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I. INTRODUCTION

HE theory of elementary particles which I propose
in the following pages is based on the current con-

ceptions of quantum mechanics and differs widely from
the ideas which Einstein himself has developed in regard
to this problem. I hope that it may nevertheless be ac-
ceptable as a contribution to this volume in honor of his

/0th birthday, as it is based on his famous relation be-

tween energy E and mass m of a physical system,
E=mc2, and as it can be interpreted as a rational
generalization of his ("special" ) theory of relativity.

Relativity postulates that all laws of nature are in-

variant with respect to such linear transformations of
space time x"=(x, t) for which the quadratic form
R=x"xI, t2 x' is——in—variant (the velocity of light is
taken to be unity). The underlying physical assumption
is that the 4-dimensional distance r =E& has an absolute
significance and can be measured. This is a natural and
plausible assumption as long as one has to do with
macroscopic dimensions where measuring rods and
clocks can be applied. But is it still plausible in the
domain of atomic phenomenal

Doubts have been expressed a long time ago, e.g. , by
Lindemann (Lord Cherwell) (14) in his instructive little
book. I think that the assumption of the observability
of the 4-dimensional distance of two events inside
atomic dimensions is an extrapolation which can only be
justified by its consequences; and I am inclined to
interpret the difhculties which quantum mechanics en-

counters in describing elementary particles and their
interactions as indicating the failure of that assumption.

The well-known limits of observability set by Heisen-
berg's uncertainty rules have little to do with this
question; they refer to the measurements of coordinates
and momenta of a particle by an instrument which

defines a macroscopic frame of reference, and they can
be intuitively understood by taking into account that
even macroscopic instruments must react according to
quantum laws if they are of any use for measuring
atomic phenomena. Bohr has illustrated this by many
instructive examples. The determination of the distance
R' of two events needs two neighboring space-time
measurements; how could they be made with macro-
scopic instruments if the distance is of atomic sizeP

If one looks at this question from the standpoint of
momenta, one encounters another paradoxical situation.
There is of course a quantity analogous to 8, namely
P=p'=pl, p"=E—p', where pi= (p, E) represents mo-

mentum and energy. But this is not a continuous vari-
able as it represents the square of the rest mass. A
determination of P means therefore not a real measure-
ment but a choice between a number of values corre-

sponding to the particles with which one has possibly to
do. This is the problem which is now in the center of
interest: by estimating p and E for a particle observed
in the Wilson chamber or in a photographic emulsion,
one obtains a rough value of the rest mass which may
permit one to recognize the kind of particle with which
one has to do. If the value of I' thus obtained is however
incompatible with the known particles a new one is
discovered. During the last year this has happened
several times, and one gets the impression that there
may be no end of it. New types of mesons are found
ajmost every week, and it seems to be not an extrava-
gant extrapolation to suppose that there is an infinite
number.

It looks, therefore, as if the distance I' in momentum
space is capable of an infinite number of discrete values
which can be roughly determined while the distance E.
in coordinate space is not an observable quantity at all.

This lack of symmetry seems to me very strange and
rather improbable. There is strong formal evidence for
the hypothesis, which I have called the principte of reci

procity, that the laws of nature are symmetrical with
regard to space-time and momentum-energy, or more
precisely, that they are invariant under the trans-
formation

x"p( p(x"= i—hb P&

and the components of the angular momentum, .

mkl xkpl xlpky

(I.3)

(I.4)

show the same invariance, for all 4 components. These
examples are, in my opinion, strongly suggestive, and I
have tried for years to reformulate the fundamental
laws of physics in such a way that the reciprocity trans-
formation (I,1) is valid (3).I found very little resonance
in this endeavor; apart from my collaborators, K. Fucbs
and K. Sarginson, the only physicist who took it seri-
ously and tried to help us was A. Lande (13). But our
efforts led to no practical results; there is no obvious
symmetry between coordinate and momentum space,
and one had to wait until new experimental discoveries

3

xk pky pk~ xk.

The most obvious indications are these: The canonical
equations of classical mechanics

x~= BH(8pj„pI, —— BH/Bx — (I.2)

are indeed invariant under the transformation (1), if
only the first 3 components of the 4-vectors x" and p& are
considered. These equations hold also in the matrix or
operator form of quantum mechanics. The commutation
rules
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Five=0, (I.S)

one has now to assume the attitude that the "field
operator" Ii itself is the unknown, including its charac-
teristic parameter, the rest mass.

I shall show that the principle of reciprocity provides
a solution of this new problem —whether it is the correct
solution remains to be seen by working out all conse-
quences. But the simple results which we have obtained
so far are definitely encouraging (S).

II. GENERAL WAVE OPERATORS

The first trivial application of the reciprocity princi-
ple consists in the splitting of Planck's constant h into
two factors

fi= ab, (II.1)

where a is length, b a momentum. In general considera-
tions the value of k shall be taken to be unity. All
coordinates x will be measured in units a, all Pk in units
b, so that from now on x" and pk are dimensionless. The
notations of relativity will be used, with the metric
tensor

g gkl 0
gl 1= g22 = g38 = 1)
g11 g22 g«8

gk l~

(kW l);
g44

g4
&A;=gl && ~

Particles with integral spin, like photons and certain

and their theoretical interpretation would, provide a
clue.

I see now this clue, in the fact mentioned above, that
the number of elementary particles is not limited. For
this compels us to a change of attitude to the whole
problem.

For a long time physics was mainly interested in the
electron. Dirac's equation seemed to provide a satis-
factory description of its motion with the help of a
spinor wave function P. When nuclear physics became
the center of interest, similar wave equations were
established for nucleons (neutrons and protons). The
electromagnetic phenomena were considered from the
same standpoint as a vector wave field describing the
motion of photons with the rest mass zero. Then came
Vukawa's meson with a similar vector field but a finite
rest mass. For each new particle a new field and a new
set of field equations were established, containing the
rest mass as the only physical parameter. On top of this
system of pure fields, one for each kind of particle, one
had to construct the mutual interactions of diferent
fields.

