the
van der Waals forces and in the beginning of the transi-
tion region to the Casimir forces (Parsegian, 2005). At
larger separation distances Egs. (12) and (13) do not re-
produce the values of the Casimir free energy. Using this
model of the dielectric permittivity, all calculations at
separations above 100 nm at room temperature should
be done with the thermal Lifshitz formulas (3) and (10)
for the Casimir free energy per unit area and pressure.
We emphasize, however, that the theoretical results ob-
tained in this way are excluded by an experiment at a
high confidence level (see Sec. IV.B).

The preceding discussion sheds light on the problem
of sample-to-sample dependence of the optical data. Ac-
tually, this dependence is mostly determined by the re-
laxation processes of free conduction electrons at infra-
red and optical frequencies [e.g., due to different
characteristic sizes of grains in thin films (Sotelo et al.,
2003)]. Uncertainty of the Casimir pressure due to the
variation of optical properties was investigated by
Pirozhenko et al. (2006) and Svetovoy et al. (2008) using
the zero-temperature Lifshitz formula (13). For this pur-
pose both the real and imaginary parts of the dielectric
permittivity of Au, as given by the optical data in the
infrared region collected by others, were approximated
by the real and imaginary parts of the Drude permittiv-
ity with an additional polarization term. It is easily seen
that all sets of the Drude parameters obtained are ex-
cluded by the experiment on the measurement of the
Casimir pressure [see the general method of the verifi-
cation of hypotheses, as applied to this case, in Sec.
ITI.C.2 and Fig. 11(b) in Sec. IV.B]. In contrast, the gen-
eralized plasmalike dielectric permittivity is based on
the characteristics of materials determined by the struc-
ture of a crystal cell (wp is one such factor). These char-
acteristics are not sensitive to sample-to-sample varia-
tions of the optical properties of the deposited
polycrystal films. Large variations in the values of w,
obtained by Pirozhenko et al. (2006) for different Au
samples can be explained by the fact that the authors
used the Drude model with frequency-independent re-
laxation parameter, whereas at high frequencies the re-
laxation parameter of conduction electrons depends on
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the frequency (Lifshitz et al, 1973). As discussed, the
drift current of conduction electrons is not compatible
with the Lifshitz theory of dispersion forces (Parsegian,
2005; Geyer et al., 2007; Mostepanenko and Geyer,
2008). Because of this, sample-to-sample variations of
scattering processes connected with this current should
be disregarded in the theory of the Casimir force.

3. Problem of spatial dispersion

Another problematic issue is connected with the role
of spatial dispersion. In particular, it is well known that
in the frequency region of the anomalous skin effect
metals cannot be described by the dielectric permittivity
depending only on the frequency (Lifshitz et al., 1973;
Lifshitz and Pitaevskii, 1981). The Lifshitz formulas (3),
(6), (10), (12), and (13), however, are derived only for
materials that can be described by &(w). The application
range of the Lifshitz theory can be widened using the
Leontovich surface impedance boundary condition
(Landau er al., 1984). Kats (1977) pioneered the applica-
tion of this approach to describe metals in the region of
the anomalous skin effect at zero temperature. The Le-
ontovich approach makes it possible to take into ac-
count real material properties without considering the
interior of the plates. In this approach the standard con-
tinuity boundary conditions applicable to interfaces be-
tween spatially local media are not followed. The Leon-
tovich impedance approach now appears interesting for
the description of the thermal Casimir force. It was sug-
gested (Bezerra et al., 2001; Geyer et al., 2003) to ex-
trapolate the impedance for the frequency region
around the characteristic frequency w.=c/(2a) to all fre-
quencies. For separation distances related to infrared
optics, some, however, have used the form of impedance
for the normal (Torgerson and Lamoreaux, 2004) or the
anomalous (Svetovoy and Lokhanin, 2003) skin effect.
In these latter cases the theoretical results turn out to be
in violation of the Nernst heat theorem and in contra-
diction with experiment (Geyer et al, 2003, 2004;
Bezerra et al., 2007).

There is another approach to account for spatial dis-
persion by the substitution of the dielectric permittivity
depending on both the frequency and wave vector,
e(w,k), into the usual Lifshitz formulas (3) and (8) or
(12) and (13) with some modified reflection coefficients.
This approach is, however, unjustified. The review by
Barash and Ginzburg (1975) contains a few references to
incorrect results obtained by others using such substitu-
tions. In the last few years, more papers have appeared
(Esquivel et al., 2003; Esquivel and Svetovoy, 2004;
Contreras-Reyes and Mochdn, 2005; Sernelius, 2005;
Svetovoy and Esquivel, 2005) employing the same ap-
proach in an attempt to solve the problem resulting from
using the Drude dielectric permittivity in the Lifshitz
formula. It was demonstrated (Klimchitskaya and
Mostepanenko, 2007) that these attempts are not war-
ranted because the modified reflection coefficients are
derived using phenomenological (additional) boundary
conditions and dielectric permittivities &(w,k) which are
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ill-defined quantities in the presence of a gap between
the plates as it violates the assumption of translational
invariance in the z direction. In the presence of spatial
dispersion, the boundary conditions following from the
Maxwell equations differ from the standard continuity
boundary conditions due to the inclusion of the induced
charge and current densities (Agranovich and Ginzburg,
1984; Ginzburg, 1985). It was also shown that in the
presence of the boundary surface the dielectric permit-
tivities depending on w,k can be approximately used
for the description of the remainder of the medium ex-
cept for a layer adjacent to the boundary surface (Agra-
novich and Ginzburg, 1984). However, it is unlikely that
this phenomenological approach would be applicable for
the calculation of the Casimir force between metallic
surfaces where the boundary effects are of prime impor-
tance. The generalization of the Lifshitz formula in
terms of the functional determinants and scattering ma-
trices [see Eq. (17)] opens opportunities to include the
effects of spatial dispersion. For the configuration of two
plane parallel plates the matrix elements of the operator
9%01)4 p reduce to a factor exp(—ga) and the same holds for
g g% ., (Lambrecht et al., 2006). To describe the plates in-
cluding the spatial dispersion, one should find the re-
spective T matrices of the operators 7 and 7%. In prin-
ciple, this could be done by solving Maxwell’s equations
for a given Casimir configuration made of a nonlocally
responding material without using the dielectric permit-
tivity depending on o and k. This problem awaits its
resolution.

B. Corrections to the Casimir force due to the imperfect
geometry of interacting bodies

1. Surface roughness

The problem of roughness corrections to dispersion
forces has long attracted the attention of researchers
[see, e.g., Maradudin and Mazur (1980), Mazur and Ma-
radudin (1981), Derjaguin et al. (1987), and Rabinovich
and Churaev (1989), where roughness corrections to the
nonretarded van der Waals force were investigated].
These corrections can be calculated using perturbation
theory and Green’s functions (Balian and Duplantier,
1977, 1978), functional integration (Golestanian and
Kardar, 1997, 1998; Emig et al., 2001, 2003), or by the
phenomenological methods of pairwise summation or
geometrical averaging (Bordag et al., 1994, 1995a, 1995b;
Klimchitskaya et al., 1999). In doing so some small pa-
rameters should be introduced which characterize the
deviation from basic geometry.

Consider two plates whose surfaces possess small de-
viations from the plane geometry. The surfaces of these
plates can be described by

ng) = A fi(x1,y1)s Z(zs) =a+ Asfr(x2,y2), (63)

where a is the mean value of the separation distance
between the plates. The values of the amplitudes are
chosen in such a way that max|f;(x;,y;)|=1. The averag-
ing of Eqgs. (63) over the total area of the plates with
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appropriately chosen origin on the z axis leads to

() = Ai(fix 1)) = 0,

(25 =a+ Ay y0)) =a. (64)

As mentioned, we consider small deviations from the
basic geometry, i.e., A;<a.

The topography of the surfaces (63) can be obtained
experimentally as an atomic force microscope (AFM)
image of a rather large area (see, e.g., Fig. 8 in Sec.
IV.A). AFM images of the surfaces of test bodies used in
the experiments described in Secs. IV.A, IV.B, V, and
VII show that the roughness is represented by stochas-
tically distributed distortions of different heights with a
typical lateral correlation length of about 200—400 nm.
If the correlation effects can be neglected (below we
discuss why they are small), the surface topography is
approximately characterized by a discrete set of pairs
(v,(»l’z),hgl’z)), where v!"? is the fraction of the surface
area with height h§1’2> on the surface 1 or 2, respectively.
These data allow one to determine the zero-roughness
levels H{? relative to which the mean values of the
functions fi; in Eq. (63) are equal to zero,

[0

> HP - =0, k=1,2. (65)
i=1

Note that the separation distances between the test bod-
ies in the Casimir force measurements are measured just
between these zero-roughness levels.

The Casimir pressure between the two ideal metal
plates with rough surfaces [Eq. (63)] at zero temperature
can be represented in the form

P(a) = — (7hc/240a*) K, (66)

where «7) is the correction factor due to surface rough-

ness. In the framework of the pairwise summation
method, which is based on the additive summation of
the Casimir-Polder interatomic potentials with the sub-
sequent normalization of the obtained interaction con-
stant, this correction factor calculated up to the fourth
perturbation order in relative amplitudes A;/a is (Bor-
dag et al., 1995a)

10
] =1+ S(FDAT- 2AA1A + (FDAS)

20
+ E((f%»‘ﬁ - 3<f%f2>A%A2 + 3<fo%>14114§

35
(A + (DA - K IHATA,

+6(f 1 DATAS - KAFDALAS +(FDA).  (67)

The mixed terms in Eq. (67) represent interference be-
havior.

For example, in the case of two plane plates with a
small angle a between them, it follows from Eq. (67)
that
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KP =1+ 130(aL/a)2 +7(aLla)*, (68)

where 2L is the characteristic length of the plate. As is
easily seen from Eq. (68), for plates with L=1 mm at a
separation a =500 nm the correction due to nonparallel-
ism of the plates is less than 1% if a does not exceed
2.7X107 rad. This is the reason why the experiments
with two plane plates demand a high degree of parallel-
ity. Note also that the small average separations needed
for measurements cannot be achieved if the plates are
tilted, as they might make contact at the edges. For the
above example the contact of the plate edges occurs at a
tilt angle of 1.72' =5 X 107 rad. The correction factor K(’)
to the Casimir energy between the two ideal metal
plates,

E(a) = - (7%hc/720a%) k7, (69)
is connected to Eq. (67) by
—1dilda. (70)

In practical computations it is often convenient not to
consider the complete roughness topography of surfaces
(63) but to describe the roughness as a stochastic process
by its rms variance,

g)_KE

K

Sux= 2 (HY = B[ (71)

st,
i=1

If roughness can be characterized by the rms variance,
the correction factor to the Casimir pressure between
the two parallel plates takes a simpler form (Bordag et
al., 1995b)

10 105
=1+;( w1t 6§t,2)+?

(1 + 531,2)2- (72)
For specially prepared surfaces in modern Casimir ex-
periments, the roughness corrections calculated using
Egs. (67) and (72) usually lead to the same result. The
correction factor to the Casimir energy due to stochastic
roughness takes the form (Bordag et al., 1995b)

K =1+ 2(52t1+52t2)+ 4(52t1+5§t72)2. (73)

For the configuration of a sphere (spherical lens)
above a plate, which is preferred from an experimental
point of view, the investigation of roughness corrections
to the Casimir force in the framework of the pairwise
summation method was performed by Klimchitskaya
and Pavlov (1996). It was demonstrated that if the char-
acteristic lateral scales of surface roughness on a plate
A, and on a sphere A, are rather small, A,, A< VaR, the
correction factor to the Casimir force between a sphere
and a plate made of ideal metals is the same as for the
Casimir energy between the two ideal metal plates, i.e.,
is equal to &7,

If the above inequalities are not fulfilled (e.g., there
are significant deviations of the lens surface from a
spherical shape), an additional term of the order ~1/a
results in the correction factor. That is why it is neces-
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sary to check carefully that the curvature radius of the
sphere is constant. The role of roughness in atom-wall
interaction was investigated by Bezerra, Klimchitskaya,
and Romero (2000).

The dependence of the Casimir force between metal-
lic test bodies on the penetration depth of the electro-
magnetic oscillations into the metal (i.e., on the skin
depth) was first demonstrated by Mohideen and Roy
(1998). This raised the question of how to take into ac-
count both the conductivity and roughness corrections.
The simplest approach is a multiplicative one: to calcu-
late the Casimir free energy (3) or the Casimir pressure
(10) using real material properties, including the role of
the skin depth, and multiply the obtained results by the
correction factor for ideal metal plates, KE) or K(r) re-
spectively [see, e.g., Mohideen and Roy (1998) and Chan
et al. (2001a)]. This approach corresponds to the addi-
tion of the different errors if they are small. Thus, it is
not applicable when at least one of the corrections is
large. At short separation distances a, where the conduc-
tivity corrections are not small and strongly depend on a
[see Figs. 2(a) and 2(b)], more sophisticated methods are
needed.

The nonmultiplicative approach of the geometrical
averaging was elaborated by Klimchitskaya et al. (1999).
According to this method, the Casimir pressure between
the two rough plates made of real materials can be cal-
culated as

kD k@)

S 3 ot

i=1 j=1

XPla+HY + HY - n) —h?.T).  (74)

PY(a,T) =

Here P(z,T) is calculated using Eq. (8) including real
material properties. Note that Eq. (74) is not reduced to
a simple multiplication of the correction factors due to
finite conductivity and surface roughness but takes into
account their combined (nonmultiplicative) effect as
well.

In a similar way, the Casimir free energy for two
rough plates can be calculated as

k0 g@

E E @, (2

i=1 j=1

XFla+HY + HY —h{" -1, T),  (75)

Fa,T) =

where F(z,T) is given in Eq. (3). The method of geo-
metrical averaging is widely used when comparing theo-
retical and experimental results in experiments on the
measurements of the Casimir force [see, e.g., Klim-
chitskaya et al. (1999), Decca, Fischbach, et al. (2003),
Decca, Lopez, et al. (2003), Chen, Klimchitskaya, Mo-
hideen, and Mostepanenko (2004), Decca, Lépez, Fisch-
bach, et al. (2005), Decca et al. (2007a, 2007b), Lisanti et
al. (2005), and Munday and Capasso (2007)].

Equations (74) and (75) are based, however, on the
proximity force approximation and do not take into ac-
count the diffractionlike correlation effects. In first-
order perturbation theory, these effects have been inves-
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tigated for ideal metal plates covered with periodic
roughness (Emig et al., 2001, 2003) and for metals de-
scribed by the plasma model covered with stochastic
roughness (Genet, Lambrecht, Maia Neto, and Rey-
naud, 2003; Maia Neto et al., 2005). As demonstrated,
the correlation effects noticeably contribute to the
roughness correction only at relatively large separations
of order or much larger than the roughness period A (or
the correlation length) [see also van Zwol et al. (2007)].
The special analysis (Chen, Klimchitskaya, Mohideen,
and Mostepanenko, 2004; Decca, Lopez, Fischbach, et
al., 2005), based on the results by Emig et al. (2001, 2003)
showed that at separation distances a a few times
smaller than A the role of correlation effects is negligibly
small (about 0.03-0.04 % change in the magnitude of the
roughness correction for the roughness topography of
test bodies used in the experiments). With an increase of
separation distance the correlation effects become more
important, but at such large separations the complete
roughness correction including the correlation effects is
negligibly small. Thus, an accurate account of surface
roughness corrections would need more sophisticated
methods beyond the pairwise summation approach or
geometrical averaging for test bodies with roughness
having a small correlation length. In this case there
would be large correlation effects even at relatively
short separations where the role of roughness is signifi-
cant. The situation may become even more complicated
if the roughness amplitudes are not small and one has to
go beyond the lowest-order perturbation theory. With
respect to the roughness corrections, to date, however,
there are no measurements of the Casimir force which
fall into this category. The first experimental evidence
for the effects beyond the proximity force approxima-
tion was obtained by Chan et al. (2008) measuring the
Casimir interaction between a Au sphere and a Si plate
with deep rectangular trenches. This experiment is dis-
cussed in Sec. V.D.

There is one more effect connected with surface
roughness which should be accounted for in Casimir
force measurements. It is conceivable that the spatial
variations of the surface potentials due to grains of the
polycrystalline metal film (the so-called patch potentials)
simulate the Casimir force. Speake and Trenkel (2003)
obtained general expressions for the electrostatic free
energy and pressure in the configuration of two parallel
plates, which result from random variations of patch
potentials. These expressions can be used to analyze the
role of patch effects in any performed experiment. In
particular, it was shown (Chen, Klimchitskaya, Mo-
hideen, and Mostepanenko, 2004; Decca, Lopez, Fisch-
bach, et al., 2005) that in the most precise experiments
measuring the Casimir force between metallic test bod-
ies (see Secs. IV.A and IV.B) the patch effects are negli-
gibly small even at the shortest separation distances.

2. Finite size and thickness

The last point to be considered in this section is the
influence of the finite size and a thickness of interacting
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bodies on the calculational results. In fact, Egs. (3) and
(10) for the Casimir free energy per unit area and pres-
sure are obtained for plates of infinite area. Using the
proximity force approximation, we obtain from Eq. (3)
the Casimir force between a sphere of radius R>a
above an infinitely large plate. In experimental configu-
rations, however, the plate always has a finite size, and,
instead of a sphere, a spherical lens of some thickness
H<R may be used. It should be noted that recently
rigorous methods based on quantum field theory first
principles have been developed which allow one to cal-
culate the scalar and electromagnetic Casimir forces be-
tween arbitrarily shaped compact objects [see, e.g., Gies
and Klingmiiller (2006a, 2006b, 2006¢c) and Emig et al.
(2007, 2008)]. However, the application of these methods
for calculation of small corrections due to the finite sizes
of the test bodies in experimental configurations, where
the separation distances are rather small, still remains a
problem (especially in the electromagnetic case). For
this reason, finite size corrections still need to be esti-
mated using the simple method of pairwise summation.
For a spherical lens of radius R and thickness H placed
at a distance a above a disk of radius L the finite size
correction factor to the Casimir force is given by
(Bezerra et al., 1997)

kis=1-(@*/R®(1-T)73. (76)

Here T=max[R/VR*>+L?,(R-H)/R]. Using Eq. (76)
one can estimate that in all experiments performed to
date (see Secs. IV and V) the correction due to the finite
size of the test bodies is negligibly small. Thus, it is rea-
sonable to compare experimental results with the theo-
retical computations using Eq. (3) or (10).

The finite thickness of plates can be taken into ac-
count by the replacement of reflection coefficients (6)
with those obtained for multilayered structures (Zhou
and Spruch, 1995; Klimchitskaya et al., 2000). For metal
plates of larger thickness than the skin depth in the fre-
quency region of infrared optics (d=c/w,=~22 nm for
Au) the calculational results are the same as those for
semispaces. Thus, for typical metal films of about
100 nm thickness deposited on the surfaces of test bod-
ies in different experiments, the Lifshitz formulas for
semispaces can be reliably used (Klimchitskaya et al.,
2000). As an example, if in one case we have two Au
semispaces at a separation of 200 nm and in the other a
Au semispace at the same separation from a
100-nm-thick Au film made on a Si semispace substrate,
the relative difference in the Casimir energy is less than
0.01%. Recent experiments on the measurement of the
Casimir force between a metallic sphere and semicon-
ductor (Si) plate (Chen et al., 2005, 2007a, 2007b; Chen,
Klimchitskaya, et al., 2006; Chen, Mohideen, et al., 2006),
have created an interest in the role of the thickness of
the Si plate (Duraffourg and Andreucci, 2006; Lambre-
cht et al., 2007; Pirozhenko and Lambrecht, 2008a). In
these papers the Lifshitz formula at zero temperature is
used in the computations and, in the latter two, large
separations up to 1 mm were considered. The depen-
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FIG. 3. The ratio of the Casimir free energy for a Si plate of
thickness d at separations a=1 (lines labeled 1) and 5 um
(lines labeled 2) from Au semispace to the free energy in the
configuration of Si and Au semispaces at the same separations.
Solid lines are computed at 7=300 K. Dashed lines are com-
puted at 7T=0.

dences of the Casimir force on the plate thickness d and
the doping concentration are investigated. The results
obtained are, however, not applicable at large separation
distances at the laboratory temperature 7=300 K. For
example, we plot in Fig. 3 the ratio of the Casimir free
energy for the configuration of a Si plate of thickness d
at a separation a from a Au semispace to the free energy
in the configuration of Si and Au semispaces, as a func-
tion of Si plate thickness d. Solid lines 1 and 2 are com-
puted at 7=300K at a=1 and 5 wm, respectively.
Dashed lines 1 and 2 are computed at 7=0 at the same
separations. As is seen in the figure, at a=5 um the de-
viation between the solid and dashed lines reaches 20%.
Thus, the role of finite thickness of the plate at separa-
tions above 1 um should be investigated using the Lif-
shitz formula at nonzero temperature.

