
Nobel Lecture: Type-II superconductors and the vortex lattice*

A. A. Abrikosov

Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Published 2 December 2004)

In 1950 Vitaly Ginzburg and Lev Landau published
their famous paper on the theory of superconductivity
sGinzburg and Landau, 1950d. The approach was based
on the general theory of the second-order phase transi-
tions proposed by Landau in 1937 sLandau, 1937d. There
Landau introduced the main variable, the so-called or-
der parameter, which was finite below the transition and
zero above it. Different phase transitions had different
order parameters, and whereas it was evident for, e.g.,
the ferromagnetic transitions, namely, the spontaneous
magnetization, it was far less evident for the supercon-
ducting transitions. Ginzburg and Landu had a stroke of
genius when they chose, as the order parameter, some
sort of wave function. At that time nobody knew about
Cooper pairs or about their Bose condensates, where all
particles become coherent, i.e., described by the same
wave function. This assumption was the basis of the new
theory, which managed to solve the main contradiction
of the old theory by Fritz and Heinz London s1935d,
namely, the positive surface energy. Besides, it made
many useful predictions, such as the critical magnetic
field of thin films, the critical current in thin wires, etc.

All these predictions required experimental verifica-
tion, and my friend and University mate, Nikolay Zavar-
itskii, started to measure the critical field of thin films.
Theory and experiment fitted perfectly, including the
change of the nature of the transition: first order at
larger thicknesses and second order at smaller ones. Ev-
erything seemed OK but Alexander Shalnikov, Zavar-
itskii’s boss, was not satisfied. He said that the films used
by Zavaritskii were bad, since they were prepared at
room temperature. The atoms of the metal, evaporated
on a glass substrate, could agglomerate, and therefore
the film actually consisted of small droplets. In order to
avoid that, Shalnikov recommended maintaining the
glass substrate at helium temperatures during evapora-
tion and until the measurements were finished. Then ev-
ery metal atom hitting the surface would stick to its
place, and the film would be homogeneous.

Zavaritskii followed this advice, and the result was a
surprise: the dependence of the critical field on the
thickness, or temperature sthe theory contains the ratio
of the thickness to the penetration depth, which depends
on temperatured, did not fit the predictions of the

Ginzburg-Landau theory. Discussing these results with
Zavaritskii, we could not believe that the theory was
wrong: it was so beautiful and fitted so well the previous
data. Therefore, we tried to find some solution in the
framework of the theory itself, and we found it. The
equations of the theory, where all entering quantities
were expressed in corresponding units, depended only
on one dimensionless “material” constant k, which was
later called the Ginzburg-Landau parameter. The value
of k could be defined from the surface energy between
the normal and superconducting phases. The latter, in its
turn, could be calculated from the period of the struc-
ture of the intermediate state. These data for conven-
tional superconductors led to very small values of k, and
therefore the calculations in the paper by Ginzburg and
Landau were done for this limiting case. It was also es-
tablished that with increasing value of k the surface en-
ergy between the superconducting and normal layers
would become negative, and since this contradicted the
existence of the intermediate state, such a case was not
considered.

Therefore I decided to look at what would happen if
k.1/Î2, when the surface energy became negative. The
transition in this case became second order for any
thickness. The theory fitted completely Zavaritskii’s ex-
perimental data, and this led us to the conclusion that
there exists a special kind of superconductor, which we
called “superconductors of the second group,” with
k.1/Î2 and negative surface energy. Now they are
called type-II superconductors. I published my deriva-
tion in the Russian journal Doklady Akademii Nauk
SSSR in 1952 sAbrikosov, 1952d. This was the earliest
introduction of type-II superconductors. Since, however,
this journal was never translated into English, there is a
considerable confusion on this point, and the most com-
mon is just a statement that “there exist two types of
superconductors… .” In Russia the idea of type-II super-
conductors raised no objections, although such materials
were considered as exotic. In this connection it is worth-
while to mention that virtually all new superconducting
compounds, discovered since the early 1960s up to the
present time, are type-II superconductors. They include
organics, A-15, Chevrel phaes, heavy fermionic materi-
als, fullerenes, and high-temperature superconductors.
One could say that now type-I superconductors have be-
come exotic.

