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In this paper, a covariant field theory of the general type of the
theory of relativity is brought into the canonical form and then
quantized. Particles are assumed to be represented as singularities
of the field. Primarily, we had to overcome two difFiculties. First,
the variational integral should be extended only over that space-
time domain which is free of singularities, Since the location of the
singular world lines cannot be known until after the integration
of the field 'equations has been completed, we have introduced a
second set of coordinates —called "parameters" in this paper—
which will serve as variables of integration and in terms of which
the motions of the particles can be arbitrarily prescribed. The
second difhculty arises in that the expressions for the canonical
momentum densities cannot be solved with respect to the partial
time derivatives of the field variables; this circumstance precludes
the construction of the Hamiltonian by the usual methods. Never-
theless, we have shown that a Hamiltonian exists, though it is
not uniquely determined by the Lagrangian; our Hamiltonian
contains an arbitrary linear combination of the eight algebraic
relationships that exist between the canonical variables at each
world point. The canonical field equations have the usual form.
They are covariant if the choice of Hamiltonian is left open. The

eight algebraic constraints on the canonical variables at each
point are all integrals of the field equations. So are the Poisson
brackets between the canonical variables (at the same time).
When this system of equations and constraints is quantized, the
property of general covariance can be used to carry out a proof
of the covariance of the whole theory, including the commutation
relations, that requires none of the computational effort usually
required in theories that are merely Lorentz invariant, Once the
system of equations has been. completed, it turns out that the
covariance goes much farther than was required originally. Be-
cause of the introduction of the parameters, the ordinary co-
ordinates of space-time turn formally, at least, into dynamical
variables, and the usual canonical transformations, with respect
to which the theory is covariant, transform the coordinates, the
original field variables, and the canonical conjugates of both
together. The canonical conjugates of the coordinates are the ex-
pressions ordinarily interpreted as energy and momentum densi-
ties. The physical significance of these. canonical transformations,
which cause the world points to lose their identities, is not yet
understood.

1. INTRODUCTION AND REVIEW
'

N a previous paper, ' attention was called to the spe-
& - cial physical features of completely covariant field
theories. If the field equations are the Euler-Lagrange
equations of a four-dimensional variational principle,
it is possible to obtain equations of motion for particles
by considering the particles as singular time-like curves
in space-time and by requiring that outside these singu-
larities the field equations are satisfied everywhere.
This dependence of the equations of motion on the field
equations was first established for the general theory of
relativity by A. Einstein and his co-workers. ' 4

In I, it was assumed that the field equations can be
derived from a variational principle which contains only
the field variables and their first partial derivatives,
but no higher derivatives, and which is so constructed
that the resulting Euler-Lagrange equations are co-
variant. It was shown that the field equations satisfy
identities similar to the Bianchi identities of the general
theory of relativity, that they cannot be solved with
respect to the highest second derivatives with respect
to some one coordinate, and that the continuation of
solutions which are given on an initial space-like hyper-
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surface in the direction of time is not uniquely deter-
mined by the equations. It was further shown that in
this generalized theory (in which the nature of the field
remains for the time being unspecified) the equations
of motion of field singularities are determined by the
field equations outside in the same manner as in the
general theory of relativity.

Because the motion of field singularities is determined

by the field outside the singularities (if each singularity
is enclosed in a small three-dimensional spherical sur-
face) the field equations need to be satisfied only on
and outside that spherical envelope. The classical (i;e.,
unquantized) theory can be carried through without
considering the self-energy of the particles or any other
divergent quantities, To this extent, this type of theory
is the most nearly self-consistent classical field theory
yet devised. It still falls short of the "perfect" field
theory in that it fails to represent particles as non-
singular solutions of the field equations. The purpose
of our present program is to attempt the quantization
of such a field theory and to see to what extent the usual
divergences of quantum field theories can be avoided.
The present paper is a step in this program. We shall
first of all indicate how a variational principle can be
set up which requires integration only over the non-
singular domain of space-time. %e shall then develop
the canonical form of the classical theory, and we shall
show finally that if the classical field variables are re-
placed by operators, then the usual commutation rela-
tions are covariant.