C. Quantitative comparison between experiment and theory in
force-distance measurements

1. Experimental errors and precision

When comparing experimental data from Casimir
force experiments with theoretical predictions, the im-
portant question on how to quantitatively characterize
the measure of agreement between them has to be ad-
dressed. Previously the concept of the root-mean-square
deviation between theory and experiment has been used
to quantify the precision of measurements and the
agreement with theory [see, e.g., early experiments by
Bordag et al. (2001) and also some later experiments
(Bressi et al., 2002; Decca, Fischbach, et al., 2003; Chen,
Klimchitskaya, Mohideen, and Mostepanenko, 2004)]. Tt
is well known, however, that this method is not appro-
priate for strongly nonlinear quantities, such as the Ca-
simir force, which changes rapidly with separation dis-
tance (Rabinovich, 2000). It was shown (Ederth, 2000)
that the calculation of the root-mean-square deviation
between experiment and theory leads in this case to dif-
ferent results when applied in different measurements
ranges but no better method was suggested. Later, a rig-
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orous approach to the comparison of experiment and
theory in Casimir force measurements was presented
(Decca, Lopez, Fischbach, et al., 2005; Chen, Mohideen,
et al., 2006; Klimchitskaya, Chen, et al., 2006) using sta-
tistical methods.

The first step in the application of this approach is to
characterize how precise the experimental data are with-
out any relation to the theory. To do this, the absolute
and relative total experimental errors should be calcu-
lated as a combination of systematic and random errors.
We use in the error analysis the notation II®*PY(a) for the
measured quantity, which is either the Casimir pressure
P*P'(a) in the configuration of two parallel plates or the
Casimir force F**P'(a) between a sphere and a plate, as a
function of separation distance a between them.

In each experiment, there are several sources
of the absolute systematic errors AJII**P'(a) and
corresponding relative systematic errors STI°*PY(a)
= ASTI®*PY(q) / |TI*PY(a)|, where 1<i</J (see Secs. IV and
V for the description of specific experiments). It is nec-
essary to stress that both in metrology and in all natural
sciences (physics, chemistry, biology, etc.) the term sys-
tematic error is used in two different meanings
(Rabinovich, 2000). According to the first meaning, a
systematic error is some bias in the measurement which
always makes the measured value higher or lower than
the true value. Such systematic errors in the measure-
ment results are usually removed using some known
process, i.e., through a calibration. They can also be
taken into account as corrections (see the description of
the calibration procedure and an example of correction
in the measurement of the Casimir force discussed in
Sec. IV.A). The systematic errors in this understanding
are often called systematic deviations. Below it is as-
sumed that the experimental data under consideration
are already free of such deviations.

Another meaning, which is used below, defines the
systematic errors as the errors of a calibrated measure-
ment device. The errors of some theoretical formula
used to convert the directly measured quantity into the
indirectly measured one (see Sec. IV.B) are also consid-
ered as systematic. In accordance with common under-
standing, the error of a calibrated device is the smallest
fractional division on the scale of this device. In the lim-
its of this range the systematic errors are considered as
random quantities characterized by a uniform distribu-
tion. Because of this, the total relative systematic error is
(Rabinovich, 2000)

(SA'HeXpt(a)

J 7
=miny 2, %HeXpt(a),k(BJ) \/ > [P a) P [,
i=1 i=1

(77)

where B is the chosen confidence level and kg) is the
tabulated coefficient depending on 8 and on the number
of sources of systematic errors J in the experiment under
consideration (Rabinovich, 2000). In precise experi-
ments, errors should be determined at a confidence level
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B=95%. However, in many Casimir force measure-
ments only a 67% confidence level is used (see Sec. IV).
Equation (77) can be written equivalently in terms of the
absolute errors.

In precise experiments (see Secs. IV and V) it is com-
mon to perform several sets of measurements, say #,
within the same separation region (@pin,@may)- This is
done in order to decrease the random error and to nar-
row the confidence interval. Each set consists of pairs
[a;, I1PYq;)], where 1<i<iy,yx (imax is different for dif-
ferent experiments). All measurement data can be rep-
resented as pairs [aij,HeXP‘(ai,»)], where 1<j<n. If sepa-
rations with fixed i are approximately the same in all sets
of measurement (i.e., a;~a;), the mean and the variance
of the mean at each point a; are obtained in the standard
way (Rabinovich, 2000),

n

l:lf;xpt — 12 Hexpt(a“)’
i = ij

2 1 < expt Jexpt12

1, = 1>,§1 [T (a) — TP, (78)
If separations with fixed i are different in different sets
of measurements (i.e., with different ), the calculation of
variance demands a more sophisticated procedure
(Decca, Loépez, Fischbach, et al., 2005; Klimchitskaya,

Chen, et al., 2006).

Direct calculations show that the mean values 1"
are uniform, i.e., change smoothly with the change of
i. The variances of the mean sp; are, however, not uni-
form. To smooth them, a speci;lil procedure is used in
statistics (Cochran, 1954; Brownlee, 1965). The applica-
tion of this procedure allows one to replace sy, with the
smooth function of separation sp(a) (Kliméhitskaya,
Chen, et al., 2006). Then the random absolute error at a
separation distance a can be calculated at a chosen con-
fidence level B,

A'TI®(a) = sip(@)tq. gn(n = 1). (79)

Here the value of #,(f) can be found in the tables for
Student’s ¢ distribution [see, e.g., Brandt (1976)].

To find the total experimental error of IT*P'(a), one
should combine the random and systematic errors. In so
doing it is assumed that the random error is character-
ized by the Student distribution which approaches to the
normal distribution with the increasing number of the
measurement sets. The systematic error is assumed to be
described by a uniform distribution. There are different
methods in statistics to obtain this combination
(Rabinovich, 2000). A widely used method is based on
the value of the quantity r(a)=ATI***(a)/sp(a). Accord-
ing to this method, at all a, where r(a) <0.8, the contri-
bution from the systematic error is negligible and
ATI®*PY () = A'TI*PY(gq) at a 95% confidence level [in so
doing A'TI®*P(a) is also calculated at 95% confidence us-
ing Eq. (79)]. If the inequality r(a)>8 is valid, the ran-
dom error is negligible and ATI®*P'(a)=A’TI**"'(a) with
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ASTI®*PY(q) calculated at 95% confidence. In the separa-
tion region, where 0.8<r(a) <8, a combination of errors
is performed using the rule

Atl—[cxpt(a) — qﬁ(r)[ArHeXpt(a) + ASHeXpt(a)], (80)

where the coefficient g4(a) at a =0.95 confidence level
varies between 0.71 and 0.81 depending on r(a). Being
conservative, one can use ¢ 5(r)=0.8.

It is important that the total experimental error
A'TI®*P(q) and the corresponding total relative error
STI*PY(q) = ATI*PY(a)/|TI®*PY(a)| characterize the preci-
sion of an experiment in its own without comparison
with any theory. Note also that in metrology an experi-
ment is called precise if the random error is much
smaller than the systematic error (Rabinovich, 2000). In
Casimir force measurements performed up to date, only
one experiment (Decca et al., 2007a, 2007b) satisfies this
rigorous criterion.

2. Comparison of experiment with theory

The theoretical values I1'"*°(q) (the pressure between
the plates or the force between the sphere and the plate)
computed using the Lifshitz theory also contain some
errors. If the Casimir force between a sphere and a plate
is calculated, one of the theoretical errors is caused us-
ing the proximity force approximation. To be conserva-
tive, one can set the respective relative error to a/R, i.e.,
to its maximum possible value (see Sec. II.B). Another
error is due to the uncertainty in the optical data used. It
can be conservatively estimated to be equal to 0.5%
over the entire measurement range (Chen, Klim-
chitskaya, Mohideen, and Mostepanenko, 2004). The to-
tal theoretical error can be computed using Eq. (77)
adapted for theoretical errors. Note that when using dif-
ferent sets of optical data one can arrive at different
computational results for I1"°"(4). This has resulted in
statements in the literature [see, e.g., Pirozhenko et al.
(2006) and Capasso et al. (2007)] that if different sets of
optical data obtained for different samples lead to devia-
tions in the Casimir force equal to, say, around 5%, then
the comparison of theory with experiment on a better
level is impossible. These statements are, however, in-
correct from the point of view of measurement theory
(Decca et al., 2007b). The point to note is that here we
are dealing with methods for the verification of hypoth-
eses. The procedures for such verifications are well de-
veloped in statistics. Different hypotheses correspond to
using different theoretical approaches (for instance,
based on the Drude or plasma model description of con-
duction electrons in metals or the inclusion or the ne-
glect of the small dc conductivity of dielectrics at non-
zero temperature) with different sets of optical data
available. The comparison of different hypotheses with
experiment can be performed by plotting the respective
theoretical bands as functions of separation (the width
of the band is determined by the total theoretical error)
and the experimental data with their absolute errors on
one graph [see, e.g., Fig. 11(a) in Sec. IV.B]. If the theo-
retical band does not overlap with the experimental
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data, including their errors, over a wide separation
range, it is experimentally excluded and the correspond-
ing hypothesis must be rejected. It is important to note
that the data and theory are not compared at just one
point but over a wide separation region where the dis-
tance dependence is nonlinear. The set of optical data
which contradicts the experimental results, when com-
bined with any theoretical approach, should be consid-
ered as irrelevant to the actual properties of the film
used in the measurement.

Another method to compare theory with experiment
is the consideration of the confidence interval for the

random quantity IT"°"(g,)-I18P'(q;) (Decca, Lopez,
Fischbach, et al., 2005; Chen, Mohideen, et al., 2006). In
doing so, one should take into account that this compari-
son is done at the separation distances a; measured with
some error Aa. Thus, the theoretical value I11¢"(g;) at
this point can be known only with the relative error
ala/a; (Iannuzzi, Gelfand, et al., 2004). Here a=3 for
the force between a sphere and a plate and a=4 for the
pressure between the two plates. This error, although
not connected with the theoretical approach used,
should be included as part of the theoretical errors in
Eq. (77). Note that at short separations it results in a
major contribution to the total theoretical error ATItheer,
Then the absolute error of the difference between
theory and experiment Ep(a) at a 95% confidence can
be calculated using Eq. (77) with J=2 and k{}s=1.1,

EH(”) = min{AtHeXpt(a) + All_[lhe()r(a)7

1.1 X [ATI®PY @) T + [ATIeT (@) ). (81)

The confidence interval for the quantity II™¢°T(g)

~I1*P'(a) at a 95% confidence level is given by
[-En(a),Eq(a)]. When one compares a theoretical ap-
proach with experimental data, the differences between
the theoretical and mean experimental values of IT may
or may not belong to this interval. A theoretical ap-
proach for which not less than 95% of the differences

I1theor(q) — [1°*PY(a) belong to the interval [-Ep(a),Ep(a)]
within any separation subinterval [a;,a,] of the entire
measurement range is consistent with the experiment. In
this case the measure of agreement between experiment

and theory is given by Zp(a)/|[1®*P'(a)|. On the contrary,
if for some theoretical approach a subinterval [a;,a;]

exists, where almost all differences IT"eo"(q)—IT¢*PY(q)
are outside of the confidence interval [-Ep(a),En(a)],
this theoretical approach is excluded by experiment at
separations from a; to a, at a 95% confidence level. If
the theoretical approach (hypothesis) is excluded by ex-
periment at a 95% confidence level, the probability that
it is true is at most 5%. It may happen that several the-
oretical approaches i=1,2,... are consistent with experi-
ment, i.e., not less than 95% of the differences

Hfheor(a)—ﬁe"pt(a) (i=1,2,...) belong to the confidence
interval [-Ep(a),En(a)] (such situations are considered
in Secs. IV and V). The statistical criteria used do not
allow an indication of the probability of the event that
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one of these approaches or all of them are false. The
rejection of some of the experimentally consistent ap-
proaches can be done on a theoretical basis only. For
example, if the measurement is performed at room tem-
perature and both theoretical computations done at T
=0 and 300 K are consistent with the data, the compu-
tation at 7=300 K can be considered as preferable. In
fact, to reliably discriminate between the two experi-
mentally consistent theoretical approaches, more exact
measurements are desirable. From the above it becomes
clear that the described statistical criteria are somewhat
asymmetric. They provide solid grounds for rejection of
the experimentally inconsistent approaches at a high
confidence level but do not permit the claim of the ex-
perimental confirmation of some consistent approach at
the same high confidence. These general criteria are il-
lustrated in Secs. IV and V using the examples of differ-
ent Casimir force measurements (see Figs. 12, 13, and
21). It would be interesting to apply more sophisticated
statistical methods, for instance, Bayesian (Berger, 1993;
Carlin and Louis, 2000; Lehmann and Romano, 2005)
for the data analysis of force-distance relations resulting
from the Casimir force measurements. Until now, how-
ever, such methods have not been used devoted to the
experimental study of the Casimir effect.

It is notable that conclusions concerning consistency
or rejection of a hypothesis do not depend on the
method of comparison used (see discussion of different
situations in Secs. IV-VI). The half width of the confi-
dence interval Ep(a) has very little dependence on the
theoretical approach used (i.e., on the hypothesis to be
verified). It usually results from the experimental errors
in the measurement of the separation distance and the
Casimir force or the pressure.

IV. CASIMIR EXPERIMENTS WITH METALLIC TEST
BODIES

A. Measurements of the Casimir force using an atomic force
microscope

Recent interest in the experimental investigation of
the Casimir effect has its beginning in the experiment by
Lamoreaux (1997). This experiment, however, contains
several uncertainties that do not permit one to consider
it as precise and definitive (see the discussion in Sec.
IV.C.1). The first precise and definitive direct measure-
ments of the Casimir force between a metal-coated
sphere and a plate were performed by Mohideen and
Roy (1998), Roy et al. (1999), and Harris et al. (2000) in
three successive experiments using an AFM operated in
vacuum. In these experiments the fundamental require-
ments for the measurement of the Casimir force pro-
posed by Sparnaay (1958, 1989), such as (i) clean sur-
faces for the test bodies, (ii) precise and reproducible
measurement of the separation distance between them,
and (iii) low electrostatic potential differences, were met
for the first time [historical survey of the Casimir force
measurements performed before 1990 is given by Bor-
dag et al. (2001)]. They introduced the now standard use
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FIG. 4. Schematic diagram of the measurement of the Casimir
force using an atomic force microscope.

of metal-coated polystyrene spheres, which have the
unique advantages of being extremely light weight, per-
fectly smooth (made from liquid phase), and having very
low eccentricity (less than parts per thousand) as one of
the surfaces in Casimir force measurements. These mea-
surements also pioneered the independent determina-
tion of the roughness-induced average separation dis-
tances at contact, the cantilever calibration, and the
potential differences between the two surfaces using the
electrostatic force. This allowed a careful comparison to
the theory and a precise study of the effect of the metal
conductivity (also in terms of the skin depth) and the
surface roughness which previously could not be done.

A schematic diagram of the experimental setup for
the measurement of the Casimir force using the AFM is
shown in Fig. 4. The Casimir force between a sphere of
radius R and a plate causes the cantilever to flex. This
flexing is detected by the deflection of a laser beam lead-
ing to a difference signal S, between photodiodes A
and B which was calibrated by means of the electrostatic
force between the sphere and the plate. For this purpose
various voltages V were applied to the plate while the
sphere remained grounded. The measurements of the
electrostatic forces were performed at separations a
larger than a few micrometers where the contribution
from the Casimir force is negligibly small. The exact ex-
pression for the electrostatic force in sphere-plate con-
figuration is given by (Smythe, 1950)

o coth @—n coth
Fya) =2mey(V - V)* > coth @ —n coth na

el sinh na

= X(a)(V - V,), (82)

where cosh a=1+a/R, V is the residual voltage on the
sphere and ¢, is the permittivity of the vacuum. From a
comparison of theoretical expression (82) with the ex-
perimental data, the separation on contact a, and the
residual potential difference between the test bodies
were determined. Finally the absolute separations were
found from

a=ap+ dpiezo + Saefm, (83)

where the movement a,, of the piezoelectric tube on
which the plate is mounted was calibrated by an optical
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FIG. 5. Comparison of experiment and theory. Measured
mean Casimir force between Al surfaces versus separation is
shown as open squares. The theoretical Casimir force with cor-
rections due to skin-depth and surface roughnesses and for
ideal metal surfaces is shown by the solid and dashed lines,
respectively.

fiber interferometer (Chen and Mohideen, 2001). As the
piezo was moved with continuous periodic triangular
voltages, the nonlinearities can be precisely accounted
for through interferometric calibration. The last term in
Eq. (83) is due to the decrease in the separation distance
from the flexing of the cantilever in response to any
force. Note that S4.;<<0 for an attractive force. The de-
flection coefficient m was found from electrostatic cali-
bration.

To measure the Casimir force between the sphere and
the plate, they are both grounded together with the
AFM. The plate is then moved toward the sphere using
the piezo and the corresponding photodiode difference
signal is measured. It is converted into the respective
deflection of the cantilever tip and by use of Hooke’s law
into the values of the Casimir force Sy.tkm, where k is
the spring constant (see below for the results of electro-
static calibration and the values of the main parameters).
In the first two measurements using the AFM by Mo-
hideen and Roy (1998) and Roy et al. (1999), the sphere
and the plate were coated with about 300 nm of Al. To
prevent rapid oxidation of Al it was sputter coated with
thin Au/Pd layers. In the first experiment (Mohideen
and Roy, 1998; Klimchitskaya et al., 1999) it was demon-
strated that the Casimir force between real metal sur-
faces deviates significantly from the Casimir prediction
made for ideal metal surfaces. In Fig. 5 the measured
data for the Casimir force, as a function of separation
distance a, are shown as open squares. The dashed line
indicates the Casimir force (19) between an ideal metal
plate and an ideal metal sphere of R=100+2 um radius
used in the experiment. The solid line shows the theo-
retical Casimir force calculated with account of the cor-
rections due to the skin depth and the surface rough-
ness. This force was found using the fourth-order
perturbation theory in the relative skin depth &,/a de-
fined in Sec. I.D.1. The perturbation theory (Klim-
chitskaya et al, 1999; Bezerra, Klimchitskaya, and
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Mostepanenko, 2000), when applied in the appropriate
region of the plasma model, leads to approximately the
same results as the Lifshitz formula at zero temperature
(first measurements using the AFM were not of suffi-
cient precision to measure the thermal effect at T
=300 K). The Casimir force including the effect of both
the skin depth and roughness corrections was calculated
using Eq. (75) and the PFA (16). As shown in Fig. 5, the
solid line is in good agreement with data, thus, demon-
strating the role of skin depth and roughness correc-
tions.

We now consider the most precise, third, measure-
ment of the Casimir force between metal surfaces by
means of an AFM (Harris et al., 2000). The use of a thin
Au/Pd coating on the top of the Al in the first two ex-
periments prevented a complete theoretical treatment of
the properties of the real metal surfaces. Because of this,
in the third experiment, Au layers of 86.6+2 nm thick-
ness were coated on both the plate and the spherical
surfaces. Such a coating is sufficient to reproduce the
properties of an infinitely thick metal (see Sec. I11.B.2).
The sphere diameter (including the metal coating) was
measured using the scanning electron microscope to be
191.3+0.5 um (independent calibration of the scanning
electron microscope was done with interferometrically
calibrated AFM piezo standards). The cantilever was
calibrated and the residual potential between the sur-
faces was measured using the electrostatic force at sepa-
rations larger than 3 um with voltages V from -3 to 3 V
applied to the plate. As a result the following values
were obtained: m=8.9+0.3 nm per unit deflection signal,
km=0.386+0.003 nN per unit deflection signal, ag
=32.7+0.8 nm, and the residual potential on the
grounded sphere V(=3+3 mV. At separations of about
60 nm this residual potential leads to forces which are
only 0.075% of the Casimir force. At a=100 nm the con-
tribution of the residual electric force increases up to
0.17% and at a=160 nm up to 0.36% of the Casimir
force.

The magnitudes of the residual potential and separa-
tion on contact were shown to be independent of the
distances where the measurements of the electric force
were performed. The electric force corresponding to the
residual potential difference has been subtracted from
the measured total force to obtain the pure Casimir
force. This is in fact a correction made to remove the
systematic deviation due to the residual potential differ-
ence, as discussed in Sec. III.C.1. From the above values
it becomes clear that the electrostatic residuals are neg-
ligible in comparison with the Casimir force. The electric
force due to the patch potentials contributes only 0.23%
and 0.008% of the Casimir force at separations a=62
and 100 nm, respectively (Chen, Klimchitskaya, Mo-
hideen, and Mostepanenko, 2004). Recently it was
claimed that the residual potential V|, from the electro-
static calibration in sphere-plate configuration is separa-
tion dependent (Kim et al., 2008). They used a Au-
coated sphere of 30.9 mm radius at separations of a few
tens of nanometers above a Au-coated plate. On the
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FIG. 6. Comparison of experiment with ideal metal theory.
The measured mean Casimir force between Au surfaces versus
separation is shown as dots. Theoretical Casimir force for ideal
metal surfaces is shown by the solid line.

basis of these measurements a reanalysis of the indepen-
dence of V|, on separation in the measurements of the
Casimir force by means of an atomic force microscope
and a micromachined oscillator (see Sec. IV.B) was in-
vited. Decca et al. (2009) demonstrated, however, that
for a centimeter-size spherical lens at such short separa-
tions from the plate, the electrostatic force law used by
Kim et al. (2008) is not applicable due to the inevitable
deviations from a perfect spherical shape of the me-
chanically polished and ground surface and the presence
of dust or other impurities. Because of this, the observed
anomalies in the electrostatic calibration are not directly
relevant to the experimental results considered here.

The averaged Casimir force measured from 27 scans is
reproduced in Fig. 6 as dots within the measurement
range from 62 to 300 nm. In the same figure the solid
line represents the Casimir force between ideal metal
interacting surfaces. This once again demonstrates the
difference between ideal metal surfaces and real materi-
als.