After the work on films I decided to look at the mag-
netic properties of bulk type-II superconductors. It was
definite that the transition to the normal state in a mag-
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netic field would be of the second order, and the transi-
tion point defined by a stationary infinitesimal nucleus.
Such nucleation fields were actually defined in the paper
of Ginzburg and Landau. Their highest value corre-
sponded in type-II superconductors to the so-called up-
per critical field Hc2:

Hc2 = HcmkÎ2, s1d

where Hcm is the scale of magnetic fields, and it is de-
fined as the critical field of a first-order transition of a
type-I sk,1/Î2d bulk cylinder in a longitudinal field.

At smaller magnetic fields one could imagine a linear
combination of such nuclei centered at different points.
Due to the homogeneity of space, the solution has to be
periodic. Taking into account the necessity to renormal-
ize the vector potential, one arrived at the following
general expression for the order parameter:

C = o
n=−`

`

Cn expFikny −
1
2

k2Sx −
kn

k2 D2G . s2d

Here and further the coordinates are measured in units
of the penetration depth l, and k in 1/l. The free en-
ergy becomes

Vs − Vn
s0d

Hcm
2 /4p

= B2 −
k − B

1 + s2k2 − 1dbA
, s3d

where Vn
s0d is the free energy of a normal metal in zero

field, B is the magnetic induction saverage fieldd, mea-
sured in units HcmÎ2, and

bA =
uCu4

suCu2d2 . s4d

This dimensionless constant depends only on the geom-
etry of the array, i.e., on the relative values of the coef-
ficients Cn of Landau s1937d.

According to Eq. s3d, the choice must be such that bA
is minimal. It can be shown that this minimal value is
bA=1.16, and it corresponds to the following selection:
Cn+4=Cn , C0=C1=−C2=−C3, and k=kspÎ3d1/2. This
function corresponds to a triangular lattice. A slightly
larger value, bA=1.18, characterizes the square lattice
with equal coefficients Cn=C and k=ks2pd1/2. In the lat-
ter case it is easier to illustrate the properties of the
solution. It can be represented as a theta function,
namely,

C = C expS−
1
2

k2x2Dq3f1;s2pd1/2kisx + iydg . s5d

Using properties of the theta function it can be shown
that under rotation of the coordinate system by p /2 the
function C is only multiplied by a phase factor
expsik2xyd. Thus uCu2 has the symmetry of a square lat-
tice.

At points x= sÎ2p /kdsm+1/2d , y= sÎ2p /kdsn+1/2d,
where m and n are integers, the function C vanishes.
Near these points in polar coordinates

C ; uCueix ~ x + iy = reiw. s6d

The phase x=w, and hence it changes by 2p along a
contour around the zero of C. A similar situation takes
place in the case of a triangular lattice. The question
naturally arises, how did it happen that the solution has
these points? We just took a linear combination of the
simple solutions, centered at different points, and the
appearance of the zeros with phases changing by 2p
happened “by itself.” In order to explain their appear-
ance we have to take into account that in the Ginzburg-
Landau equations the magnetic field is represented by
the vector potential. If, on average, the magnetic field is
constant, the vector potential has to grow with the coor-
dinates. Since, however, the absolute value of the order
parameter cannot have a systematic growth, the growth
of the vector potential has to be compensated. This can
be done by the phase of the order parameter.

If the phase is taken into account, i.e., C= uCueix, then
x enters Ginzburg-Landau equations in the following
combination with the vector potential:

A −
"c

2e
¹ x . s7d

Consider the behavior of the complex order parameter
in the coordinate plane sFig. 1d. In order to define the
phase unambiguously, branch cuts are introduced in this
plane, going through the zeros of the order parameter
parallel to the y axis.

If we move along the left edge of such a branch cut,
the phase varies according to the formula

xleftsyd = xreg − p
y

a
,

where the first term is regular part, and the second is
due to the rapid change of the phase in the vicinity of a
zero of C; a is period. Along the right edge it changes
according to the formula

FIG. 1. The dots correspond to zeros of the order parameter
ssquare latticed. The dashed lines are the branch cuts intro-
duced in order to make the phase single valued. The gradient
of the phase has a discontinuity at every branch cut ssee textd.
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xrightsyd = xreg + p
y

a
.