This procedure seems now to be wholly inadequate;
one cannot continue inventing new field equations for
every new type of particle if it is probable that there is
an infinite number. There must be a general principle to
determine all possible Geld equations, in particular all
possible rest-masses. While in current physics the
central problem is to find the wave function iP from a
given set of field equations,

F(P)f(x)=0, (II S)

where F(P) =P «'; but —one can just as well take for
F a function of the form

F(P)=Fi(P) (P—«')

where Fi(P) =0 has no roots.
If, on the other hand, Fi(P) is itself of the form

F2(P) (P—«i') then the Eq. (II.S) will have another set
of solutions corresponding to particles with the rest
mass pi b«i/, c——Gene. ralizing this one sees that by
choosing a proper function Ii with the roots Kg K2 K3, ~ ~ ~

one has in (II.S) a'wave equation representing simul-

taneously particles with different rest masses.
This consideration can be easily extended to particles

with spin —'„by taking as argument of F instead of I" the
quantity

~
—c kp ~k~i+~l~k —2gk i (II.7)

In this way one obtains a vast generalization of wave

mechanics describing any number of particles with
di6erent rest masses with the help of one single operator

F, which is a function of the relativistic invariant I' or ~~

(where obviously it'= p'= P).
Two problems are now to be solved:
(I) The conservation laws for the field density and

for the momentum-energy tensor have to be formulated
for this extremely general theory, and the field has to be
quantized in such a way, that the particle interpretation
is possible. .

(II) The much too general formalism has to be re-

duced and narrowed in such a way that the rest masses

are not arbitrary but definite numbers; i.e., one has to
find a principle to determine the so far arbitrary func-

tion Ii. That is just the problem formulated in the
introduction, which I contend to be solved by the

principle of reciprocity.

III. CONSERVATION LAWS AND FIELD
QUANTIZATION

The Grst problem has been solved by my collaborator,
Dr. H. S. Green, who approached it independently from

a quite different angle. It had been previously observed

by diGerent authors that one can generalize the ordinary
wave equation by repeatedly applying the d'Alembertian

operator,
' which is equivalent to the I' of the present

paper. I have published myself a short note on this

question in "Nature" (4), where field equations are

derived which are equivalent to the two equations

kinds of mesons, are generally supposed to have a wave
function which satisfies a wave equation of the form

Pip= «'ip, P=p'= pkp", pk Z——(B/Bxk), (II.3)

where the constant ~ is proportional to the rest mass;
going over to customary units one has

(II.4)

One can write (II.3) in the form
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P(P k')—X=O and P(P ~')—P(p=0; the point of the
paper was that the constant ~ which appears here as a
mass was introduced in the Lagrangian as a coupling
constant between the two wave functions y and y.
Podolski (16) has used a similar procedure leading to the
first of the above equations and has shown that the
elementary solution corresponding to a point charge
corresponds to a finite energy. Stueckelberg (18),
Bopp (8), Heisenberg (12), Madhava Rao (15), Bhabha
(1), and others have attempted similar generalizations
of the ordinary wave equation without obtaining more
than interesting formal results.

Several authors have attempted to tackle the most
general case where the wave equation is of the form
(I.5), with an arbitrary F, in other words, where the
Lagrangian density contains all derivatives with respect
to space and time of the wave function. There are papers
on this subject by Chang (9) and de Wet (10), but their
formalism is very cumbersome. Green (11)attacked the
same problem and succeeded in finding a much simpler
and very powerful method, which, quite apart from its
physical applications, is also of considerable mathe-
matical interest as it represents a new, purely operational
approach to the calculus of variations. I was fortunate
enough to find this method ready made for my purpose,
and to have Green's help in working it out.

I can only sketch Green's method here. Instead of the
wave function (P(x) the statistical operator p is used,
which for a pure state reduces, in the x representation,
to P(x)it *(x') but can also be applied to mixture and is
then, in this representation a Hermitean matrix p(x, x ).
A function F(p, p') of the eight arguments,

where
F(P)=F(P P) (III.5)

the usual form is obtained by taking the diagonal
elements,

(F(p)p)=0.

If one de6nes G and G~' by

~kG"(P P')=F(P' P') F(P—P')
&k Pk Pk (III 6)

~k G' (P P ) =F(p p) F(P —P ),

hark

pk pk

then (III.4) can be written

(F+~kGk)p=0, (F+7lk'Gk')p=0. (111.7)

Subtracting the second from the 6rst, one obtains, since
4rk+4rk'= 0,

hark(Gk+Gk') p= 0, (III.8)

f 8 8(,A)= —~
( + (A(x, x'))
(Bxk Bxk')

= —i(8/Bxk) (A), (III.9)

hence from (III.8)

8
((G"+Gk') p) =0

Bx'
(III.10)

which is the equation of continuity in operational form,
from which one obtains the customary expression by
setting x= x'; for if A(x, x') is any operator then

pk i (8/B——xk), pk' —— i (8/Bx');— (III.1)
This shows that the 4 vector

is then a diGerential operator of what is, in general, an
infinite order which, when applied to p(x, x'), produces
an expression linear in p and all its partial derivatives.
This function

L(x, x') =F(p, p') p(x, x') (III.2)

is called the Lagrangian operator (shortly Lagrangian).
It is a relativistic invariant (scalar); but p need not be a
scalar, but may be a spinor, vector, or tensor of any
order. If p is e.g. , a covariant tensor then Ii has to be a
contravariant tensor of the same order.

The Lagrangian density of the usual theory is the
diagonal element obtained by setting x=x'. For this
operation the symbol ( ) shall be used; then the
Hamiltonian principle is

dN/dt=0, N= (R4)dn, (III.12)

where the integration extends over all space. Hence the
total amount of matter is conserved.