The experimental errors in the experiment by Harris
et al. (2000) were reanalyzed by Chen, Klimchitskaya,
Mohideen, and Mostepanenko (2004). The maximum
value of the systematic error at a 95% confidence level
was shown to be ASF*P'=2.7 pN and of the random er-
ror ATF**P'=58 pN over the entire measurement range.
Using the combination rule in Eq. (80), the total experi-
mental error of the force measurements is given by
A'F*Pt=6.8 pN. It does not depend on separation. The
relative error varies from 1.5% to 2% when the separa-
tion increases from 63 to 72 nm. It increases to 4.8%
and 30% when separation increases to 100 and 200 nm,
respectively. The error in the measurements of absolute
separations was found to be Aa=1 nm. All errors are
determined at a 95% confidence level. The experimental
data over the separation region from 63 to 100 nm are
shown in Fig. 7 as crosses, where the sizes of the errors
in the separation and force measurements are given in
true scales. To make the figure readable, only every sec-
ond data point is presented. We underline that the mea-
surement of the Casimir force described above is inde-
pendent in the sense that no fit to any theory of
dispersion forces has been used. The above procedures
used a fit only to the well-understood electric force in
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FIG. 7. Comparison of experiment and theory. The measured
mean Casimir force between Au surfaces versus separation is
shown as crosses. The arms of the crosses represent in true
scale absolute errors determined at 95% confidence. Theoret-
ical Casimir force calculated using the generalized plasmalike
model is shown by the solid band.

order to find the values of some parameters such as the
separation on contact ag, the residual potential differ-
ence V), and deflection coefficient m.

A theoretical calculation of the Casimir force by Har-
ris et al. (2000) was performed using the Lifshitz formula
at zero temperature [Eq. (12)] and the PFA [Eq. (16)].
The dielectric permittivity of Au along the imaginary
frequency axis was obtained using the first approach de-
scribed in Sec. I111.A.1, i.e., with the optical data extrapo-
lated to low frequencies by means of the Drude model
(the dashed line in Fig. 1). The character of roughness
was investigated from the analysis of the AFM images of
the surfaces of Au films. A typical AFM image of sur-
face topography is presented in Fig. 8. As shown in this
figure, the roughness is mostly represented by the sto-
chastically distributed distortions with typical heights of
about 2-4 nm and rare pointlike peaks with typical
heights up to 16 nm. Zero-roughness levels on both the

¢(pnm)

FIG. 8. Typical atomic force microscope image of the Au coat-
ing on the plate with roughness height /# and lateral scale /.
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plate and the sphere were found from Eq. (65) to be
Hy=2.734 nm (Chen, Klimchitskaya, Mohideen, and
Mostepanenko, 2004). The rms variance defined in Eq.
(71) is 8,=1.18 nm. The role of roughness in this experi-
ment is very small. Even at the shortest separation a
=62 nm roughness contributes only 0.24% of the Ca-
simir force. The diffraction-type and correlation effects
discussed in Sec. III.B.1 were shown to contribute less
than one-tenth of this value (Chen, Klimchitskaya, Mo-
hideen, and Mostepanenko, 2004).

Comparison of the data with the Lifshitz theory at T’
=0 taking the surface roughness into account demon-
strated good agreement over the entire measurement
range (Harris et al., 2000; Chen, Klimchitskaya, Mo-
hideen, and Mostepanenko, 2004). However, as dis-
cussed in Sec. I1.D.1, the use of the Drude model at low
frequencies presents serious difficulties. In addition, ac-
cording to Sec. III.A.2, the use of the zero-temperature
Lifshitz formula for the interpretation of the experiment
performed at 7=300 K is open to discussion. In Sec.
ITI.A.1 a second approach to the calculation of Au di-
electric permittivity along the imaginary frequency axis,
was described. It is based on the plasmalike dielectric
permittivity with the inclusion of the relaxation due to
the core electrons alone (the solid line in Fig. 1). This
approach can be used in combination with the Lifshitz
formula at 7'# 0 with no thermodynamic inconsistencies.
Calculations of the Casimir force in the experimental
configuration of Harris et al. (2000) at 7=300 K using
the generalized plasma model (i.e., with the dielectric
permittivity given by the solid line in Fig. 1) were per-
formed by Klimchitskaya et al. (2007a). The Casimir
force obtained, as a function of separation, is shown by
the solid band in Fig. 7. The width of this band indicates
the total theoretical error calculated at a 95% confi-
dence level as described in Sec. III.C.2, taking into ac-
count the error of the PFA and uncertainties in the op-
tical data of Au related to the interband transitions. As
shown in Fig. 7, the theoretical approach using the gen-
eralized plasmalike permittivity is also in good agree-
ment with the data. Within the separation region from
63 to 72 nm, where the relative total experimental error
determined at a 95% confidence level varies from 1.5%
to 2%, all experimental crosses overlap with the theoret-
ical band. From this one can conclude that the measure
of agreement between experiment and theory at separa-
tion distances from 63 to 72 nm also varies from 1.5% to
2% of the measured force.

Thus, both theoretical approaches using the complete
optical data for Au extrapolated to low frequencies by
the Drude model and the Lifshitz formula at 7=0 or the
generalized plasmalike dielectric permittivity and the
Lifshitz formula at 7=300 K are consistent with the ex-
perimental data by Harris ef al. (2000). This is because at
separations below 100 nm, where the precision of this
experiment is relatively high, the theoretical approaches
used lead to almost coincident results. At such short
separations approximately the same theoretical results
are also obtained using the complete optical data ex-
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trapolated to zero frequency by the Drude model and
the Lifshitz formula at 7=300 K. However, at larger
separation distances the calculational results obtained
using the above two approaches at nonzero temperature
become significantly different. Because of this, high-
precision experiments at separations of a few hundred
nanometers, considered next, are important for the un-
derstanding of the underlying physics.

B. Precise determination of the Casimir pressure using a
micromachined oscillator

Microelectromechanical systems are well adapted for
the investigation of small forces acting between closely
spaced surfaces. One such system, a micromachined os-
cillator, was first used by Chan er al. (2001a, 2001b) to
demonstrate the influence of the Casimir force on the
static and dynamic properties of micromechanical sys-
tems (see Sec. IV.C.2).

Precise determination of the Casimir pressure be-
tween two parallel metallic plates by means of a micro-
machined oscillator was performed in three successive
experiments by Decca et al. These experiments do not
use the configuration of two parallel plates. The first
experiment was made with a Au-coated sphere and Cu-
coated plate (Decca, Fischbach, et al., 2003; Decca, Lo6-
pez, et al., 2003, Decca et al., 2004). The second experi-
ment with several improvements used both a Au-coated
sphere and a plate (Decca, Lopez, Fischbach, et al., 2005;
Klimchitskaya et al., 2005). Further improvements
implemented in the third experiment with a Au-coated
sphere and Au-coated plate (Decca et al., 2007a, 2007b)
made it the most precise and reliable measurement with
metallic test bodies ever performed in the Casimir force
measurements to date. Here we discuss the measure-
ment scheme and the main physical results following
from the third experiment by Decca et al. (2007a, 2007b).

In metrological terms this is an indirect measurement
(Rabinovich, 2000) of the Casimir pressure between two
Au-coated parallel plates. Note that the results of direct
measurements are found just from the experiment. The
results of indirect measurements are obtained with the
help of calculations using the known equations which
relate the quantity under consideration with some quan-
tities measured directly. The Casimir force per unit area
(pressure) was determined in these experiments dynami-
cally by means of a micromechanical torsional oscillator
consisting of a 500X 500 um? heavily doped polysilicon
plate suspended along one central planar axis by serpen-
tine springs and a sphere of R=151.3 um radius above
it attached to an optical fiber (see Fig. 9). During the
measurements, the separation distance between the
sphere and the plate was varied harmonically, a(f)=a
+ A, cos(w,t), where o, is the resonant angular frequency
of the oscillator under the influence of the Casimir force
Fy(a,T) from the sphere and A,/a<1. The frequency o,
is related to the natural angular frequency of the oscil-
lator wy=27X(713.25+0.02) Hz by (Chan et al., 2001a,
2001b; Decca, Fischbach, et al., 2003; Decca, Lopez, et
al., 2003)
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FIG. 9. Schematic diagram of the measurement of the Casimir
force using a micromachined oscillator.
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where b is the lever arm, / is the moment of inertia, and
b%/1=1.2432+0.0005 ug'.

The frequency shift w,—w, is directly measured and
from Eq. (84) it leads to the calculated values of the
Casimir force gradient JF,/da. Using the PFA (16) this
gradient can be expressed through the effective Casimir
pressure in the configuration of two parallel plates,

&f(a,T)_ 1 0Fa,T)
da  2mR  da

P(a,T)=- (85)

Because of this, a direct measurement of the frequency
shift caused by the Casimir force between a sphere and a
plate results in an indirect measurement of the Casimir
pressure in the configuration of two parallel plates.

The separation distance between the zero-roughness
levels of Au layers on the plate and on the sphere (see
Sec. II1.B.1) is given by

azzmeas_(D1+D2)_b0- (86)

Here z,..s 1s the separation between the end of the
cleaved fiber and the platform and ¢ and D;, are de-
fined in Fig. 9. The lever arm b was measured optically.
The value of 6 was determined by measuring the differ-
ence in capacitance between the plate and the right and
left electrodes shown in Fig. 9. The value D{+D, was
measured as a part of the system calibration. This was
done by the application of voltages V to the sphere
while the plate was grounded. The electric force be-
tween a sphere and a plate was measured in the static
regime, with no harmonic variations of the separation
distance between them at large separations a>3 um.
The residual potential difference V|, was found to be
independent of separation [details of calibration proce-
dures are presented by Decca, Lopez, Fischbach, et al.
(2005), and Decca et al. (2009)]. We emphasize that in
the second (Decca, Lopez, Fischbach, et al., 2005) and
third (Decca et al., 2007a, 2007b) experiments of this se-
ries, contact between the sphere and the plate has not
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FIG. 10. The measured mean Casimir pressure between two
parallel plates vs separation (dots).

been achieved and was not needed for the determina-
tion of absolute separations.

A set of 120 curves of F,(a) was then used to fit the
quantity D+ D,. Finally absolute separations a were
measured with an absolute error Aa=0.6 nm determined
at a 95% confidence. In contrast to previous measure-
ments (Decca, Fischbach, et al., 2003; Decca, Lépez, et
al., 2003; Decca, et al. 2004; Decca, Lopez, Fischbach, et
al., 2005), in this experiment n=33 sets of measurements
within a separation region from 162 to 746 nm were per-
formed at almost the same intermediate separations a;
(1=<i=293) in each set. This was made possible due to
about 7% improvement in the vibrational noise, and an
improvement in the interferometric technique used to
yield the distance z,,.,, (see Fig. 9). The use of a two-
color fiber interferometer yielded an error Az,
=0.2 nm, and for every repetition of the Casimir pres-
sure measurement it was possible to reposition the
sample to within Az .-

The mean values of the Casimir pressure (78) were
determined from the frequency shifts using Eqs. (84) and
(85) from data obtained in 33 sets of measurements.
They are plotted in Fig. 10 as a function of separation.
The random experimental error was found from Egs.
(78) and (79). It varies from A’P®P'=(0.46 mPa at a
=162 nm to A’P**P'=(0.11 mPa at a=300 nm. This value
remains constant for separations up to a=746 nm. The
systematic error in the indirect measurement of the
pressure is determined by errors in the measurements of
the resonant frequency and of the radius of the sphere,
and also by the error introduced using the PFA. The
latter is now related to experiment rather than to theory,
because in this dynamic measurement PFA is a part of
the experimental procedure of the determination of the
Casimir pressure between the two parallel plates. Ac-
cording to the results presented in Sec. II.B, the error
due to the use of PFA is less than a/R. Because of this,
Decca et al. (2007a, 2007b) estimated this error conser-
vatively as a/R. By combining all the above J=3 system-
atic errors at a 95% confidence using the statistical rule
(77), the resulting systematic error was obtained. It is
given by ASPe*P'=212 mPa at a=162 nm, decreases to
0.44 mPa at 4=300 nm, and then to 0.31 mPa at a
=746 nm. Finally, the total experimental error A’P*P'(a)
at a 95% confidence level was obtained using the statis-
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tical rule formulated in Sec. III.C.1. As a result,
A'PePYq) = ASP®*PY(q) within the entire measurement
range, i.e., the total experimental error is determined by
only the systematic one. This means that the experiment
by Decca et al. (2007a, 2007b) satisfies one of the main
requirements imposed on precise experiments in metrol-
ogy (Rabinovich, 2000). For now no other experiment
in Casimir physics satisfies this requirement. The total
relative experimental error varies from 0.19% at a
=162 nm to 0.9% at =400 nm and to 9.0% at the larg-
est separation a=746 nm.

To conclusively compare the experimental data with
theory, the topography of metallic coatings both on the
plate [body (1)] and on the sphere [body (2)] was inves-
tigated using an AFM. From the AFM images, the frac-
tion of each surface area v{"? with the height A{"? was
determined. It was found that for the plate 4" varies
from 0 to 18.35 nm and for the sphere 4\? varies from
0 to 10.94 nm. Using Eq. (65) the zero-roughness levels
on the plate and on the sphere are Hf)l)=9.66 nm and
H{?=5.01 nm. The contribution of correlation and dif-
fractionlike effects in the roughness correction was
shown to be negligibly small (Decca, Lépez, Fischbach,
et al., 2005). The overall contribution of roughness was
shown to be only 0.5% of the Casimir pressure at a
=162 nm and it decreases with the increase of separa-
tion. To conclusively compare experimental data with
theory, the resistivity of the Au layers as a function of
temperature was also measured in the region from T}
=3 to 400 K. This has led to a slightly modified values of
the Drude parameters, 0,=8.9+0.1 eV, y=0.0357 eV, to
be used in theoretical calculations (compare with w,
=9.0 eV, y=0.035 eV in Sec. III.A.2).

The theoretical Casimir pressure as a function of
separation between the plates was calculated using Egs.
(74) and (8) with different approaches to the determina-
tion of the dielectric permittivity along the imaginary
frequency axis (see Sec. III.A.2) and using the Leonto-
vich surface impedance (Sec. II.A). Comparison of ex-
periment with theory was performed in two different
ways described in Sec. III.C.2 (Decca et al., 2007a,
2007b). In Figs. 11(a) and 11(b) the mean experimental
pressures are plotted as crosses within the separation
region from 500 to 600 nm. For other separation regions
the situation is quite similar (Decca et al., 2007a). The
arms of the crosses show the total experimental errors of
separation and Casimir pressures in true scales deter-
mined at a 95% confidence level. The light-gray band in
Fig. 11(a) shows the theoretical results computed using
the generalized plasmalike dielectric permittivity, i.e.,
with e,,(i¢), as given by the solid line in Fig. 1. The
width of the theoretical band in the vertical direction
indicates the total theoretical error (Sec. III.C.2). It is
equal to 0.5% of the calculated pressure and arises from
the variations of the optical data of core electrons.
Other factors, such as patch potentials, were shown to
be negligible (Decca, Léopez, Fischbach, et al., 2005).
Note that when the experimental data with the errors,
shown as crosses, are compared with the theoretical
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FIG. 11. Comparison of experiment and theory. The measured
mean Casimir pressure together with the absolute errors in the
separation and pressure vs separation is shown as crosses. (a)
The theoretical Casimir pressure computed using the general-
ized plasmalike model and the optical data extrapolated by the
Drude model is shown by the light-gray and dark-gray bands,
respectively. (b) The theoretical Casimir pressure computed
using different sets of optical data available vs separation is
shown as the dark-gray band.

band computed for the entire measurement range, the
errors Aa in the measurement of separations are irrel-
evant to theory. The dark-gray band in Fig. 11(a) shows
the theoretical results computed using the complete
tabulated data extrapolated to low frequencies by means
of the Drude model, i.e., with g4,(i¢) shown as the
dashed line in Fig. 1. As shown in Fig. 11(a), all data
crosses overlap with the light-gray band but are sepa-
rated by a gap from the dark-gray band. This means that
the theory using the generalized plasmalike permittivity
is consistent with experiment within the limits of the
experimental error. At the same time, a theory using the
complete optical data extrapolated by the Drude model
is excluded by the data at a 95% confidence level.

As mentioned in Sec. III.C.2, the choice of different
sets of Drude parameters may lead to an up to 5% varia-
tion in the theoretical values of the Casimir pressure
(Pirozhenko et al., 2006). According to Sec. III.C.2, the
hypothesis that the thin films used in the experiment
possess such unusual Drude parameters is not supported
by the data. Nevertheless, the disagreement between the
Drude model approach and the experimental data only
increases if some of the alternative Drude parameters,
as considered by Pirozhenko ef al. (2006), are used. As
an illustration, in Fig. 11(b) the computation results ob-
tained using the Drude model approach with w, varying

P
from 6.85 (Pirozhenko et al., 2006) to 9.0 eV are plotted
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FIG. 12. Comparison of experiment and theory. The difference
between theoretical and mean experimental Casimir pressures
vs separation (dots) and the 95% confidence intervals (solid
lines). The theoretical Casimir pressures are computed (a) us-
ing the generalized plasmalike model and (b) using the Leon-
tovich surface impedance approach.

as the dark-gray band. Note that the values of the relax-
ation parameter only slightly influence the Casimir pres-
sure. As shown in Fig. 11(b), the use of any alternative
value of w, makes the disagreement between the Drude
model approach and the data even more acute.
Another way to compare theory with experiment
considered in Sec. II1.C.2 is illustrated in Fig. 12, where
the differences P™°'(a;)—P**P'(q;) are shown as dots
and solid lines indicate the 95% confidence interval
[-Ep(a),Ep(a)] for the quantity P™M(a,)—PPY(a;)
(Decca et al., 2007b). The values of P’ in Fig. 12(a)
are computed using the generalized plasmalike model,

whereas the values of P"°" in Fig. 12(b) using the Le-
ontovich surface impedance (Decca, Lopez, Fischbach,
et al., 2005). As shown in Fig. 12, both theoretical ap-
proaches are consistent with the data. Note that the val-
ues of theoretical pressures in Fig. 12 are computed at
the experimental separations a;. As a result, these values
are associated with the additional errors 4Aa/a; dis-
cussed in Sec. III.C.2. They are the primary theoretical
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FIG. 13. Comparison of experiment and theory. The difference
between theoretical Casimir pressure calculated with the opti-
cal data extrapolated using the Drude model and mean expri-
mental Casimir pressure vs separation. The solid and dashed
lines indicate the borders of the 95% and 99.9% confidence
intervals, respectively.

errors at short separations in this approach to comparing
theory with experiment. The respective width of the
confidence interval [-Ep(a),Ep(a)] is overestimated.
The actual agreement of the theoretical approach with
data can be characterized by the deviation of the differ-
ences P1eT(g)— P*P(g;) from zero. At the shortest
separations this deviation exceeds the total experimental
error but (for the theory using the generalized plasma-
like permittivity) at a>300 nm both are approximately
equal. The measure of agreement between experiment

and theory given by Z /| PP, as defined in Sec. I11.C.2,
is equal to 1.9% and 1.8% at separations a=162 and
400 nm, respectively.

In Fig. 13 the same method of comparing theory with
experiment is applied to the theoretical approach based
on the Drude model. The solid and dashed lines indicate
the limits of the 95% and 99.9% confidence intervals,
respectively (Decca et al., 2007b). The differences
Ptl})‘eor(al-)—PeXPt(a,») are shown as dots. As shown in the
figure, the theoretical approach using the extrapolation
of the optical data to low frequencies by means of the
Drude model is experimentally excluded at a 95% con-
fidence level for the entire measurement range from
162 to 746 nm. Also note that the differences P5(a;)
— P*PY(q;) are outside the 99.9% confidence interval at
separations from 210 to 620 nm. Finally Decca et al.
(2007a, 2007b) concluded that their experiments cannot
be reconciled with the Drude model approach to the
thermal Casimir force. They also remarked that the ex-
periments with the micromachined torsional oscillator
are not of sufficient precision to measure the small ther-
mal effect between the two metal bodies at separations
of a few hundred nanometers, as predicted by the gen-
eralized plasmalike model. The proposed experiments
capable of this goal are considered in Sec. IV.D.

The experimental data by Decca et al. (2007a, 2007b)
were also compared with the theoretical results obtained
using the modification of the transverse magnetic reflec-
tion coefficient in accordance with Eq. (40) (Dalvit and
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FIG. 14. Comparison of experiment and theory. The difference
between theoretical Casimir pressures using the effect of
charge screening for the transverse magnetic mode and mean
experimental data vs separation is shown as dots. The solid
and dashed lines indicate the borders of the 95% and 99.9%
confidence intervals, respectively.

Lamoreaux, 2008). A charge carrier density of n=5.9
X 10?2 cm™ at T=300 K and the Thomas-Fermi screen-
ing length were used in the computations for Au. In Fig.
14 the differences between the computed theoretical Ca-
simir pressures and the experimental data by Decca et
al. (2007a, 2007b) are shown as dots. As shown, the data
exclude the theoretical approach using the modification
(40) at a 95% confidence level within the entire mea-
surement region from 160 to 750 nm and at a 99.9%
confidence level within the measurement region from
160 to 640 nm. Note that for metals the same theoretical
results, as in the approach by Dalvit and Lamoreaux
(2008), are obtained in the approaches by Pitaevskii
(2008) and Svetovoy (2008). Thus, the last two ap-
proaches are also inconsistent with the experimental
data by Decca et al. (2007a, 2007b).