For the convenience of the reader, we shall collt:ct



NON —LINEAR F IELD THEORIES

here those results and formulas of I which are needed
in this paper. We denote the field variables by yA(A = 1,

~ ~,X), and their derivatives with respect to one of the
four coordinates x& by y&, , We shall assume that the
Lagrangian L depends only on y& and on y&, , The
field equations then take the form

0=8AL (itA—pL), p= LA— (I-2.2)

where the symbol 8" denotes difterentiation of a func-
tion of the field variables with respect to y& and the
symbol B~t' differentiation with respect to y&, p An
infinitesimal coordinate transformation is defined by
means of the four functions $p, which represent the
(infinitesimal) changes in the values of the coordinates
of a fixed world point with the original coordinates x&.

It is assumed that the transformation law of the field
variables with respect to infinitesimal coordinate trans-
formations possesses the form

&yA =PAp "F,vyB yA, pP — (I-2.3)

The coefFicients F» " are a set of constants character-
istic for the field variables. The last term in (I-2.3) is
a "transport term, "which must be inserted if the value
of y~ at a point with the original coordinates x is to be
compared with the transformed y~ at the point which
after the transformatiort possesses the coordinates x (and,
therefore, originally had the coordinates x—g);

The transformation matrix Ii» ' must satisfy certain
commutation relations if the infinitesimal transforma-
tion law is to generate a finite transformation law.

p Cvp Ba p Cap Bv—p vp Ba p ap Bv (I 24)

The Lagrangian from which the fieM. equations are
to be derived is assumed to satisfy a transformation
law of the form

8L=Qp, p (I-2.5)

which assures that the left-hand sides of the field equa-
tions transform covariantly according to the formula

)IB= pA Bvp IA (LB+) (I-2.2)

It can easily be shown that the Qp of (I-2.5) are the
following four expressions:

Q p= FA BpyBLA p+BA pLgyA. (1.1)

The most important property of the field equations
for what follows is that they satisfy four differential
identities: When we substitute for I.~ the full expres-
sions in terms of the fieM variables and their Grst and
second derivatives, the four equations

FA„B'(L"yB),p+L"yA, „=0(I-3.3)—
are identically satisfied. These equations contain the
third derivatives of the y& linearly. Their coeKcients
must vanish identically by themselves. These condi-
tions turn out to be

Finally, if the field equations are satisfied, then the
divergence of certain expressions vanishes, which are
usually identified with the energy momentum densities
and energy-momentum fIuxes:

(1-3.8)

In these formulas and all that follow, the summation
convention for dummy indices is used for all types of
indices without distinction.

8(u', t)
(2.1)

shall not vanish. In terms of parameters', the basic
variational principle goes over into

bS=Q

2. THE PARAMETER FORMALISM

In his formulation of the equations of motion in the
general theory of relativity, Einstein worked exclusively
with the field equations and with the identities that
exist between them without taking recourse to the
Lagrangian. In attempting to construct a Hamiltonian
as a preliminary to quantization, we shall need to refer
to the original variational principle. The volume in-
tegral in space-time fLdx that is to be made sta-
tionary with respect to variations of the field variables
in the interior of the domain of integration can be ex-
tended over any four-dimensional domain desired, and
the field equations will then be satisfied throughout
the interior of that domain. Naturally, the domain of
integration should not include regions where the equa-
tions cannot be satisfied, and it should in particular
exclude the world lines along which particles move.

In this connection, there arises a peculiar difFiculty.
Because the motions of the particles are determined by
the field equations outside, we cannot predict the loca-
tion of the singular worM lines until after we have
accomplished the integration of the field equations. On
the other hand, it will, of course, be necessary to choose
the domain of integration for the Lagrangian even
before the field equations are formulated, let alone
solved. This difliculty can be resolved if we introduce,
in addition to the coordinates x&, a second set of co-
ordinates that can serve as variables of integration.
Call the second set I'(s=1, ,3), t. To avoid any
ambiguities of language, this second set will be referred
to as "parameters, " and the one parameter t will oc-
casionally be called "time." The transformation law
leading from the coordinates to the parameters shall
not be specified initially, except that it shall be assumed
that the Jacobian of the transformation,

(P BpjACar+PA BaIACrp+P BrLACpa)y —0
IAc pa i (gA prtcaI+gAagc pI) (I 3 6)

S= t JLdudt. (2.2)
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yA, =iJAt, +Ay[ B (2.3)

(2.4)

The coordinates xp are considered as field variables,
along with the y&. Naturally, the additional field equa-
tions will not lead to a determination of the x& as func-
tions of the parameters if the field equations are to be
satisfied in a singly connected four-dimensional domain.
Straightforward computation shows that the Euler-
Lagrange equations belonging to the new field variables
x& reduce to (I-3.8) and are, thus, contained in the
original field equations. In the presence of line singu-
larities, however, the coordinates of the singularities
are, in fact, determined by certain integrals over the
(space-like, two-dimensional) closed surfaces that en-
close the singularities and which are derivable from the
divergence relations (I-3.8) or from the stronger rela-
tions (I-3.11), which hold even inside the singular re-
gions and which go over into (I-3.8) on the outside.