Other conservation laws are as easily derived by
multiplying the field Eqs. (III.4) first by powers of pk

and Pk' and then proceeding as above. In this way it can
be shown that the 4-vector representing the total mo-

mentum 'and energy

gk 1(Gk+Gk') p (III.11)

represents by its first 3 components the density Qux, by
its last R4 the scalar density. From (III.10) it follows

that

(L)d Ddt =0, (III.3) (-', (pk+ pk')&')d&J. (III.13)

F(P)p=o F(P')p=o, (III.4)

where 0 is the space considered which is usually a big
volume tending to in6nity so as to cover the whole
space. It can easily be seen that the field equations in
operational form are simply

is constant in time.
As the field equations are linear, they can be solved by

the expression

p=Q 'p&;(p, p') exp}i(p x—E(t)
—i(p' x' —E,'t') I, (III.14)
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where p, p', E~, E,', p~, are constants, provided that EI
and E are solutions of the equations

P(p) —=P(p, E)=0, P(p') —=P(p', E') =0. (111.15)

There will be in general several roots E~ for a given p
and E for a given p'. This becomes obvious by taking
into account the fact of relativistic invariance of the
Lagrangian which, as said above, implies that Ii repre-
sents a set of spinor or tensor components. Each com-
ponent must have the form F= Iiog, where Po is a scalar
and g a spinor or tensor of unit modulus which depends
only on the direction of the vector pj, . The scalar factor
Iio will depend, in the case of a tensor, on

P p pit: —E2 p2

and in the case of a spinor on

'4 = cx pi = 'ill'4E ap, —

(III.16)

(III.17)

so that (III.15) reduced to one of the equations

F(P) =0, F(g) =0. (111.18)

(III.19)

(III.20)

where

iV& &=K. ,(p) P""=Z. ;(p)P,
with

and
n;(p) = I";(p)p;,(p, p), (III.21)

(III.22)

The Eqs. (III.19) and (III.20) show that the quantities
I;(p) must be interpreted as the amount of matter in the
field.

However, the atomistic division of matter, the pres-
ence of particles, i.e., the fact that the n;(p) are integers,
cannot be inferred until second quantization is eGected.

Green has reformulated the mathematical procedure
for second quantization in strictly operational terms;
but as this method leads to the same results as the usual
procedure it will not be reproduced here and the reader
is referred to the original paper (11). The results are
these: One has to split the amplitude p~, (p, p') of an
harmonic term (III.14) of p in a product

(III.23)

(III.24)

ui, (p, p') = «(p) «'(p'),
and to write p itself correspondingly in the form

p(x, x') =Q «(x)o~+(x'),

The roots of the first (algebraic or transcendental) equa-
tion «P present, according to (III.16), (III.17), the
squares of the possible rest masses; the same holds for
the squares of the characteristic roots of the second
(spinor) equation. In the dimensionless units used here
the energy belonging to a root is 'E, = (p'+«P) &.

The general solution of the field equations is obtained
by summing over all possible values of /, j, p, p'.

By substituting (III.14) in (III.12), (III.13) one finds

E=Q X&" Pi=+ Pi&'&

where

o ~(x) =0 ~ P «(p) exp {i(p x—E&t) },
(III.25)

o~(x') =0 '
Q o;(p') exp{ —i(p'. x' —E,'&') }.

IV. THE PRINCIPLE OP RECIPROCITY

The restricting principle is the postulate of reciprocity.
%e consider first the case of integral spin. A function
S(x, p) of coordinates and rnomenta which satisfies the
symmetry relation,

S(x, p)=S(p, —x), (IV.1)

is a reciprocal invariant. If the pI, are here regarded as
the operators i8/cjx"', S becomes an operator. A self-
reciprocal function F(x) is defined as a solution of the
eigenvalue equation

S(x, p)F(x) =st(x). (IU.2)

One can just as well regard the p& as numbers and the Q
as the operators iB/&pl, —Then it. follows from (IV.1)
that (IV.2) is still satisfied when F(x) is replaced
by p(p).

The property of self-reciprocity can also be expressed
by saying that P(x) is its own Fouri'er transform; i.e.,
for one pair of variables

S(x)= (2v-)
—' ~P(p)e—'"*dp. (IV.3)

This was indeed the definition of self-reciprocity sug-
gested by Landh and myself (3). It can be easily shown
that any solution of (IV.3) satisfies also (IV.2) for an
arbitrary invariant S(x, p) and vice versa. The same
holds for several pairs of variables x', pi, as long as the
geometry is euclidean, i.e., has a positive definite metric

Then the commutation laws for the amplitudes 0 are

I'~(p) {«'(p)«(p')~«(p')«'(p) }= ~~ &»' (III 26)

where the + sign holds for Bose-Einstein statistics, the
sign for Fermi-Dirac statistics and F& is defined by

(III.22) .
Then it follows by well-known methods that the

quantities e;(p) defined by (III.21) are integers. Further
it can be shown that E and the diferent components of
P~ are all commuting with one another.

These considerations show that for the most general
Lagrangian, which is linear in p, the field can be
quantized and therefore regarded as representing a
system of particles of diBerent kinds, distinguished by
their rest masses and not interacting with one another.

This is a vast extension of the ordinary theory and
therefore rather vague in regard to concrete physical
results. The next step will consist in contracting it again
by a restrictive condition which leads to definite pre-
dictions about the possible particles and their rest
masses.
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tensor g~~. For the case of quasi-euclidean, non-definite
metric of the relativistic space-time one has to replace
the Fourier transform of the time variable by a Laplace
transform. Therefore the formulation (IV.2) is more
convenient for many purposes.

