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For each value of p, Z#°7 is of the form of a multiple of
the metric tensor plus a self-dual tensor, that is of the

form
W gaf+ War_

However, if such a tensor is multiplied by
Wegn—Wa,
and summed on 7, we obtain
(W2H-LWW ) 0\°.

This means that we may solve Egs. (5.4) for T, as
functions of T, and T',,» (o= «). The discussion of the
existence of solutions of the resulting system of equa-
tions reduces to a discussion of the integrability
conditions.

To solve Eqs. (5.4) for T for one value of «, we
must multiply Egs. (5.4) by .

We(gr)‘aex_ga‘rgﬂ)n"’eﬁaﬂg&‘))
and sum on 7. We obtain for the right hand side,

We(gr)\aex"—gargﬁ)\neéaﬂ_gax)F’vTTv _ _
=Ha=W\T"+T"F\W+W'T,Fqa
+ WA\ T —ThNE W — 8 F , , WeT.
The left-hand side involves
W“(gﬁauﬁ'*' N’ py) (gf)\aex'— gargﬁ)\'ﬂe&aﬂgax) We
— 0'26)\6g”+ axp(ZWva__gaKa}) —_ 6)‘::<2W¢1Wp_gvpa2)
+2(g WeWh—go*W*W).  (5.7)

(5.6)
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The differential Eq. (5.4) may then be written as
Ty, L a0\ g o+ 63 QW W« — go*a?) — 5\ QW W *

—g70a?)+2(g"WeW—g?WW\) ]=Ha. (5.8)
Multiplying this by g® and summing, we obtain
T, (g7 a®—2WeW )= —2F ,,WeT". (5.9)
Thus (5.8) becomes
A (Tn—Tn)+2(Tn W W ATo, VW
—T s WW)=Ga, (5.10)
where
Ga=W. T+ TFNW+WT,Fat-WiF,T,
—D\F Wt galF o, WoT?.  (5.11)

Setting k=4 in Egs. (5.10), and assuming that the
coordinate system is a galilean one in which V=47,
we obtain the four equations

Gy
T4, = T¢'4—'— 2(T1 jo— T, iji)+'I;I/"‘,

4

T, WWi Gu—
Ty4=2——201—-W)T j+——iy

W, 2(W4)?
where Gy and Gy are obtained from (5.11). The
existence of solutions of these equations depends on
the nature of the functions x, and their derivatives.
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Forms of Relativistic Dynamics

P. A. M. Dmrac
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For the purposes of atomic theory it is necessary to combine the restricted principle of relativity with
the Hamiltonian formulation of dynamics. This combination leads to the appearance of ten fundamental
quantities for each dynamical system, namely the total energy, the total momentum and the 6-vector
which has three components equal to the total angular momentum. The usual form of dynamics expresses
everything in terms of dynamical variables at one instant of time, which results in specially simple expres-
sions for six or these ten, namely the components of momentum and of angular momentum. There are
other forms for relativistic dynamics in which others of the ten are specially simple, corresponding to
various sub-groups of the inhomogeneous Lorentz group. These forms are investigated and applied to a
system of particles in interaction and to the electromagnetic field.

1. INTRODUCTION

INSTEIN’S great achievement, the principle of

relativity, imposes conditions which all physical
laws have to satisfy. It profoundly influences the whole
of physical science, from cosmology, which deals with
the very large, to the study of the atom, which deals
with the very small. General relativity requires that
physical laws, expressed in terms of a system of curvi-

linear coordinates in space-time, shall be invariant
under all transformations of the coordinates. It brings
gravitational fields automatically into physical theory
and describes correctly the influence of these fields on
physical phenomena.

_Gravitational fields are specially important when one
is dealing with large-scale phenomena, as in cosmology,
but are quite negligible at the other extreme, the study
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of the atom. In the atomic world the departure of
space-time from flatness is so excessively small that
there would be no point in taking it into account at the
present time, when many large effects are still unex-
plained. Thus one naturally works with the simplest
kind of coordinate system, for which the tensor g+
that defines the metric has the components

gO=—gll=—g2= ¥
g=0 for ps».