From these two expressions it can be concluded that the
gradient of the phase has a discontinuity at every branch
cut:

DS ] x

] y
D =

2p

a
. s8d

If the magnetic field is directed along z, and we chose
Ay=Hx, then the compensation of the growth of the
vector potential, according to Eq. s6d, can be achieved if
Ha=p"c /ea, or

a =Îp"c

eH
. s9d

If follows that

Ha2 =
p"c

e
; F0. s10d

From these formulas two conclusions can be made: sad
The period of the structure grows with decreasing mag-
netic field, and sbd the flux of the magnetic field through
one elementary cell is a universal constant, which is
called the magnetic flux quantum. It is equal to 2.05
310−7 Oe cm2 and was first introduced by F. London
s1950d.

The increase of the period with decreasing magnetic
field happens not only close to Hc2 but also at any field.
Indeed, the reasoning leading to Fig. 1 and correspond-
ing conclusions remains justified, except that the vector
potential is no longer a linear function of the coordinate,
and the compensation condition has to be reformulated.
This leads to the replacement of the magnetic field by its
average value B= s1/a2de0

ae0
aH dx dy. Hence we get the

same result as before, with B instead of H.
From this it can be concluded that even far from Hc2

the period of the structure increases with decreasing
magnetic field, and its value, Hc1, at which B=0 or a
=`, is the boundary between a purely superconducting
phase and a phase with a partial penetration of the mag-
netic field, which I called a mixed state. The boundary
with the purely superconducting phase corresponds to
the magnetic field

Hc1 =
Hcm

kÎ2
sln k + 0.08d . s11d

According to Eq. s1d, with increasing k the upper critical
field Hc2 grows, and simultaneously the lower critical
field Hc1 decreases.

Since the distance between the zeros of C becomes
infinite at Hc1, in its vicinity it is large, and only one such
point can be considered. According to the Ginzburg-
Landau theory, the current can be written in the form

j =
"e

m
uCu2S¹x −

2e

"c
AD . s12d

In the vicinity of C=0, x=w, and ¹x has only the w
component, which is equal to s1/rds]x /]wd=1/r. Hence
it is much larger than the second term in Eq. s12d, and
the current forms a vortex. In the general case these
vortices form a lattice. The lines of the current in the
vicinity of Hc2 are presented in Fig. 2.

A very similar structure is the triangular lattice, which
for an isotropic model has a slightly lower energy. Since
the energy difference is very small, in real substances the
crystalline symmetry can make the square lattice more
favorable. Due to this structure, the mixed state is some-
times called the vortex lattice phase.

In the microscopic Bardeen-Cooper-Schrieffer sBCSd
theory, as well as in the Ginzburg-Landau theory, which,
as shown by Gor’kov s1959, 1960d, is the limiting case of
the BCS theory at T→Tc, there exist two characteristic
lengths: the smaller coherence length j, which is the size
of a Cooper pair, and the larger penetration depth l. The
Ginzburg-Landau parameter k is, essentially, the ratio
between these lengths. For a pure superconductor at T
→Tc,

k = 0.96
lL

j0
, s13d

where lL= smc2 /4pne2d1/2 is the London penetration
depth sn is the electron densityd, and j0=0.18s"v /Tcd is
the coherence length at T=0 sv is the electron velocityd.
In the case k@1, l@j sextreme type-II or London-type
superconductord every vortex has a “core” of size j,
where the order parameter varies rapidly, and an outer
region of size l, where the magnetic field decays to zero.
According to Eq. s6d, in the vicinity of the vortex axis
the order parameter grows linearly with distance. The
vanishing of C at the center is due to the fact that this is
the only way to avoid ambiguity of C. Beyond distances
of the order of j the order parameter approaches the
equilibrium value at zero field. The overall shape of the

FIG. 2. The lines of current coinciding with the lines of con-
stant uCu for a square lattice.
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behavior of the order parameter and magnetic field in a
vortex is presented in Fig. 3.

The theory also allows us to define the macroscopic
characteristics, namely, the dependence of the magneti-
zation on external field. The latter is presented in Fig. 4
for different values of k.

For k,1/Î2 the dependence is a “triangle,” reflecting
an ideal diamagnetism below Hcm and no magnetization
in the normal phase. At higher values of k the vortex
phase appears, and with increasing k its lower boundary
decreases, whereas its upper boundary increases. The
limiting formula for the magnetization in the vicinity of
the upper critical field is

− 4pM =
Hc2 − H0

s2k2 − 1dbA
. s14d

I compared the theoretical predictions about the magne-
tization curves with the experimental results obtained by
Lev Shubnikov and his associates on Pb-Tl alloys in
1938 sShubnikov et al., 1937d, and there was a very good
fit.