Yet the formulation (IV.3) is important as it shows
that the function 5 is arbitrary; hence one can choose
the simplest relativistically and reciprocally invariant
function, namely the "metric-operator"

S=xgx"+pip". (IV.4)

Any eigenfunction of this S satisfies (IV.3), and all
solutions of (IV.3) can be obtained by solving the
Eq. (IV.2) with this S. These eigenfunctions represent
all possible self-reciprocal scalars, vectors, and tensors.

Using the notation introduced in the introduction,
one finds (IV.4) can be written

S=R+P (IV.5)

P = 0!y&2CE30!4=—6 CX&0!~0!~(X&~
4t

(IV.8)

a being the totally antisymmetric tensor. For this S the
matrix T is tv'eo by

2'= (1+iv)/(1+i)
The functions F have to satisfy the equation

(IV.9)

5 'SS=s, or SF=Ps, (IV.10)

where s is an eigensymbol depending only on y.
The proofs of these statements can be found in the

original paler, whar'e also th'e salutio'ns of (IV.2) a'nd

This is the generalization of relativity required by the
inconsistencies of the current theory. The metric in-
variant R, which is a number scalar in x space, is
replaced by the sum (IV.S) symmetric in x and p space,
the metric operator. For all situations where I' is small,
i.e., for macroscopic bodies, ordinary relativity holds.
But in atomic processes this is not true; the space-
metric is not independent of the momentum metric,
both together determine S.That the eigenfunctions of S
are the field operators F is a new feature for which no
analogy exists in ordinary relativity. This contention
can only be justified by its success: one has to determine
the solutions F and to see whether they provide an
explanation of the observable facts.

Before doing so the case of half-integral spin must be
considered. Here the symmetry condition (IV.1) must
be replaced by

S(x p) = T'S(p x)T -—(IV.6)

where T is a unitary operator not involving x" and pl„
and the reciprocal of P(x) is then TF(p)1 '. The
simplest possible S is

S=g+iy$, $= u;x', g= n'p;, (IV.7)

where n; (j = 1, 2, 3, 4) are Dirac's spin matrices and

(IV.10) are systematically determined. The results will
be given in the next section.

These functions P(p) can be directly used for writing
down the wave equations (III.4). But in order to build
up the complete theory one has to know the functions
F(p, p') of two sets of arguments; they are needed to
form the Lagrangian and then the energy-momentum
tensor. %e have first constructed these functions by
replacing the arguments p& in P(p) by the symmetrical
combinations —,'(pl, +p&'). This leads in fact to a formally
coherent theory but has several drawbacks: It leaves
the different Ii functions completely unconnected and
furnishes therefore no explanation for the actual occur-
rence in nature of seme of them, while others are not
found; and, what is still more decisive, it leads to wrong
numerical results.

The interconnection of the diGerent F-functions can
be obtained by replacing the eigenvalue Eq. (IV.2) by
an analogy to the Bloch equation of ordinary quantum
mechanics. Let z, i be another pair of conjugate vari-
ables satisfying

is zl =—1,

and determine F(p, s) from

S(x, p)F=zt F, f'=8/Bz.

Then one has solutions of the form

F=s S(p),

(IV.11)

(IV.12)

(IV.13)

where P satisfies (IV.2) with the eigenvalue s. One can
use also the variable a= —logz, then st = 8/Ba—and
(IV.12) reads

S(x, p)F= —(8/8 a)F (IV.14)

with solutions of the form

F=e-"S(p) (IV.15)

It is natural to assume that F(p, p') is self-reciprocal
with regard to both sets of variables pi and pi'. My
collaborator, Dr. Kai Chia Cheng, has suggested simple
products like

F(p, p') =~(p)~(p'). (IV 16)

If these are multiplied by the weight factors e "with
the same r, one has a. kind of statistical equilibrium
corresponding to a "sub-temperature" v = r ', where the
abundance of a special F depends on the numerical value
of the corresponding s (to be determined in the next
section). In this way the preponderance of the particles
with small s values can be understood. Yet it would be
premature to enter into this problem in detail.

The e'quation for the rest masses of quanta is now

F(p, p) = t.~(p)l'=0
and has the same roots s as P(p) =0, each of the latter
appearing twice. In case several F(p) have equal roots,
one can take F(p, p') to be a linear combination of
products (IV.16).This happens for instance for photons
(sero roo'ts), as will be seen in Se'ction VII.
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( g2

+p~p' [&=».
Dpi, Bp"

(V.1)

This is easily done by using 4-dimensional polar coordi-
nates I', 0, p, co and factorizing F into

F= Fp(P) Yi, (0, q, co), (V 2)

where I'~ is a 4-dimensional harmonic with the eigen-
values k(k+2), (k=0, 1, 2, . ). Then Pi, satisfies

V. DETERMINATION OF THE SELF-RECIPROCAL
FUNCTIONS F

For integral spin one has to solve the Eq. (IV.2) with
the simple function 5 given by (IV.4), or

angles 0, q, ~; the latter is a generalized spherical
harmonic

A= (L+4+2k) I'i, (V.7)

where V& is the ordinary harmonic.
The factor depending on g can best be written sep-

arately for the two eigenvalues &1 of p. For k&1 each
of these factors factorizes again into g~ and a polynomial
in g. The first set of equations for the rest masses is
therefore

g~=0, k=1, 2, 3, (V.S)

which represent obviously neutrinos, i.e., particles with
rest mass zero and spin 2. The polynomials lead to the
equations

d'5:i, 2 dt's, 1 ( s k(k+2) p-+— —-I 1——+ i
Pi =0. (V.3)

dP2 P dP 4( P P2

y —+1 ~ i' 0+2(g2)~ (g k 1)2L @+1(K2)—0
1: K IL i+1(~2) L i+2(~2) I

+(n+1)'L." +(a') =0
(V 9)

~kL 0+1(~2)—0 (V.S)

The theory predicts therefore the existence of photons
a=0 and of an inhnite number of mesons with integral
spin given by the roots of the associated I.aguerre
polynomials.