Einstein’s restricted principle of relativity is now of

paramount importance, requiring that physical laws

shall be invariant under transformations from one such

coordinate system to another. A transformation of this

kind is called an inhomogeneous Lorentz transforma-

tion. The coordinates #, transform linearly according
BB =g,

to the equations
ko
the a’s and B’s being constants.

A transformation of the type (1) may involve a
reflection of the coordinate system in the three spacial
dimensions and it may involve a time reflection, the
direction du, in space-time changing from the future
to the past. I do not believe there is any need for
physical laws to be invariant under these reflections,
although all the exact laws of nature so far known do
have this invariance. The restricted principle of rela-
tivity arose from the requirement that the laws of
nature should be independent of the position and
velocity of the observer, and any change the observer
may make in his position and velocity, taking his
coordinate system with him, will lead to a transforma-
tion (1) of a kind that can be built up from infinitesimal
transformations and cannot involve a reflection. Thus
it appears that restricted relativity will be satisfied by
the requirement that physical laws shall be invariant
under infinitesimal transformations of the coordinate
system of the type (1). Such an infinitesimal transfor-

bl-“‘= _—bl‘m

mation is given by
w*=u,+a,+b,u,
lo
the a’s and b’s being infinitesimal constants.

A second general requirement for dynamical theory
has been brought to light through the discovery of
quantum mechanics by Heisenberg and Schrddinger,
namely the requirement that the equations of motion
shall be expressible in the Hamiltonian form. This is
necessary for a transition to the quantum theory to be
possible. In atomic theory one thus has two over-riding
requirements. The problem of fitting them together
forms the subject of the present paper.

The existing theories of the interaction of elementary
particles and fields are all unsatisfactory in one way or

u =, +B.u,
with

with
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another. The imperfections may well arise from the use
of wrong dynamical systems to represent atomic phe-
nomena, i.e., wrong Hamiltonians and wrong interaction
energies. It thus becomes a matter of great importance to
sel up new dynamical systems and see if they will better
describe the atomic world. In setting up such a new
dynamical system one is faced at the outset by the two
requirements of special relativity and of Hamiltonian
equations of motion. The present paper is intended to
make a beginning on this work by providing the
simplest methods for satisfying the two requirements
simultaneously.

2. THE TEN FUNDAMENTAL QUANTITIES

The theory of a dynamical system is built up in
terms of a number of algebraic quantities, called
dynamical variables, each of which is defined with
respect to a system of coordinates in space-time. The
usual dynamical variables are the coordinates and
momenta of particles at particular times and field
quantities at particular points in space-time, but other
kinds of quantities are permissible, as will appear later.

In order that the dynamical theory may be expres-
sible in the Hamiltonian form, it is necessary that any
two dynamical variables, £ and 7, shall have a P.b.
(Poisson bracket) [£, 7], subject to the following laws,

(& n]=—[n, £]
I:E: 7]+§‘]=[E; 71]‘*‘[& g‘:l (3)
L& ne =& nls+alE ¢ ]

[[E: 77]; g-]'{_ [[77, g.:]y E]+ [[g‘y E]’ 7)]=0'

A number or physical constant may be counted as a
special case of a dynamical variable, and has the
property that its P.b. with anything vanishes.

Dynamical variables change when the system of
coordinates with respect to which they are defined
changes, and must do so in such a way that P.b.
relations between them remain invariant. This requires
that with an infinitesimal change in the coordinate
system (2) each dynamical variable £ shall change
according to the law

£*=E+[E, F]y (4’>

where F is some infinitesimal dynamical variable inde-
pendent of £ depending only on the dynamical system
involved and the change in the coordinate system.
We are thus led to associate one F with each infini-
tesimal transformation of coordinates.

Let us apply two infinitesimal transformations of
coordinates in succession. Suppose the first one changes
the dynamical variable £ to £* according to

*= $+ [E) Fl])

and the second one changes £* to £ according to
=g [, FoX]=g"+-[§ FoT%

The two transformations together change £ to £F
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according to

ET'_" & [E) F1:|+ [27 F2:]+ [[E} F2]’ Fl])

to the accuracy of the order FiF, (with neglect of
terms of order F1* or F5?). If these two transformations
are applied in the reverse order, they change & to &7
according to

fﬂ-:g'*_ [S; FZ]—I—[E) Fl:H_ [[57 Fl]: F2J
Thus

STT=ET+[[£7 Fl]: F2]—[[E7 F2:]’ Fl:]
=¢+[g [Fy, F.J],

with the help of the first and last of Egs. (3). This
gives the change in a dynamical variable associated
with that change of the coordinate system which is the
commutator of the two previous changes. It is of the
standard form

=4[, F],

with an F that is the P. b. of the F’s associated with
the two previous changes of coordinates. Thus the
commutation relations between the various infinitesimal
changes of coordinates correspond to the P.b. relations
between the associated F’s.

