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It is shown that the thermodynamical equilibrium condition for a Quid at rest in a static gravitational
6eld is, apart from the Tolman condition T(g44)&=const. , governed by the condition n(g44)&=const. , where
n is the chemical potential of the Quid (including mass energy) regarded as a function of the space coordi-
nates. This relation constitutes the relativistic generalization of the well-known Gibbs condition for the
equilibrium in a gravitational 6eld.

C= (27rM8/h') &e»', (2)

where O=kT is the temperature modulus and h the
Planck constant. By means of (1) we obtain now for
the distribution of the gas in a gravitational field

C e
—Myg/8 (3)

Co being the concentration at a place, where y, is
taken to be 0, which is just the ordinary barometer
formula.

We shall now find the corresponding statement in
Einstein's theory of gravitation. Let us regard the line

element given by
(4)ds'= g vdx&dx"

belonging to a static gravitational field, where the g„„
are independent of the suitably chosen time coordinate
x4. We shall use the following expression for the energy
momentum tensor of the Quid'

T""=(u+p)v"e" g""p, —

HE chemical potential introduced into thermo-
dynamics by Gibbs is not only most suited for

the expression of chemical equilibria but provides also
with the simplest means of expressing the equilibrium
condition for a Quid in an external, say gravitational
6eld. In fact, as shown by Gibbs, this condition may
be stated in the following way

V,+M@,= const. ,

where p, is the chemical potential, M the molecular
mass and cp, the gravitational potential at the place in
question. '

As an example of the use of this relation we may
consider an ideal, monoatomic gas. Here the concen-
tration C, the number of particles per unit volume, is
related to the chemical potential by means of the
following formula

(g44)'
e—v/2

where we have put
g44= c'e".

A straightforward calculation then gives

1 B(g)fT;~
DlvgT=

(g)' ax~

$clp e+p Bv )+
(ax; 2 ax;)

'

and since this divergence vanishes on account of the
field equations we have as equilibrium condition

Vp+ (e+p/2)VV= 0, (9)

where we have used the symbol V to denote the gradient
operator corresponding to the space coordinates. ' This
condition is of course the relativistic analogon to the
classical equation

~p+p~g. =o,

where p is the mass density, which governs the equi-
librium in static gravitational fields. We see that with

v = (2',/c') and I+p =pc', (11)

which relations are valid in a weak gravitational field,
Eqs. (9) and (10) are, in fact, identical.

I.et now U be the inner energy including the mass
energy of a volume V of the Quid containing E particles.
Then from well-known thermodynamical principles we
have

m the energy density including the mass energy and p
the pressure at the same point. We shall now assume
that the substance is at rest in the coordinate system
chosen, so that

e' —e'- v' —0

d U= TdS—Pd V+ red%, (12)where e& is the velocity four vector at an arbitrary
point of the substance, satisfying the relation

g»V"eV= 1,

' VV. Gibbs, Collected lVorks (Yale University Press, New
Haven, 1948) I, p. 144.

2 R. C. Tolman, Relatively, Thermodynamics and Cosmology
(Oxford University Press, London, 1934) p. 269.

' See reference 2, p. 317, where the same relation is derived on
slightly less general assumptions.

where S is the entropy, and where o. is the chemical

(6) potential per unit particle including the mass energy.
This means that

+3fc'
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if p is the chemical potential as used above in formula
(2). The differentials dU, dS, dV and dN denote arbi-
trary, simultaneous changes in the respective quantities.
Now for Quids, whose surface energy may be neglected
U/N and S/N are both functions of the "inner state"
alone of the substance, i.e. of the concentration C=N/V
and the temperature T. Since the same is of course
true for the volume per unit particle V/N=1/C, we
see that U may be regarded as a homogeneous function
of the first degree in the three variables 5, V and E,
so that, according to Euler's theorem

For substances with nWO we get, moreover, from (16)
i

Va/n=VT/T or n/T=const. or ae"I'=const. , (18)

which together with (17) constitutes the relativistic
analogon of the Gibbs relation (1).

Let us now regard the limiting case corresponding to
ordinary Newtonian mechanics. Here we have with
sufiicient approximation e"Io=1+(yg/c') and thus ac-
cording to (13) and (18)

(p+3fc')[1+(pg/c') )= const.

