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\ Abstract

In the so-called "free-draining limit*, successive units o f a long molecule 
equalise their average orientation by a diffusion process along the chain. For low 
values o f the momentum transfer % q and o f the energy transfer flco the dynamical form 
factor S (qco) for neutron scattering is controlled by this e ffec t, and is independ­
ent o f the vibrational spectrum. In this regime, we show that the frequency width 
AcOg of S(qtd) is small and proportional to q4. The unusual q4law is related to the 
fact that, in a time t, a signal travels a distance d ~ 'ft along the chain, but the 
corresponding distance in space is only o f order d1/2 for a coiled polymer. On the 
other hand, i f  the chain is stretched this argument breaks down and the width Acô  
for coherent scattering is predicted to increase.

The existing experiments on neutron inelastic scattering by polymers [l] have been concerned 

mainly with the high frequency part of the spectrum ;(ĉ ~ comax ~  1014 sec-1). The corresponding 

short wavelength vibrations and viscous motions are then characteristic of very small sections 
of the chain [2]. In order to achieve situations where the length of the molecule has important 

effects on the motion, one should concentrate on experiments where the momentum transfer hq of 
the neutron and the energy transfer fico are small [3]. In this limit the energy spectrum of the 

neutrons scattered by the molecule (at fixed q) will consist of a quasi-elastic peak (width 
Acog «  a>max) plus a weak background extending up to co =  wmax.Our aim is to discuss the struc-

ture of this quasi-elastic peak. The slow motions of a long molecule in a solvent have been dis-
cussed by Rouse (4a) and by Zimm (4b). Rouse considered only the so-called "free-draining limit", 

where all hydrodynamic effects coupling distant segments are neglected. Zimm has included these 

effects. In the present paper we restrict our attention to the Rouse model: this corresponds to 

an extreme case, which is probably not often realised in practice, but it displays some rather 

interesting geometrical properties. The consequences of the long-range hydrodynamic interactions 

(leading to a very different q dependence of Acog) will be taken up in a second paper.

1. Fundamental Equations for the Free-draining Limit

The long chain is divided into N subunits, marked by the points r0, rx, ..., r̂ . The inter-
vals are an = rn-n - rn. In the absence of external forces the orientations of successive units 

measured at the same time are assumed independent [5].

(1)
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In a solvent at rest, the equation of irreversible motion is of the form
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(2 )

where Bnn are coefficients and G is the thermodynamic potential for fixed external forces. The 

crucial assumption of Rouse (4a) is to assume that Bmn is a rapidly decreasing function of 
\m -  n\ . Then* by a suitable redefinition of the submolecules, one can always reduce the prob-

lem to the case Bmn = B5mn. In particular, for 0 applied forces, G contains only an entropy con-
tribution. For small distortions

(3)

This leads to [6]:

(4)

From equation (4) we derive the basic time dependent correlation functions

(5)

where Gmn( t ) is the Green's function

( 6)

We consider only the limit of very long chains and the above Gnn applies for this case. Note 
that Gnn(o) = 6nm as required by equation (1).

2. Incoherent Scattering

This is of particular interest, since most polymers contain hydrogen and the incoherent 

cross section of H is very large. The dynamical form-factor for this case is [3]

(7)

For t »  W-1 (f-1 being a typical correlation time), rn( t )  -  r„(o) is a sum of a large number 
of independent contributions and has a gaussian distribution. Then

(8)

where xn is the projection of rn along q. For an infinite chain we can write
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(9)

The sum 2  is easily carried out:
t

mm

We are only interested in the region Wt »  1 and the integrand in fdp is non-vanishing only for 
small p. Then

(10)

The unusual square root dependence of equation (10) (can be understood as follows: in time t, 

a signal starting from one given submolecule will reach Q ~  Yt neighboring submolecules. But 

since the polymer is coiled, the distance in space corresponding to this length is Ax ~  (7 ^^Q 
Thus Ax2 ~  o2 ^Wt. It is of interest to verify that equation (10) is independent of the size 

chosen to define the submolecules. Introducing the diffusion coefficient for the center of 

gravity of the total molecule D = B k^T/N = (1/3 N)Wo2 and the total mean square extension
R2 = No2, we may write in fact [7] o2 >1 Wt = R ̂ 3Dt.

The quantity which is directly measured is S ( q co) as defined by (7). It is expressible in 

terms of the Fresnel integrals C(x), S(x) M .

(ID
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FIGURE 1

The dynamical form factor for incoherent scattering at fixed (small) momentum 
transfer *Aq, as a function of the energy transfer tico.

A plot of Z (p) is given on Pig. 1. The half-width at half-maximum Ap of Z (p) corresponds 
roughly to Ap = 1/4 or

( 12 )

The range of validity of this formula is defined by

where 6 is an atomic distance (more precisely, for a simple chain with fixed valence angle 0 

and interatomic distance a, 6 = a(l + cos 0/1 - cos 0)).