The F associated with the transformation (2) must
depend linearly on the infinitesimal numbers a,, b,»
that fix this transformation. Thus we can put

F=—Pra,+3M*b,,

Moo 3 }(s>

where P*, M* are finite dynamical variables, inde-
pendent of the transformation of coordinates.

The ten quantities P,, M ,, are characteristic for the
dynamical system. They will be called the ten funda-
mental quantities. They determine how all dynamical
variables are affected by a change in the coordinate
system of the kind that occurs in special relativity.
Each of them is associated with a type of infinitesimal
transformation of the inhomogeneous Lorentz group.
Seven of them have simple physical interpretations,
namely, P, is the total energy of the system, P, (r=1,
2, 3) is the total momentum, and M,, is the total
angular momentum about the origin. The remaining
three M,, do not correspond to any such well-known
physical quantities, but are equally important in the
general dynamical scheme.

From the commutation relations between particular
infinitesimal transformations of the coordinate system
we get at once the P.b. relations between the ten
fundamental quantities,

I:Pu; P,,:|=0
[M#vy Pp:]= — &up Lyt gvo Py (6)
M, M, ]= = ZueM ot gooM uo— guoM pyt-gvoM .

To construct a theory of a dynamical system one must
obtain expressions for the ten fundamental quantities
that satisfy these P.b. relations. Tke problem of finding
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a new dynamical system reduces to the problem of finding
a new solution of these equations.

An elementary solution is provided by the following
scheme. Take the four coordinates g, of a point in
space-time as dynamical coordinates and let their
conjugate momenta be p,, so that

Lgw ¢.1=0, [?m PV:|=O
[Pﬂ: qV] = gl""

The ¢’s will transform under an infinitesimal transform-
ation of the coordinate system in the same way as the
w’s in (2). This leads to

Po=pu, Mu=qupr—gvpu, (7)

and provides a solution of the P.b. relations (6). The
solution (7) does not seem to be of any practical
importance, but it may be used as a basis for obtaining
other solutions that are of practical importance, as the
next three sections will show.

The foregoing discussion of the requirements for a
relativistic dynamical theory may be generalized some-
what. We may work with dynamical variables that are
connected by one or more relations for all states of
motion that occur physically. Such relations are called
subsidiary equations. They will be written

A=~0 (8)

to distinguish them from dynamical equations. They
are less strong than dynamical equations, because with
a dynamical equation one can take the P.b. of both
sides with any dynamical variable and get another
equation, while with a subsidiary equation one cannot
do this in general. The lesser assumption is made,
however, that from two subsidiary equations 4 ~0, B~0
one can infer a third

(4, B]=0. ©)

A subsidiary equation must remain a subsidiary
equation under any change of coordinate system. This
enables one to infer from (8)

[Py, A]=0, [M,s, A]=0. (10)

A dynamical variable is of physical importance only

"if its P.b. with any subsidiary equation gives another

subsidiary equation, i.e., its P.b. with 4 in (8) must
vanish in the subsidiary sense. Such a dynamical
variable will be called a physical variable. The P.b. of
two physical variables is a physical variable. Equations
(10) show that the ten fundamental ‘quantities are
physical variables.

The physical variables are the only ones that are
really important. One could eliminate the non-physical
variables from the theory altogether and one could then
make the subsidiary equations into dynamical equa-
tions. However, the elimination may be awkward and
may spoil some symmetry feature in the scheme of
equations, so it is desirable to retain the possibility of
subsidiary equations in the general theory.
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3. THE INSTANT FORM

The ten fundamental quantities for dynamical sys-
tems that occur in practice are usually such that some
of them are specially simple and the others are compli-
cated. The complicated ones will be called the Hamil-
tonians. They play jointly the role of the single Ham-
iltonian in non-relativistic dynamics. Since the P.b. of
two simple quantities is a simple quantity, the simple
ones of the ten fundamental quantities must be those
associated with some sub-group of the inhomogeneous
Lorentz group.