For half-integral spin the transformation of the Kq.
(IV.10) to polar coordinates with the solution of the
resulting differential equations is much more involved.
It can be effected by a method very similar to Dirac's
solution of his wave equation for the hydrogen atom, by
using the operator

L= in;nim", —m;i=x;pi xip; — (U..6)

The result is this. Each 5 function consists again of two
factors, one depending on g= ni,p", the other on the

400- ~0
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FIG. 1, Meson masses.

The solution of this eigenvalue problem (with the
boundary conditions that Fi,~O for P +~) are—

s= 2(2e—k), Fi, P~i'e ~"L——„~+'(P), (V.4)

where L„~(P) is the kth derivative of the Laguerre
polynomial L„(P)of order n ~&k+1 (associated Laguerre
polynomial).

According to (111.18) the rest masses of the possible
particles are given by the roots of the equation

The roots of these equations are the masses of an infinite
number of mesons with half-integral spin.

All functions f with the same k form a tensor of rank k
which operates on a tensorial density function.

Numerical values of the reduced rest masses a,
for integral and half-integral spin are contained in
Tables I and II, respectively, at the end of this paper.

VI. MESON MASSES

The reduced rest masses calculated above are inde-
pendent of any special assumptions. In order to reduce
them to ordinary masses and to compare them with ex-
perimental values, one has to identify one of the
theoretical particles with an actually observed one of
non-vanishing mass; if the reduced mass of the former is
~~ and- the actual mass of the latter p, ~, one obtains
a= k/b=h~i/pic

Now it has been seen that the theory accounts directly
for photons and neutrinos with vanishing rest mass,
which are useless for our purpose, and for a great many
other particles which are all of the same type and must
be obviously identified with mesons whose masses are
not very accurately known. It is true that among them
are, for high values of e and k, particles with very low
and very high masses; but none of these has any
distinguishing mark which allows the identification with
the electron and the nucleon, respectively, whose masses
are well known and could be used to fix the absolute
length u.

It is clear that these permanent particles which differ
. from the rest by their stability and abundance must be
explained in a different way. These considerations lead
most naturally back to the old and well-known assump-
tion that the mass of the electron (and also that of the
nucleon) is entirely due to electromagnetic self-energy.
While this hypothesis has met with insuperable diK-
culties when applied to ordinary Maxwellian electro-
dynamics it gives finite and reasonable results in the new
theory which will be sketched in the next sections. Here
these results will be anticipated.
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It follows from dimensional reasons that the mass of
the electron is given by

m= c /ac, (VI.1)
apart from a numerical factor of order unity. The exact
determination of this factor is of course an essential part
of the theory and will be treated later. It will be seen
that (VI.1) is almost correct.

If it is introduced into (II.4) one obtains for the actual
masses

p= (kc/c') ~m= 137 am. (VI.2)

Figure 1 shows meson masses computed from the ~

values of Table I.
In comparing these results with the experiments one is

confronted with the difficulty, that the experimental
results are not very precise. It appears to be settled that
the most stable meson, the p,-meson, has a mass very
near 200 m. That agrees well with the theoretical value
for the first particle (m, k)=(2, 0) of the series of
integral spin with the mass &2137 m=194 m, which
appears also as the first of the series of half-integral spin
for y = —1, (I, k) = (1, 0).

The measurements of the masses of the x-mesons
(which decay into p-mesons) are still disputed; the most
probable value p, /p„seems at present to be 1.35.There
are several theoretical particles which correspond ap-
proximately to this value. It seems to be quite possible
that the considerable scattering of the experimental
values is not only due to the difIiculty of measurement
but to actually diGerent particles being observed. I
prefer to refrain from a definite attempt of identification
until the theory is further developed in collaboration
with the experimentalists.

Although considerations about the meson masses have
first given us some confidence in the theory, I think now
that there is another feature of it which provides much
stronger evidence, namely the fact that all difficulties
connected with the divergence of the expressions for
self-energies and interactions (cross sections) disappear
without any artificial trick.

VII. THE ELECTROMAGNETIC FIELD

The following considerations are mainly due to Green
who soon will publish a detailed paper on the subject. I
can give here only a short sketch of his theory.

The electromagnetic field is described in the usual way
by the 4 vector potential Az(x); hence the statistical
operator is a tensor of the 2nd order

pP= -', A'(x)A i(x'), (VII.1)
and the function F(p, p') must therefore be also a tensor
of the second order. According to Cheng's formula
(IV.16) one has therefore to take a vectorial F(p); there
are only two of these, (e, k) = (2, 1) and (2, 0), and only
the first of these does not involve mesons coupled to the
photons. This set (2, 1) is in fact the combination with
the lowest s(n, k) = 2(2e—k), namely s(2, 1)= 6, which
leads to real (zero) rest masses, and should therefore be
the most important one.

e "p'Ai, =0. (VII.4)

If one expands the exponential factor and retains only
the first terms, one obtains Podolsky's equation men-
tioned in Section III:

(1—p') p'Ai =0.

This however leads to physically improbable conse-
quences, namely the existence of particles of rest mass
b/c (in ordinary units) which occur independently but
always associated with the electromagnetic field. This
difhculty disappears if the Eq. (VII.4) is accepted, since
exp( —p') =0 has no roots.