Another experiment performed by means of the mi-
cromechanical torsional oscillator was the test of correc-
tions to the PFA (Krause et al., 2007). Taking these cor-
rections into account, the Casimir force between a
sphere of radius R and a plate can be presented in the
form (Scardicchio and Jaffe, 2006)

Fy(a,R) =27RE(a)[1 + Ba/R + O(a*/R?)]. (87)

Here E(a) is the Casimir energy per unit area of two
parallel plates and B is a dimensionless parameter char-
acterizing the lowest-order deviation from the PFA. The
constraints on the parameter 8 in Eq. (87) can be ob-
tained from the static measurements of the Casimir
force. In these measurements the separation distance
between the sphere and the plate is not varied harmoni-
cally and the force Fi(a,R) is a directly measured quan-
tity.

Dynamic measurements of the Casimir pressure de-
scribed above in this section are more precise than the
static ones. Substituting the Casimir force (87) into the
right-hand side of Eq. (85), one obtains the following
expression for the effective Casimir pressure (Krause et
al., 2007):
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P"(a,R) = P(a)[1 + B(a)alR + O(a*/R?)], (88)
where P(a) is the Casimir pressure between two parallel

plates and the dimensionless quantity B(a) is given by

Ba) = B[1 - E(a)laP(a)]. (89)

Note that for ideal metal bodies 8(a)=23/3 =const.

To obtain constraints on 8 and ,é a series of both static
and dynamic measurements has been performed with
Au-coated plate and spheres with radii R=10.5, 31.4,
52.3, 102.8, and 148.2 um. The static measurement of
the Casimir force between the sphere and the plate was
performed at separations from 160 to 750 nm in 10 nm
steps. Dynamic determination of the effective Casimir
pressure between two parallel plates was done at sepa-
rations from 164 to 986 nm with 2 nm steps. The influ-
ences of the effects of the nonzero skin depth and sur-
face roughness on the dominant first-order correction to
the PFA were estimated to be of order 10% and 1%,
respectively. Comparison between data and theory at

separations a <300 nm leads to the result |3(a)| <0.4 at a
95% confidence level. In the same separation region,
|8] <0.6 was obtained (Krause et al., 2007). These con-
straints are compatible with the exact results for a
cylinder-plate configuration but are not in agreement
with the extrapolations made for a sphere above a plate
(see the discussion in Sec. I1.B).

C. Other experiments on the Casimir force between metal
bodies

1. Torsion pendulum experiment

Chronologically, the first experiment, in the more re-
cent series of the Casimir force measurements, was per-
formed by Lamoreaux (1997). While this experiment re-
kindled interest in the investigation of the Casimir force
and stimulated further development of the field, the re-
sults obtained contain several uncertainties. The Casimir
force between a Au-coated spherical lens and a flat plate
was measured using a torsion pendulum. A lens with a
radius R=11.3+0.1 cm [later corrected to 12.5+0.3 cm
(Lamoreaux, 1998)] was mounted on a piezo stack and a
plate on an arm of the torsion balance in vacuum. The
other arm of the torsion balance formed the center elec-
trode of a dual parallel plate capacitor. The positions of
this arm and consequently the angle of the torsion pen-
dulum were controlled by the application of voltages to
the plates of the dual capacitor. The Casimir force be-
tween the plate and the lens would result in a torque,
leading to a change in the angle of the torsion balance.
This change results in changes of the capacitances. Then
compensating voltages were applied to these capaci-
tances to counteract the change in the angle of the tor-
sion balance. These compensating voltages were a mea-
sure of the Casimir force.

The calibration of the measurement system was done
electrostatically. When the lens and plate surfaces were
grounded, a “shockingly large” (Lamoreaux, 1997) re-
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sidual potential difference V=430 mV was measured.
The corresponding large electrostatic force was compen-
sated with application of voltage to the lens. However,
there appears to have been a large residual electrostatic
force even after this compensation, which was deter-
mined only by fitting to the total force including the
Casimir force above 1 um. “Typically, the Casimir force
had magnitude of at least 20% of the electrical force at
the point of closest approach” (Lamoreaux, 1997). The
uncertainty in the measurement of absolute separations
Aa “was normally less than 0.1 um” (Lamoreaux, 1997).

Data were compared with theory for the ideal metal
lens and plate. The conclusion reached that there is an
agreement at the level of 5% in the 0.6—-6 um range
(Lamoreaux, 1997) was found to be incompatible with
the magnitude of the thermal correction to the Casimir
force (Bordag et al., 1998). Thus, at separations of 4, 5,
and 6 um the thermal corrections are 86%, 129%, and
174% of the zero-temperature force, respectively. The
data, however, were found to be “not of sufficient accu-
racy to demonstrate the finite temperature correction”
(Lamoreaux, 1997). From this it follows that the agree-
ment of the data with the theory at the level of 5-10%
may exist only at separations of about 1 um. Here the
thermal correction is relatively small, whereas the larger
corrections due to the skin depth and surface roughness
have the opposite sign and partially compensate each
other. Keeping in mind that theoretical forces calculated
at experimental separations are burdened with an addi-
tional error of about 3Aa/a=30% at a=1 um [see Sec.
I11.C.2 and Iannuzzi, Gelfand, er al. (2004)], the errors in
the differences FP'(a;)—F"°"(q;), as shown in Fig. 4,
bottom (Lamoreaux, 1997), are significantly underesti-
mated.

The results of this experiment at about 1 um separa-
tion were used (Torgerson and Lamoreaux, 2004; Lam-
oreaux, 2005) to exclude the theoretical approach to the
thermal Casimir force which uses the Drude model at
low frequencies. The latter predicts —19% thermal cor-
rection at a=1 um (to be compared with a 1.2% thermal
correction in the case of ideal metals) which was not
experimentally observed. The conclusion that the Drude
model approach is inconsistent with data is in agreement
with the same conclusion obtained at a high confidence
level in the much more precise experiments of Decca,
Fischbach, et al. (2003), Decca et al. (2004, 2007a, 2007b),
and Decca, Lopez, Fischbach, et al. (2005) (see Sec.
IV.B).

2. Micromechanical devices actuated by the Casimir force

Chan et al. (2001a) used a micromachined torsional
device actuated by the Casimir force. A more advanced
version of this device shown in Fig. 9 was later used in
precise measurements of the Casimir force (see Sec.
IV.B). When the sphere in Fig. 9 was moved closer to the
plate in a vacuum with a pressure of less than 1 mtorr,
the Casimir force, acting on the plate, tilted it about its
central axis toward the sphere. Thus, vacuum oscilla-
tions of the electromagnetic field led to the mechanical
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FIG. 15. Schematic diagram for the model of oscillator actu-
ated by the Casimir force.

motion of the plate demonstrating the first microme-
chanical device driven by the Casimir force. Using a mi-
cromachined oscillator, Chan et al. (2001a) measured the
Casimir force between a Au-coated polystyrene sphere
and a plate. Comparison of the measurement data with
the ideal metal Casimir result demonstrated again the
influence of skin depth and surface roughness on the
Casimir force between real material bodies [previously
demonstrated by Mohideen and Roy (1998) and Harris
et al. (2000); see Figs. 5 and 6].

A similar device was used to investigate the influence
of the Casimir force on the oscillatory behavior of mi-
cromachines (Chan et al., 2001b). The simple model of
the Casimir oscillator is shown in Fig. 15. It consists of a
movable metallic plate which is subject to both the re-
storing force of a spring and the Casimir force from the
interaction with a fixed metallic sphere. The force from
the spring is linear in the movement of the plate Aa,
whereas the Casimir force is nonlinear in Aa. The poten-
tial energy of this microdevice possesses local and global
minima separated by the potential barrier. The Casimir
force changes the resonant frequency of oscillations
around the local minimum and makes the oscillations
anharmonic (Chan ef al., 2001b). These properties may
be useful in future micromechanical systems driven by
the Casimir force.

3. The experiment using the parallel plate configuration

The only experiment in the recent series of Casimir
force measurements which uses the original configura-
tion of two plane plates was performed by Bressi et al.
(2002). A Si cantilever and a thick plate rigidly con-
nected to a frame (source) both covered with a Cr layer
with adjustable separation distance between them were
used as two plates. The coarse separation distance was
adjusted with a dc motor and fine tuning was achieved
using a linear piezoelectric transducer attached to the
frame. Calibration was performed using the electrostatic
force. As a result, the error in absolute separation was
found to be Aa=35 nm. Small oscillations induced on
the source by the application of a sinusoidal voltage to
the piezo induce oscillations of the cantilever through
the Casimir force. Thus, this experiment is dynamical
like those considered in Sec. IV.B. The motion of the
resonator placed in the vacuum was detected by means
of a fiber optic interferometer. After subtracting the
electrostatic forces, the residual frequency shift is given
by
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Avﬁxpt(a) =1 - 1} =— adP(a)lda. (90)

Here v3=138.275 Hz is the natural frequency in the ab-
sence of the Casimir pressure P and a=S/4mmy
~0.0479 m?/kg (S is the area of a capacitor formed by
the plates and m; is the effective mass).

Since the measurement is a dynamic one, the directly
measured quantity is the frequency shift (90) arising
from the effect of the Casimir force. This frequency shift
is related to the gradient of the Casimir pressure using
Eq. (90). Thus, though this experiment uses the configu-
ration of two parallel plates, it is an indirect measure-
ment of the gradient of the Casimir pressure between
the plates, similarly to the experiments using the sphere-
plate configuration in the dynamic regime for the same
purpose (see Sec. IV.B). Bressi et al. (2002) did not aim
to restore the Casimir pressure from the pressure gradi-
ent. Instead, they fitted the experimental data Avﬁxpt(a)
to AvA,..,(@) computed from the theoretical dependence
of the Casimir pressure between two ideal metal plates
~K/a* with a free parameter K. The best fit resulted
in Kc=(1.22+0.18) x1072” Nm?. This was compared
with the exact Casimir coefficient for ideal metal plates
in Eq. (2), Ko=7"hc/240=1.3 X102’ N m?. The conclu-
sion was drawn that the related force coefficient is de-
termined at the 15% precision level (Bressi et al., 2002).

From the point of view of a general method for the
comparison of experiment with theory, which was devel-
oped after this experiment was performed, it would be
reasonable not to use any fit but to compare Avﬁxpt(a)
with the exact expression for Av7.. (a) with no adjust-
able parameters such as K. In Fig. 16(a) the results of
such comparison are presented where the experimental
data are shown as crosses and the solid line shows
AvZ,.., computed from the exact expression for the Ca-
simir pressure between two ideal metal plates, as given
in Eq. (2). As shown, at separations below 1 um the
experimental crosses only touch the solid line. This can
be explained by the role of the nonzero skin depth. If
instead of P(a)=Py(a) one uses the Casimir pressure
with the first and second order corrections due to the
nonzero skin depth (Bezerra, Klimchitskaya, and
Mostepanenko, 2000),

P(a) = 772ﬁc(1 e < ) (91)
U200\ T 3w T ka?)

the agreement with data improves. As an illustration,
AvZ,.., is recalculated using the theoretical Casimir pres-
sure (91) with the w,~13 eV for Cr. The results are
shown as the solid line in Fig. 16(b). It is seen that the
Casimir pressure taking the skin depth into account is in
much better agreement with the data than the ideal
metal Casimir pressure. Suggestions on how to improve
the sensitivity of this experiment are discussed in Sec.
IV.D.
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FIG. 16. Comparison of experiment and theory. The measured
frequency shift vs separation together with the absolute errors
in separation and Ar? is shown as crosses. Solid lines indicate
the theoretical frequency shift calculated for (a) ideal metal
plates and (b) real metals with inclusion of the skin-depth cor-
rection.

4. The Casimir force between thin metallic films

Lisanti et al. (2005) reported the observation of the
skin-depth effect on the Casimir force between metallic
surfaces. The Casimir force between a thick plate and a
100-um-radius polystyrene sphere coated with metallic
films of different thicknesses was measured. The sphere
was positioned above a micromachined torsional bal-
ance. The Casimir attraction between the sphere and the
top plate of the balance induced a rotation angle which
was measured as a function of the separation between
the surfaces. Without the indication of errors and confi-
dence levels, it was reported that the Casimir attraction
between the metallic plate and the sphere with coatings
thinner than the skin depth is smaller than that of the
same plate and a sphere with thick metal coating. Physi-
cally, this is in fact the same effect as is demonstrated in
Figs. 5 and 6 in Sec. IV.A where the Casimir forces act-
ing between ideal and real metals were compared with
corrections based on the plasma frequency (finite con-
ductivity corrections). Ideal metals are better reflectors
and the magnitude of the Casimir force between them is
larger than between real metals. In a similar manner
thick real metal films are better reflectors than thin real
metal films.

Lisanti et al. (2005) compared their experimental re-
sults with the Lifshitz theory at zero temperature
adapted for the description of layered structures (Zhou
and Spruch, 1995; Klimchitskaya et al., 2000; Tomas,
2002). It was shown that the experimental forces ob-
tained for films of thickness smaller than the skin depth
have smaller magnitudes than those computed for such
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films using the Lifshitz theory. This result is not surpris-
ing because for films of small thickness the effects of
spatial dispersion should be taken into account which
are not included in the Lifshitz theory (Klimchitskaya et
al., 2000).

5. Dynamic measurement using an atomic force microscope

Jourdan et al. (2009) recently performed a measure-
ment of the Casimir force between a Au-coated sphere
of R=20 um radius and a plate using an AFM. No direct
sphere-plate contact was used to determine absolute
separation distances between the surfaces. The AFM
cantilever with the glued sphere was considered as a har-
monic oscillator with the natural resonant frequency
wy=27x50 182 rad/s which is modified by the effect of
the Casimir force. In these two aspects (direct contact
between the two surfaces was avoided and the dymanic
measurement mode was used) the experimental ap-
proach resembles the one used by Decca, Lépez, Fisch-
bach, er al. (2005) and Decca et al. (2007a, 2007b) in the
measurements of the Casimir pressure by means of a
micromechanical torsional oscillator. The uncertainty in
the absolute separations Aa=2 nm was, however, more
than three times larger than in experiments with a mi-
cromachined oscillator (see Sec. IV.B). The experimental
data for the force gradient were compared with the Lif-
shitz theory at zero temperature. The dielectric permit-
tivity along the imaginary frequency axis was found us-
ing the complete optical data (Palik, 1985) extrapolated
to zero frequency by means of the Drude model with
®,=9.0 eV and y=0.035 eV (Lambrecht and Reynaud,
2000). The correction due to surface roughness was not
taken into account. The discrepancy between the force
gradient measurements and the results of the theoretical
computations described above was found to be within
3% of the theoretical force at separations between 100
and 200 nm. The measured Casimir force gradient was
also compared with that computed using ideal metal sur-
faces and a deviation was reported. On this basis it was
concluded that the experimental data demonstrate again
the finite conductivity (skin-depth) effects on the Ca-
simir force.

6. Ambient Casimir force measurements

In this recent period two other ambient (open to air)
experiments measuring the Casimir force were reported.
Both did not use a vacuum environment and reported
the presence of water layers on the interacting surfaces.
The first of these was the experiment by Ederth (2000),
where the force was measured between two cylindrical
template stripped gold surfaces with 0.4 nm roughness,
in a distance range from 20 to 100 nm. The 200 nm gold
films were fixed to 10 mm radius silica cylinders using a
“soft glue.” In addition, a hydrocarbon layer of hexade-
canethiol was applied to the interacting surfaces. It was
noted that this top hydrocarbon layer was necessary to
preserve the purity of the gold surface in the ambient
environment. This hydrocarbon organic layer prevented
a direct measurement of the electrostatic forces or an
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independent determination of the surface separation.
Also the presence of the hydrocarbon layer means that
the experiment cannot be strictly classified as that be-
tween two gold surfaces. One of the cylinders was
mounted on a piezo and the other on bimorph deflection
sensor. The charge produced by the bimorph in response
to the deflection induced by a force on the interacting
surfaces was measured by an electrometer amplifier. The
soft glue led to a deformation which was estimated to be
18-20 nm for glue thicknesses used. To compensate for
this deformation the two measured force-distance curves
were shifted, one by 9 nm and the other by 12 nm to
overlap the calculations. They reported that “it is not
possible to establish with certainty” the validity of the
displacement due to the deformation and that it “dimin-
ishes the strength of the measurement as a test of the
Casimir force and also precludes a quantitative assess-
ment of the agreement between theory and experi-
ment.”

A second experiment done in an ambient environ-
ment using the AFM for separation distances between
12 and 200 nm was recently reported (van Zwol ef al.,
2008). Here a Au-coated sphere of R=20 um radius was
fixed to a gold-coated AFM cantilever. The Au-coated
plate was mounted on the piezo. Both the sphere and
plate were coated with 100 nm of Au. The optical prop-
erties of the Au-coated plate were measured with
an ellipsometer in the wavelength region from 137 nm
to 33 um and fitted to obtain the plasma frequency
of 79+02eV and a relaxation frequency of
0.048+0.005 eV since the finite conductivity corrections
for the separation range considered are large. The
roughness or the water layer was not taken into account
in the fit. The errors in the cantilever spring constant
and the deflection coefficient were reported to be 4%
and 3%, respectively, which together were reported to
lead to errors of 4-10 %. The calibration errors were
reported to lead to an overall error of about 5-35%. The
electrostatically measured contact potential 10+10 mV
was reported to lead to a 10% error. They reported that
they were not able to independently determine the sepa-
ration on contact of the two surfaces due to the stiff
cantilevers employed. Based on the roughness they esti-
mated a 1 nm error in the contact separation “leading
therefore to a 28% relative error at the smallest separa-
tions.” However, a general 10% agreement with the
theory was reported below 100 nm separation. Given
the ambient nature of the experiment, “typically a few
nanometers,” water layers on both surfaces were present
but not treated in the theoretical comparison or system-
atic errors. Repeating the experiments in a vacuum en-
vironment should allow for a more definitive compari-
son.

7. Related measurements

An interesting preliminary test of the Lifshitz theory
for three-layer systems is the measurement of the attrac-
tive Casimir force between a Au-coated sphere and a
plate immersed in ethanol using an AFM (Munday and
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Capasso, 2007). The experimental data obtained were
compared with the Lifshitz theory taking into account
the frequency dependence of the dielectric functions of
Au and ethanol and the correction due to surface rough-
ness. Consistency of the obtained data with Lifshitz’s
theory was claimed although at separations below 50 nm
a disagreement has been observed which increases with
the decrease of separation. However, as discussed
(Geyer, Klimchitskaya, Mohideen, and Mostepanenko,
2008), the theoretical computations of the Casimir force
between the smooth Au surfaces separated by ethanol
done according to the method provided by Munday and
Capasso (2007) [i.e., by the use of the Kramers-Kronig
relations and tabulated optical data (Palik, 1985)] lead to
a discrepancy up to 25% with respect to the reported
theoretical results. The latter can be reproduced if one
uses at all imaginary frequencies the Drude dielectric
function (35) for both the sphere and plate materials. A
second drawback is that the effect of the residual poten-
tial difference between the sphere and the plate was cal-
culated incorrectly and significantly underestimated by a
factor of 590. Finally, the possible interaction between
the double layer formed in liquids due to salt impurities,
which would decrease the electrostatic force, was not
taken into account without any justification. The result-
ing electrostatic force is of the same magnitude as the
Casimir force to be measured. All this makes the inter-
pretation of this experiment uncertain (Geyer, Klim-
chitskaya, Mohideen, and Mostepanenko, 2008). In the
reply (Munday and Capasso, 2008) it was recognized
that the original paper (Munday and Capasso, 2007) did
in fact use the Drude model. It was also recognized that
the equation originally used to estimate the residual
electrostatic force “is not strictly correct” and that salt
contaminants exist even in the purest solutions leading
to the screening of electrostatic interaction. In a later
work (Munday et al., 2008) the effect of electrostatic
forces and Debye screening on the measurement of the
Casimir force in fluids was further investigated. The
electrostatic force with account of Debye screening was
calculated as outlined by Geyer, Klimchitskaya, Mo-
hideen, and Mostepanenko (2008). The influence of the
concentration of salt impurities on the Debye screening
was investigated. No measurable change in the force
with or without grounding of the sphere was reported.
The Casimir force was measured 51 times with the stan-
dard deviation which varies from 130 to 90 pN when
separation increases from 30 to 80 nm (the variances are
less by a factor of v‘ﬁ). As a result, the relative random
experimental error of the Casimir force measurements
in this experiment determined at a 67% confidence level
is 7% at a=30 nm and increases to 60% at a=80 nm.
Bearing in mind that for 4 <30 nm they recognized de-
viations between the theory and the measurement data,
this experiment can be considered as only a qualitative
demonstration of the Casimir force in fluids.

Another experiment used an adaptive holographic in-
terferometer to measure periodical nonlinear deforma-
tions of a thin pellicle caused by an oscillating Casimir
force due to a spherical lens (Petrov et al., 2006). Both
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test bodies were coated with a thin Al film and placed in
a vacuum chamber. The lens was mounted on a vibrating
piezodriver. As a result, the oscillations of the lens posi-
tion led to a periodic modulation of the Casimir force.
The experimental data were found to be in qualitative
agreement with the theory based on ideal metal bound-
aries at separation distances of a few hundred nanom-
eters. Corrections due to the finite skin depth and sur-
face roughness were not provided. Also the use of Al
whose surface undergoes rapid oxidation even in rela-
tively high vacuum adds uncertainty to the results of this
experiment. However, the new measurement technique
used may be promising for future measurements of the
Casimir force.