(14) or in conformity with (1)

an ++Mpog =const.
~

U= TS pV+n—N,

a particular case of a general relation which plays
important role in Gibbs' fundamental treatment of
chemical equilibria. From (12) and (14) we get

SdT—Vdp+Ndn =0,

or, if by means of (14) we eliminate S,

(U+ pV nN) (d T—/T)+Ndn = Vdp,

and thus

dp= C[d —(dT/T))+ (u+p)dT/T, (15)

where we have neglected the small term ppgg/c'. Still
the application of (18) to (2) might at first sight seem
puzzling, since we have also n/8=const. The relation
8[1+(egg/c'))=const. meaning, however, in. itself a
negligible change of |I from point to point within the
field, we may apply (1) in the same way as above, and
obtain thus Eq. (3). On the other hand we may also
regard the changes of 8 as decisive. Thus according to
(13) we have

where as above u= U/V denotes the energy density.
If after these preparations we return to our original

problem and regard the quantities p, p, C, T and n as
functions of the coordinates we can take for the diGer-
entials in (15) the differences between corresponding
quantities in two infinitely adjacent points of space and
obtain thus from (15)

Vp= C[Vn (VT/T))+ (uy—p)V T/T,

where V again denotes the gradient operator. Com-
paring this relation with the mechanical equilibrium
condition (9) we get

C[V n(V T/T))+—(u+ p) [(VT/T)+ ',V,)=0 (16-).
We shall see that this equation contains two inde-
pendent conditions for the equilibrium, one already
found by Tolman, which corresponds to the equality of
temperature everywhere in a classical equilibrium, the
other corresponding to the Gibbs relation (1), which in
the relativistic case are, however, curiously interrelated.
In fact, if there are several, independent substances
present in the same gravitational field an equation of
the type (16) will hold for each of them separately
with the same values of v and T. As one such substance
we shall always have the unordered temperature radia-
tion, for which the chemical potential a vanishes.
Thus we get

VT/T+ piVg=O or Te"~o=const , (17).
which is the important relation governing the equi-
librium in a gravitational Geld discovered by Tolman. 4

4 See refereuCe 2, p. 318.

p, n 3fc2 po ~o 3fc'

eo 00 go

with a/8=np/8p and 8[1+(yg/c'))=8p, which, in fact,
gives

pp ( 1 1i Mpgg
———= Mc'i

8o &8o 8~ 8o

in conformity with (3).
In order to apply relation (17) and (18) to a gravita-

tional problem it is convenient to use the thermo-
dynamic potential 0 given by

and regarded as a function of T; V, and n, which is
most directly defined by means of Gibbs' grand
ensemble. With this function given we obtain immedi-
ately N, U and p as functions of the same variables.
In fact,

BQ 80 BQ BQ
N= ——, U=Q —T —n—, p= —,(20)

Bo, BT Ba BV

whereby u= U/V and p are functions of a and T alone.
As an example we may regard a spherically sym-

metrical static field in the Einstein theory, where, using
. a polar coordinate system r, 6, cp and the time coordi-
nate t, we may write for the line element

e"dr' r'(dP+—sirMn—q ')+ e"c'dP (21).
Apart from the relations (17) and (18) we have here
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the following two equations' for X and v

1dv 11 1
~p=e "I ——+—

I
—,

&r dr r2)

(I dk 1i 1
XN=e—"

(r dr r'I r2

(2-')

~ being the Einstein gravitational constant. Here p and
u as functions of a and T may according to (17) and
(18) be expressed as functions of v. Further from the
second Eq. (22) we get

d/dr(re ")= 1—~r'u, (23)

which together with the first Eq. (22) leads to the
following differential equation in v alone

d |' 1+~r'p
[
=1—~r'u

dr Edv/dr+I/r&
(24)

' See reference 2, p. 241.' J. R. Oppenheimer and G. M. Volko6, Phys. Rev. SS, 374
(1939}.

which with p and u given in terms of n and tt may be
integrated numerically. As particular limiting cases we
may consider that of a cold Fermi gas treated in detail
by Oppenheimer and VolkoB' and that of unordered

and thus
II= —(2~/3h'c') Vn4,

p=u/3= (2~/3h'c')a4= poe '" (26)

where v is put equal to 0 at the point, where p= po,
for instance at the centre.

In the second case they are functions of 0 alone and
we get

p =u/3 = (8n-'/45k'c') tI'= poe '". (27)

We shall not pursue further the application of (23) and
(24) in the two cases, which would hardly simplify the
calculations made by the authors mentioned. The
intention was only to point out how these problems
might have been solved without the use of special
artifices just by means of the general theorems (17)
and (18).

O. Klein, Arkiv f. mat. , astr. o. fys. Bd. 34A, No. 19 (1947).

temperature radiation treated by the present writer. ~

In the former case p and u are functions of n alone.
The expressions being somewhat complicated in the
general case we shall only consider the case of zero rest
mass. Here the pressure is one third of the energy
density just as in the case of temperature radiation,
which means that the gravitational problem is the
same in the two cases. It is interesting to see how this
follows by means of (18) and (17) respectively. Thus
we have for a cold Fermi gas of zero rest mass