Here I would like to describe the situation with ex-
periments. The magnetization of superconducting alloys
was first measured by de Haas and Casimir-Jonker in
1935 sCasimir-Jonker and de Haas, 1935d, and they got a
gradual transition from the superconducting to the nor-
mal state with two critical fields. They explained this by
the inhomogeneity of their samples. Shubnikov, who
worked previously with de Haas, decided to make better
samples, and his group annealed the alloys a long time at
temperatures close to the melting point. After that the
x-ray diffraction studies, performed at room tempera-
ture, did not show any inhomogeneity. Since the authors
could not imagine another explanation for the gradual
transition, they wrote in their paper that the precipita-
tion of another phase must happen at lower tempera-
ture. Unfortunately, L. V. Shubnikov was accused of at-
tempting to organize an “anti-Soviet strike,” arrested

and executed by the KGB the same year. I am sure that,
given the opportunity, he would have discovered the ap-
pearance of a new phase and the existence of a special
kind of superconductor. I would like here to pay a trib-
ute to Shubnikov, whose data gave me real inspiration. I
never met him but I heard about him from Landau, who
was his close friend.

I made my derivation of the vortex lattice in 1953 but
publication was postponed since Landau at first dis-
agreed with the whole idea. Only after R. Feynman pub-
lished his paper on vortices in superfluid helium
sFeynman, 1955d, and Landau accepted the idea of vor-
tices, did he agree with my derivation, and I published
my paper sAbrikosov, 1957d. Even then it did not attract
attention, in spite of an English translation. Only after
the discovery in the beginning of the sixties of supercon-
ducting alloys and compounds with high critical mag-
netic fields did there appear an interest in my work, and
even after that the experimentalists did not believe in
the possibility of the existence of a vortex lattice incom-
mensurable with the crystalline lattice. When the vortex
lattice was observed experimentally, first by neutron dif-
fraction sCribier et al., 1964d and then by decoration
sEssmann and Traeuble, 1967; see Fig. 5d they had no
more doubts. Now there exist many different ways to get
images of the vortex lattice. Apart from those already
mentioned, there are electron holography, scanning tun-
neling microscopy sFig. 6d, and magneto-optics.

After that I made only one more study of vortices,
namely, I defined the lower critical field of thin films and
the vortex lattice in its vicinity sAbrikosov, 1964d.

Although I worked in many different fields of theoret-
ical physics afterwards, superconductivity was my favor-
ite. In the beginning of the sixties we worked on several
projects together with Lev Gor’kov. These were based
on his Green’s-function presentation of the BCS theory,
which permitted one to extend the microscopic theory to
spatially inhomogeneous problems. We studied the be-
havior of superconductors in a high-frequency field
sAbrikosov, Gor’kov, and Khalatnikov, 1958, 1959d, the
role of magnetic impurities sAbrikosov and Gor’kov,
1961d, where we discovered the so-called “gapless” su-

FIG. 3. Plot of the magnetic field ssolid lined and uCu in a
vortex.

FIG. 4. Dependence of magnetization on magnetic field for
different values of k.

FIG. 5. First decoration picture of vortices by Essmann and
Traeuble s1967d.
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perconductivity, and managed to solve the mystery of
the finite Knight shift at low temperatures, introducing
the spin-orbit scattering sAbrikosov and Gor’kov, 1962d.

After the discovery of high-temperature superconduc-
tivity in layered copper oxides by J. G. Bednorz and K.
A. Mueller s1986d I became interested in their proper-
ties. There existed many different approaches to these
unusual substances and virtually all of them postulated
some exotic mechanism of superconductivity. I based my
approach on the BCS theory, taking into account the
specific features of the electron spectrum, mostly the
quasi-two-dimensionality and the so-called “extended
saddle point singularities,” or “flat regions” in the elec-
tron spectrum sAbrikosov, 2000d. Another idea was the
resonant tunneling connection between the CuO2 layers
sAbrikosov, 1999d, which is responsible for conductivity
and superconductivity. On this basis I was able to ex-

plain most of the experimental data about layered cu-
prates without dividing them into “good” ones, which
should be mentioned on every possible occasion, and
“bad” ones, which should be forgotten. As a result I can
state that the so-called “mystery” of high-Tc supercon-
ductivity does not exist.
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