Equation (VII.2) has solutions representing plane
waves which do not differ from the classical solutions.
But it has also solutions with point singularities which
differ from the ordinary Coulombian expressions. If by
analogy with classical theory a current density 4-vector
j& is introduced one has instead of (VII.4)

e "'P'Ay=4m. ji,. (VII.5)

For a point charge at rest one has

ji——j&——j3——0, j 4 e8(r), ——(VII.6)

where r=x—xo and 5 is a Dirac symbolic function.
Using ordinary units the solution of (VII.S) for this

case, which can be easily obtained by Fourier trans-
formation, reads

where

c (ry
Ai ——A2 ——A3 ——0, A4 ——-Y] — [,

a Ea)'

1 1
Y(x)=— e *'4dx.

x (n.)' &0

(VII.7)

(VII.8)

This modification of Coulomb's law has already been
suggested by myself and published in collaboration with
Rumer (7) as long ago as 1931, and it appears later
sporadically in the literature, as a more or less arbitrary
assumption, while in the reciprocity theory it is a
necessity. The main features of this potential are these:
for x&)c it goes over in the Coulomb potential, for x—+0
it tends to the finite value A4~e/a(m)'* and it leads to a
finite static energy

m c'=-'(e'/a) Y(r/a)c(r)dr

= (e'/2a) Y(0)= (e'/2(m)&a). (VII.9)

The Lagrangian of the Maxwell Geld can be obtained
from Fp = p"p ~

—8pp p~. Hence the correct combination
of the self-reciprocal functions pie &"' is

~ "(p p')=c '""""(p"p' ~ "p-p-'). (V».2)

It can be supposed that by a gauge transformation the
relation

(VII.3)

is ensured (not as in the usual theory, as an expectation
value, but identically). Then the field equations are
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g=n"p&, j =ajp, A=a"AA, (VII.16)

is used, the 4 equations (VII.5) can be condensed into
one

e &'pA =4mj (VII.17)

(because p'= p"p&= p'). This quantity A will be used in
the following, as an abbreviation for the A~, even if the
treatment is classical and no spin matrices are used.

VIII. THE ELECTRON

The theory of the electron developed by Green is a
revival of old ideas in modern form; namely, that the
electron is a singularity in the electromagnetic field and
that its mass is purely electromagnetic. The early
attempts to achieve this end failed because of the infinite
self-energy of a point charge in a Maxwellian field.
Abraham's suggestion of a rigid electron was in contra-
diction to relativity. Other models of extended electrons
needed cohesive forces of non-electromagnetic origin.
Therefore modifications of Maxwell's equations were
suggested, first by Mie. A non-linear electrodynamics

But this is not the whole rest energy associated with a
charge e, in fact only about a third of the total; other
important contributions come from the interaction with
the radiation field, as will be seen in the next section.

The solution (VII.7) for a charge at rest can be
generalized for a moving charge by a Lorentz trans-
formation; the vector r= x—xo has to be replaced by

r v —v't
r= vX(rXv)+v — v '. (VII.10)

L1—(~'/c') 3'

The scalar invariant r =
~
r

~

can be expressed in terms of
the angular momentum of the charge about an origin in
space-time. The 6-vector angular momentum is defined

by

mpt=xgpP —x(pg', pg, ——ming/[1 —(v'/c') j&; (VII.11)

it consists of the two space vectors

m m/L1 (w /c )] (xXv),
( )n =mc/L1 —(I'/c') )*'(x—vt)1

and the square of its scalar is found to be

,'m~~m"=—n' m'= m—'c'r'. (VII.13)

The argument of the potentials for a moving charge is
therefore

(VII.14)

The solution of (VII.S) for a moving point charge is
then

A, = (c,/ac) v,/P —(~ /. )O'I (r). (V11.15)

A first step in the direction of quantum theory can be
made at once. It is well known that in Dirac's theory of
the electron the classical velocity vector has to be re-
placed by the anticommuting Dirac matrices 0.'. If the
notation (Eq. (IV.7))

~(FA 'A ")dQ, (VIII.3)

one finds mac'Ll —(v'/c') j'*; this is not the Lagrangian of
a moving mass mo but its negative. Hence, 'if one regards
not the A' but the position xo and velocity v of the
singularity as the unknown function, one has to take
—J' as the corresponding part of the Lagrangian. *

If A f is the total field its Lagrangian, as functional of
Af, is

Lf=-', 'I (FA~Af')dQ (VIII.4)

*The negative sign can be understood by remarking that, for a
given j the complete Lagrangian which leads to (VIII.2) is

i)(FA'A")-4' A'ldQ.

if j is eliminated with the help of (VIII.2) one obtains —J' whre
now again j can be regarded as the unknown.

proposed by myself and worked out in collaboration
with Infeld, was successful in the frame of classical
theory, but resisted all attempts to quantize it, just be-
cause of its non-linearity. The new theory based on the
principle of reciprocity is linear but preserves neverthe-
less the advantages of the non-linear theory, namely its
unitary character and the Rnite self-energy of a point
electron. I can give here only a brief outline.

Just as in the Born-Infeld theory one has two kinds of
field, one directly derived from the potentials

Ezi ——(E, B)= BA )/Bx"—BAg/Bx'
f'(—PpA, —p,Ap), (VIII.1)

the other Dz&=(D, H) obtained by multiplying this
(from the left) with exp( —p'). Then Maxwell's equation
holds in the usual form, and also the energy-momentum
tensor can be expressed in the ordinary way.

More important than this formal analogy is the fact
that the new theory is unitary. The charges are singu-
larities of the field and inseparable from the field. The
usual fiction that the electrons and the photons have an
independent existence must be abandoned. In fact
neither a set of photons nor a set of electrons is an
observable object by itself; the two only become ob-
servable by their interaction, and together form a com-
plex system whose internal processes are the objects of
experience. There is no essential difhculty in developing
the program in the frame of classical theory; but in

applying quantum theory some new features appear
which Green has worked out. The classical treatment
follows the lines of the ordinary Maxwellian theory as
closely as possible, the only diGerence being the ex-
ponential factor in F.

