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". . . the energy tensor catt be regarded ointly as a provisiortal mearts of representirtg matter.
In reality, matter cortsists of electrically charged particles

INTRODUCTION AND SUMMARY

ANY of our present hopes to understand the
behavior of matter and energy rely upon the

notion of field. Consequently it may be appropriate to
re-examine critically the origin and use of this century-
old concept. This. idea developed in the study of classical
electromagnetism at a time when it was considered
appropriate to treat electric charge as a continuous
substance. It is not obvious that general acceptance in
the early 1800's of the principle of the atomicity of
electric charge would have led to the field concept in
its present form. Is it after all essential in classical field

theory to require that a particle act upon itself? Of
quantum theories of fields and their possibilities we

hardly know enough to demand on quantum grounds
that such a direct self-interaction should exist. Quantum
theory defines those possibilities of measurement which
are consistent with the principle of complementaeity,
but the measuring devices themselves after all neces-
sarily make use of classical concepts to specify the quan-
tity measured. 4 For this reason it is appropriate to begin
a re-analysis of the field concept by returning to classical
electrodynamics. %e therefore propose here to go back
to the great basic problem of classical physics —the
motion of a system of charged particles under the
influence of electromagnetic forces—and to inquire
what description of the interactions and motions is
possible'which is at the same time (1) well defined

(2) economical in postulates and (3) in agreement with
experience.

%'e conclude that these requirements are satisfied by
the theory of action at a distance of Schwarzschild, '
Tetrode, ' and Fokker. ' In this description of nature no
direct use is made of the notion of field. Each particle
moves in compliance with the principle of stationary

' Part II of a critique of classical field theory of which another
part here referred to as III appeared in Rev. Mod. Phys. 17, 157
(1945). For related discussion see also R. P. Feynman, Phys. Rev.
74, 1430 (1948).

2 Now at Cornell University, Ithaca, N. Y.
A. Einstein, The Meattiwg of Relativity (Princeton University

Press, Princeton, New Jersey, 1945},second edition, p. 82.
4 See in this connection Niels Bohr, Atomic Theory and the

Description of Nature (Cambridge University Press, 1934) and
chapter by Bohr in Einstein, of the Living Philosophers Seri:s
(Northwestern University, scheduled for 1949).' K. Schwarzschild, Gottinger Nachrichten, 128, 132 (1903}.' H. Tetrode, Zeits. f. Physik 10, 317 (1922).

'A. D. Fokker, Zeits. f. Physik 58, 386 (1929); Physica 9, 33
(1929}and 12, 145 (1932).
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action, '

P—m, c I ( da„—dao)l+ P (e,es/c)
a a(b

r

X h(ub„abl') (da,db") =extremum. (1)

All of mechanics and electrodynamics is contained in
this single variational principle.

However unfamiliar this direct interparticle treat-
ment compared to the electrodynamics of Maxwell and
Lorentz, it deals with the same problems, talks about
the same charges, considers the interaction of the same
current elements, obtains the same capacities, predicts
the same inductances and yields the same physical
conclusions. Consequently action at a distance must
have a close connection with field theory. But never
does it consider the action of a charge on itself. The
theory of direct interparticle action is equivalent, not

' Here the letters a, b. denote the respective particles.
Particle a has in c.g.s. units a mass of m grams, a charge of e,
franklins (e.s.u.), and has at a given instant the coordinates
a'= ai
a'=a2 the three space coordinates, measured in cm.
a =u3
a'= —a4, a quantity which has also the dimensions of a length,

and which represents the product of the time coordi-
nate by the velocity of light, c (ct= "cotime"}.

(Note: In comparing formulas here with those in the literature,
note that not all authors use the same convention about signs of
covariant and contravariant .components. )

The expression ub is an abbreviation for the vector, a~-b~.
Greek indices indicate places where a summation is understood
to be carried out over the four values of a given label. The argu-
ment ub„ab" of the delta-function thus vanishes when and only
when the locations of the two particles in space-time can be
connected by a light ray. Here the delta-function b(x) is the
usual symbolic operator defined by the conditions B(x)=0 when
x/0 and J' ~b(x)dx= 1. In the evaluation of the action, J, from
(1), the world lines of the several particles are considered to be
known for all time; i.e., the coordinates u are taken to be given
functions of a single parameter, a, which increases monotonically
along the world line of the first particle; likewise for b, c, etc.
An arbitrary assumed motion of the particles is not in general in
accord with the variation principle: a small change of the first
order, Bu (a), Bb (b), ~ in the world lines of the particles (this
change here being limited for simplicity to any finite interval of
time, and the length of this time interval later being increased
without limit) produces in general a non-zero variation of the.
first order, bJ, in J itself. Only if all such first order variations
any from the originally assumed motion produce no first order
change in J is that originally assumed motion considered to
satisfy the variational principle. It is such motions which are in
this article concluded to be in agreement with experience.
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FIG. 1. The paradox of advanced effects. Does the pellet strike
X at 6 p.m. ? If so, the advanced field from A sets 8 in motion at
1 p.m. , and 8 moves A at 8 a.m. Thereby the shutter TS is set
in motion and the path of the pellet is blocked, so it cannot
strike X at 6 p.m. If it does not strike X at 6 p. m. , then its path
is not blocked at 5.59 p.m. via this chain of actions, and therefore
the pellet ought to strike X.

to the usual field theory, but to a modified or adjgnct
field theory, in which

(1) the motion of a given particle is determined by the sum of
the fields produced by—or adjunct to—every particle other than
the given particle.