Nothing prevents us from prescribing the motions of
the singularities in terms of the parameters initially
and from extending the integral (2.2) over the multiply
connected domain of the four parameters in which we
propose to satisfy the field equations. If the integral is
made stationary with respect to variations of the field
variables y~, x& in the interior of that domain, both the
field equations and the equations of motion will be
satisfied.

The formal device just described permits us to for-
mulate our variational principle so that the integrand
of S is everywhere finite. Naturally, the field equations
must be covariant both with respect to coordinate
transformations and with respect to parameter trans-
formations. With respect to the latter, the field vari-
ables are scalars and their first derivatives covariant
vectors. In what follows, all (N+4) field variables will
be accepted as such.

Since partial derivatives will occasionally have to be
taken, both with respect to x& and with respect to I'
and t, we shall uniformly denote differentiation with
respect to t by the dot symbol and differentiation with
respect to I' by the symbol ~,. We have, thus, for
example,

(By' /Bx&)a"'= —
yA, pt .B"'
PA, p~

(3.4)

But the same expression in (3.3) cannot depends on xl'

directly, either, because

B(Jt,o)

Bxp
=0. (3 5)

It follows that integration of the four Eqs. (3.3) leads
to the four equations

FA„'yii7r" Jt, ,=K„(yc,yc~„x ~,), (3.6)

where the functions on the right hand side are deter-
mined in any actual theory and, in any case, do not
contain either jg or x& as arguments.

Additional algebraic relationships can be obtained
directly from the defining Eqs. (3.1), (3.2). By multi-
plying the obvious identity

by x'I we find

hp Jt pL+—yA, p7rA=0

x'~,Xp+yA), mA=0,

(3 &)

(3.8)

three algebraic relationships between the canonical
variables which are free of "time" derivatives. If we
multiply Eq. (3.7) by x', we get

JL=iJAmA+i I'X p, — . (3.9)

showing formally that the Lagrangian JL is homogene-
ous of the first degree in the arguments j~, i p. If the
Lagrangian JL is of the first degree, then the deriva-
tives x~ and P p are homogeneous of the zeroth degree.
It is well known that n zeroth-degree functions of n
arguments cannot be algebraically independent of each
other. It is possible to obtain a differential relationship
for this algebraic condition. Let the condition be

(I-3.6) by J't, t t, , one obtains, after a few obvious
calculations,

BA'(Fii o'yes~ Jt, ,)=0. (3.3)

The expression within the parentheses of (3.3) could
depend on i'I' either directly or through the y&, p The
latter possibility is excluded because

3. CONONICAL VARIABLES AND THE HAMILTONIAN g(~A, X„yA,yA ~„x&~,)—=0 (3.10)

Into the formalism just described canonical mo-
mentum densities can be introduced in the usual
manner by means of the defining equations,

s.A= B"'(LJ)=Jt B"'L—
and

X,=a(LJ)/ax~= Jt, .(Lb .—y" B".L)
=-Jt..t, '

has been defined by means of Eq. (I-3.8). These
(N+4) canonical momentum densities satisfy a num-
ber of algebraic relations. With the help of Eq. (I-3.6),
four of these relations can be obtaig. ed. By multiplying

0= air"+ bX,+ byA+ bx&

Bm BXp by~ bx&

t' BC Bg
byA+ bx~

~

= BAB&(LJ)
(ayA(, ax (, ) (, aa

g+ a" a..(LJ) be+ B .a~'(LJ)
Bx, ' ax

to be satisfied identically if the momenta are replaced
by their defining equations. Differentiation leads to
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8g Bg Bm Bg 8X
+ ap. a..(LJ) hip+ +

8yg 8A, Byg

t' ag as.s ag N, ) ag
+

'
I + ay.