In the usual form of dynamics one works with
dynamical variables referring to physical conditions at
some instant of time, e.g., the coordinates and momenta

of particles at that instant. An instant in the four- .

dimensional relativistic picture is a flat three-dimen-
sional surface containing only directions which lie
outside the light-cone. The simplest instant referred
to the # coordinate system is given by the equation

(11)

The effect of working with dynamical variables referring
to physical conditions at this instant will be to make
specially simple those of the fundamental quantities
associated with transformations of coordinates that
leave the instant invariant, namely P., Py, P3, M3,
M31, M12. The remaining ones, Po, Ml(), Mzo, M3o, will
be complicated in general and will be the Hamiltonians.
We get in this way a form of dynamics which is associ-
ated with the sub-group of the inhomogeneous Lorentz
group that leaves the instant invariant, and which may
appropriately be called the nstant form.

Let us take as an example a single particle by itself.
The ten fundamental quantities in this case are well
known, but they will be worked out again here to
illustrate a method that can be used also with the
other forms of dynamics.

We take as'dynamical coordinates the three coordi-
nates of the particle at the instant (11). Calling these
coordinates ¢,, we can base our work on the scheme (7),
with the additional equation

Mo=0.

(12)

With this equation po no longer has a meaning. We
must therefore modify the expressions for the ten
fundamental quantities given by (7) so as to eliminate
po from them, without invalidating the P.b. relations
(). o

Let us change the expressions for the ten fundamental
quantities by multiples of p7ps—m? where m is a
constant, i.e., let us put

Py=put+-N(pps—m?)
M = qupr— G putNus(p7pe—m?),

QQ=O.

(13)

where v
Aov=—Ayu

and the coefficients A are functions of the ¢’s and p’s
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that do not become infinitely great when one puts
ppe=m? with po>0. Since p*po—m? has zero P.b. with
all the expressions (7), the modified expressions (13)
must still satisfy the P.b. relations (6), apart from
multiples of p°po—m?, with any choice of the N's. If
we now choose the A’s so as to make the P,, M, given
by (13) independent of po, the P.b. relations (6) must
be satisfied apart from terms that are independent of p,
as well as being multiples of p°po—m? Such terms
must vanish, so we get in this way a solution of our
problem.
The N’s have the values

A=0,  No=—{pot(pspstmHH} 7,

Ar=0, No=—q,{pot (pspstmDH}, (1)
and Egs. (13) become

P,=p,, M= q.ps—qspr, (15)

Po=(pspitm?)t, Mio=g.(pspstm?},  (16)

with the help of (12). Equations (15) and (16) give all
the ten fundamental quantities for a particle with
rest-mass 7. Those given by (15) are the simple ones:
those given by (16) are the Hamiltonians.

- For a dynamical system composed of several particles,
P, and M,, will be just the sum of their values for the
particles separately,

Pr=ZPr, MTB=Z(QrPs—Qsﬁr)' (17)

The Hamiltonians P,, M,, will be the sum of their
values for the particles separately plus interaction
terms,

Po=3_(pspstm)i+ 7V,
Mro=2_q:(psps+m?)+V,.

The V’s here must be chosen to make Py, M, satisfy
all the P.b. relations (6) in which they appear.

Some of these relations are linear in the V’s and are
easily fulfilled. The P.b. relations for [M,, Py] and
[M,s, My] are fulfilled provided V is a three-dimen-
sional scalar (in the space %1, #,, #3) and V, a three-
dimensional vector. The P.b. relation for [P,, P,] will
be fulfilled provided V is independent of the position
of the origin in the three-dimensional space w1, u,, us.
The P.b. relation for [M o, P, will be fulfilled provided

Vi=q.V+V., 19)

where the ¢, are the coordinates of any one of the
particles and the V,’ are independent of the position
of the origin in three-dimensional space.

The remaining conditions for the V’s are quadratic,
involving [V, V,] or [V,, V.]. Theése conditions are
not easily fulfilled and provide the real difficulty in the
problem of constructing a theory of a relativistic
dynamical system in the instant form.