(2) the field adjunct to a given particle is uniquely determined
by the motion of that particle, and is given by half the retarded
plus half the advanced solution of the field equations of Maxwell
for the point charge in question.

This description of nature differs from that given by
the usual field theory in three respects:

(1) There is no such concept as "the" field, an independent
entity with degrees of freedom of its own.

(2) There is no action of an elementary charge upon itself and
consequently no problem of an infinity in the energy of the
electromagnetic field.

(3) The symmetry between past and future in the prescription
for the 6elds is not a mere logical possibility, as in the usual
theory, but a postulational requirement.

There is no circumstance of classical electrodynamics
which compels us to accept the three excluded features
of the usual field theory. Indeed, as regards the question
of the action of a particle upon itself, there never was
a consistent theory, but only the hope of a theory. It
is therefore appropriate now and hereafter to formulate
classical electrodynamics in terms of the adjunct field
theory or the theory of direct interparticle action. The
agreement of these two descriptions of nature with each
other and. with experience assures us that we arrive in
this way at the natural and self consistent -generalization
of Newtonian mechanics to the four dimens-ional space of
Lorenls and Einstein.

It is easy to see why no unified presentation of
classical electrodynamics along these lines has yet been
given, though the elements for such a description are
all present in isolated form in the literature. The
development of electromagnetic theory came before the
era of relativity. Most minds were not prepared for the
requirement that interactions should be propagated
with a certain characteristic speed, still less for the
possibility of both advanced and retarded interactions.
Newtonian instantaneous action at a distance with its
century and a half of successes seemed the natural

framework about which to construct a description o&

electromagnetism. Attempt after attempt failed. ' And
unfortunately uncompleted was the work of Gauss,
who wrote to Weber on the 19th of March, 1845: "I
would doubtless have published my researches long
since were it not that at the time I gave them up I had
failed to find what I regarded as the keystone, .Vil actin
reputans si quid superesset agendum: namely, the deriva-
tion of the additional forces—to be added to the
interaction of electrical charges at rest, when they
are both in motion —from an action which is propagated
not instantaneously but in time as is the case with
light. ""These failures and the final success via the
apparently quite different concept of field were taken
by physicists generally as convincing arguments against
electromagnetic action at a distance.

Field theory taught gradually and over seven decades
difficult lessons about constancy of light velocity, about
relativity of space and time, about advanced and
retarded forces, and in the end made possible by this
circuitous route the theory of direct interparticle
interaction which Gauss had hoped to achieve in one
leap. On this route and historically important was
I.ienard" and Wiechert's" derivation from the equations
of Maxwell of an expression for the elementary field
generated by a point charge in an arbitrary state of
motion. With this expression as starting point Schwarzs-
child arrived at a law of force between two point charges
which made no reference to field quantities. Developed
without benefit of the concept of relativity, and
expressed in the inconvenient notation of the prerela-
tivistic period, his equations of motion made no appeal
to the physicists of the time. After the advent of
relativity Schwarzschild s results were rederived inde-
pendently by Tetrode and Fokker. These results are
most conveniently summarized in Fokker's principle
of stationary action of Eq. (1).

To investigate the consistency of the Schwarzschild-
Tetrode-Fokker theory of direct interparticle inter-
action and its relation to field theory, we have first to

'For a stimulating and instructive if not always objective
account of early researches on field theory and action at a distance
see A. O'Rahilly, Electromagnetics (Longmans, Green and Com-
pany, New York (1938)). See also J. J. Thomson, Report of the
British Assn. for the Adv. of Science for 1885, p. 97; J. C. Maxwell,
Electricity and Magnetism (Oxford University Press, London,
1892), third edition, Chapter 23); R. Reif and A, Sommerfeld,
EncyclopKdie der Math. Wiss. 5, Part 2, Section 12 (1902). A
recent very brief account has been given by H. J. Groenewold,
report on Puntladingen en stralingsveld, Ned. Nat. Ver. , Amster-
dam (May 1947). M. Schonberg regards field and direct action
not as two equivalent representations of the same force, but as
two different parts of the total force: Phys. Rev. 74, 738 (1948);
Sum. Bras. Math. 1, Nos. 5 and 6 (1946); J. L. Lopes and M.
Schonberg, Phys. Rev. 67, 122 (1945)."C.F. Gauss, 8'erke 5, 629 (1867).

"A. Lienard, L'Eclairage Electrique 16, pp. 5, 53, 106 (1898)."E. Wiechert, Archives Neerland (2) 5, 549 (1900); Ann. d
Physik 4, 676 (1901).Compare these derivations in prerelativistic
notation with that given for example by W. Heitler, The Quantum
Theory of Radiation (Oxford University Press, New York, 1944),
second edition, p. 19, or A. Sommerfeld, Ann. d. Physik BB, 668
(1910).
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examine in the next section the paradox of advanced
interactions. In the following section is recalled the
derivation of the equations of motion from the variation.
principle. Next these equations of motion are shown to
satisfy the principle of action and reaction as generalized
to the non-instantaneous forces of a relativistic theory
of action at a distance. In a subsequent section the
corresponding formulation of the laws of conservation
of energy and momentum is given. Finally the con-
nection is established between these conservation laws
and the field-theoretic description of a stress-energy
tensor defined throughout space and time.