(as' ayA[ 8X ayA~, ) I, By~

( ag air ag B ag $+ -+-
(87K 8X~ig aha 8X~[g 8X~ig) [a

( ag ag an ag W, 'I

+ i + +
84 aye

I

~

Lagrangian JI.. Ke set, therefore,

= j'g) =ip,
t97i Bkp

an 8X, $= —
( ys +*'

ay, ay, i

( 8 ax. )
+I ~. +—~'

aye[ ay&l ~
I

ag 8(J'L)

a(JL)

(3.15)

( ag ag 87K ag aha )
(3 11)

Ea.x ~, a 'ax, , 8),.ax, .&

If we integrate this diGerential form over a space-like
domain (with t constant) and if we consider the ay&,

bj&, etc., as arbitrary variations of the independent
held variables, we get the conditions

If the field Eqs. (I-2.2) are satisfied, the partial (or
rather variational) derivatives of the Lagrangian with
respect to y& and xp satisfy the equations

8(JL)
~A

Bg Bg
8"'as'(JL)+ 8"'8,.(JL)= 0,

(3m~ BA.,
8(JL)

(3.16)

Bg Bg
8p

8~ (JL)+. '8p.a,.(JL)=0,
B~~ 8X

8g 8g Bx~ Bg 8A.,
+ +

By~ 8%' 8yg BX 8yg

Bg Bg Bm 8g BX
+ +

yAts ~~ ~yA)s ~o ~yA[s

=0

Bg Bg Bm . Bg
+ + =0.

Bx ~, 87f Bx ~, BX Bx
~

(3.12)

Equations (3.12) are, of course, satisfied by any one
of the seven algebraic "constraints" on the canonical
momenta (3.6), (3.8) as well as by the eighth rela-
tionship yet to be obtained. The first two Eqs. (3.12)
can be understood in the sense that the (%+4) quan-
tities (ag/8 ),s(ag/8X, ) form a "null vector" of the
(singular) matrix

8"'as'(JL), 8" 8..(JL)=
a, .a (JI.), a, .a..(JI.)

This matrix has eight linearly independent null vectors.
Seven of these null vectors will lead back to the rela-
tionships already obtained. An eighth null vector
possesses the components j~, xp. The expressions

yeas 8~ (JL)+i'8 8~'('JL) =0
judas'8, (JL)+*'8..8,.(JL).=0

vanish, because of the homogeneity property of the

As a result, we have

6g 6g 8g 8gj~=+, i&=+, (3.17)
bye exp Bm N,

the canonical equations, with the function g as the
Hamiltonian density.

The function g is not completely determined by the
Eqs. (3.15). Suppose we have obtained an algebraic
constraint g which is a result of the homogeneity of the
right hand sides of Eqs. (3.1), (3.2) with respect to the
j~,i &. Then first of aH, this constraint can be multiplied
by any non-vanishing function vo of the x& without
destroying the validity of the Eqs. (3.15). All we do by
such a change in g is to choose a new parameter system,
(I',t*), in which t* is a function of the parameters
(u', t) of the original system. Furthermore, if we add to
some chosen g a linear combination of the remaining
seven constraints, the coeKcients being arbitrary func-
tions of the u, t, we shaH obtain a new set of canonical
equations which di6ers from the original set in that the
coordinates and parameters occurring in the new set
are related to the coordinates and parameters of the
original set of canonical equations by specific coordinate
and parameter transformations.

We shall call a particular choice of the function g the
Hamiltonian density and designate that choice by H.
Once H has been chosen, the "equations of motion"
(in the sense in which this term is used in quantum me-
chanical literature) are no longer covariant. Covariance
can be maintained only as long as we are willing to re-
serve the choice of H.
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In addition to the Hamiltonian density H, we shall
introduce the Hamiltonian itself.

(3.18)

where F is any functional which depends on the canon-
ical variables and their space derivatives throughout a
three-dimensional surface t=constant. For an integral
like the Hamiltonian, the functional derivatives reduce
to the variational derivatives of the integrand,

bK 8H

by~(u) &yA
, etc. (3.20)

Kith the help of the Hamiltonian X, and its functional
derivatives, the canonical equations can be rewritten
in the form

bm.~(u) bye (u)

bx
(3.21)

Xl'= Xp=-
bXp(u) bx&(u)

If we introduce a functional' 5 which depends on the
canonical variables on one surface t= constant, then we
can summarize Eqs. (3.21) in the form

i= (z,se) (3.22)

where the right hand side, the "Poisson bracket" be-
tween F and 3'., stands for

b~ bx b5: bx
(s,x)=—

~ u by&(u) bn-"(u) bm" (u) by&(u)

bs bee br bee
EiU

bx&(u) bop(u) bop(u) bx&(u)