](18>
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4. THE POINT FORM

One can build up a dynamical theory in terms of
dynamical variables that refer to physical conditions
on someé three-dimensional surface other than an
instant. The surface must satisfy the condition that the
world-line of every particle must meet it, otherwise the
particle could not be described by variables on the
surface, and preferably the world-line should meet it
only once, for the sake of uniqueness.

To get a simple form of theory one should take the
surface to be such that it is left invariant by some
sub-group of the group of inhomogeneous Lorentz
transformations. A possible sub-group is the group of
rotations about some point, say the origin #,=0. The
surface may then be taken to be a branch of a hyper-
boloid

(20)

with « a constant. The fundamental quantities associ-
ated with the infinitesimal transformations of the sub-
group, namely the M ,,, will then be specially simple,
while the others, namely the P,, will be complicated in
general and will be the Hamiltonians. A new form of
dynamics is thus obtained, which may be called the
point form, as it is characterized by being associated
with the sub-group that leaves a point invariant.

To illustrate the new form, let us take again the
example of a single particle. The dynamical coordinates
must determine the point where the world-line of the
particle meets the hyperboloid (20). Let the four
coordinates of this point in the # system of coordinates
be ¢.. Only three of these are independent, but instead
of eliminating one of them, it is more convenient to
work with all four and introduce the subsidiary equation

9°go= K. (21)

It is then necessary that the ten fundamental quantities,
and indeed all physical variables, shall have zero P.b.
with ¢*g,. The condition for this is that they should
involve the p’s only through the combinations g.p,
—¢Pu-

The ten fundamental quantities may be obtained by
a method parallel to that of the preceding section, with
the subsidiary equation (21) taking the place of Eq.
(12). We again assume Egs. (13), and now choose the
N’s so as to make their right-hand sides have zero P.b.
with ¢g,. The resulting expressions for the ten funda-
mental quantities will again satisfy the P.b. relations
(6), as may be inferred by a similar argument to the
one given in the preceding section.

We find at once

WU, = K%,

M0> 0,

Aw=0.

To obtain A, instead of arranging directly for the P,
to have zero P.b. with ¢?g,, it is easier to make ¢.P,
—q,P, and P*P, have zero P.b. with ¢*¢,. Now

§uPr— @ Pu=qupr— @ put (@hv— g\ (p7po—m?),
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so we must have
guhv—@Au=0,
and hence
N=q,B,

where B is some dynamical variable independent of u.
Further

PeP,={p*+q*B(p"po—m?)} {Pu+QnB(PpPp_m2)}
=m’+ {14 2p*quB+ g quB* (p° po—m®) } (p*po—m?).

In order that P*P, shall have zero P.b. with g*g,, we
must take

14 2p49, B+ ¢*quBX(p"ps—m?) =0,
so that

B(popo—m?)=(g°¢s){[(p7¢,)* 1
=3 pe—m") =g}
The right-hand side here tends to zero as p°p,—m?—0,

so it is a multiple of p7p,—m? as it ought to be. We
now get finally

Py=putgu HL (0’0, — 2 (p"po—m®) 11— ') } (22)
M= qupr—qsPus

in which the expression for P, has been simplified with
the help of (21).

It is permissible to take k=0 and so to have a light-
cone instead of a hyperboloid. The expression for B
then becomes much simpler and gives

Py=pu—30.(0"¢) 7 (p po—m?).
instead of the first of Egs. (22).
For a dynamical system composed of several particles,

the M,, will be just the sum of their values for the
particles separately,

Mﬂvzz(QMPV_q”PH)' (24)

The Hamiltonians P, will be the sum of their values
for the particles separately plus interaction terms,

Pn=z{Pu+QMB(P”?G_m2)}+Vu' (25)

The V, must be chosen so as to make the P, satisfy
the correct P.b. relations. The relations for [M,,, P, ]
are satisfied provided the V, are the components of a
4-vector. The remaining relations, which require the
P, to have zero P.b. with one another, lead to quadratic
conditions for the V,. These cause the real difficulty in
the problem of constructing a theory of a relativistic
dynamical system in the point form.