THE PARADOX OF ADVANCED ACTIONS

The greatest conceptual difficulty presented by the
theory of direct interparticle interaction is the circum-
stance that it associates with the retarded action of a
on b, for example, an advanced action of b on a. A
description employing retarded forces alone would
violate the law of action and reaction or, in mathe-
matical terms, could not be derived from a single
principle of stationary action.

Advanced actions appear to conflict both with
experience and with elementary notions of causality.
Experience refers not to the simple case of two charges,
however, but to a universe containing a very large
number of particles. In the limiting case of a universe
in which all electromagnetic disturbances are ultimately
absorbed it may be shown' that the advanced fields
combine in such a way as to make it appear —except for
the phenomenon of radiative reaction —that each
particle generates only the usual and well-verified
retarded field. It is only necessary to make the natural
postulate that we live in such a completely absorbing
universe to escape the apparent contradiction between
advanced potentials and observation.

In a universe consisting of a limited number of
charged particles advanced effects occur explicitly. It
is no objection if the character of physics under such
idealized conditions conflicts with our experience. It is
only required that the description should be logically
self-consistent. In particular in analyzing the behavior
of an idealized universe containing only a few particles
we cannot introduce the human element as we know it
into the systems under study. To do so would be to
assume tacitly the possibility of a clean cut separation
between the effects of past and future. This possibility
is denied in a description of nature in which both
advanced and retarded effects occur explicitly.

The apparent conflict with causality begins with the
thought: If the present motion of u is affected by the
future motion of b, then the observation of u attributes
a certain inevitability to the motion of b. Is not this
conclusion in direct conflict with our recognized ability
to influence the future motion of bP

All esseritial elements of the general paradox appear
in the following idealized example: Charged particles u
and b are located in otherwise charge-free space at a

distance of 5 light-hours. A clockwork mechanism is
set to accelerate a at 6 p.m. Thereby b will be affected,
not only at 11 p.m. via retarded effects, but also at
1 p.m. via advanced forces. This afternoon motion will
cause u to suffer a premonitory movement at 8 a.m.
Seeing this motion in the morning, we conclude the
clockwork will go off in the evening. We return to the
scene a few seconds before 6 p.m. and block the
clockwork from acting on a. But then why did u move
in the morning?

To formulate the paradox acceptably, we have to
eliminate human intervention. We therefore introduce

T1QN

HENCE
R AT 5.59PQ

01SPLAGEMENT
OF SHUTTER
AT' 5.59 PM

TTER OPEN
,59 PM

SPEED QF MOYlNG SHUTTER GURING CAY

FIG. 2. Analysis and resolution of the paradox of advanced
eftects. The action of the shutter on the pellet —the interaction
of past and future —is continuous (dashed line in diagram) and
the curves of action and reaction cross. See text for physical
description of solution.

a mechanism which saves charge u from a blow at
6 p.m. only if this particle performs the expected
movement at 8 a.m. (Fig. 1). Our dilemma now is this:
Is a hit in the evening or is it not. If it is, then it
suffered a premonitory displacement at 8 a.m. which
cut off the blow, so u is rot struck at 6 p.m. I If it is
not bumped at 6 p.m. there is no morning movement
to cut o6 the blow and so in the evening a is jolted~

To resolve, we divide the problem into two parts:
effect of past of u upon its future, and of future upon
past. The two corresponding curves in Fig. 2 do not
cross. e have no solution, because the action of the
shutter on the pellet, of the future on the past, has been
assumed discontinuous in character.

The paradox, and the case it presents against ad-
vanced potentials, evidently depends on the postulate
that discontinuous forces can exist in nature. From a
physical point of view we are led to make just the
contrary assumption, that the influence of the future
upon the past depends in a continuous manner upon
the future configuration.

Our general assumption about continuity is explicitly
verified in the present case. The action of shutter on
pellet is not discontinuous. The pellet will strike the
point S a glancing blow if the shutter lies only part way
across its path (dashed curve in Fig. 2).

Of the problem of influence of future upon past, and
past upon future, we now have in Fig. 2 a self-consistent
solution: Charge u by late afternoon has moved a
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very slight distance athwart the path of the pellet.
Thus one second before 6 p.m. it receives a glancing
blow in the counter-clockwise sense and at 6 p.m.
a stronger acceleration in the clockwise direction. The
accelerations received by a at these two moments
are by electromagnetic interaction transmitted in re-
duced measure to b at 1 p.m. and back from b in yet
greater attenuation to a. Thus this particle receives
one second before 8 a.m. a certain counter-clockwise
impulse and at 8 a.m. an opposite impulse. The net
rotational momentum imparted to the lever is clock-
wise. It carries the point S in the course of 10 hours
the necessary distance across the path of the pellet.
The chain of action and reaction is completed. The
paradox is resolved.

Generalizing, we conclude advanced and retarded
interactions give a description of nature logically as
acceptable and physically as completely deterministic
as the Newtonian scheme of mechanics. In both forms
of dynamics the distinction between cause and effect is
pointless. With deterministic equations to describe the
event, one can say: the stone hits the ground because
it was dropped from a height; equally well: the stone
fell from a height because it was going to hit the ground.