(3.23)

It should be noted that not every functional of the
original field variables y& and their first derivatives
yz, , can be converted into a functional of the canon-
ical variables. If + is a functional of y&, jz, x&, iI', then

X is a functional and depends on the values of all the
canonical variables throughout a whole space-like three-
dimensional surface t= constant. "Functional deriva-
tives" of a functional with respect to its arguments are
to be understood in accordance with the defining
equation

br b~
bF= by&(u)+ bs" (u)

& u by&(u) bir" (u)

bs bs
+ 8x&(u)+ Q,,(u) du, (3.19)

bx&(u) bXp(u)

it can be represented as a functional of the canonical
variables only if

be be air~ be H,.
+

bing bH ajg bx. 8j~

be be
as'B~'(J-L)+ 8..8~'(JL)

b~s b~.

be be a~s be az.
+

bx~ b~~ 8x~ bX, 8x'

be be
B~'8,.(JL)+ 8..8,.(JL). (3.24)

b~' br.

In other words, the "dot products" of the "vector"
(be/b jz,be/bx&) by any one of the eight null vectors
of the matrix h. , Eq. (3.13), must vanish. With g some
linear functional of the eight algebraic constraints on
the canonical variables, Eq. (3.24) can be rewritten in
the form

~- be bg be bb-
+ du = 0. (3.25)

"u bj&(u) bs."(u) bx&(u) bX, (u)

Functionals which satisfy the condition (3.25) for all
constraints and which can, therefore, be considered to
depend only on the canonical variables shall be called
"dynamical variables. "

The functionals g themselves are not only dynamical
variables, they are "integrals of .the motion": If the
constraints are satisfied on one surface /=constant,
then they remain satisfied for other values of 3, provided
the Eqs. (3.21) or (3.22) are satisfied. The proof follows
immediately if the functional g is substituted in the
expression for the Poisson bracket (3.23) and if the ex-
pressions for bg/by& and for bg/bx' are substituted
from Eqs. (3.12).

4. POISSON BRACKETS AND CANONICAL
TRANSFORMATIONS

It is appropriate in the canonical formalism to con-
sider functionals and their time dependence in prefer-
ence to functions. Most of the calculations become sim-
plified if they are carried out on functionals, if we are
only willing to assume that the two dimensional surface
integrals which appear in integrations by parts give
zero contributions. Ordinary functions may be con-
sidered as functionals whose functional derivatives with
respect to canonical variables at points other than the
one specified space point vanish.

As a preparation for the quantization of the theory,
we shall in this section define the canonical transforma-
tions so that with respect to them the Poisson brackets
of two dynamical variables are invariant, and we shall
show that the canonical equations generate a canonical
transformation.
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Since we shall treat from now on the y& and x& uni-
formly, and likewise the (X+4) canonically conjugate
momentum densities, all formulas will be simplified if
we combine the y~ and x' into y„(b= 1, -, J)'t+4, and
likewise the m" and ), into m . Small Latin indices from
the first half of the alphabet will now always run from
1 to /+4. With this notation, the Poisson bracket be-
tween two arbitrary dynamical variables b and F is
defined as

(bhq bF bh t bey
b(hp)= i

~u (by.) bn' by. &b7r )

where

)bhq b& bh pbeq

&bs') by. b~ &by.)

(4.8)

finitesimal transformation the Poisson brackets do not
change. Ke have .

(hp) =
bs-

du. (4.1)
~u by, (u) b~'(u) bur (u) by, (u).

bh

-by-(u)-

bh bbyb(u')

" '-byb(u) by. (u)

Our dynamical system is completely defined by the
requirements that for all values of t +,b~b(u') by (u)

bh

bean.

b(u')
du

3F
~= (5:pe)+-

Bt
(4.2) blch

"u bm'(u') by. (u)byb(u')
and that for t = to the constraints

=0 (4.3)

and set
(:= (:(y.(u) p"(u'), t) (44)

s (u)=
by. (u)

6
y.'(u') =

b7r" (u')
(4 5)

BCX'=R+-
Bt .