D. Future prospects to measure the thermal Casimir force

As described in Secs. IV.A-IV.C, the measurements of
the Casimir force between macroscopic bodies per-
formed to date were not of sufficient precision to mea-
sure the magnitude of the thermal effect. The experi-
ments using the micromachined oscillator (Sec. IV.B)
possess the highest experimental precision at separa-
tions below 1 wm. They have been used to exclude ther-
mal effects, as predicted by models using the Drude
model at low frequencies. However, thermal effects pre-
dicted by the generalized plasmalike model at short
separations remain below the experimental sensitivity.
In this respect, large separation measurements of the
Casimir force would be of great interest. At separations
of a few micrometers the thermal regime is reached
where the Casimir free energy is entirely of thermal ori-
gin. Calculations using the plasma model or the general-
ized plasmalike model result in Eq. (34). The Drude
model approach to the thermal Casimir force leads to
only one-half of the result for ideal metal plates [Eq.
(34) with wpaw]. Thus, large-separation measurements
of the Casimir force would bring direct information to
bear on the magnitude of the thermal effect between
macroscopic bodies (such a measurement in the atom-
plate configuration has been performed already; see Sec.
VILA).

In Sec. IV.C.1 it was shown that the experiment using
the torsion pendulum within the region from
0.6 to 6 um is in fact uncertain at separations above
2 pum where the thermal effects begin to make a sub-
stantial contribution. An analysis (Lamoreaux and But-
tler, 2005) shows that the torsion pendulum technique
has the potential to measure the Casimir force between
a plate and a spherical lens at a=4 um with a relative
error of 10%. Bearing in mind that at a=4 um the ther-
mal correction contributes as much as 86% of the zero-
temperature Casimir force, such an experiment, if suc-
cessfully performed, holds great promise.

There is a proposal aimed at measuring the Casimir
force in the cylinder-plate configuration at separations
around 3 um (Brown-Hayes et al., 2005). This geometry
can be considered as a compromise between the two-
parallel-plate configuration (which is connected with
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serious experimental difficulties associated with the par-
allelism of the plates) and a sphere above a plate. In
addition, as discussed in Sec. I1.B, the exact solution for
the ideal metal cylinder-plate configuration has been ob-
tained recently. This gives the possibility to determine
the accuracy of the PFA and to apply it to real materials
with high reliability. Finally it was concluded that using
the dynamic measuring scheme it is possible to measure
the Casimir force between a plate and a cylinder at sepa-
rations of about 3 um with a precision of a few percent
(Brown-Hayes et al., 2005).

Another proposal suggests to use a highly sensitive
torsion balance in the separation range from 1 to 10 um
to measure the Casimir force in the configuration of two
parallel plates (Lambrecht et al., 2005). The construction
of the balance is similar to that used in the Eotvos-type
experiments aimed to test the equivalence principle. It is
planned to measure the thermal Casimir force with an
accuracy of a few percent and to discriminate between
different theoretical approaches discussed.

One more experiment exploiting the two-parallel-
plate configuration is proposed at separations larger
than a few micrometers (Antonini et al., 2006). The ex-
perimental scheme is based on the use of a Michelson-
type interferometer and the dynamic technique with one
oscillating plate. Calibrations show that a force of 5
% 107" N can be measured in this setup with the relative
error from about 10% to 20%. This would be sufficient
to measure the thermal effect at a separation of 5 um
(Antonini et al., 2006).

The thermal effect in the Casimir force can be mea-
sured at short separations below 1 um if the difference
in the thermal forces AF at different temperatures rather
than the absolute value of the thermal Casimir force is
measured (Chen et al., 2003). For real metals, this differ-
ence of the thermal Casimir forces (in contrast with the
relative thermal correction) does not increase but de-
creases with increasing separation distance. This allows
the observation of the thermal effect on the Casimir
force at small separations of about 0.5 um where the
relative thermal correction, as predicted by the general-
ized plasmalike model, is rather small. Preliminary esti-
mation shows that with a sphere of R=2 mm radius at-
tached to a cantilever of an AFM the measurable
changes of the force amplitude of order 107* N are
achievable from a 50 K change in the temperature. Such
a temperature difference can be obtained by the illumi-
nation of the sphere and plate surfaces with laser pulses
of 1072 s duration (Chen, Mohideen, and Milonni, 2004).
The idea of exploiting difference force measurements to
probe the thermal Casimir effect in superconducting
cavities was proposed by Bimonte (2008).

From the above discussion it is clear that experimen-
tal investigations of thermal effects in the Casimir force
appear feasible in the near future.



Klimchitskaya, Mohideen, and Mostepanenko: The Casimir force between real materials: ... 1863

Force difference

1 Vacuum
chamber

Lock-in amplifier

—

Function
generator
100Hz

A
514nm AOM

= S

Ar laser S

FIG. 17. Schematic of the experimental setup on measuring the difference Casimir force between Au sphere and Si plate

illuminated with laser pulses.

V. CASIMIR FORCE BETWEEN A METALLIC SPHERE
AND A SEMICONDUCTOR PLATE

A. Motivation for use of semiconductors

A vital issue in many applications of the Casimir ef-
fect is how to control the magnitude of the force by
changing the parameters of the system. A natural
method for this control is to change the material prop-
erties of the interacting bodies. Arnold er al. (1979)
made an attempt to modify the van der Waals and Ca-
simir forces between semiconductors with light. Attrac-
tive forces were measured between a glass lens and a Si
plate and also between a glass lens coated with amor-
phous Si and a Si plate. The glass lens, however, is an
insulator and therefore the electric forces, such as due to
work function potential differences, could not be con-
trolled. This might explain why Arnold er al. (1979)
found no force change occurred on illumination at sepa-
rations below 350 nm, where it should have been most
pronounced. One more attempt to modify the Casimir
force was made by lannuzzi, Lisanti, and Capasso (2004)
when measuring the Casimir force acting between a
plate and a sphere coated with a hydrogen-switchable
mirror that becomes transparent upon hydrogenation.
Despite expectations, no significant decrease of the Ca-
simir force owing to the increased transparency was ob-
served. The negative result is explained by the Lifshitz
theory, which requires a change of the reflectivity prop-
erties within a wide range of frequencies in order to
markedly affect the magnitude of the Casimir force. This
requirement is not satisfied by hydrogenation.

The appropriate materials for the control, modifica-
tion, and fine tuning of the Casimir force are semicon-
ductors. The reflectivity properties of semiconductor
surfaces can be changed in a wide frequency range by
changing the carrier density through the variation of
temperature, using different kinds of doping, or, alterna-
tively, via illumination of the surface with laser light. At
the same time, semiconductor surfaces with reasonably
high conductivity avoid accumulation of excess charges
and, thus, preserve the advantage of metals for Casimir
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force measurements. In addition, as semiconductors are
the basic fabrication materials for nanotechnology, the
use of semiconductor surfaces for the control of the Ca-
simir force will lead to many applications.

B. Optically modulated Casimir force

The modification of the Casimir force through the ra-
diation induced change in the carrier density was first
demonstrated by Chen et al. (2007a, 2007b). A high-
vacuum-based AFM was employed to measure the
change in the Casimir force between a Au-coated sphere
and a Si membrane in the presence and in the absence of
incident light. An oil-free vacuum chamber with a pres-
sure of around 2X 1077 torr was used. A polystyrene
sphere of diameter 2R=197.8+0.3 um coated with a Au
layer of 82+2 nm thickness was mounted at the tip of a
320 wm conductive cantilever (the general scheme of the
experiment is shown in Fig. 17). A specially fabricated Si
membrane [see Chen et al. (2007b) for preparation de-
tails] was mounted on top of the piezo which is used to
change the separation distance a between the sphere
and the membrane from contact to 6 wm. The excitation
of the carriers in the Si membrane was done with
5-ms-wide light pulses (50% duty cycle). These pulses
were obtained from a cw Ar ion laser light at 514 nm
wavelength modulated at a frequency of 100 Hz using an
acousto-optic modulator (AOM). The laser pulses were
focused on the bottom surface of the Si membrane. The
Gaussian width of the focused beam on the membrane
was measured to be w=0.23+0.01 mm. The resulting
modification of the Casimir force in response to the car-
rier excitation was measured with a lock-in amplifier
(see Fig. 17). The same function generator signal used to
generate the Ar laser pulses was also used as a reference
for the lock-in amplifier.

The illumination of Si has to be done such that very
little if any light-impinges on the sphere, as this would
lead to a light-induced force from the photon pressure.
As the Si membrane is illuminated from the bottom,
care should be taken that the fraction of light transmit-
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ted through the membrane is negligibly small. The opti-
cal absorption depth for Si at a wavelength of 514 nm is
1 um. The measured thickness of the membrane used
was 4.0+0.3 um. The calculations presented showed
that for the membrane thicknesses used, the force on the
sphere due to photon pressure varies from 2.7% to 8.7%
of the difference of dispersion forces to be measured
when separation increases from 100 to 200 nm.

The calibration of the setup, the determination of the
cantilever deflection coefficient, and the average separa-
tion on contact between the test bodies are performed as
in earlier experiments with metal test bodies [see Sec.
IV.A and Harris et al. (2000); Chen, Mohideen, et al.
(2006); Chen et al. (2007b); Chiu et al. (2008)]. The de-
flection coefficient was m=137.2+0.6 nm per unit deflec-
tion signal. The difference in the value of m from previ-
ous measurements (see Sec. IV.A) is due to the use of
the 514 nm optical filter (see Fig. 17) which reduces the
cantilever deflection signal. This filter was used to pre-
vent the interference of the 514 nm excitation light with
the cantilever deflection signal from the 640 nm laser
(see Fig. 17). The separation distance on contact was
ay=97 nm. The uncertainty in the quantity ay+mSg.; was
1 nm. This leads to practically the same error Aa
=1 nm in the absolute separations (83) because the error
in piezocalibration is negligibly small. An independent
measurement of the lifetime of the carriers excited in
the Si membrane by pulses from the Ar laser was per-
formed using a noninvasive optical pump-probe tech-
nique (Nagai and Kuwata-Gonokami, 2002; Sabbah and
Riffe, 2002).

In the experiment under consideration it is not suffi-
cient to determine the residual potential difference V
between the sphere and the membrane as described in
Sec. IV.A. In the presence of a pulse train the values of
the residual potential difference can be different: V) and
V, during the bright and dark phases of a laser pulse
train, respectively. Both values are generally different
from the residual potential difference determined in the
absence of pulse train. In the measurement procedure,
the voltages V/ and V are applied to the membrane dur-
ing the bright and dark phases, respectively. The differ-
ence in the total force (electric and Casimir) for the
states with and without carrier excitation was measured.
Using Eq. (82), this difference can be written in the form

AF ()= X(@)[(V' = V{)? = (V= V)*1+ AF(a). (92)

Here AF(a) is the difference of the Casimir forces for
the states with and without light. By keeping V=const
and changing V, the parabolic dependence of AF,, on
V! was measured. The value of V' where this function
reaches a maximum [recall that X(a)<0 in Eq. (82)]
is Vé. Then by keeping V'=const and changing V,
the parabolic dependence of AF,,; on V was mea-
sured, which allows one to find V,. Both procedures
were repeated at different separations and the values
VE=-0.303+£0.002 V and V,=-0.225+0.002V were
found to be independent of separation in the range from
100 to 500 nm. These values were shown to change only
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FIG. 18. The difference of the Casimir forces in the presence
and in the absence of light vs separation for different absorbed
powers (a) 9.3 and (b) 47 mW. The measured differences
(F=*PY are shown as dots. See text for the description of theo-
retical solid, dotted, and dashed lines computed using the dif-
ferent approaches.

within the resolution error. It was stated that the inde-
pendence of the residual potential difference of separa-
tion is a basic and necessary condition for every Casimir
force measurement. The dependence of V|, of separation
indicates the presence of electrostatic surface impurities,
space charge effects, and/or electrostatic inhomogene-
ities on the sphere or plate surface (Chiu et al., 2008).
The small change in the residual potential difference be-
tween the sphere and the membrane in the presence and
absence of excitation light is primarily due to the screen-
ing of surface states by few of the optically excited elec-
trons and holes. The value of this difference of around
78 mV is equal to the change in band bending at the
surface. It is consistent with the fact that almost flat
bands are obtained at the surface with the surface pas-
sivation technique used for the preparation of the Si
membrane (Chen et al., 2007b).

Then other voltages (V/,V) were applied to the Si
membrane and the difference in the total force AF,,, was
measured as a function of separation within the interval
from 100 to 500 nm. From these measurement results,
the difference in the Casimir force AF**PY(gq) was deter-
mined from Eq. (92). This procedure was repeated with
some number of pairs (J) of different applied voltages
(V',V) and at each separation the mean value (AF*P'(a))
was found. The measurements were performed for dif-
ferent absorbed laser powers: P¢=93 mW (/=31),
8.5 mW (J=41), and 4.7 mW (J=33), corresponding to
the incident powers of 15.0, 13.7, and 7.6 mW, respec-
tively. The experimental data for P*%=9.3 and 4.7 mW
are shown by dots in Figs. 18(a) and 18(b), respectively.
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FIG. 19. Comparison of experiment and theory. The experi-
mental differences in the Casimir force with their experimental
errors are shown as crosses (the absorbed power is 4.7 mW).
The solid and dotted lines represent the theoretical differences
computed at 7=300 K using the model with a finite static per-
mittivity of high-resistivity Si but different models for Si in the
presence of light (see text for further discussion). The dashed
line represents the theoretical differences computed at the
same temperature including the dc conductivity.

As expected, the magnitude of the Casimir force differ-
ence has the largest values at the shortest separations
and decreases with decrease of the separation. It also
decreases with decrease of the absorbed laser power.

The analysis of the experimental errors performed in
line with Sec. III.C.1 (Chen et al., 2007b) shows that the
total experimental error in this experiment is equal to
the random one. The relative experimental errors at a
95% confidence level vary from 10% to 20% at a sepa-
ration =100 nm and from 25% to 33% at a separation
a=180 nm for different absorbed laser powers. As an
example, in Fig. 19 the experimental data are shown
with their absolute errors calculated at a 95% confi-
dence level for the absorbed power 4.7 mW in the sepa-
ration region from 150 to 200 nm [each third dot from
Fig. 18(b) is shown]. Thus, the modulation of the disper-
sion force with light is demonstrated by Chen et al.
(2007a, 2007b) at a high reliability and confidence.

For the comparison of experimental results with
theory, the difference of dispersion forces between a
sphere and a plate was calculated according to the first
equality in Eq. (16) with the free energy given by the
Lifshitz formula (3) (Chen et al., 2007a, 2007b). The sur-
face roughness was taken into account using geometrical
averaging (75). It was shown that the contribution from
the roughness correction to the calculated value of
AF(a) is small. At the shortest separation a=100 nm it
is only 1.2% and decreases to 0.5% at a=150 nm. The
calculations were done at the laboratory temperature
T=300 K.

Both cases of the dielectric permittivity of the high-
resistivity (10 {2 cm) Si in the absence of light were con-
sidered, i.e., the inclusion or the neglect of the dc con-
ductivity (see Sec. I1.D.2). The dielectric permittivity of
the dielectric Si (no light and the dc conductivity is dis-
regarded) along the imaginary frequency axis was found
from the tabulated optical data (Palik, 1985). It is shown
in Fig. 20 as the long-dashed line. Here g,=11.66. Note
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FIG. 20. The dielectric permittivity of the Si membrane along
the imaginary frequency axis for Si with different concentra-
tion of charge carriers (see text for further discussion).

that the use of the analytic approximation for eg; (Inui,
2003) leads to about 10% error in the magnitudes of the
Casimir force (Chen, Mohideen, et al., 2006) and, thus, is
not suitable for the comparison with precise measure-
ments. The dielectric permittivity of the high-resistivity
Si with dec conductivity included (the charge carrier den-
sity 7i=~5x 10 cm™) is shown in Fig. 20 by the short-
dashed line.

On irradiation of the Si membrane with light, an equi-
librium value of the carrier density is rapidly established
during a period of time much shorter than the duration
of a laser pulse (note that the lifetimes were indepen-
dently measured). This allows one to assume that there
is an equilibrium concentration of pairs (electrons and
holes) when the light is incident. In this case the dielec-
tric permittivity along the imaginary frequency axis is
commonly represented in the form [see, e.g., Palik
(1985), Vogel et al. (1992), and Inui (2004, 2006)]

ed(ié) = egi(ié) + wlz;(@)/g[§+ Vel + wlzj(p)/§[§+ Yo)ls
(93)

where w,,) and v, are the plasma frequencies and
the relaxation parameters of electrons and holes, respec-
tively [y =~1.8x10" rad/s, y,=5.0x10'?rad/s (Vo-
gel et al., 1992); the values of the plasma frequencies are
given below]. To avoid violation of the thermal equilib-
rium arising from the use of the Drude model (see Sec.
IL.D.1), it was suggested (Mostepanenko and Geyer,
2008) that the influence of free charge carriers in metal-
type semiconductors shold be included by means of the
generalized plasmalike model (58). This rule should also
be applied to all doped semiconductors with dopant con-
centration above critical. Then, instead of Eq. (93), the
dielectric permittivity is given by

S(Sll)(lg) = ggi(i§) + wlz;(e)/gz + wf,(p)/fz- (94)
The plasma frequency can be calculated from
Wplep) = (”ez/m:peo)l/z, (95)

where the effective masses are m*=0.2063m and mz

=0.2588m, and n is the concentration of charge carriers
(Vogel et al., 1992). The value of n for the different ab-
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sorbed powers can be calculated with the knowledge
that at equilibrium the number of charge carrier pairs
created per unit time per unit volume is equal to the
recombination rate of pairs per unit volume. This leads
to (Chen et al., 2007b)

n=4PMNrhodmw, (96)

where P¢"=0.393P" is the power in the central part of
the Gaussian beam focused on the membrane (see
above) and 7 is the measured lifetime of the charge car-
riers. For the absorbed power P*T=9.3 mW [Fig. 18(a)]
it follows from Egs. (96) and (95) that n,=(2.1+0.4)
X10Y em™,  w,,)=(5.1£0.5) X 10" rad/s, and w,(,
=(5.7+0.6) X 10'* rad/s (Chen et al., 2007b). Here and
below all errors are found at a 95% confidence level. For
P'=47 mW [Fig. 18(b)] the same parameters are n,
=(1.4£0.3) X 10" cm™, @), =(4.1£0.4) X 10" rad/s, and
Wy =(4.6£0.4)xX 10" rad/s. [Note that Chen er al.
(2007b) contains two misprints corrected here.] The cor-
responding dielectric permittivities are shown in Fig. 20
with the solid lines labeled a and b. It should be re-
marked that the dielectric permittivities (93) and (94)
almost overlap at all nonzero Matsubara frequencies.

The dielectric permittivity of Au along the imaginary
frequency axis is presented in Fig. 1. For the dielectric
permittivity of Si in the dark phase and the bright phase
when Eq. (93) is used, the reflection coefficient is
r%iE(O,k 1)=0. Thus, the calculation results do not de-
pend on whether the solid or the dashed line in Fig. 1 for
eau(if) is used. If in the presence of light sg?(ig) is given
by Eq. (94), then the Au dielectric permittivity in the
framework of the generalized plasmalike model should
be used (the solid line in Fig. 1).

The results of the numerical computations of the dif-
ference Casimir force AF"*°"(a) between rough surfaces
with the dielectric permittivity (94) in the presence of
light and by neglecting dc conductivity in the absence of
light are shown by the solid lines in Fig. 18 (for different
absorbed powers). The results of the analogous calcula-
tions with the dielectric permittivity (93) in the presence
of light are shown in Fig. 18 with the dotted lines. As
seen from Fig. 18, both the solid and dotted lines are in
good agreement with the experimental data shown by
dots. Thus, the experiment under consideration does not
allow one to discriminate between the dielectric permit-
tivities (93) and (94) used above for the description of
charge carriers in metal-type semiconductors. This is
also seen in Fig. 21 where the dots present the values
of the differences between AF°'(g) and (AF*P'(q)) for
the absorbed power of 4.7 mW and the solid lines show
the 95% confidence interval calculated as described in
Sec. III.C.2 (Chen et al., 2007b; Mostepanenko and
Geyer, 2008). Dots labeled 1 in Figs. 21(a) and 21(b) are
obtained with &g(i£) in the dark phase but with the di-
electric permittivities (93) or (94) in the bright phase,
respectively. It can be observed that the dots labeled 1
are inside the confidence intervals in both Figs. 21(a)
and 21(b). To distinguish between the two models using
the dielectric permittivities (93) and (94) of metal-type
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FIG. 21. Comparison of experiment and theory. Theoretical
minus experimental differences of the Casimir force vs separa-
tion are shown as dots. In the absence of the laser pulse the
theoretical results for dots labeled 1 are computed with a finite
static dielectric permittivity of high resistivity Si and for dots
labeled 2 taking the dc conductivity of high resistivity Si into
account. When the laser pulse is on, the charge carriers are
described by (a) the Drude and (b) the plasma model. Solid
lines show the 95% confidence interval.

semiconductors more precise experiments are required
(see Sec. V.D.2).

The calculation of the theoretical differences
AF™eor(g) using (in the absence of light) the dielectric
permittivity with the inclusion of dc conductivity leads
to the results presented by the dashed lines in Figs. 18
and 19. As shown, this theoretical prediction is excluded
by the data. The same can also be observed in Fig. 21(a)
where the dots labeled 2 present the differences be-
tween the theoretical results calculated with the small dc
conductivity of the Si membrane included in the absence
of light and the experimental data. Almost all dots la-
beled 2 are outside the 95% confidence interval. This
means that a model which includes the dc conductivity
of the high-resistivity Si is excluded by the experimental
data at a 95% confidence level within the separation
region from 100 to 200 nm.