The proper field of the electron A' is defined by
(VII.15) and (VII.16);it is a special solution of (VII.17),
ol of

FA'=4~j, (VIII.2)

where j represents a moving charge. If one calculates
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and the Lagrangian of the interaction is
1

I-' = —
~p (F(A'At'yAtA"))dQ (.VIII.S)

The total field A( also satisfies (VIII.2), but is, of
course, a much more general solution; the di6'erence

A~—A'=A" (VIII.6)

is the pure radiation field. The total Lagrangian is

L= —L'+ L~+L'~; (VIII.7)

by simultaneous variation of A~ and of xp, v one obtains
the correct field equations and equations of motion. The
calculation gives for the latter

d( mpv
+eApt

/

dt & L1—(e'/c')]&

cj ( 1= —e —
~

A,&—-v. At ~, (VIII.8)axi' c

where the index 0 indicates that the function is to be
taken at the singularity xp. If one now replaces A~ by
A'+A" the contributions of the part A' can be worked
out explicitly. From (VII.7), (VII.8), and (VII.10), it is
seen that A' is an even function of i; hence its deriva-
tives on the right-hand side vanish for x=xp. On the
left-hand side one finds eA pt= 2mpv/g(1 —v'/c'). The
result is

d ( mv
+eAp"

I

dt E L1—(u'/c')]&

a ( 1= —.e —.
I

A4"——v. A" i, (VIII.9)
.cjx 4 c )

where

m= 3mp ——X(e'/ac), )i=
t 3/2(pr) &]=0.846. (VIII.10)

force, proportional to 8'v/BP, but also higher terms.
This is in contradiction to Dirac's classical theory of the
electron where he maintains that the Lorentz reaction
force is exact. Dirac's theory is an example of the so-
called "subtraction physics" which evades the diK-
culties of self-energy and similar problems by declaring
them as spurious, produced by unphysical terms in the
fundamental equations. I have always rejected this
attitude and regarded these difhculties as clues for a
deeper understanding of the ultimate laws. I hope that
the present theory will justify this attitude.

The quantum treatment of the electron leads to an
essential difhculty, namely an apparent contradiction
with Heisenberg s principle of uncertainty, as in the
expression of I.both coordinate xp and velocity v of the
singularity appear. Green has shown that this objection
can be met by a critical inspection of the meaning of the
formalism.

The practice of current quantum mechanics, which is
to replace the point singularity by a continuous charge
distribution f+n4$, where P is a solution of Dirac s
equation, could not possibly be right in the frame of the
unitary theory; for it would lead to the absurd conclu-
sion that the rest energy of the electron depended upon
the certainty with which its position is known. This
antimony is removed by the remark that one has to
distinguish between the intrinsic charge distribution of
the electron which is compact, and the probability of
finding its center xp in a given position: the latter is
small and uniformly distributed. The only reason that
this has not been emphasized before is that the diver-
gence of the self-energy of the electron made the dis-
tinction between the relative distribution of charge
around the center and the position of the center ap-
parently superfluous.

The formal procedure consists in forming the operator
C = A(r)$(xp) and using this iii the same way as A be-
fore. The current has to be defined by the relativistic
generalization of

Equation (VIII.9) is equivalent to Lorentz' equation of
motion.

j=eb(x —xp) P(xp). (VIII.12)

It can then be shown that current quantum electro-
dynamics remains almost unchanged, with only one
important alteration: A factor

d mv ( . 1
=e~ E"+—(vn B") ~, (VIII.11)

dt L1—(u'/c') ]& & c )
where E", B" are the field vectors belonging to the
radiation potential A'.

Equation (VIII.10) shows that indeed two. thirds of
the mass are due to the interaction with the field. The
numerical factor ) is rather near to unity. The quantum
treatment will add another small term (transversal self-
energy); there may be further corrections due to the
interaction of the electron with mesons.

This quasi-stationary treatment neglects the reaction
of the radia, tion produced by the acceleration of the
electron. Green has worked it out in detail and found in
first approximation the well-known I.,orents reaction

exp{(k pp) /Ep' —O'I/2b' Ep'=m'c'+pp' (VIII.13)

has to be added to the matrix elements of the energy of
interaction between electrons and photons, namely
those matrix elements which represent the emission of a
photon with momentum k by an electron with mo-
mentum pp, or the absorption of a photon with momen-
tum k by an electron with momentum pp+k.

This "cutting off" factor (VIII.13) is relativistically
invariant and removes the infinities appearing in pertur-
bation terms, e.g. , the transverse self-energy, but does
not affect the high energy tail of actual scattering
processes. For instance, the perturbation term for the
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transverse self-energy is the product of two matrix

elements, one corresponding to the emission p—&p+k,
k

the other to the absorption p+k~p; each contribute the
factor expL —k'/2b'j. Instead of the well-known (di-
vergent) expression e'(srhcm) 'J'kdk one has therefore
the convergent integral

for large kp,

kp'
2bs=-

(m'c'+ kp' 2b'L1+ (m'c'/kp')]

1 (mcg

g2 00

expt —k'/b'jkdk
hcm ~,

e'b' 137
mc'. (VIII.14)

2xkcm 2m

This is a rather large value; if one takes into account the
theory of holes, one obtains, following Weisskopf, the
small value

e'mc

2A

dk 2mc'
e pL

—k'/b'$ —=—.(VIII.15)
k 137

~p+ kp.

If the initial momentum of the electron y is small, its
final momentum is kp, when this is introduced for pp in
(VIII.13), together with kp for k, the exponent becomes,

TABLE I.
s=2(2e —k)

0

In a similar way all perturbation terms corresponding to
"roundabout" processes in Heitler's theory become
finite and must not be discarded, as Heitler proposes.

On the other hand, one can see that the Klein-Xishina
formula is hardly aGected by the cutting-o6 factor, as
for the processes corresponding to the perturbation
matrix elements the exponent in (VIII.13) becomes zero
or at least extremely small (137) P.

For instance, one of the intermediate processes in the
scattering mechanism is the absorption of the incident
photon with momentum kp,

2(137)'

hence the cut-oG factor is practically unity.
It seems to me strange that this relativistic cutting-oG

factor has not been guessed before by one of the many
physicists who have followed the subtractive procedures.
I think it satisfactory that it comes out of the new .
theory without any arbitrary assumption, and I regard
this as a strong argument in favor of the principle of
reciprocity.