(23)

5. THE FRONT FORM

Consider the three-dimensional surface in space-time
formed by a plane wave front advancing with the
velocity of light. Such a surface will be called a fromt
for brevity. An example of a front is given by the
equation

Uy— Us= 0. (26)
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We may set up a dynamical theory in which the
dynamical variables refer to physical conditions on a
front. This will make specially simple those of the
fundamental quantities associated with infinitesimal
transformations of coordinates that leave the front
invariant, and will give a third form of dynamics,
which may be called the front form.

If 4, is any 4-vector, put

A0+A3-_‘-—A+, AO—A3=A_.

We get a convenient notation by using the 4 and —
suffixes freely as tensor suffixes, together with 1 and 2.
They may be raised with the help of
—1
-2

i=1,2,

gtr=g =0, gt~
gt=g"=0, for

as one can verify by noting that these g values lead to
the correct value for g#?4,4, when u and » are summed
over 1, 2, 4+, —.
The equation of the front (26) becomes in this
notation -
u_=0.

The fundamental quantities Py, Py, P_, M1, M, _,
My, M,_ are associated with transformations of co-
ordinates that leave this front invariant and will be
specially simple. The remaining ones P, My, Moy
will be complicated in general and will be the Hamil-
tonians.

Let us again work out the example of a single particle.
The dynamical coordinates are now g1, ¢z, ¢+. We again
assume Egs. (13), and add to them the further equation
¢—=0. We must now choose the N’s so as to make the
right-hand sides of (13) independent of p,. The resulting
expressions for the ten fundamental quantities will then
again satisfy the required P.b. relations.

We find

MN=—1/p, Ngp=—qi/p,
the other N’s vanishing. Thus

Pi=p;, P_=p,

M= qpo—qpr, Mi=qp_,
Py=(p+pt+m*)/p-,

Moy =qi(p*+p?+m*)/ p——qips.

Equations (27) give the simple fundamental quantities.
Equations (28) give the Hamiltonians.

For a dynamical system composed of several particles,
P; P, Moy My, M, will be just the sum of their
values for the particles separately. The Hamiltonians
P, M, will be the sum of their values for the particles
separately plus interaction terms,

P,= Z (P12+P22+m2)/p—+ 14 } (29)
M =3 {q(p>+ P+ m?)/p-—qipil + V.

The V’s must satisfy certain conditions to make the
Hamiltonians satisfy the correct P.b. relations.

As before, some of these conditions are linear and
some are quadratic. The linear conditions for V require

b
hes)

Mi_=qp-,
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that it shall be invariant under all transformations of
the three coordinates u,, u,, %, of the front except those
for which du, gets multiplied by a factor, and for the
latter transformations V must get multiplied by the
same factor. The linear conditions for V; require it to
be of the form

Vi= q¢V+ Vi’, (30)

where ¢; are the coordinates 1, 2 of any one of the
particles, and V' has the same properties as V with
regard to all transformations of the three coordinates
of the front except rotations associated with M, and
under these rotations it behaves like a two-dimensional
vector. The quadratic conditions for the V’s are not
easily fulfilled and give rise to the real difficulty in the
construction of a theory of a relativistic dynamical
system in the front form.

6. THE ELECTROMAGNETIC FIELD

To set up the dynamical theory of fields on the lines
discussed in the three preceding sections, one may take
as dynamical variables the three-fold infinity of field
quantities at all points on the instant, hyperboloid,
or front, and use them in place of the discrete set of
variables of particle -theory. The ten fundamental
quantities P,, M,, are to be constructed out of them,
satisfying the same P.b. relations as before.

For a field which allows waves moving with the
velocity of light, a difficulty arises with the point form
of theory, because one may have a wave packet that
does not meet the hyperboloid (20) at all. Thus physical
conditions on the hyperboloid cannot completely de-
scribe the state of the field. One must introduce some
extra dynamical variables besides the field quantities
on the hyperboloid. A.similar difficulty arises, in a less
serious way, with the front form of theory. Waves
moving with the velocity of light in exactly the direction
of the front cannot be described by physical conditions
on the front, and some extra variables must be intro-
duced for dealing with them.

An alternative method of setting up the dynamical
theory of fields is obtained by working with dynamical
variables that describe the Fourier components of the
field. This method has various advantages. It disposes
of the above difficulty of extra variables, and it usually
lends itself more directly to physical interpretation. It
leads to expressions for the ten fundamental quantities
that can be used with all three forms. For a field by
itself, there is then no difference between the three
forms. A difference occurs, of course, if the field is in
interaction with something. The dynamical variables
of the field are then to be understood as the Fourier
components that the field would have, if the interaction
were suddenly cut off at the-instant, hyperboloid or
front, after the cutting off.