The results of this experiment were applied (Klim-
chitskaya, Mohideen, and Mostepanenko, 2008) to test
the modification of the transverse magnetic reflection
coefficient, as given by Eq. (40) (Dalvit and Lamoreaux,
2008) and Eq. (53) with the standard contributions of all
nonzero Matsubara frequencies (Pitaevskii, 2008). The
experimental data for the difference of the Casimir
forces in the presence and absence of laser light are
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FIG. 22. Difference of the Casimir forces between a Au-
coated sphere and Si plate in the presence and absence of laser
light on the plate vs separation for the absorbed powers of (a)
9.3 and (b) 4.7 mW. The experimental data are shown as
crosses. The solid and dashed lines are computed using the
standard Lifshitz theory with the dc conductivity of Si in the
dark phase neglected and taking into account the effect of
charge screening for the transverse magnetic mode, respec-
tively.

shown in Fig. 22 for the absorbed powers (a) of 9.3 mW
and (b) of 4.7 mW. In contrast to Fig. 19, the experimen-
tal errors are presented at a 70% confidence level. The
computational results obtained on the basis of the stan-
dard Lifshitz theory with the dc conductivity neglected
in the dark phase are shown by the solid lines. The
dashed lines are computed using Eq. (40) for the modi-
fied TM reflection coefficient at all x=¢; with concentra-
tion of charge carriers n=7s and the Debye-Hiickel
length in the dark phase and n=2n, or n=2n, in the
presence of light. The computation of the dashed lines
was repeated using Eq. (53) for the TM reflection coef-
ficient at zero frequency. At all nonzero Matsubara fre-
quencies, the standard terms of the Lifshitz formula
were used. In both cases practically coinciding computa-
tional resuts were obtained, shown as the dashed lines in
Figs. 22(a) and 22(b). As shown in Figs. 22(a) and 22(b),
the experimental data are consistent with the theoretical
results computed on the basis of the standard Lifshitz
theory with the dc conductivity of dielectric Si neglected
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in the dark phase (the solid lines). The theoretical results
computed using Eq. (40) at all & or Eq. (53) with the
standard contributions of all nonzero Matsubara fre-
quencies are excluded by data at a 70% confidence level
(Klimchitskaya, Mohideen, and Mostepanenko, 2008).

According to Svetovoy (2008), the experimental data
for the difference Casimir force are equally consistent
with the nonlocal approach using the reflection coeffi-
cient (53) and the Lifshitz theory with dc conductivity
neglected in the dark phase. To prove this, the experi-
mental data of Fig. 22(a) at a 70% confidence level were
used, but the dashed line was replaced with the theoret-
ical band whose width was determined at a 95% confi-
dence level using the respective uncertainty in charge
carrier density An=0.4x10" cm™. Such a mismatched
comparison of experiment with theory is irregular. It can
be seen that the theoretical bands related to the solid
and dashed lines in Fig. 22(a) do not overlap if one uses
in computations the uncertainty in charge carriers An
=0.3x 10" cm™ determined at the same 70% confi-
dence level as the experimental errors (Mostepanenko et
al., 2009).

The experimental results presented here support the
conclusion made in Sec. II.D.2. In accordance with this
conclusion, one should disregard the role of free charge
carriers in all dielectric materials (in particular, in semi-
conductors with dopant concentration below critical)
when calculating dispersion forces in the framework of
the Lifshitz theory.

C. Doped semiconductors with different charge carrier
densities

1. p-type silicon

The most important materials used in nanotechnology
are semiconductors with conductivity properties ranging
from the metallic to the dielectric. As mentioned in Sec.
V.A, semiconductors with a relatively high conductivity
have an advantage that they avoid accumulation of re-
sidual charges but, at the same time, possess a typical
dielectric dependence of the dielectric permittivity on
frequency within a wide frequency range (see, e.g., Fig.
20). This makes it possible to examine the influence of
doping concentration on the Casimir force. Chen et al.
(2005), and Chen, Mohideen, et al. (2006) first measured
the Casimir force between a Au-coated sphere of the
diameter 2R=202.6+0.3 um (a Au layer of 105 nm
thickness was used) and 5X 10 mm? single crystal sili-
con Si(100) plate. The resistivity of this p-type B-doped
plate measured using the four-probe technique was p
=0.0035 Q) cm.

The Casimir force was measured with an improved
version of the setup previously used (Harris et al., 2000)
for the two Au test bodies (see Sec. IV.A). The main
improvements in the experimental setup were the use of
much higher vacuum and the reduction of the uncer-
tainty in the determination of absolute separation a [see
Eq. (83)]. As in Sec. V.B, a much higher vacuum (2
%1077 torr) is needed to maintain the chemical purity of
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FIG. 23. The mean measured Casimir force vs separation be-
tween a Au sphere and B-doped Si plate.

the Si surface which otherwise oxidizes rapidly to SiO,.
The high-vacuum system consists of oil-free mechanical
pumps, turbo pumps, and ion pumps. To maintain the
lowest pressure during data acquisition, only the ion
pump is used. This helps to reduce the influence of me-
chanical noise. The absolute error in the determination
of absolute separation was reduced to Aa=0.8 nm in
comparison to Aa=1nm (see Sec. IV.A). This was
achieved using a piezo capable of traveling a distance
6 pum from initial separation to contact. More details on
the improvements are provided by Chiu et al. (2008).

In contrast to Au, the Si surface is very reactive. Be-
cause of this, a special passivation procedure is needed
to prepare it for force measurements (Chen, Mohideen,
et al., 2006). To characterize the topography of both
samples, the Au coating on the sphere and the surface of
the Si plate were investigated using an AFM. Images
resulting from the surface scan of the Au coating show
that the roughness is represented mostly by stochasti-
cally distributed distortions of about 8-22 nm height
with &{!'=3.446 nm. The surface scan of the Si surface
shows much smoother distortions with typical heights
from 0.4 to 0.6 nm and &"=0.111 nm.

All calibrations and determination of the residual
electrostatic force and the separation on contact were
done immediately before the Casimir force measure-
ments in the same high-vacuum apparatus (see the
description in Sec. IV.A). The force calibration con-
stant was 1.440+0.007 nN per unit cantilever deflec-
tion signal, and the residual potential difference was
Vy=-0.114+0.002 V.

In Fig. 23, the mean measured Casimir force is pre-
sented (average of 65 measurements). The variance of
this mean is found to be approximately the same over
the entire measurement range 62.33 <4 <349.97 nm and
equal to 1.5 pN. Thus, the random experimental error at
a 95% confidence level is 3.0 pN. The systematic error in
this experiment, determined at a 95% confidence level
(in line with Sec. III.C.1), is 1.17 pN. The total experi-
mental error, calculated using Eq. (80) at a 95% confi-
dence level, is A’/F**P'=333 pN. Thus, the relative ex-

Rev. Mod. Phys., Vol. 81, No. 4, October—December 2009

|F'l (PN)

2201 %

200 S

180 T

160 - <

140 N

76 78 80 82 84 86 88 90

a (nm)

FIG. 24. Comparison of experiment and theory. The magni-
tude of the experimental Casimir force with the errors shown
as crosses vs separation. The solid line shows the theoretical
dependence calculated for the sample used in the experiment
and the dashed line for a dielectric Si.

perimental error varies from 0.87% at the shortest
separation to 3% at a=100 nm to 64% at a=300 nm.

In Fig. 24, the experimental data with their error bars
are plotted as crosses for a more narrow separation
range from 75 to 90 nm. The solid line in Fig. 24 shows
the theoretical results calculated using the Lifshitz
theory with the dielectric permittivity (93) [for the
p-type plate used w, =0, w,(,)=7>10"rad/s (Chen,
Mohideen, et al., 2006)]. The dashed line in Fig. 24 pre-
sents the calculation results for dielectric Si (the permit-
tivity is shown by the long-dashed line in Fig. 20). As
seen from Fig. 24, the solid line is consistent with the
experiment whereas the dashed line is inconsistent.
Thus, for the Si plate with a rather high doping concen-
tration (n=~3x10" cm™3) the presence of free charge
carriers markedly influences the Casimir force.

2. n-type silicon

Further investigation of the difference in the Casi-
mir force for samples with different charge-carrier den-
sities was performed for n-type Si doped with P (Chen,
Klimchitskaya, et al., 2006). The above same high
vacuum based AFM was used to measure the Casimir
force between a Au-coated sphere of a diameter 2R
=201.8+0.6 um and two 4 X7 mm? size Si plates with
different charge carrier densities placed next to each
other. The thickness of the Au coating on the sphere was
measured to be 92+2 nm.

The two Si samples chosen for this experiment were
identically polished single crystals of 500 um thickness.
The resistivity of the samples was measured using the
four-probe technique to be p,=0.43 ) cm. Thus, the
concentration of the charge carriers n,~1.2x10'° cm™
was well below the critical concentration corresponding
to the dielectric-metal transition in Si doped with P
(ne=1.3%10'" cm™). One of these samples was used as
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FIG. 25. The mean measured Casimir force vs separation be-
tween a Au sphere and two N-doped Si plates of (a) higher and
(b) lower resistivities.

the first Si plate in the experiment. The other one was
subject to thermal diffusion doping to prepare the sec-
ond, lower-resistivity plate, with p,~6.7X10* Q) cm
(n,=3.2x10%° cm™3). Both plates of higher and lower
resistivity were subjected to a special passivation proce-
dure to prepare their surfaces for the force measure-
ments.

All calibration procedures were done as in the previ-
ous measurements (see Sec. IV.A) separately for the
samples of higher and lower resistivities. For the sample
of higher resistivity, the value of the residual potential
difference V(j=-0.341+0.002 V was obtained. The canti-
lever deflection constant was 1.646+0.004 nN per unit
deflection signal and the separation on contact was
ay=32.4+1.0 nm. For the sample of lower resistivity V,
=-0.337+0.002 V, ay=32.3+1.0 nm, and the cantilever
deflection constant 1.700+0.004 nN per unit deflection
signal was found. Note that the expression for the elec-
tric force (82) used in the calibration does not take into
account possible influence of screening effects (space-
charge layer at the surface of Si). According to Binggian
et al. (1999), for high-resistivity n-type Si with the con-
centration of charge carriers of order 10'® cm™, the im-
pact of this layer on the electrostatic force is negligible
at separations from 300—-400 nm to 2.5 um where the
calibration fit was performed. Obviously, in the case of
lower resistivity Si the influence of space-charge layer is
even more negligible. These conclusions were experi-
mentally confirmed through the demonstration that both
the residual potential difference V|, and the separation
on contact a, are the same regardless of the separation
distance where the calibration fit is performed (Chen,
Klimchitskaya, et al., 2006; Chiu et al., 2008).

The Casimir force as a function of the separation was
measured for both samples immediately after the cali-
bration procedure was done for each one. The mean

values of the measured Casimir force F**P' are presented
in Fig. 25. Dots labeled a show the results for the sample
of higher resistivity (average of 40 measurements). Dots
labeled b correspond to the sample of lower resistivity
(average of 39 measurements). As seen from Fig. 25,
dots labeled a and b are distinct from each other dem-
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FIG. 26. Comparison of experiment and theory. The differ-
ences of the mean measured Casimir forces acting between a
Au sphere and lower and higher resistivity Si samples vs sepa-
ration are shown as dots. The respective theoretical difference
is shown by the solid line.

onstrating the effect of different charge-carrier densities
in the two Si plates used.

The error analysis performed, as described in Sec.
III.C.1, shows that the total experimental errors deter-
mined at a 95% confidence level are equal to the ran-
dom ones in each measurement. Thus, A’FS*P'=8, 6, and
4 pN at a=61.19 and 70 nm and a =80 nm, respectively.
The measurement for the sample of lower resistivity is
slightly more noisy. Here A/F2*'=11, 7, and 5 pN at a
=61.19 and 70 nm and a=80 nm. From Fig. 25 it shown
that the deviation between the two sets of data is larger
than the total experimental error in the separation re-
gion from 61.12 to 120 nm.

The force-distance relationship measured for the two
Si samples was compared with theory. For the descrip-
tion of the sample with lower resistivity the dielectric
permittivity (93) was used [with ®,)=0, @,,)=2.0
% 10" rad/s]. The sample of higher resistivity was de-
scribed by the dielectric permittivity of a dielectric Si
(the long-dashed line in Fig. 20).

In Fig. 26 the differences of the measured Casimir
forces for the plates of the lower and higher resitivity
F5*(a) - F*'(a) versus separation are shown as dots. In
the same figure, the difference in the respective theoreti-
cally computed Casimir forces is shown by the solid line.
As seen from Fig. 26, the experimental and theoretical
results as functions of a are in good agreement.

The experiments, described here, demonstrate the
possibility of modifying the Casimir force by changing
the doping concentration of semiconductor materials.

Note that recently a theoretical investigation of the
influence of Si doping concentration on the Casimir
force in the separation region from 1 nm to 5 mm was
performed using the zero-temperature Lifshitz formula
(Pirozhenko and Lambrecht, 2008a). The obtained re-
sults, however, are reliable only at separations below
1 um because the use of the zero-temperature Lifshitz
formula with the room-temperature parameters at sepa-
rations above 1 um is physically problematic (Bordag
et al., 2001).
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FIG. 27. The periodical uniaxial rectangular corrugations on
one of the plates.

D. Silicon plate with rectangular trenches

Chan et al. (2008) reported a measurement of the Ca-
simir force between a gold-coated sphere of radius R
and a silicon surface that had been structured with nano-
scale rectangular corrugations (trenches). Measurements
were performed in the dynamic regime using a microme-
chanical torsional oscillator (see Sec. IV.B). This means
that the immediately measured quantity was the change
of the resonant frequency of the oscillator which is pro-
portional to the derivative of the Casimir force with re-
spect to separation distance. In accordance with the
proximity force approximation given by Eq. (85), this
derivative is

F.(a)=-2mRP(a), (97)

where P(a) is the Casimir pressure between one rectan-
gular corrugated plate and one plane plate (see Fig. 27).
Note that the experiment was done at room tempera-
ture, but the results obtained were compared with theo-
retical computations at 7=0.

For an ideal metal case such a configuration was con-
sidered by Biischer and Emig (2004) using exact meth-
ods presented in Sec. II.B. It was shown that in the lim-
iting case a<<A (recall that separation is measured
between the zero-corrugation levels of the lower plate
and the upper plate) the Casimir pressure for the frac-
tional surface area of solid volume equal to 1/2 is given
by

Pla) = #h@( 1 1 ) ©08)
D="%40 2\(a-HPR)* T @+ HR)*)

This is in fact the minimum value of the Casimir pres-
sure between the rectangular corrugated and plane
plates. Under the condition a<<A for ideal metals the
same result is obtained by the application of the prox-
imity force approximation or pairwise summation meth-
ods (see Sec. II1.B.1).

In the opposite limit a> A the exact result is given by
(Biischer and Emig, 2004)

e 1
240 (a— HR)*

Pla)=- 99)

which is up to a factor of 2 larger in magnitude than the
prediction of the proximity force approximation and pai-
wise summation in Eq. (98). This is the maximum value
of the Casimir pressure in the configuration of the rect-
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angular corrugated and plane plates made of ideal met-
als.

The trenches were fabricated in p-doped silicon (the
density of charge carriers 2 X 10'® cm™ was determined
from the dc conductivity which was 0.028 €} cm). Silicon
oxide was used as the mask. Deep uv lithography fol-
lowed by reactive ion etching was used to transfer the
pattern. Trenches of approximate depth 1 um were cre-
ated. Three types of samples were made on the same
wafer: sample A with Ay=1 um period, sample B with
Ap=400 nm period, and one with a flat surface. The
fractional areas of solid volume were p,4=0.478+0.002
and pp=0.510+0.001 for samples A and B using a scan-
ning electron microscope. The residual hydrocarbons
were removed by oxygen plasma etching and the oxide
mask was etched with HF. Samples of size 0.7
% 0.7 mm? were used for the force measurement. The
corrugated silicon surface was prepared as done by
Chen, Klimchitskaya, et al. (2006) and Chen, Mohideen,
et al. (2006) using hydrogen passivation. However, after
this the silicon chip was baked to 120 °C to remove the
residual water from the bottom of the trenches, which
might impair the passivation layer leading to patch po-
tentials.

The micromachined oscillator used in the measure-
ments consists of a 3.5-um-thick, 500-um-square silicon
plate. Unlike in previous experiments with microma-
chined oscillators (see Sec. IV.B), the spheres were at-
tached to the plate. Two sputter gold coated with thick-
ness of about 400 nm glass spheres of radius R=50 um
were attached on top of each other to the torsional os-
cillator at a distance of h=210 um using conductive ep-
oxy. Two spheres are used to provide a large distance
between the corrugated surface and the top of the tor-
sional oscillator. The resonant frequency (wy=27
X 1783 Hz, quality factor Q=32 000) was excited by ap-
plying voltage on one of the bottom electrodes. The os-
cillations were detected with additional voltages with an
amplitude of 100 mV and a frequency of 27X 102 kHz
which were applied to measure the capacitance change
between the top plate and the bottom electrodes. A
phase-locked loop was used to detect the change in the
resonant frequency as a function of the distance be-
tween the sphere and the corrugated plate.

The measurements were done at a vacuum of
107° torr using a dry roughing pump and a turbo pump.
The residual potential difference V|, and the initial sepa-
ration between the surfaces a, were determined and the
calibration was done using electrostatic forces. No value
of ay or errors in its determination were provided. A
residual potential difference Vj~—-0.43 V was found be-
tween a sphere and a flat Si plate and noted to vary with
3 mV within the separation distance of 100 nm to 2 um.
If the same was found for the corrugated Si surfaces this
was not mentioned. Voltages between V(+245 mV and
Vy+300 mV were applied and the calibration constant
was found to be 628+5 m N~!s7!. Since no analytic ex-
pression for the electrostatic force is available for the
trench geometry a two-dimensional (2D) numerical so-
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lution of the Poisson equation was used to calculate the
electrostatic energy between a flat plate and the trench
surface. This energy was then converted to a force be-
tween a sphere and the trench surface using the PFA.

The Casimir force gradients between the flat plate and
samples A and B were measured after the application of
compensating voltages to the plates. The main uncer-
tainty in these measurements is reported as that coming
from thermomechanical noise with a value of about
0.64 pN um™! at =800 nm. The Casimir force gradient
between the flat plate and the gold sphere Fy,, was first
measured. Good agreement was found with the calcula-
tion using the Lifshitz theory. The tabulated data for
gold and silicon (Palik, 1985) were used along with the
modification corresponding to the carrier density of sili-
con (Chen, Klimchitskaya, et al., 2006). The roughness
correction was taken into account using rms roughnesses
of 4 nm on the sphere and 0.6 nm on the silicon surface
measured using an AFM (see Sec. III.B.1). Next the
force gradients F .. and Fg ., were measured on the
corrugated surfaces using the same gold sphere.

For the configurations used by Chan et al. (2008) one
can neglect the contribution from the remote bottom
parts of trenches. Then the proximity force approxima-
tion leads to the following force gradients for samples A
and B:

F)y ppala) = =2wRp PV (a - H/2),

Fpppala) =—2mRppP"(a - H/2), (100)
where P")(a) is the Casimir pressure between two non-
corrugated plates covered with a stochastic roughness
calculated using the Lifshitz formula as described in Sec.
III.B.1.

To compare the experimental data with theory, Chan

et al. (2008) considered the ratios

Pa= FA,expt/FA,PFA’ PB= F,B,expt/Fl;,PFA (101)
It was shown that for sample A there are deviations of
pa from unity up to 10% over the measurement range
from a=650 to 750 nm exceeding the experimental er-
rors. For sample B there are deviations of pg from unity
up to 20% over the same measurement range. This dif-
ference in the comparison of the experimental data for
samples A and B with the PFA results is natural, as
alAy=0.7 and a/Ap=1.75 at a typical separation dis-
tance considered a=700 nm. Thus, for sample B the ap-
plicability condition of the PFA, a/A <1, considered in
Sec. II1.B.1 is violated to a larger extent than for sample
A.

The measurements were repeated three times for each
sample and consistent results have been observed. The
data were also compared to values from the exact calcu-
lations for ideal metal boundaries, which were converted
to the sphere-trenched plate case using the PFA. How-
ever, the measured deviations from PFA, as applied to
the rectangular corrugations, were found to be 50% less
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than that expected for ideal metals. This discrepancy
was reported as quite natural due to the interplay of
nonzero skin depth and geometry effects.

Thus, the experiment by Chan et al. (2008) reports the
measurement of deviation resulting from geometry for
corrugated rectangular trenches of relatively small peri-
ods. The depth of the corrugated trenches allowed good
comparison to the results obtained using the PFA taking
into account only the fractional area of the top surface.
Deviations between 10-20% from the PFA were re-
ported. At present no theoretical computations exist
which would allow a definite comparison between ex-
periment and theory for spherical and corrugated sur-
faces made of real metals at room temperature [at T
=0 such computations were performed by Lambrecht
and Marachevsky (2008)].

E. Future prospects to measure the Casimir force with
semiconductor surfaces

1. The dielectric-metal transition

The possibility for the modulation of the Casimir
force due to a change of charge carrier density is offered
by semiconductor materials that undergo the dielectric-
metal transition with the increase of temperature. From
a fundamental point of view, the modulation of the Ca-
simir force due to the phase transitions of different kinds
offers one more precision test of the role of conductivity
and optical properties in the Lifshitz theory of the Ca-
simir force.