Now we can introduce a new system of canonical
variables y, '(u'), s"(u') in such a manner that the
system of Eqs. (4.2) goes over into a new system pos-
sessing the same form. In the usual manner, we shall
introduce a "generating functional. "

bh b'c
Ju' etc. (4.9)

byb(u') by-(u) b~'(u')-

If the expressions (4.9) are substituted into Eq. (4.8),
the right-hand side vanishes identically. Since the re-
sult obtained for the infinitesimal transformation can
be extended immediately to the finite transformation, it
follows that the Poisson brackets are invariant with
respect to the canonical transformations (4.4), (4.5).

Returning to the "equations of motion, " (4.2), we
shall now show that the right-hand side is invariant
with respect to an infinitesimal canonical transforma-
tion. Because of the invariance of the bracket operation
as such, the transformation of Eq. (4.2) yields

(()P)
~~= y, ~x)+~~ —

~( at)
(4.10)

The identical transformation is generated by the
functional

(:(z)—— y, (u)s."(u')()b h(u' —u)du'du
4 u~u' (()F') p bF ()5y, (u)

(4.6)
E()t ) "u by. (u) at

y .(u)x" (u)du
~u bF Bkr (u)

clu

The last term is necessary because of the assumed ex-
plicit time dependence of the transformation. It equals

The infinitesimal transformation belonging to the trans-
formation (4.4), (4.S) is, therefore,

('-= ('(s')+ c(y,(u),x"(u), t),

bar (u) N

bp b(()c/c)t) br. b(BC/Bt)
du

~u bs by. by. bs

(4.11)

bc bc (4.7)
8y,=, 8m =—

bn'
WC=-

by, Bt.

Now it is easy to prove that with respect to the in- As a result, the right-hand side of (4.10) vanishes. .
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If the "time" derivatives of all dynamical variables
are invariant with respect to canonical transforma-
tions, it follows that the constraints b remain integrals
of the motion. Setting them equal to zero initially as-
sures their being zero permanently, Herewith, the proof
of the invariance of the system of canonical equations
(4.2), (4.3) with respect to canonical transformations
(4.4), (4.5) is completed.

It is very easy to show that the change of the canon-
ical variables with time is nothing but a special
canonical transformation. Comparison of Eq. (4.7)
with (3.21) shows that the generating functional is the
Hamiltonian itself. Because the equations which con-
nect the values of the canonical coordinates at two
diR'erent times t& and t2 with each other are equivalent
to a canonical transformation, it follows that if b and
F are two functionals whose values are independent of
t (though they will in general depend explicitly on the
canonical variables and on t), then their Poisson
bracket (hg) is again constant in time.

[S,s]=—-(hr —58) (5.1)

be the operator that is the analogue to the Poisson
bracket (h, F). This correspondence requirement can
always be satisfied if the operators h and P are built
up from the canonical operators in the same manner as
the analogous dynamical variables from the canonical
variables. The sequence of canonical operators in
products has to be arranged so that the resulting opera-
tor is Hermitian.

The dependence of the operators on t is given by the
new equation of motion

BF
a= [a,x]+-

Bt
(5.2)

and the commutation relations between the canonical
variables at the time t are given by the requirement
(5.1),

[r.(u)a»(u')3=0 L (u),+(u')3=0 (5 3)
[y.(u) pr'(u') )= B.'b(u —u').

Integration of the equations of .motion gives for any

5. QUANTIZATION

In this section, we shall demonstrate the covariance
of the quantized theory which is obtained from the
"classical" (i.e., unquantized) theory in the usual
manner.

As is customary, we shall consider the canonical
variables and also all the dynamical variables (in ac-
cordance with the defining Eq. (3.24)) as Hermitian
operators acting on a "wave function" O'. For any two
Hermitian operators 8 and F which are the analogues
of dynamical variables in the classical theory we shall
require that the commutator,

operator which does not depend on t explicitly the
expression

(i p' ) (~ =eel — ' ~(~)&r [& e~( —i~" 3'-(.)d. (. (5.4)
g &hag ) ~p E h~tp

All the operators g commute with the Hamiltonian.
We shall require that at some initial time tp every g
satisfies the condition

g% =0. (5 5)

That condition will then be satisfied permaneritly.
The equations of motion (5.2), the commutation re-

lations (5.1) or (5.3), and the constraints (5.5) are
together a complete (Heisenberg) representation of a
quantized theory. We have now to show that this theory
is covariant with respect to coordinate and with re-
spect to parameter transformations. That covariance is,
of course, contingent on the continued free choice of
the Hamiltonian as an arbitrary linear combination of
constraint conditions g, provided only that the coeK-
cient-of the eighth condition, the one that expresses the
homogeneity of the Lagrangian, is nowhere zero in the
(u, t) continuum. Transition to a new coordinate system
or to a new parameter system will carry the equations
of motion over into themselves, but in general the form
of the Hamiltonian will change. The problem is whether
the commutation relations and the constraints will be
reproduced by a transformation.