Let us take as an example the electromagnetic field,
first without any interaction. We may work with the
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four potentials A (%) satisfying the subsidiary equation

Their Fourier resolution is
An()= f { A exp(ika,)
+ At exp(—iktu,) } ko 'd%k, ~ (32)

with
ko= (k12+ k22+k32>%, d3k= dkldkgdkg

The factor ko* inserted in (32) leads to simpler trans-
formation laws for the Fourier coefficients A4, since the
differential element k¢7'd°k is Lorentz invariant. We
now take the Az, AT\ as dynamical variables.

Under the transformation of coordinates (2) the
potential A,(#) at a particular point % changes to a
potential at the point with the same #-values in the
new coordinate system, i.e., the point with the coordi-
nates #,—a,—b,’s, in the original coordinate system.
This causes a change in 4,(#) of amount -

— (au+0,71,)0 A4/ 0u,.

There is a further change, of amount 4)’4,, owing to
the change in the direction of the axes. Thus, from
(4) and (5)

[AXO/‘); —P”U’u"}‘%Mﬂybw]
=AA(M)*—A)\(M)
= — (ay+b,"u,)0A4,/0u,+b\’A,,

and hence

[A(u), P¥]=045/0u,,
[A)\(%), M/w]= uyaA)\/a%v"‘ 1,04 )\/a%“

}(33)
'+g)\pA V_g)\vAy,o

Taking Fourier components according to (32), we get

[A 128} P;t:l = 1kuA kXy
CAwn, My 1= (k,0/ 0k — k0 /0k*) A1 (34)
+g)\uA kv'_g)\vA kuy

in which A4\ may be considered as a function of four
independent %’s for the purpose of applying the differ-
ential operator k,d/9k*—k,d/9k* to it.

The Maxwell theory gives for the energy and mo-
mentum of the electromagnetic field

Pu= “47l’2fknAk>\A Tk)\ko—ldsk; (35)

the — sign being needed to make the transverse
components contribute a positive energy. In order that
this may agree with the first of Egs. (34), we must
have the P.b. relations ’

[Am, Arru]=0

(A, At ]=—igr,/dr? }36)
ko (kl— kl’)é(k2~ kzl)ls(ks_" kg,).
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The second of Egs. (34) then leads to

Myy=4a f (At (ka9 )0k — 2,0/ k%) A
A Aty diy— At Ay} k™ k. (37)

Equations (35) and (37) give the- ten fundamental
quantities.

For the electromagnetic field in interaction with
charged particles, the ten fundamental quantities will
be the sum of their values for the field alone, given by
(35) and (37), and their values for the particles, given
in one of the three preceding sections, with interaction
terms involving the field variables 4, AT\ as well as
the particle variables. One usually assumes that there
is no direct interaction between the particles, only
interaction between each particle and the field. The
ten fundamental quantities then take the form

Pl JiES
Mp.v=M;wF+ZuM;wa,

where P,F, M ,,F are the contributions of the field alone,
given by (35) and (37), and P,% M ,,* are the contribu-
tions of the a-th particle, consisting of terms for the
particle by itself and interaction terms. For point
charges, the interaction terms will involve the field
variables only through the 4\(g) and their derivatives
at the point ¢ where the world-line of the particle
meets the instant, hyperboloid or front. The expres-
sions for P, M,* may easily be worked out for this
case by a generalization of the method of the three
preceding sections, as follows.