An experiment was proposed (Castillo-Garza et al.,
2007) to measure the change of the Casimir force acting
between a Au-coated sphere and a vanadium dioxide
(VO,) film deposited on a sapphire substrate which un-
dergoes the dielectric-metal transition with the increase
of temperature. It has been known that VO, crystals and
thin films undergo an abrupt transition from semicon-
ducting monoclinic phase at room temperature to a me-
tallic tetragonal phase at 68 °C (Zylbersztejn and Mott,
1975; Soltani et al., 2004; Suh et al., 2004). The phase
transition causes the resistivity of the sample to decrease
by a factor of 10* from 10 to 1073  cm. In addition, the
optical transmission for a wide region of wavelengths
extending from 1 um to greater than 10 um decreases
by more than a factor of 10-100.

The increase of temperature necessary for the phase
transition can be induced by laser light (Soltani et al.,
2004; Suh et al, 2004). Thus, a setup similar to the
one employed in the demonstration of optically modu-
lated dispersion forces (see Sec. V.B) can be used. In the
initial stage of the experimental work, the procedures of
film fabrication and their heating were investigated
(Castillo-Garza et al., 2007). The preliminary theoretical
results are also obtained (Castillo-Garza et al., 2007,
Pirozhenko and Lambrecht, 2008a) based on the Lifshitz
theory and optical data for VO, films (Verleur et al,
1968). Calculations of the difference Casimir force be-
tween a Au sphere and VO, film on sapphire substrate
after and before the phase transition showed that the
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FIG. 28. Schematic diagram of the experimental setup for the
measurement of the difference Casimir force between a Au-
coated sphere and patterned Si plate.

proposed experiment has much promise for the under-
standing of the role of free charge carriers in the Lifshitz
theory of dispersion forces.

Interesting results can also be obtained when investi-
gating the change of the Casimir free energy in the
phase transition of a metal to the superconducting state.
The variation of the Casimir free energy during this
transition is small (Mostepanenko and Trunov, 1997).
Nevertheless, the magnitude of this variation can be
comparable to the condensation energy of a semicon-
ducting film and causes a measurable increase in the
value of the critical magnetic field (Bimonte, Calloni,
Esposito, Milano, and Rosa, 2005; Bimonte, Calloni, Es-
posito, and Rosa, 2005).

2. Casimir forces between a sphere and a plate with patterned
geometry

The difference force measurements are very sensitive
to relatively small variations of the Casimir force (see
Sec. V.B). Recently an experimental scheme was pro-
posed (Castillo-Garza et al, 2007) which promises a
record sensitivity to a force difference at the level of 1
fN. The patterned Si plate with two sections of different
doping concentrations (see Fig. 28) is mounted on a pi-
ezo below a Au-coated sphere attached to the cantilever
of an AFM. The piezo oscillates in the horizontal direc-
tion causing the flexing of the cantilever in response to
the Casimir force above different regions of the plate.
Thus, the sphere is subject to the difference Casimir
force which can be measured using the static and dy-
namic techniques. The patterned plate is composed of a
single crystal of Si specifically fabricated to have adja-
cent sections of two different charge carrier densities. A
special procedure was developed for the preparation of
the Si sample with the two sections having different con-
ductivities (Castillo-Garza et al., 2007) where the p- and
n-type dopants can be used (B and P, respectively).
Sharp transition boundaries between the two sections of
the Si plate of width, below 200 nm can be achieved.
Identically prepared but unpatterned samples can be
used to measure the properties which are needed for the
theoretical computations (Hall probes for measuring the
charge carrier concentration, a four-probe technique for
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measuring conductivity). The measurement of the differ-
ence Casimir force is planned as follows. The Si plate is
positioned such that the boundary is below the vertical
diameter of the sphere (see Fig. 28). The distance be-
tween the sphere and Si plate a is kept fixed and the Si
plate oscillates in the horizontal direction using the pi-
ezo such that the sphere crosses the boundary in the
perpendicular direction during each oscillation [a similar
approach was exploited (Decca, Lépez, Chan, et al,
2005) for constraining new forces from the oscillations of
the Au-coated sphere above two dissimilar metals, Au
and Ge]. The Casimir force on the sphere changes as the
sphere crosses the boundary. This change corresponds to
the differential force,

AF(G) = Ffl(a) - Fn(a)a (102)

equal to the difference of the Casimir forces due to the
different charge carrier densities 7 and n, respectively.
This causes a difference in the deflection of the cantile-
ver. In order to reduce random noise by averaging, the
periodic horizontal movement of the plate will be of an
angular frequency ~0.1 Hz. The amplitude of plate
oscillations is limited by the piezocharacteristics but can
be of order 100 wm, much larger than the typical width
of the transition region equal to 200 nm.

The proposed experiment holds promise for the inves-
tigation of the possible variation of the Casimir force in
the dielectric-metal transition in semiconductors with
the increase of doping concentration (Klimchitskaya and
Geyer, 2008). It has the potential to distinguish between
the two models of the dielectric permittivity of semicon-
ductors with the concentration of charge carriers above
the critical [see Egs. (93) and (94) in Sec. V.B].

3. Pulsating Casimir force

At present, a consensus has been reached that appli-
cations of the Casimir force in the design, fabrication,
and actuation of micromechanical and nanomechanical
devices are very promising. When the characteristic sizes
of a device shrink below 1 um, the Casimir force be-
comes larger than typical electric forces. Considerable
opportunities for micromechanical design would be
opened by pulsating Casimir plates moving back and
forth entirely due to the effect of the zero-point energy,
without the action of mechanical springs. This can be
achieved only through the use of both attractive and
repulsive Casimir forces. In connection with this, it
should be noted that while the repulsive Casimir froces
for a single cube or a sphere are still debated, the Ca-
simir repulsion between two parallel plates is well un-
derstood. Repulsion occurs when the plates with dielec-
tric permittivities &; and &, along the imaginary
frequency axis are immersed inside a medium with the
dielectric permittivity g, such that e;<gy<e, or &,<g
<& (Mahanty and Ninham, 1976). At short separations
in the nonretarded van der Waals regime this effect has
been long discussed and measurements have been re-
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FIG. 29. The Casimir pressure vs separation in a three-layer
system a-AlsO,-ethanol-Si with no light on the Si plate (line 1)
and with the illuminated Si plate (line 2).

ported [see, e.g., Visser (1981) and Meurk et al. (1997)].
At separations of about 30 nm the same effect was mea-
sured by Munday et al. (2009).

Recently it was shown that the illumination of one (Si)
plate in the three-layer systems Au-ethanol-Si, Si-
ethanol-Si, and a-Al,O3-ethanol-Si with laser pulses can
change the Casimir attraction to Casimir repulsion and
vice versa (Klimchitskaya et al., 2007b). The illumination
can be performed as described in Sec. V.B. Calculations
showed that in the system Au-ethanol-Si the force is
repulsive at separations a >160 nm. The illumination of
the Si plate, as in Sec. V.B, changes this repulsion to
attraction. In the system Si-ethanol-Si the force between
the Si plates is attractive, however, with one Si plate
illuminated the attraction is replaced with repulsion at
separations a>175 nm.

In the systems mentioned above, the magnitudes of
the repulsive forces are several times less than the mag-
nitude of the attractive forces at the same separations.
However, it is possible to design a system where the
light-induced Casimir repulsion is of the same order of
magnitude as the attraction. A good example is given by
the three-layer system a-Al,Os-ethanol-Si where the Si
plate is illuminated with laser pulses. The computational
results for the Casimir pressure versus separation are
presented in Fig. 29. The Casimir attraction (solid line 1)
changes to repulsion at separations a>70 nm when the
Si plate is illuminated (solid line 2).

Note that the observation of the pulsating Casimir
force requires that the plates be completely immersed in
a liquid far away from any air-liquid interfaces. This pre-
vents the occurrence of capillary forces. Surface prepa-
ration of the plates is necessary to bring about an inti-
mate contact between the plates and the liquid. The only
liquid-based force is the drag force due to the movement
of the plates in response to the change of the force. For
pressure values of around 10 mPa and typical spring
constants of 0.02 N/m, the corresponding drag pressure
from the plate movement would be six orders of magni-
tude less in value. Thus, in the near future one may
expect experimental confirmation of the possibility of
Casimir repulsion.
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VI. EXPERIMENTS ON THE CASIMIR-POLDER FORCE

A. Demonstration of the thermal Casimir-Polder force

1. The force in thermal equilibrium

As mentioned in Sec. II.C, the Casimir-Polder interac-
tion between an atom and a wall leads to a change of the
center-of-mass oscillation frequency of the Bose-
Einstein condensate in the direction perpendicular to
the wall (Antezza et al., 2004). This frequency shift can
be measured precisely, leading to an indirect measure-
ment of the Casimir-Polder force (Harber et al., 2005).
Using this technique, the first measurement of the ther-
mal Casimir-Polder force at large separations between
an atom and a plate was performed by Obrecht et al
(2007). In that experiment the dipole oscillations with
the frequency w, were excited in a S’Rb Bose-Einstein
condensate separated by a distance of a few microme-
ters from a fused-silica substrate (wall). The Casimir-
Polder force (27) between a Rb atom and a substrate
changes the magnitude of the oscillation frequency mak-
ing it equal to some w, (the z direction is perpendicular
to the wall). The use of the Bose-Einstein condensate is
convenient because it provides a spatially compact col-
lection of a relatively large number of atoms [2.5X 10°
atoms in the experiment by Obrecht er al. (2007)]. It is
well characterized by the Thomas-Fermi density profile
(29) with the radius R,=2.69 um (corresponding to a
magnetic trap frequency in the radial direction wy=2
X229 Hz). This profile is used for spatial averaging in
Eq. (28).

The detailed description of the experimental setup,
calibration procedures and measurements is presented
by Harber et al. (2003, 2005) and McGuirk et al. (2004).
The directly measured quantity was the relative fre-
quency shift
(103)

e = oy = w oy = 6 - o227,
where wﬁ— w§ is connected [see Eq. (28)] with the spatial
and time-averaged Casimir-Polder force (Antezza et al.,
2004).

In thermal equilibrium the temperature of the fused
silica substrate 7¢ was equal to the environment tem-
perature Ty Tg=Tr=310 K. The frequency shift (103)
was measured for a number of wall-atom (center of mass
of the condensate) separations from 7 to 11 um. In Fig.
30 the experimental data obtained by Obrecht et al.
(2007) in thermal equilibrium at separations below
10 um are shown as crosses. Harber et al. (2005) esti-
mated random, systematic, and total errors in the mea-
sured values of vy, in such experiments at a 66% confi-
dence level. Obrecht et al. (2007) performed analysis for
each experimental point separately. The main sources of
systematic errors discussed by Harber et al. (2005) are
connected with possible presence of spatially inhomoge-
neous electric or magnetic surface contaminations or
uniform magnetic and electric fields. Special investiga-
tions were performed to obtain upper bounds on all sys-
tematic errors. In Fig. 30 the absolute total errors in the
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FIG. 30. The fractional change in the trap frequency vs sepa-
ration in thermal equilibrium with 75=7T;=310 K computed
by neglecting (solid line) and including (dashed line) the con-
ductivity of the dielectric substrate. The experimental data are
shown as crosses.

measurement of the separations and vy, are presented in
true scales at each individual data point.

Comparison between the experimental data and the
theory is done as in Fig. 14 (see Sec. IV.C) where the
frequency shift due to the Casimir pressure between two
parallel plates was shown. The measured quantity (in
this case the relative frequency shift) is plotted as crosses
on the same graph as the theoretical lines computed us-
ing different approaches. The theoretical values of the
relative frequency shift as a function of separation are
calculated using Egs. (103) and (28) with the Casimir-
Polder force (27). The mass of a Rb atom is m=1.443
X 1072 kg. The dymanic polarizability of a Rb atom in
Eq. (27) can be considered as frequency-independent,
and the static value a(i&)=~ a(0)=4.73x1072% cm™ was
used in the computations. This allows one to obtain
highly accurate results for the separations under consid-
eration (Babb et al., 2004).

Fused silica is a good insulator. However, like any in-
sulator, it possesses a nonzero dc conductivity at non-
zero temperature. Electrical conductivity in fused silica
is ionic in nature and is determined by the concentration
of the impurities (alkali ions) which are always present
as trace constituents. At Tg=T£=310 K this conductivity
varies within a wide region from 10~ to 10? s~! (Bansal
and Doremus, 1986; Shackelford and Alexander, 2001).
When neglecting the dc conductivity, the dielectric per-
mittivity of fused silica (i) as a function of & can be
calculated (Caride et al., 2005) using the tabulated opti-
cal data (Palik, 1985) and the dispersion relation (57). In
this case the static dielectric permittivity has a finite
value of g,=3.81. The respective computational results
for y, with the dc conductivity of fused silica neglected
are shown in Fig. 30 by the solid line (Obrecht et al.,
2007). Note that the results computed using &(i§)=¢q
(Obrecht et al., 2007) and frequency-dependent dielec-
tric permittivity (Antezza et al., 2004; Klimchitskaya and
Mostepanenko, 2008b) are almost coincident at large
separation distances (only small deviations are observed
at a<8 um). The theoretical computations are in good
agreement with the data, as stated by Obrecht et al.
(2007).
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The inclusion of the dc conductivity of fused silica in
the model of the dielectric response, as in Eq. (47), dra-
matically affects the calculations. This changes the value
of the reflection coefficient r1(0,k ;) and, consequently,
the Casimir-Polder force (27) which leads to a change in
the magnitude of y, computed using Egs. (28) and (103).
The computational results for y, are shown in Fig. 30 as
the dashed line. As shown, the first two experimental
points are in disagreement with theory taking into ac-
count the conductivity of fused silica.

2. The force out of thermal equilibrium

Recently a nonequilibrium situation was considered
where the substrate is at a temperature 7'¢ but the envi-
ronment (remote wall) is at another temperature Ty
(Antezza et al., 2005). In this case the Casimir-Polder
force has two additional terms due to the thermal fluc-
tuations from the nearest wall at a temperature 7 and
from remote walls (environment) at a temperature 7.

The force acting between an atom and a substrate out
of thermal equilibrium depends on both temperatures
and is given by (Antezza et al., 2005)

F(a, Ts, TE) = F(G,TE) + Fn(a,Ts) — Fn(a, TE) (104)

The first term on the right-hand side of Eq. (104) is the
Casimir-Polder force (27). The nonequilibrium contribu-
tion F,(a,T) obtained in the approximation of static
atomic polarizability is defined as (Antezza et al., 2005)

Fn(a,T):—Kf do f dxf{w,x)e 2ol
0 0

o'y’ 21172
flox) = o lp(@x)| + Re s(w) 1 - x°]

1
>< —
l Np(w,x) + ix|?
2x2+ D[+ 1+ |p(w,x)|]
Wp(w,x) +ig(@)x |

. 2\2%a(0)

mct

pw,x) =e(w) -1 -x%. (105)

The frequency shift of the condensate oscillations out of
thermal equilibrium can be calculated using Egs. (103)
and (28) where F(a,T) is replaced with F(a, T, Tf) given
by Egs. (104) and (105).

In the experiment by Obrecht et al. (2007) the fused-
silica substrate was heated by the absorption with laser
light. The experimental data obtained out of thermal
equilibrium for 7T;=310 K and two different values of
substrate temperature, 75=479 and 605 K, are shown as
crosses in Figs. 31(a) and 31(b), respectively. As in Fig.
30, the absolute errors are presented in true scales at
each data point. The computational results for vy, in a
nonequilibrium situation obtained by neglecting the dc
conductivity of fused silica (Obrecht et al., 2007) are pre-
sented in Fig. 31 as the solid lines. Note that the fre-
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FIG. 31. The fractional change in the trap frequency vs sepa-
ration out of thermal equilibrium (a) with Tg=479 K and Tg
=310 K and (b) with Tg=605 K and T£=310 K. Computations
are done by neglecting (solid line) and including (dashed line)
the conductivity of the dielectric substrate. The experimental
data are shown as crosses.

quency dependence of e(w) in Eq. (105) does not affect
the contributions to the frequency shift from the non-
equilibrium terms in the total atom-wall force (104).

Direct computations show that in the nonequilibrium
situation the disagreement between the experimental
data and the theory with the dc conductivity of the sub-
strate material included widens further. The correspond-
ing results are presented in Fig. 31 as the dashed lines
(Klimchitskaya and Mostepanenko, 2008b). As shown in
Fig. 31(a), the three experimental points for 753=479 K
exclude the dashed line and the other two only touch it.
The dashed line in Fig. 31(b) demonstrates that all data
for T¢=605 K exclude the theoretical prediction calcu-
lated with the inclusion of the dc conductivity of fused
silica. Thus, the confidence at which the theoretical ap-
proach based on Eq. (47) is excluded by data increases
with the increase of substrate temperature.

It is notable that the inclusion of the dc conductivity
of fused silica in the model of the dielectric response
(47) does not affect the contributions to the frequency
shift arising from the nonequilibrium terms F,(a,T) in
Eq. (104) (Klimchitskaya and Mostepanenko, 2008b).
Thus, the conductivity influences the computational re-
sults only through the equilibrium Casimir-Polder force
(see Sec. VILA.1). The important role of the Obrecht et
al. (2007) experiment is that, not only was the model of
the dielectric response taking the dc conductivity into
account excluded, but the thermal effect, as predicted by
the Lifshitz theory with the dc conductivity omitted, was
measured for the first time.
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B. Future prospects to measure the Casimir-Polder force in
quantum reflection

The magnitude and the distance dependence of the
Casimir-Polder force were confirmed by Sukenik et al.
(1993) when studying the deflection of ground-state Na
atoms passing through a micron-sized parallel-plate cav-
ity. The intensity of an atomic beam transmitted through
the cavity was measured as a function of the plate sepa-
ration. Comparison of the experimental data with the
theoretical position-dependent potential for an atom be-
tween parallel ideal mirrors (Barton, 1987a, 1987b) al-
lowed one to investigate the atom-wall interaction at
separation distances below 3 um. This experiment gave
impetus to the investigation of the Casimir-Polder forces
in scattering experiments. Of special interest are situa-
tions when the wave nature of atom becomes dominant
with respect to its classical behavior as a particle. Such a
pure quantum effect is what is referred to as quantum
reflection, i.e., a process in which a particle moving
through a classically allowed region is reflected by a po-
tential without reaching a classical turning point. The
possibility of reflection of an ultracold atom under the
influence of an attractive atom-wall interaction was pre-
dicted long ago on quantum-mechanical grounds [see,
e.g., Lennard-Jones and Devonshire (1936)]. However,
the experimental observation of this phenomenon has
become possible only recently due to the success in the
production of ultracold atoms. First it was investigated
using liquid surfaces, as the reflection of He and H at-
oms on liquid He (Nayak et al., 1983; Berkhout et al.,
1989) and from the sticking coefficient of H atoms on
liquid He (Doyle et al., 1991; Yu et al., 1993). Later a
specular reflection of very slow metastable Ne atoms on
Si and BK?7 glass surfaces was studied (Shimizu, 2001).
The observed velocity dependence was explained by the
quantum reflection which is caused by the attractive
Casimir-Polder interaction.

Quantum reflection becomes efficient when the mo-
tion of the particle can no longer be treated semiclassi-
cally (Friedrich and Trost, 2004). The behavior of the
particle is of a quantum character when

MNg(2)oz =1, (106)

where \g(z)=2mh/\2m[E-V(z)] is the local de Broglie
wavelength for a particle of mass m and initial kinetic
energy E moving in the potential V(z). The same can be
formulated as a condition that the variation of the local
wave vector k=2m/\p(z), perpendicular to the surface,
within the distance of the atomic de Broglie wavelength,
is larger than k itself (Shimizu, 2001),

(107)

The reflection amplitude depends critically on the en-
ergy V(z) of the atom-wall interaction. This has at-
tracted considerable attention to the theoretical investi-
gation of the reflection amplitude depending on atomic
energy and the form of the interaction potential
(Friedrich et al., 2002; Jurisch and Friedrich, 2004; Voro-
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nin and Froelich, 2005; Voronin et al., 2005; Madrofiero
and Friedrich, 2007). The reflection probability tends to
unity, as the incident velocity tends to zero. Thus, a high
probability of quantum reflection calls for small incident
velocities, i.e., for cold atoms.

Advances in cooling techniques in the past decade
have made it possible to perform experiments with cold
atoms interacting with solid surfaces. The quantum re-
flection of *He atoms in the scattering from an a-quartz
crystal was observed at energies far from FE—0
(Druzhinina and DeKieviet, 2003). The observation of
the large reflection amplitudes for the dilute Bose-
Einstein condensate of 2>Na atoms on a Si surface (Pas-
quini et al., 2004, 2006) allows the possibility of using
quantum reflection as a trapping mechanism. The corre-
sponding trap model has been developed theoretically
(Jurisch and Friedrich, 2006; Madrofiero and Friedrich,
2007). The quantum reflection of He* atoms on a flat Si
surface and on microfabricated surface structures was
also investigated (Oberst, Kouznetsov, et al., 2005;
Oberst, Taashiro, et al., 2005). The latter experiment has
stimulated the development of adequate theoretical
models for the description of the scattering of atomic
matter waves on ridged surfaces (Kouznetsov and
Oberst, 2005).