The distinction between Newtonian and relativistic
mechanics is one of detail —instantaneous interactions
nersls forces unconfined to a single plane in space time.
The interrelations between the world lines are more
complicated than those of Newtonian mechanics, but
just as definite. There a well-defined division of past
and present was possible; here these divisions of time
are inextricably mixed.

EQUATIONS OF MOTION

Advanced and retarded forces being accepted on
equal footing in the description of nature, we now
reproduce the derivation from Fokker's action principle
of equations of motion which contain .them both. Let
the world line of a typical particle .a be altered from
a'"(a) to a (a)+la (a). Let the abbreviation be intro-
duced,

limits where the variations bc"' vanish,

8J= dagda (a) I m—,c(d/da)La-'/( a—'a")'3
m

+(e./c) P L(aA, &»/aa-) —(aA„t»/aa )ja '}. (3)
b&a

The condition that 5J be zero to the first order for
arbitrary 6a is the vanishing of the curly bracket in
(3) for all four values of m, whence result the four
components of the equation of motion for particle a.
Instead of expressing the motion in terms of the arbi-
trary parameter a, introduce a new parameter, n= n(a),
the "proper cotime, " defined in terms of a up to an
unimportant additive constant by the equation do./da
= (—a.'a"')& and denote by dots derivatives with
respect to the proper cotime. Introduce also the
abbreviation

F „tb~(x) =RA„tb~(x)/Bx —BA tb'(x)/8x" (4)

(field at point x due to b)." Then the four-vector
eqtbatioe of motion takes a form,

m„c'a„=e.P F,'"(a)a',
bpa

identical with that of Lorentz, with the following
exceptions: self-actions are explicitly excluded; no fields
act except those adjunct to the other particles; each
such adjunct field is uniquely determined by the
prescription of Eqs. (2) and (4).

Now we come to the well known proof that each
adjunct field satisfies Maxwell's equations when for
charge and current are introduced the appropriate
expressions for the given particles. We employ Dirac's
identity'4

(8'/&x„&x&) &(xb„xb")= 4~&(xi b,)b(—xg b~)— —
Xb(x,—b,)b(x4 —b4), (6)

multiply both sides by db (P) = b, (P)dP, integrate with
respect: to p from —~ to +bo, and conclude that
A &"(x) satisfies the equation

A„,&b'(x) = eb b(xb„xb")db (b) Here
(ct'/Bx„Bx")A, b~(x) = —4mj t '(x).

(vector potential of particle b at point x). Also. denote j„,&»(x) =eb ~ b(x& b, )h(x& b&)— —
by a '(a) the derivative da™(a)/da. Then the. change
in action produced by the alteratiop. ..of the world-line
of 8 is

5J=m c Ia„'(ba")'/( —a„'a"')1}da

is ao abbreviation for the density-current four-vector
at point x due to particle b, an obviously singular
quantity, obeying certain evident conservation rela-

+b 2 (e-/c) ~I A. '»(a)a"'(a)da,
b&a

Il

or.,:by-partial. integration, and dropping terms at the

' The. electric field E, is Fy4= —F4I and the magnetic field H
is F23= —F32. the vector potential A is A'=AI and the scalar
potential is A'= —A4, Likewise in Eq. (8) j'= —j4 represents the
charge density in franklins (e.s.u.)/cm' and j'=j& gives (1/c)
times (x-component of the charge Qux in franklins/cm~ sec.).'. P. A; M. Dirac, Proc. Roy. Sec. London. A167., 148 (1938).
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tions. The vector potential (2), in addition to satisfying
the inhomogeneous wave equation (6), has a four-
dimensional divergence which vanishes:

(4t!Bx„)A„ib&(x)=eb 8'(xb„xb")2xb&b„dp

=2ebb(xb„xb") =0. (9)

R"ib&(x) = ebb /b&bx„, (12)

evaluated at that point on the world line of b which
intersects the light cone drawn from the point of
observation into the past:

xb„xb~=0; x4& b4, (13)

and S similarly represents the advanced potential.
By way of illustration of these results in familiar

cases consider first the case of a point charge, b, at rest
at the origin. Then retarded and advanced fields are
identical, all components of the four-potential vanish
except the last, b'= d(cotime)/d(proper cotime) = 1,
bx4= b4 —x4= x'—b'= elapsed cotime = distance to point
of observation=r, and the scalar potential has the
familiar value eb/r. Next, in the case of a slowly moving
point charge, it similarly follows that A = eb(b~/2r)„&
+eb(b /2r), q If this poi.nt charge is at the same
time being accelerated, then the derived electric 6eld
has at large distances the value F-= —eb(b~/2r) „b—eb(b~/2r), q, where b~ is the component of the three-
vector b perpendicular to the line r. This result refers
only to the field of the particle in question. In the
idealized case of a universe containing charged particles
sufFicient in number to absorb all electromagnetic
disturbances, the advanced fields of the particles of the
absorber will combine with the given 6eld to produce
the full retarded field of experience, —eb(b~/r)„&, as
shown in III. As a final example consider a fixed linear

%e differentiate this zero divergence with respect to x
and subtract from it (7), obtaining the field equations

i&F„,„&b&(X)/BX„=4&rj „, (10)

equivalent to the usual relations divE=4xp and curlII
=E/c+4+J, /C. The other pair of Maxwell's equa-
tions follow identically from the definition (4) of the
Ii's in terms of the A' s.