IX. THE NUCLEON

The question now arises how the other type of perma-
nent particles, the nucleons (protons, neutrons), are to
be fitted into the theory. Years ago, when working on
the non-linear electrodynamics, I published a note in
Xatgre (2) suggesting that the nucleon may be ex-
plained as a singularity of the field with angular mo-
mentum; the actual rotation with spin 1 combined with
the intrinsic spin 2 in the opposite direction give the
resultant spin ~„while the magnetic moments (almost)
compensate another, and the correct order of the mass is
obtained by assuming the self-energy to be due to a
magnetic moment just equal one Bohr magneton

pe = (eh/2mc) = ,'(hc/e'—)ea= ,'13/ea -(IX..1)

However, it turned out to be impossible to find a
rigorous solution of the non-linear field equations corre-
sponding to this state.

In the frame of the present theory this explanation of
the nucleon can be obtained by a slight modification of
the equations for the electron. The wave function f(xp)
for the center of the electron, introduced in (VIII.12),
satisles, of course, Dirac's equation "np& tom pcwhich
can be written (nPPi, +mc)$=2mcg. Hence the expres-
sion (VIII.12) for the current can also be written in the
fol m

8
10
12

0
0, 1.41

0
0, 1.73
0, 2.13, 2.17.

j= (e/2mc) b(r) ( Pnk+m)Pc(I.X.2)

Here the factors 8(r) and (n"p&+mc) actually do not
commute. It is suggestive to examine the consequences
of reversing the order of these factors, so that the current
becomes

3
2
1
0

4
3
2

0

10
12
14
16

12
14
16
18
20

0
0, 2.0
0, 1.41,
0, 0.97

0
0, 2.24
0, 1.66,
0, 1.20,
0, 0.86,

2.45
1.82, 2.78.

2.70
2.07, 3.06
1.60, 2.39. 3.31.

j eb(r)=+i(eh/2mc) np(8/Bx") p(r). (IX.3)

The singularity consists now of two parts, one being the
centrally symmetric one of a point charge, the other the
axially symmetric one of a dipole with the moment p&.
The solutions of the 6eld equation for the two singu-
larities are additive. That of the dipole

j =ilseng, (8/Bx') b(r) (IX.4)
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leads to the self-energy

Mc'= $3fsn/4(sr) &a'j, (IX.5)

TABLE IIa.
s+ = &2(rs —h —1)&

k n —3

M 3 fleer
' 1

16(~)&a'rrs'c') ' 16(~)» Ee')

3e'k'

3(137)' 1 1986

16(sr)& )~'

which agrees with that given in my paper quoted above
apart from the numerical factor. If one substitutes in
(IX.5) the value of fsn in terms of srs and then mrs= Xe /ac'
one finds 1

0, 1.30
0, 1.56
0, 1.79

k=n-1

2
0, 2.30
0, 2.56
0, 2.79

s+ ~2+2

1.41, 2.75
0, 1.67, 2.99
0, 1.91, 3.24

TABLE IIb.
s =W2(rs+1)&

k=n —2

s -2+2

0.71, 1.89
0, 1.06, 2.23
0, 1.29, 2.47

This shows that the result is very sensitive with respect
to the numerical factor ) . The ) -value necessary to give
the correct experimental ratio M/ere=1846 is 1.025.
This is in good agreement with the calculation of meson
masses, but considerably larger than the theoretical
factor (VIII.10), namely 0.846. The discrepancy has
still to be cleared up.

All these considerations are preliminary; they are
intended to show that the simultaneous existence of two
elementary particles with so very diferent masses as the
electron and the nucleon can well be understood from
the same mechanism. It cannot be expected that a
primitive theory like that suggested here could give
exact numerical results. In a comprehensive theory of
elementary particles like that which we propose, no
particle can be separated from the rest. The self-energy
of each particle depends on its interaction with all the
others, and not, as we have assumed here, on that of one
other type. In particular the nucleons are known to act
on one another strongly with meson forces; hence one
should expect that a considerable part of their self-
energy must be due to this interaction, The same argu-
ment shows that the meson masses as given in Section
VI can be.only approximations as there will be interac-
tions between them amongst another and the photons.
Definite numerical results can therefore be expected
only from the completed theory. But this is still far from
being achieved. The most conspicuous gap is connected
with the fine structure constant or the coupling factor
between the singularities and the photon field. Similar
factors determine the interactions of nucleons and
mesons (mesonic charges). It is clear that these coupling
constants must all be treated simultaneously, for one
can hardly hope for an explanation of their absolute
values until one has a theory of their ratios (e.g. , the
mesonic coupling factor is about 10 times that of the
electronic one). The approach to this question seems to
us to lie in considerations as indicated at the end of
Section IV, where the different 5 functions are related to
one another by weight factors expt —s(rs, k) o), (s(ss, h)
=2(2n —h) for integral spin). It seems to be not im-

possible that e =s may be the fundamental coupling
constant, all others being powers of it. My collaborator,
Dr. Cheng, is studying this problem in detail.

1 2.82
2 3.46
3 4.00
4 4.48
5 4.90

1.41
0, 1.73
0, 2
0, 2.24
0, 2.45

-3.46—4.00-4.48—4.90

0 3.46 0.94, 2.38 —3.46 1.57
0 4,00 0, 1.21, 2.67 —4.00 0, 1.87
0 4.48 0, 1.46, 2.91 -4.48 0, 2.12
0 4.90 0, 1.68, 3.10 —4.90 0, 2.33
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X. CONCLUSION

Whether the theory proposed here is the solution of
the present di@.culties in physics can only be seen by
developing all its consequences. One result however can
be claimed already:

It is possible to modify the accepted laws in such a
way that they form a logically coherent system without
infinities.