Suppose there is only one particle, for simplicity.
We must replace Eqs. (13) by

PM=PMF+PM+)\M(T'TTU—m2)

Mm; = MMVF+q;sz"' QVP,;'F)\W('IF"W«— 1%2), v } (39)

where

To=po— EAU(Q)y

and P,F, M,,” are the right-hand sides of (35) and (37).
From (33),

[AX(Q)’ PMF+P#]=O
[4x(9), Mqu+un»—quu]=gquv(Q)”‘ngAn(q),
and hence
[7';)\7 P#F+P#j=0
L M +qup— gvpn]=g)\u7rv_gh7ru-

It follows.that w7r, has. zero P.b. with each of the
quantities P.F+p,, M, ~+q.pv—¢qp.. One can now
infer, by the same argument as in the case of no field,
that if the X’s in (39) are chosen to make P,, M ,, have
zero P.b. with qq, ¢°g, or ¢_, the P.b. relations (6) will
all be satisfied. Such a choice of N’s, in conjunction
with one of the equations go=0, ¢°¢,~«? ¢_=0, will
provide the ten fundamental quantities for a charged
particle in interaction with the field in the instant,
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point and front forms, respectively. The subsidiary
Eq. (31) must be modified when a charge is present.

The point form will be worked out as an illustration.
In this case we have at once \,,=0. We can get \, con-
veniently by arranging that ¢,(P,— P,*)—q,(P,— P,F)
and {P+r—P*F—eA*(q)} {P,—P.F—eA,(q)} shall have
zero P.b. with ¢°g,. The first condition gives N\,=gq,B.
The second then gives

14-27#q, B+ q#q,B¥(wom s —m?) =0.
Thus we get finally

Puz‘—PnF"'_PM'*_Q#"’ﬂ{[(TVq")Z .
— (o e—m?) f—ng,} }(40)
MMV':MWF"}_%PV‘—‘IVPW

The above theory of point charges is subject to the
usual difficulty that infinities will arise in the solution
of the equations of motion, on account of the infinite
electromagnetic energy of a point charge. The present
treatment has the advantage over the usual treatment
of the electromagnetic equations that it offers simpler
opportunities for departure from the point-charge
model for elementary particles.

8. DISCUSSION

Three forms have been given in which relativistic
dynamical theory may be put. For particles with no
interaction, any one of the three is possible. For particles
with interaction, it may be that all three are still
possible, or it may be that only one is possible, de-
pending on the kind of interaction. If one wants to set
up a new kind of interaction between particles in order
to improve atomic theory, the way to proceed would
be to take one of the three forms and try to find the
interaction terms V, or to find directly the Hamil-
tonians, satisfying the required P.b. relations. The
question arises, which is the best form to take for this
purpose.

The instant form has the advantage of being the one
people are most familiar with, but I do not believe it
is intrinsically any better for this reason. The four
Hamiltonians Py, M, form a rather clumsy combina-
tion.

The point form has the advantage that it makes a
clean separation between those of the fundamental
quantities that are simple and those that are the
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Hamiltonians. The former are the components of a
6-vector, the latter are the components of a 4-vector.
Thus the four Hamiltonians can easily be treated as a
single entity. All the equations with this form can be
expressed neatly and concisely in four-dimensional
tensor notation.

The front form has the advantage that it requires
only three Hamiltonians, instead of the four of the
other forms. This makes it mathematically the most
interesting form, and makes any problem of finding
Hamiltonians substantially easier. The front form has
the further advantage that there is no square root in
the Hamiltonians (28), which means that one can avoid
negative energies for particles by suitably choosing the
values of the dynamical variables in the front, without
having to make a special convention about the sign
of a square root. It may then be easier to eliminate
negative energies from the Quantum theory. This
advantage also occurs with the point form with «=0,
there being no square root in (23).

There is no conclusive argument in favor of one or
other of the forms. Even if it could be decided that one
of them is the most convenient, this would not neces-
sarily be the one chosen by nature, in the event that
only one of them is possible for atomic systems. Thus
all three forms should be studied further.

The conditions discussed in this paper for a relativistic
dynamical system are necessary but not sufficient. Some
further condition is needed to ensure that the inter-
action between two physical objects becomes small when
the objects become far apart. It is not clear how this
condition can be formulated mathematically. Present-
day atomic theories involve the assumption of local-
izability, which is sufficient but is very likely too
stringent. The assumption requires that the theory
shall be built up in terms of dynamical variables that
are each localized at some point in space-time, two
variables localized at two points lying outside each
other’s light-cones being assumed to have zero P.b. A
less drastic assumption may be adequate, e.g., that
there is a fundamental length N such that the P.b. of
two dynamical variables must vanish if they are
localized at two points whose separation is space-like
and greater than N, but need not vanish if it is less
than \.

I hope to come back elsewhere to ‘the transition to
the quantum theory.