The fields (2) are distinguished from all other solu-
tions of Maxwell's equations by being half the sum of
the advanced and retarded Lienard-%iechert potentials
of particle b:

db /dP
A "&(x)=eb 8(xb,xb")d(xb, xb&)

~ d(xb„xb )/dP

=(1/2)R &b&(x)+(1/2)S &b&(x).

Here, for example, E. represents the retarded potential

A"(x) = eJ' b[r'(y) (ct—s4(y) k—ce/i)27—

Xdk(ds (y)/dp)dy

i ds~(p)/cr(y) for m=1, 2, 3

e) dk/r for m=4.

Here r(y) is the magnitude of the vector x(y), y(y), s(y)
which runs from the point y of the curve to the point.
of observation. The scalar potential of Eq. (15) will
normally be compensated wholly or in part by contri-
butions from opposite charges at rest and need not be
considered here. From the vector potential follows an
expression for the magnetic fieM

II= curlA =i~ (ds&&r)/cr',

identical with that due to Ampere.
To go further in deriving well known results would be

pointless. Adequate textbooks exist. They treat well
defined problems of electromagnetism, where there is
no compelling reason to consider a particle to act on
itself. Thus all their analyses are immediately trans-
latable into terms of the present modified. or adjlnct
fbeld theory. However, this point of view is mathemati-
cally identical with that of action at a distance. Conse-
quently the theory of direct interparticle action, far
from attempting to replace 6eld theory, joins with field
theory to provide the science of electromagnetism with
additional techniques of mathematical. analysis and to
facilitate deeper physical insight. The rest of this
article may illustrate how the two points of view join
hands to elucidate in four-dimensional mechanics the
principle of action and reaction and the laws of conser-
vation of momentum and energy.

ACTION AND REACTION

Laws of conservation of angular momentum, energy
and linear momentum are well known to exist in any

conductor past any point of which flow per second i/e
particles of charge e. The interval of cotime between
the kth and the (k+1)st particle is ce/i. The coordi-
nates of the kth particle are

k (y)=s"(y) (rrb=1, 2, 3)
k4(y) =s4(y)+kce/i (k= —~, ,

—1, 0, 1, ) (14)

where s (p) is the parametric representation of the
curve of the wire. The four-potential at a point of
observation an appreciable distance from the wire is
obtained by summing over all 'the particles or equiva-
lently, because of the close spacing of the charges, by
integrating over k:
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theory for which the equations of motion are derivable
from an action principle which is invariant with respect
to rotation, translation, or displacement of the time
coordinate. " Thus Pokker" has derived an energy-
momentum conservation principle for an idealized
situation in which there are only two particles, 'of which
u acts on b via purely retarded forces. The present
treatment is the natural generalization of Fokker's
analysis to the case of a theory which is symmetric
between every pair of particles and which is based on
the action principle (1). It will be sufhcient to prove
the conservation law for a single pair of particles in
order to see the corresponding result for a system of
particles.

For the typical particle a let the four-vector of energy
and comomentum be denoted by

G'=6~ three space components of
mcv(1 —n'/c')~= G'=G~ the kinetic comomentum

G'= G&. (velocity of light times
kinetic momentum: ex-
pressible in energy units).

mc'(1 —v'/c')~=G'= —G4, kinetic energy plus rest-
mass energy.

Then the change in kinetic comomentum and energy
in the interval of proper cotime, dn, on account of the
action of particle b follows directly from the equations
of motion (5) and the expressions (4) and (2) for the
force coefFicients:

dG '&(n) =m c'a dn=e, ebdal'

(8/cja") b„(ct/Ba") —b b(ab„ab")dP. (17)

%e carry out the differentiations with respect to the
coordinates a and add to the result the following zero
quantity

e,ebda (d/dP) 8 (ab„ab ")dP,

thus finding for the impulse

P~00

dG &'&(n)=2e,eb I b'(ab„ab")

X(ab da"db„db da"ab„da d—b"ab„). (19)—

In this expression the integrand is changed in sign but
unaltered in value by an interchange of the roles of
particles a and b.

To the result just obtained we give the following
obvious interpretation:

(1) The right hand side of (19), after removal of the integral
sign, represents in terms of the symbolic delta-function the

'5 E. Noether, Gottinger Nachrichten, Math. Phys. Klasse. 235
(1918):E. 'Bessel-Hagen, Math. Ann. 84, 258 {1921).

"A. D. Fokker, Zeits. f. Physik 58, 386 (1929).

ENERGY AND MOMENTUM OF INTERACTION

Considering two isolated particles a and b, we
immediately conclude from the law of action and
reaction as just stated the constancy in time of the
total energy and comomentum four nector-

G (n, P) =m.c'a„(n)+mbc'b„(P)

00 p00 pP
+2e.eb — ' + b'(ab„ab )J. . „J

(ab dal'db„db dal"ab—„da db~ab—,) = (constant) .
(20)

In the case of more particles we have a corresponding
expression with a kinetic term for each individual
particle and an interaction term for each pair of charges.
Thus G becomes a function of as many parameters
n, p, y, as there are particles. To prove constancy
with respect to a given parameter, such as o,, we have
only to dif'ferentiate (20) and insert for m, c ii (n) the
quotient dG &'(n)/dn obtained from (19).