To answer this question requires no computational
work, because of the special structure of our theory.
It turns out that the constraint conditions as well as
the commutation relations are covariant simply because
they are integrals of the motion. Consider a solution
of the equations of motion which also satisfies the con-
straints and the commutation relations. Naturally,
this solution is available in a particular coordinate
system and in a particular parameter system. Now it is
possible to envisage a particular point of the (u, t) con-
tinuum and to inquire how the constraints as well as
the commutation relations will be affected by a coordi-
nate or by a parameter transformation. Such a trans-
formation can be achieved solely by an integration of
the equations of motion. We merely need to carry our
solution in one direction of t for a finite distance and
then to integrate it backward, but with a diferent
choice of Hamiltonian. This switch in the Hamiltonian
will result in our returning to the original space-time
point with a different set of coordinates and parameters.
Specifically, that addition of a functional tha, t is linear
in the constraints (3.6) will transform the coordinates,
while the constraints (3.8) and the eighth constraint
are related to u-transformations and t-transformations,
respectively. Since integration of the equations of mo-
tion with arbitrary K preserves both the form of the
constraints and the form of the commutation relations,
covariance of all these relationships is assured.
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6. DISCUSSION

With this paper, we have succeeded in putting a co-
variant theory into such a form that its equations can
be integrated even in the presence of (world line)
singularities. Moreover, we have shown that a Hamil-
tonian exists even though the diGerential equations do
not determine uniquely the solutions of the standard
Cauchy problem. This lack of determinancy of the
solutions is reQected in a partial freedom of choice for
the Hamiltonian: It is permissible to add to a given
Hamiltonian an arbitrary linear combination of the
eight algebraic constraints that hold between the
canonical variables at each world point, with the only
restriction that in the resulting new Hamiltonian the
coeKcient of the eighth constraint must not vanish. **
Adoption of a particular linear combination of the con-
straints as the Hamiltonian amounts to the choice of a
particular set of coordinate-parameter conditions. No
matter what the choice of Hamiltonian, all other con-
straints g as well as the commutators of the canonical
variables commute with the Hamiltonian and are, there-
fore, constant in time.

Our parameter formalism has formal similarity with
one developed by P. Weiss. ' lt diGers in that Weiss
uses his analogue primarily to vary the domain of
integration of the variational principle. His surfaces
t=constant are necessarily closed, while ours are not
only open, but, in the presence of particles, multiply

**If this coefficient were permitted to vanish, the resulting
choice of the parameter system would establish a linear depend-
ence between du' and dt.

~ P. %eiss, Proc. Roy. Soc. A156, 192 (1936); A169, 102, 119
(1938).

connected. Also, gneiss has apparently taken the emer-
gence of the x& as dynamical variables not as seriously
as we do.

Our formalism is covariant not only with respect to
coordinate and parameter transformations, but also
with respect to the much more general group of the
canonical transformations (4.4), (4.5). Once the co-
ordinates x& and the energy-momentum densities A,
are included in the dynamical variables, the canonical-
transformations tend to break down the differences in
character between the quantized held variables and the
classical space-time continuum. In contrast to Snyder's
assumptions, ' our coordinates commute with each
other, but not with the energy-momentum densities.
The dynamical character of any particle coordinates
follows automatically, but probably does not exhaust
the physical significance of the coordinate commutation
relations.

Throughout the mathematical discussion of the
earlier sections it has been assumed implicitly that the
matrix A, (3.13), has only eight null vectors. This
assumption will not hold if the theory is covariant with
respect to further transformation groups. Such a group
will be the gauge transformation group if the theory is
to contain an electromagnetic field with a conservation
law of charge. In the event of any such additional co-
variance properties, the number of algebraic constraints
will be increased correspondingly. They may be added
to the Hamiltonian, and they will, in any case, com-
mute with the Hamiltonian. The basic structure of the
theory is not aGected by such additional constraints.

' H. Snyder, Phys. Rev. 71, 38 (1947); 72, 68 (1947).