There are at least two difficulties to overcome if one wishes to study the quasi-elastic 
peak:

(a) the energy width flAcog predicted by (12) is very small: taking oq = 1/2 and V! = 1014 
sec"1 (a rather high value corresponding to a solvent of low viscosity), we get *fiAcoq ~  1°K;

(b) the experiment should be done on a relatively dilute solution, but the "noise" coming 
from the solvent molecules must be low: in particular, the solvent should not contain hydrogen 
atoms.
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3. Coherent Scattering

This situation may be of interest if the coherent scattering amplitude (per unit volume) 

for the polymer is much larger than the amplitude for the solvent. The correlation function to 
be studied is:

(13)

where the sum 2jy runs on all atoms in the long molecule, and a £, ay are characteristic ampli-

tudes. For an atom i belonging to the nth submolecule we separate

i At the time of interest (N't »  1) the vectors pj(t) and py(o) are uncorrelated between them- 

|selves and uncorrelated to the rn’s. Then, for two atoms i and j  belonging respectively to the 
Isubmolecules n and m (n and m being different or equal)

(14)

Introduce a form factor

(15)

where the sum is carried over the atoms in one submolecule. Then

(16)

For V/t »  1 (and for the distance scale specified by qb «  1) we can again assume that the dis-

tribution of rn(t) - r m(o) is gaussian and write

(17)

Expressing the rn’s in terms of a's and using equation (5), we arrive at

(18)

where

(19)

The double sum I nm in equation (17) then reduces to N Is and, for the long distance limit of



interest (go «  1) Is may be replaced by fds . Setting
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(2 0 )

we obtain:

( 21 )

( 22 )

Equations (21) and (22) deserve a few comments: (a) Equation (22) displays the well-known 

1/q2 singularity of the total scattering power at small angles. This large intensity may be use-

ful to separate background effects and represents a definite advantage of coherent versus in-

coherent scattering, (b) Equation (21) shows that S coh(q t) depends on only one particular com-
bination of q and t , namely the variable 0 defined in equation (20). Just as in the incoherent 
case we can verify that 0 is independent of the size chosen to define the submolecules.

FIGURE 2.

The dynamical form factor for coherent scattering for a long molecule (under 

0 applied forces) at fixed (small) momentum transfer *Aq, as a function of

the energy transfer Hu>.

Finally, the calculation of the energy distribution S coh(q co) (i.e. the Fourier transform 
of equation (21)) requires some numerical work. The results are shown on Fig. 2. The general 

aspect is not very different from what was obtained for incoherent scattering. The half-width 
at half-maximum is
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1 4. Effect of Stretching the Molecule

£ We now show that if the molecule is stretched, the frequency width Acô  expected for coherent 

Scattering (with q along the direction of elongation) can increase significantly, Acô  being now 
proportional to q 2 instead of q4. In practice, the elongation might be achieved either on a 

Iconnected (but still rather dilute) polymer network (swollen rubber) or by electric fields on 

polar molecules.

At equilibrium, the average orientation of each submolecule is now nonzero:

In the following we shall consider only weak elongations (Z < cr). Then the Rouse equation 

(4) still applies [9] and the basic correlation functions are

(23)

inhere a, p - x, y, z and Gnm is always defined by (6).

For incoherent scattering this modification has only minor effects. But for coherent scatter-

ing, we obtain, instead of equations (17,18):

(24)

If q* 1 «  q2 cr2 equation (24) goes back into equation (18). But if q • Z »  q2 a2 (namely if 

q is parallel to 1, and q < Z/cr2), the behavior is profoundly different. The times of interest 
are then t ^  (W q2 Z2)”1. The last exponential in equation (24) can then be expanded

and after some manipulation this leads to

(25)

The Fourier transform Scoh(q q ) is then a Lorentz curve of width

(26)

tote that in this case Acô  is larger than the value at rest (~ q 4 a4). Thus in certain condi-

tions an elongation should cause a broadening of the quasi-elastic peak.



5. Concluding Remarks

Our discussion was based on the Rouse assumption: the drift velocity ^  rn is proportional

to the local curvature an - an+i. This assumption is interesting because of it* s simplicity, 
and it has led us to results which have a simple geometrical interpretation. But it is not 

realistic: in actual fact ^  rn depends on the configuration of submolecules (m) very remote 
from (n) along the chain - for (at least) two reasons:

(a) The motion of (n) relative to the solvent creates a backflow which reacts on (n). This 

coupling leads to very different results (Acoq ~  q3) and will be discussed separately.

'(b) There may be some direct friction between (n) and (m).

Thus (and in spite of obvious experimental difficulties), neutron scattering experiments 

could reveal some interesting motional properties of long molecules.
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! ai> a2» •••# aN> and a one-dimensional assembly of spins S i , ..., Spj coupled by exchange
| forces. In both cases the fundamental processes contributing to the entropy source are
[ —> —►
; local motions which do not change the total vector length Si + ... + S/y. Prom this con-

j versation property the diffusion form of equation (4) follows immediately.

7̂. Note that, although R and D depend on the molecular weight M of the polymer, the product 

' A'Td is independent of M. All the properties discussed assume only that the chain is long

| (qR »  1).
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