Evidently we have in (20) what may be called a
many-time formulation of the conservation laws, de-
rived of course from the equations of motion, but from
which conversely the equations of motion are derivable
with equal ease.

The interpretation of the double integral in (20) as
an interaction energy is obvious in the case of two
stationary charges separated by a distance R. Thus
by integration we find for G4 the familiar result m,c'
+mbc'+e. e /Eb.

"L.Page, Am. J. Phys. 13, 141 (1945), has reviewed the com-
plications which come from comparing action and reaction at the
same time.

transfer of impulse or energy to a during the stretch of cotime
de from sects which originate at b in the cotime interval dP.

(2) There is no energy or impulse transfer except when the
stretch dP of the world line of b is intersected by either the forward
or backward light cone drawn from a: i.e., b acts on a through
both retarded and advanced forces.

(3) The impulse communicated to a over the portion da of its
world line via retarded forces, for example, from the stretch dP
of the world line of b is equal in magnitude and opposite in sign
to the impulse transfer from a to b via advanced forces over the
same world line intervals (eguality of action and reaction).

The relativistic generalization of the Newtonian
principle of action and reaction as just stated is obvi-
ously not identical with the non-relativistic formulation.
In no Lorentz frame of reference are action and reaction
simultaneous. For the instant at which a experiences a
force from b there is not one corresponding time at
which b gets a back reaction, but two instants. "Thus
for a given point on the world line of a we can make
two statements about the transfer of energy (or
impulse) from b Each. statement refers to a single one
of the two parts of the total transfer. It is evidently
reasonable that the law of action and reaction should
have this Jacob's ladder character in 4-dimensional
space-time.
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In the case of individual moving charges it is sorne-
times convenient to add to the idea of kinetic co-
momentum and energy G ' ' the notion of potential
comomentum and energy

U-"=e. E ~-("(a(~)),
b&a

and total comomentum and energy,

P ()=G ()+f/ ()

(21)

(22)

TIME

DISPLACEMENT

In terms of these expressions, the four-vector of energy
and comomentum of the whole system takes the form

ocIv

Qdy

G (u, P, ) =QP ('(cr)+ P 2e.es
a(b

pa )OD

b'(ab„ab")ab da)db„ (23)

FIG. 3. Interactions considered in formulating the law of
conservation of momentum and energy. Note that the stretches
of world line from a,z to a„t and from p, z to p„f; completely
determine the value of the energy-momentum four vector G (n, P).
It is also natural to specify these two world-line segments as
initial conditions in dealing with the two-particle problem.

The summation of the potential energies so to speak
counts twice the interaction between each pair of
particles. The double integrals in (23) correct for this
overcount.

From either Eq. (20) or Eq. (23) for the energy of
the system it is clear (see Fig. 3) that the electromag-
netic energy of a finite number of particles is definable
from a knowledge of only a finite stretch of their world
lines. It is also evident that particles which come
together in otherwise charge free space, interact, and
then separate in a regular way, will in the end experi-
ence no net loss of energy to outer space. Both features
of the four-vector G are reasonable in the mathe-
matical description of a physically closed system.

RELATION OF INTERACTION ENERGY TO
FIELD ENERGY

In 6eld theory it is customary to attempt to define
throughout space a symmetrical stress energy tensor"
T „(x) with the following properties:

(1) The divergence BT „/Bx„vanishes at every place where
there is no particle.

(2) At the location of a typical charge i this divergence becomes
singular in such a way that its integral over a small volume
element containing the charge gives the value of the electro-
magnetic force acting on that charge:

a4fff(aT—„/dx„)dx'dx'dx'=m, c'd (24)
neighborhood

of a

when the integration extends over a region of constant time which
contains a. When the integration proceeds over an arbitrary
space-like region or "surface, " 0, such that no pair of points in

' Typical components are
T», force in positive x-direction across unit area in yx plane

exerted upon medium on negative side of plane by medium
on positive side (equal in the Maxwell theory to (Sm) '
X(11~—II 2—a 2+x 2—Z2 —Z2))

T14, velocity of light times energy flux in x direction per cm' of
ys plane and per sec. (Maxwell value (47') '(E„IJ,—E,II„)).

T44, negative of the energy density (usual expression —(8x) '
&& (E'+H')).

2" „(x)=P (R(')(x) R S(')(x)) „. (28)

the surface can be connected by a light ray, then the corresponding
statement is

m, c'a,+a„fff(BT, „/ax„)da"=0 . (25)
neighborhood

of a

Here, if the surface is defined by a parametric representation in
terms of three quantities I, v, m, then

do4=LB(x', x', x) 8/( av, w)Qadvdw

with corresponding expressions for the other three components
of do™.

(3}For every space-like surface o. there is defined a foar vector of-
energy and comomentem

'G„,(o}=Z,m, v'a (n)+fffT dx, (26)

which is conserved in the sense that its value is completely
independent of the choice of o-. Thus consider a change bo in the
surface 0—i.e., an alteration from x (u, v, z) to x +bx (I, v, m)—and the associated alterations da, dP, ~ ~ in the points where
the respective world lines intersect this surface. Then the change
in G is expressible via the theorem of Gauss in terms of an
integral over the volume, or, comprised between the two surfaces:

5G =Z m, c'a d +ffff(BT„, /ax )der (27).
But the integrand vanishes everywhere except in the immediate
neighborhood of the typical particle, a, and there —writing
dec=de„do-", and using (25)—we conclude that the contribution
from the integral just cancels out the first term in SG' .