For theoretical calculations of the reflection ampli-
tude, a simple attractive atom-wall interaction potential
is commonly used (Friedrich et al., 2002; Druzhinina and
DeKieviet, 2003; Oberst, Taashiro, et al., 2005) which
is an interpolation between the nonretarded van der
Waals energy (24) and the Casimir-Polder energy (25).
Comparison of computational results with the measure-
ment data for the reflection amplitudes allows one to
estimate the parameters of the potential (Druzhinina
and DeKieviet, 2003; Oberst, Taashiro, et al., 2005). The
increased precision of the measurements opens new op-
portunities for comparison with the more exact Eq. (21)
for the free energy of atom-wall interactions. Such a
comparison could yield new information on the role of
the atomic and material properties in dispersion forces.
As shown by Bezerra et al. (2008), for an atom of meta-
stable He* and a Au wall at zero temperature, the larg-
est deviations between the phenomenological potential
and the exact interaction energy of about 10% are
achieved at separations of 300-500 nm. However, at
room temperature the free energy deviates from the
phenomenological potential by 31% at a=5 um. There
is also related theoretical research on Casimir physics in
atom-wall interaction devoted to the influence of non-
zero temperature on atomic polarizability (Buhmann
and Scheel, 2008), the use of the lateral Casimir-Polder
force between an atom, and a corrugated surface to
study nontrivial geometrical effects (Dalvit et al., 2008)
and to the interaction of atoms with conducting micro-
structures (Eberlein and Zietal, 2007).

C. Casimir-Polder interaction of atoms with carbon nanotubes

Experiments with ultracold atoms have generated in-
terest on the scattering and trapping of such atoms by
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different nanostructures (Arnecke et al., 2007; Fermani
et al., 2007). In this case, the probability of quantum
reflection is sensitive to the shape of the potential
(Friedrich et al., 2002; Arnecke et al., 2007). Thus, it
needs to be ascertained if the general theory of disper-
sion forces can describe the interaction between micro-
particles and nanostructures. An additional question to
be answered is to what extent the macroscopic concept
of the dielectric permittivity can be used as an adequate
characteristic of nanostructure material properties.

As a first step in this direction, the Lifshitz theory of
the van der Waals force has been extended for the case
of a microparticle interacting with a plane surface of a
uniaxial crystal or with a cylindrical shell made of such
crystal (Blagov et al., 2005). An approximate expression
for the free energy of a microparticle-cylinder interac-
tion was obtained using the PFA which is of high preci-
sion at microparticle-cylinder separations smaller than
the cylinder radius. The reflection coefficients from the
surface of a uniaxial crystal (with the optical axis z per-
pendicular to the surface) can be expressed in terms of
two dissimilar dielectric permittivities ¢,(w) and e,(w).
For example, the multilayer graphite cylinder was con-
sidered as a simple model of a multiwalled carbon nano-
tube. Using this model, the Casimir-Polder interaction
between hydrogen atoms (molecules) and multiwalled
carbon nanotubes was investigated (Blagov et al., 2005;
Klimchitskaya, Blagov, and Mostepanenko, 2006). Later,
Lifshitz-type formulas have been obtained which de-
scribe the van der Waals and Casimir-Polder interaction
between a graphene sheet and a material plate or a mi-
croparticle (Bordag et al., 2006) and a microparticle and
a single-walled carbon nanotube (Blagov et al., 2007).
For this purpose graphene was considered as an infini-
tesimally thin positive charged flat sheet, carrying a con-
tinuous fluid with some mass and negative charge densi-
ties. This plasma sheet is characterized by a typical wave
number K determined by the parameters of the hexago-
nal structure of graphite. The interaction of the electro-
magnetic oscillations with such a sheet was considered
and the normal modes and reflection coefficients were
found (Barton, 2004, 2005).

A single-walled carbon nanotube can be approxi-
mately modeled as a cylindrical sheet carrying a two-
dimensional free-electron gas with the same reflection
coefficients as for a plane sheet (Blagov et al, 2007).
Note that the above approximate models do not take
into account nanotube chirality (Saito et al., 1998). This
can be included using the optical data for the nanotube
index of refraction. Regarding single-walled carbon
nanotubes, it remains unclear if it is possible to describe
nanotubes with surfaces such as metals or semiconduc-
tors by varying only one parameter, the typical wave
number K, in the reflection coefficients.

By comparing the calculational results for the multi-
walled nanotubes with those for single-walled, it was
demonstrated that the macroscopic desciption using the
concept of dielectric permittivity is applicable for nano-
tubes with only two or three layers at separation dis-
tances larger than 2 nm (Blagov et al, 2007; Klim-
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chitskaya, Blagov, and Mostepanenko, 2008). It is well to
bear in mind that the description of multiwalled nano-
tubes by the graphite dielectric permittivity and single-
walled nanotubes as a two-dimensional free electron gas
are only models and are not a complete description of
all the nanotube properties. Nevertheless, they are good
approximations for the estimation of microparticle-
nanotube interaction on the basis of the Lifshitz theory.

VII. LATERAL CASIMIR FORCE AND CASIMIR
TORQUES

A. Lateral Casimir force between corrugated surfaces

The Casimir force considered in the preceding sec-
tions is the normal one, i.e., it leads to an attraction
perpendicular to the surfaces of the interacting bodies.
However, as mentioned in Sec. I.B, there is a geometry
dependence for the Casimir force on the shape of the
surface, especially for corrugated surfaces. Thus, the
nontrivial boundary dependence of the normal Casimir
force acting between a plate with periodic uniaxial sinu-
soidal corrugations and a large sphere was demonstrated
by Roy and Mohideen (1999). It follows also from Eq.
(67) that the pressure between two corrugated plates
with parallel uniaxial sinusoidal corrugations of the
same period harmonically depends on the phase shift
between the corrugations (Bordag et al., 1995a). This
should result in the lateral Casimir force in addition to
the normal one.

Using the path integral method, Golestanian and Kar-
dar (1997, 1998) predicted the existence of the lateral
Casimir force in the configuration of two corrugated
plates. Later the geometry dependence of the Casimir
energy for sinusoidally corrugated ideal metal plates was
studied by the path integral quantization of the electro-
magnetic field (Emig et al., 2001, 2003). The general ex-
pressions for both the normal and the lateral Casimir
force were obtained in the lowest order of perturbation
theory with respect to the relative corrugation ampli-
tudes A; and A,. Here the interacting surfaces were de-
scribed by Eq. (63) with fi(x,y)=sinmx/A), fr(x,y)
=sin[2m(x+x)/A]. A harmonic dependence of the lat-
eral force on the phase shift ¢=2mx,/A was obtained
(Emig et al., 2001, 2003). Later, the exact solution was
found for the lateral Casimir force in the configuration
of two parallel ideal metal plates with laterally shifted
uniaxial rectangular gratings (Biischer and Emig, 2005).

The influence of the lateral force acting on a sphere
above a corrugated plate can explain (Klimchitskaya et
al., 2001) the nontrivial character of the normal Casimir
force in this configuration experimentally demonstrated
by Roy and Mohideen (1999).

All theoretical results on the lateral Casimir force
mentioned above were obtained for uniaxial corruga-
tions of equal period. If the periods of corrugations are
different, the lateral force becomes equal to zero. The
uniaxial character of the corrugations is also important
for the observation of the lateral Casimir force. Under
the assumption that there is a nonzero angle ¥ between
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FIG. 32. Schematic of the experimental setup for measuring
the lateral Casimir force. The x piezo and z piezo are indepen-
dent.

the axes of the corrugations, the phase shift along the x
axis becomes the periodic function of y with a period
A=A cot 9. Within one period ¢(y) depends on y lin-
early, taking on values from 0 to 2. The resulting lat-
eral force should be averaged over the period A,. In the
case of an infinite plate this leads to a zero value at any
U #0. For real bodies of finite size the lateral Casimir
force will be measurable only for small deviations of the
corrugation axes from parallelity such that A cot ¥ is
much larger than the size of the smallest body. For ex-
ample, for A=1 um and a body size of 10 um the lat-
eral Casimir force is observable only if 9<0.1 rad.

The existence of the lateral Casimir force opens new
opportunities for the application of the Casimir force in
micromachines (Ashourvan et al., 2007a, 2007b; Emig,
2007). It is also important that this force can be well
controlled by specific shapes of corrugations (Blagov et
al., 2004). Based on the path integral theory (Emig et al.,
2003) it appears that the lateral Casimir force is a prom-
ising venue for the demonstration of shape dependences
and diffractionlike effects. For these reasons an experi-
mental investigation of the lateral Casimir force is of
much interest.

B. Demonstration of the lateral Casimir force

The lateral Casimir force between a Au plate and a
sphere, both sinusoidally corrugated, was measured for
surface separations between 200 and 300 nm using an
AFM (Chen et al., 2002a, 2002b). The experiment was
performed at a pressure below 50 mtorr and at room
temperature. A schematic diagram of the experiment is
shown in Fig. 32. To implement this experiment a dif-
fraction grating with uniaxial sinusoidal corrugations of
period A=1.2 um and an amplitude of 90 nm was used
as the template. In order to obtain perfect orientation
and phase between the corrugated surfaces, a special im-
printing procedure was developed (Chen et al., 2002a,
2002b). The amplitude of the corrugations on the plate
and that imprinted on the sphere were measured using
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FIG. 33. Comparison of experiment and theory. The average
measured lateral Casimir force as a function of the lateral dis-
placement is shown as solid squares. The solid line is the best
fit sine curve to the data leading to a lateral force amplitude of
0.32 pN.

the AFM to be 59+7 and 8+1 nm, respectively. The cali-
bration of the cantilever and the measurement of the
residual potential voltage between the sphere and the
plate were done by electrostatic means in a manner simi-
lar to experiments on measuring the normal Casimir
force (see Sec. IV.A).

The corrugated plate was mounted on two piezos that
allowed independent movement of the plate in the ver-
tical and horizontal directions with the help of the x
piezo and z piezo, respectively. Movement in the x di-
rection is necessary to achieve a lateral phase shift be-
tween the corrugations on the sphere and the plate. In-
dependent movement in the z direction is necessary for
control of the surface separation. The lateral Casimir
force was measured at four different separations starting
from 221 nm with steps of 12 nm. At each separation the
measurement was repeated 60 times and the averaged
force was determined. The averaged lateral force mea-
sured at a separation 221 nm is shown as solid squares in
Fig. 33. The sinusoidal oscillations as a function of the
phase difference between the two corrugations are
clearly observed. The periodicity of the lateral force os-
cillations is in agreement with the corrugation period of
the plate. A sine curve fit to the observed data is shown
in Fig. 33 as the solid line and corresponds to an ampli-
tude of 0.32 pN. Detailed error analysis (Chen et al.,
2002b) led to the total absolute experimental error of
0.077 pN at a 95% confidence level. The resulting preci-
sion of the amplitude measurements at the closest sepa-
ration is around 24 %.

The measurement data were compared with theoreti-
cal results. Note that the measurements were performed
at separations from 200 to 300 nm where the corrections
due to the skin depth are rather large (see Sec. IV.A). In
addition, the ratio of the corrugation amplitude on the
plate to the separation distance is not a small parameter
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(A{/a=0.27). For this reason, it is not appropriate to
compare experimental results with theoretical predic-
tions obtained for ideal metal test bodies in the lowest-
order perturbation theory. However, separations are
several times smaller than the corrugation period A. Be-
cause of this, diffractionlike effects do not contribute
(see Sec. IIL.B). In this case the theoretical expression
for the lateral Casimir force including corrections to the
skin depth can be obtained in the form
7 Rhc

F'(a,@) = ————-A14,G(a,A, A, Aysin ¢.

108
120a*A (108)

The explicit form of the function G is different based on
whether the proximity force approximation or the pair-
wise summation method is used. In the framework of
the PFA G does not depend on A (Chen et al., 2002a,
2002b). The resulting theoretical values for the ampli-
tude of the lateral Casimir force at a=221 nm are 0.27
and 0.31 pN when calculated up to the second and
fourth perturbation orders in the small parameters A;/a,
respectively. Thus, the fourth-order term is 15% of the
second-order one and cannot be neglected.

The pairwise summation method is applicable to
larger ratios of a/A and the results obtained depend on
A. Using this method, the explicit expression for the
function G in Eq. (108) is

5 a\A?+ A3
G = P(a)] sU (2 £>+_S<2><2 _)g
e (”){ P\ SN TP\ ST )T 2
AA
5 cos 55@(%%)%} . (109)

Here the coefficients depending on a/A are given by
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and I'(«@,x) is the incomplete Gamma function. The cor-
rection factor K%”) to the Casimir energy due to the non-
zero skin depth in the configuration of a sphere above a
plate is defined by

whe (Sp)(a) ’

111
144042 E (111)

—J E(a')da' =
a

where E(a) is the Casimir energy per unit area of two
parallel plates presented in Eq. (12). Using Egs. (108)
and (109) at a=221 nm, one obtains the amplitude of the
lateral Casimir force equal to 0.24 and 0.30 pN in the
second and fourth perturbation orders in A;/a, respec-
tively. Here the fourth-order term is 25% of the second-
order result. It is notable that the amplitudes of the lat-
eral Casimir force computed using both approximate
methods up to the fourth perturbation order in A;/a are
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almost equal and in good agreement with the measure-
ment result. The force amplitudes measured at different
separations demonstrated the a~* dependence in agree-
ment with theoretical predictions.

Recently a theoretical approach was developed (Rod-
rigues et al., 2006a; Rodrigues, Maia Neto, et al., 2007)
which allows one to calculate the lateral Casimir force
between sinusoidally corrugated plates made of metals
described by the plasma model [Eq. (32)] without using
the PFA or pairwise summation but only in the lowest
second perturbation order under the conditions A{,A,
<\,,a,A. These conditions are not satisfied in the ex-
periment discussed above (specifically in that experi-
ment A;/a=0.27, A;/\,~0.43). As we have seen, the
contributions of the fourth perturbation orders in A;/a
are important. Because of this, comparison of the ex-
perimental data with the theoretical predictions (Rod-
rigues et al., 2006a; Rodrigues, Maia Neto, et al., 2007) is
not appropriate (Chen et al., 2007).

C. The Casimir torque

Another interesting effect that predicted long ago but
has not yet been observed is the Casimir torque. Such a
torque arises due to the zero-point electromagnetic os-
cillations in the configuration of anisotropic or asymmet-
ric bodies. In the case of plates made of a uniaxial crys-
tal described by the dielectric permittivities &, (w) and
gy(w)=¢ (), the torque arises if there is a nonzero angle
U between the optical axes of the plates. In the nonre-
tarded limit the Casimir torque was investigated by Par-
segian and Weiss (1972). The retardation effects were
taken into account by Barash (1973). Recently these re-
sults were obtained using another method (Philbin and
Leonhardt, 2008). The torque leads to the rotation of the
plates until their optical axes are aligned. In the nonre-
tarded limit and for small anisotropies |, —&,|/e,<1 the
torque between the test bodies of area S at a separation
a is M~-Ssin(29)/a*> (Munday et al, 2005). In the
relativistic limit M~ —S sin(29)/a® (Mostepanenko and
Trunov, 1997).

Recently an interesting experimental scheme was pro-
posed to observe this torque when a barium titanate
plate is immersed in ethanol and an anisotropic disk is
placed above (Munday et al., 2005). The dielectric per-
mittivities are chosen in such a way that the Casimir
force between the anisotropic bodies is repulsive (see
Sec. V.E.3). The disk would float parallel to the plate at
a distance where its weight is counterbalanced by the
Casimir repulsion, being free to rotate in response to a
small torque. Detailed numerical calculations are made
demonstrating the feasibility of this experiment (Mun-
day et al., 2005).

Another possibility to observe the Casimir torque was
theoretically investigated in the configuration of two cor-
rugated plates with a small angle between the corruga-
tion directions (Rodrigues et al., 2006b). As discussed in
Sec. 7.A, the lateral Casimir force and related torque
differ from zero for an angle between corrugation axes
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U<A/L, where L is the size of the plate along the cor-
rugation axis. The optimum values of the corrugation
period A and plate separations were found in order to
get larger values of the Casimir torque in comparison
with those predicted for anisotropic test bodies of the
same area (Rodrigues et al., 2006b).

Both experiments, if successfully performed, will pro-
vide important new information about dispersion forces
between real materials. From an application standpoint,
the Casimir torque may serve as one more mechanism of
control in micromachines.

VIII. CONCLUSIONS AND OUTLOOK

In the foregoing, the intersection of experiment and
theory in the investigation of the Casimir force between
real material bodies has been reviewed. In the last ten
years the field has undergone many rapid advances.
Many new results concerning the Casimir effect of both
a fundamental and applied character have been ob-
tained and were presented above. They are related to
condensed matter physics, statistical physics, atomic
physics, and nanotechnology. This list should be supple-
mented with elementary particle physics, quantum field
theory, gravitation and cosmology, and mathematical
physics if one keeps in mind that many important results
on the Casimir effect are not directly connected with
experiments using real materials and, consequently, are
not covered in this review.

Although experimental Casimir physics is still a young
field, an important period in its development has been
completed and the related conclusions can be formu-
lated. The most important of these conclusions is that
the Casimir force between real materials has been ex-
perimentally measured by many using different tech-
niques, and the data obtained demonstrate the role of
real material properties and the geometrical shape of
the test bodies (see Secs. IVA-IV.C, V.B-V.D, and
VILB). Although there are still different opinions on the
measure of agreement between experiment and theory
that has been achieved, statistical procedures for data
processing and for comparison between the experimen-
tal and theoretical results in precise force-distance mea-
surements have been developed (see Sec. III1.C) and suc-
cessfully used in several experiments (see Secs. IV.A,
IV.B, V.B, and V.C). Another important conclusion is
that the application of the general Lifshitz theory of dis-
persion forces to real materials at nonzero temperature
results in puzzles. These puzzles are of both theoretical
and experimental character. On the theoretical side, an
enormously large thermal effect was predicted, arising
when physically real but seemingly negligible properties
of real dielectrics are taken into account. A related ther-
mal effect also arises for Drude metals, and both lead to
a thermodynamic inconsistency (Sec. II.D). Experimen-
tally, the predicted large thermal effects were excluded
by measurements of different groups performed with
metal, dielectric, and semiconductor test bodies (see
Secs. IV.B, VILA, and V.B, respectively). If some specific
properties of the real bodies (the dc conductivity of di-
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electrics, which vanishes with vanishing temperature, or
relaxation properties of conduction electrons in metals)
are disregarded, the Lifshitz theory is found to be in
good agreement with all performed experiments and
with thermodynamics. As argued in Sec. II1.D.1, the di-
electric permittivities used to describe the drift and dif-
fusion currents in dielectrics and metals are not compat-
ible with the Lifshitz theory because the existence of
these currents violates the state of thermal equilibrium.
This suggests that one should not include the drift and
diffusion currents in the model of the dielectric response
when applying the Lifshitz theory to real materials.
There is no current consensus with respect to this infer-
ence.

One can conclude that the current Lifshitz theory,
if applied in accordance with its basic postulates, is
consistent with the principles of thermodynamics and all
available experimental data. Some claims may be raised
because this theory does not include the conductivity
properties of real materials. However, the experimental
data testify that these properties have nothing to do with
dispersion forces. We believe that a future theory of dis-
persion forces will not use reflection coefficients ex-
pressed in terms of dielectric permittivity but will deal
with more general characteristics of scattering processes
allowing, in particular, the inclusion of spatial nonlocal-
ity.

Many other future applications of dispersion forces in
real systems have been discussed but have not yet been
investigated experimentally. Because of this, they are
not reflected in our review. One might mention the van
der Waals and Casimir interatomic interaction in a mag-
netodielectric medium (Spagnolo et al., 2007), the
Casimir-Polder forces of excited atoms (Buhmann and
Welsch, 2008), and the Casimir interaction between
plates with dielectric permittivity and magnetic perme-
ability (Kenneth et al., 2002; Pirozhenko and Lambrecht,
2008b). Artificially microstructured metamaterials (Pen-
dry et al., 1999) are also promising for use in studies of
the Casimir effect. For example, the theoretical possibil-
ity that metamaterials might lead to repulsive Casimir
forces in some distance ranges has been investigated
(Henkel and Joulain, 2005; Leonhardt and Philbin, 2007;
Rosa et al., 2008). It was pointed out that a strong modi-
fication of the Casimir force is possible for surface sepa-
rations around the resonance wavelength of the mag-
netic response. Note that natural materials are
physically limited to magnetic permeabilities u of order
of unity in the visible spectrum. However, artificially de-
signed micrometer and submicrometer split-ring resona-
tors and fish-net arrays with x>1 have been reported
with resonances in the infrared and near-optical fre-
quencies (Shalaev, 2007). Rosa et al. (2008) simulated the
Casimir force between a metamaterial slab and a half
space of Ag. A repulsive Casimir force was found for a
short band of separations only if there is no background
metallic response component. It was pointed out that
the large dissipation that is present in metamaterials
(Chettiar et al., 2007) would substantially reduce any Ca-
simir repulsion. It should also be noted that presently
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fabricated metamaterials in the visible frequency range
have a very narrow frequency region where u>1 (Chet-
tiar et al., 2007). Thus many engineering challenges re-
main for design of appropriate materials. Nevertheless,
they show great potential for exploring new Casimir ef-
fect phenomena. Future prospects for measurement of
the thermal Casimir force, the Casimir force between
semiconductor surfaces and the Casimir-Polder force in
quantum reflection have already been discussed in Secs.
IV.D, VE, and VLB, respectively. This means we look
forward to many exciting applications of the Casimir
force in the near future.
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