Is there any choice of the tensor 7 „ in the adjunct
field theory which will yield for the energy-comomentum
vector G (o) of (26) a value identical with the corre-
sponding vector G (a, P ) of the theory of direct
interparticle actions The appropriate tensor may be
constructed when one recalls that the 6eld of a given
particle is to produce changes only in the motions of
the other particles, and that the principle of action and
reaction connects the retarded effects exerted for
example by a on b via the retarded field (1/2)R „('
with the advanced eBects exerted by b on a via the
advanced field (1/2)S „'":
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TABLE I. Correspondence of principal alternative expressions
for interaction energy in adjoint field theory and in theory of
direct interparticle interaction.

Canonical form Frenkel form

Basic type of field Those partial fields which Total (time-symmetric)
coupling envisaged are reciprocally responsi- field adjunct to each

ble for equality of action of the coupled particles
and reaction

Typical term in
stress-energy tensor

g(a) @ g(b) g& (a) Q F(b)

Expression for inter- Eq. (20)
action energy:

Eq. (20) plus expres-
sion (40)

Depends upon: Finite stretch of the
two world lines

Shape of the two
world lines from
~= —~ to+~

evaluate the divergence of the typical term in the
tensor of Eq. (28), finding

ar p/ax/ P{(5&"»/167r—)—(aR p~"&/ax»
agb

+BR,„"/Bx"+BR„"/Bx&)

+(S '"'/8~) (BRp."/Bx,)

+similar term with 5'b& and

R&'& interchanged I . (30)

Here the first three cyclically related terms cancel, as
seen for example from the antisymmetrical representa-
tion of the fields via potentials; and the divergence of
R gives the same charge and current distribution (8)
which appeared in the time-symmetric case. Using
this circumstance, and combining terms, we have

Here R and 5 denote the retarded and advanced
Lienard-Wiechert fields, so 'that F „"=(1/2)R„„&'&
+(1/2)5 „".For a convenient abbreviation we have
adopted the notation

(R RS)„„=(RI"5„„+5I'R„.+ ', g„„R-"5„,)/8~ (29)

witll g~~=o for ~N+ and g], i.=g22=g88= 1=—g44.
That the tensor T „of (28) does lead to the energy-

comomentum four-vector (20) of the theory of action
at a distance is proven in the appendix. Here we shall
only establish that the stress energy tensor satisfies the
conditions (1) and (2) (and hence (3)). Thus, we

As alternative choice for the stress energy tensor
which also has the properties (1), (2) and (3) is that
proposed by Frenkel, " who was among the first to
stress the notion of fields as always adjunct to specific
particles:

(32)

Thus the difference between Frenkel's tensor and the
canonical tensor (28) is a quantity

T.,„„* T.,„=—P (-,'R"——',5'*&) 8r (-'R&'& —-', 5&") (33)
agb

which has everywhere a zero divergence.
The possibility of more than one expression for the

stress-energy tensor with the same divergence is well
known in the usual single-field formulation of electro-
dynamics, " and is not surprising here. However, the
expressions for field energy also turn out to di6er
(Table I).

The energy-comomentum four-vector G defined by
(26) and (28), and the alternative four-vector G ~

defined by (26) and (32), are both ordinarily finite for
a system of point charges. In illustration, note that
near a typical particle a the corresponding field varies
as 1/r', the field of any other particle b is finite, the
volume element is proportional to 4xr2dr and the
integral of (26) converges, yielding for example in the
interaction energy e,e&/r, & for two stationary point
charges separated by the distance r b. The density of
field energy, while finite, is not positive definite, even
for two particles of the same charge. Also the fIow of
energy and momentum may have finite values at a
point in space where the total field, F' '+F'~'+
actually vanishes. This result, unexpected from the
point of view of the usual field theory, nevertheless
presents no logical difFiculties.

ENERGY OF RADIATION

The canonical and the Frenkel tensors, which give
the same interaction energy in the case of two charges
which are at rest, give different results for the case of a

TABLE II. Energy Aux at distance r from accelerated charge for
adjunct field theory in completely absorbing universe.

BT„ /Bx = Q F „&"(x)j""(x)
b&a Time of observation

relative to moment
of acceleration

Form of stress-energy tensor
Canonical Frenkel Maxwell

= g F „~'~(x)e. 8(x' —a')8(x' —a')
b&a

X8(x'—a') 8(x4—a4) a"(a)dn

r/c seconds earlier

r/c seconds later

at other times

no flux

E'/4' outward

no flux

—F2/8~ towards
the source

E'/8m- outward

no flux

no flux

E2/47' outward

no flux

=Q ' 8(x' —a')8(x' —a')8(x' —a')

X8(x'—a4)m c'a dn (31')

in complete satisfaction of requirements (1) and (2).

"J. Frenkel, Zeits. f. Physik 32, 518 (1925). See also J. L.
Synge, Trans. Roy. Soc. Canada 34, 1 (1940) and Proc. Roy. Soc.
London A177, 118 (1940) as well as the discussion of Synge's
treatment in III.

"See in particular M. H. L. Pryce, Proc. Roy. Soc. London.
A168, 398 (1938).
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single accelerated particle in a completely absorbing
universe. There we have in the neighborhood of the
radiating source F&'& = (1/2)R'&+(1/2)S'& and F&'&

+P&'&+ . = (sum of advanced fields of absorber parti-
cles)"= (1/2)R&'& —(1/2)5& &. For the parts of these
fields which are proportional to the acceleration of the
charge, and which vary at large distance as 1/r, we
have for E' ' and 5(' respectively a zero value except
for an instant r/c seconds after or before the moment
of acceleration. The corresponding energy Aux (Table
II) satisfies in both the Frenkel and the canonical
formulations the law of conservation of energy, but
agrees only in the canonical case with customary ideas
of energy localization. From the standpoint of pure
electrodynamics it is not possible to choose between
the two tensors. The difference is of course significant
for the general theory of relativity, where energy has
associated with it a gravitational mass. So far we have
not attempted to discriminate between the two possi-
bilities by way of this higher standard.

CONCLUSION

%e conclude that the theory of direct interparticle
. action, and the equivalent adjunct field theory, provide
a physically reasonable and experimentally satisfactory
account of the classical mechanical behavior of a system
of point charges in electromagnetic interaction with one
another, free of the ambiguities associated with the
idea of a particle acting upon itself.

APPENDIX

To compute the integral of the field energy which appears in
(26), we express each field as a superposition of elementary fields
from each infinitesimal range of path do. , and the tensor T „or
T „*as the superposition of parts due to stretches dn of the world
line of a and dP of b. We use the notation VdndP, Ftda to indicate
each such elementary contribution to T, F, etc. Thus the four-
potential (R~do. arises from a charge which appears for an instant
at a(a) and disappears at a(a+da).

The lack of conservation of the charge which generates the
elementary potential causes the four-divergence of R~ to equal a
non-zero scalar, r,

S@ &,&t/ ( /S )2 . S(ax,ax") for x')a'
for x4(a4

b'(ax„ax") for x') a'—r x, a —eaaxa or x4&a'

whose integral however satisfies the conservation conditionf +"r& &(x, a)du=0. This circumstance permits some latitude in
the definition of the elementary held in terms of the potential.
It will prove useful to adopt the definition

(a)f g (R (a) /gxm g Q (a) /gxn (r(a) /2) gmn (35)

The elementary fiejd is not antisymmetrical in the indices m and
I, but the normal held R „&~&=J'R „&'&tdn changes sign of course
on this interchange of labels.

The elementary component of the stress-energy tensor is not
symmetric in its two indices, but its divergence is found by direct

' 5ee part III for fuller discussion,

SINCE LIKE SURFACE
CONSIDERED IN

EVALUATION OF
FIELD ENERGY

ME
CONSIDERED
D INTEGRAL

FIG. 4. Contribution to canonical expression for field energy
which arises from coupling of retarded field of a and advanced
field of b.

fff—(R&-»8 S&»t)„„d . (39)

Here the integral, which goes over the whole of the three-dimen-
sional region or "surface" in the figure, contributes only over the
upper region because of the vanishing elsewhere of at least one
of the fields in question. The elementary contributions just
computed we now sum over the world line of a from —~ to 0.
and over the world line of b from P to ~, where 0. and P determine
the points where the world lines of a and b intersect the space-like
surface 0.. We have then only to erase the daggers in (39). The
converse expression, with R(b) 8z S( ', we obtain by interchanging
the roles of b and a in (38) and in the limits of integration. In
this way follows at once the identity of expression (20) for the
energy in the theory of direct interparticle interaction and the
canonical expression (26—28) of the adjunct field theory.

When instead the Frenkel expression (32) is used for the
stress-energy tensor, then there results an increment in the
energy-comomentum four-vector given by the expression

+m +00

G,„~(~,p) —G,„(a,p) = e eb (ab a"b„

8'(ab„ab")—b ab„a"—a ab„V') —8'(ab ab")V

+8' for

for a4(b4
for a4) b4

a4(b4)
b,),(

ab„,da„db", (40)

a covariant which is independent of cx and P and which has an
inter|;sting relation to the two world lines in question,

algebra to have the simple value

(8/Bxp)(R'&t 8r S&"t) p= (1/grr)( O'Rp&"&—t/Bx'Bx )

X(S & &t» —(s&~&/2)5 P)+(1/8&r)( —S Sp+&t/Bx Bx )

X(~ ')»—(r')/2)~ &), (36)

where the typical field d'Alembertian has the value

O'R &—&t/Bx'Bx,
=areas(x' —a') 5 (x' —a') b(x' —a') b(x' —a') a~. (37)

We integrate (36) over a four-dimensional region of the form
shown in Fig. 4. Of the terms on the right the second vanishes
throughout this region, and the hrst gives

(e./2) (S-p'"t (a) (g-p/—2)s'" (a))a'
= (e,/2) (BSp&'&t/aa" —aS &»t/aaP —g„„aS„«'&t/Ba„)aP

= 2e eb(ab„a"b„b*ab„a" a—abpb') b'(ab—„ab") (38)

when b4)a4, and zero otherwise. The four-integral on the left
hand side may be expressed via the theorem of the Gauss in the
form


