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Abstract

A special quantum field theory technique for a system of spins was used to 

evaluate the resistivity of metals containing paramagnetic impurities, assuming 

J/&F ̂  for 0,1 arbitrary value of (J/ep) In (sp/T), where J is the exchange 
scattering amplitude and ep the Fermi energy. The first term of this series has 
been found earlier by Kondoll]. It is shown that exchange and ordinary inter-
actions give independent contributions to the resistivity. For a ferromagnetic 
sign of the exchange interaction between the electron and the impurity (J > 0), 

the; exchange component of resistivity decreases with temperature and disappears 

at T = O' In the reverse case (J < 0), the resistivity starts increasing when 

the temperature decreases. After going through a maximum (for T = TmtiX), where 
the exchange resistivity, due to a local impurity atom, is of the same order of 

magnitude as the usual resistivity, the exchange resistivity, even in this case, 

goes to zero at T = 0. Such a behavior is related to the resonant nature of the 
scattering amplitude for J < 0. The calculation assumes that the impurity spins 
are completely disordered, i.e., the temperature is higher than the Curie 
temperature of the impurity ferromagnetism. Since the latter is proportional to 

the concentration, while TutiX does not depend on concentration, the results ob-

tained are reasonable for sufficiently small concentration.

THE observation of a minimum in the resistivity of some metals as a function of temperature has 
attracted attention for a long time. A study of this effect has shown that it is probably re-

lated to the presence of impurity atoms with unfilled inner shells in the original non-magnetic 

metal. However, until recently there had been no satisfactory explanation of the interaction of 

electrons with such atoms and for the occurrence of a minimum. Such an explanation has been 
advanced by Kondo [l3 who calculated the second order approximation (compared to Born's approxi-

mation) for the scattering probability of electrons by an impurity, caused by an exchange inter-
action J. It then turned out that in the scattering probability there is a correction of the 

order of (J/tp) In (ey/5)» where § is the electron energy measured from ep. This gives a 
correction to the resistivity of the order of - (J/e/r) In (ep/T), which results in an increase 
in resistivity with decreasing temperature for a negative sign of J (antiferromagnetic inter-
action between electrons and impurities).

Kondo's calculation is reasonable within two restrictions. First, the correction must be 
small. Second, the spins of the impurity atoms must not be correlated. In other words, the
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temperature must be above the Curie point for impurity ferromagnetism (or antiferromagnetism). 

It is well known (see for example Ref. 2) that the Curie point is proportional to the impurity 

concentration. Therefore if the concentration is small enough, the relative correction in 

resistivity, which is proportional to (J/ep) In (ep/T) becomes of the order of or greater than 
unity even before the onset of spin ordering. In this case the perturbation theory is not 
usable and one must sum up the whole series. This calculation is the subject of this paper.

I. Techniques for Spins

The main difficulty in the calculation comes from the non-commutative nature of the spin 

operators for the impurities. Let us note that it is this very point which, according to Ref. l, 
leads to logarithmic terms. This means that the exchange interaction Hamiltonian
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(1)

(we consider the interaction to be a 6-function) is in fact not equivalent to the interaction 

of the electron spin with an external magnetic field. On the other hand, the operator is not 

an ordinary field operator [3]. The fact is that every average of the type <7* C§i(t1)^(t2),

.... S l(tn)]>, where all the §' refer to one atom, (i is the direction index x, y, z),

< * > ~ p < * >/(25 + cannot at a11 be represented by a sum of products of the type

<7’[5 (tj)5 (t2)]><T [5I(t3)5"(t4)]> ... + ...  ̂Because of this, in a calculation of effects 

where the non-commutation of the components of 5 is essential a special technique is needed.

A number of such techniques were derived for spin 5 = 1/2 a few years ago by I.E Dzyalo-

se ierS lS  to >' Bere- *e » '•MMlon of these n lch  .e  .ere able to
generalize to the case of an arbitrary spin.

Let ^introduce operators for a rirtual Fer.1 field a a + corresponding to the spin
operator Sn according to the formula: ”

( 2)

where the are spin matrices. Each index p and p' assumes 25 + j values: - 5 ..... 5.

^ 2  1° the" operators COnBDUtati°n relationa -

(3)

ap introduce fictuous states- *
-t-te *  for which ^  = 0 i e t h - " *  f 6" There 18 a "'respondingMW t u. 0, i.e., there is only one "particle" corresponding to



operator and there are no "particles" corresponding to operators a However, it is quite 

clear that by introducing operators ap we have also brought into consideration non-physical 

states in which either all the occupation numbers are zero or more than one of them is equal to 

one. These states must be excluded.

In the case of spin 5 = 1/2, this happens automatically in ohe following way. All the 

physical quantities contain only the averages of products of operators Sl. Other combinations 
of ap are not involved. But the operators S* themselves, for 5 = 1/2, have the property of

giving zero when acting on the non-physical states (0, 0) or (1, l). Thus, one can average over

all the states. However, one must introduce a normalization. Since in a complete average, the 

result is divided by 4n, while physically only 2n states are relevant, where n is the number of

different atoms participating in the average, the result must be multiplied by 2n.

This procedure can be easily generalized to the case S > 1/2. The operators (2), in this 

case, give zero when acting on the state (0, 0 ... 0), but the result may be different from 

zero when they operate on the states where more than one occupation number is equal to 1. Be-

cause of this, we shall consider that each "particle" has an energy A »  T. Therefore, the 

greatest contribution will come from those states where IN* is minimum (i.e. 1). This procedure

p
also requires a correct normalization so that the average of the form (2S + l)~lSp(SlSkt ...) 

(for one atom) has the correct value. The value calculated by our method must be multiplied by

c^/7V(25 + 1) and then we must let A - 00. In the general case, the result must be multiplied 

by [eV7’/(2S + l)]n where n is the number of participating impurity atoms.

But this normalization leads, in fact, to an essential inconvenience when the above 

technique is used. The fact is that, in contrast to the usual methods of field theory, the 

averages of the operators pertaining to a single atom and of the operators for different atoms 

do not have the same weight. This is very important in problems dealing with spin ordering. 

However, in the case considered here, each impurity atom scatters the electrons independently 

(this will be demonstrated later), and therefore one can consider a single atom. Then, the 

normalization causes no difficulty.

We use the finite temperature technique of field theory. The "free" Green's functions for 

the operators ap (for one atom) have then the form:
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(4)

(here, the average is over all the states). On the diagrams, the <§ functions will be repre-
sented by dotted lines.

By way of example, let us calculate the simplest self energy diagram for the electron. Be-

side its illustrative value, this calculation will permit us to anticipate the most important 

portions of the complete analysis. Let us consider first the case of one impurity atom at



point r. The interaction Hamiltonian is given by formula (1). The diagram of the first non-
vanishing approximation is shown in Fig. 1. It represents the expression:
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where § is the electron energy with respect to the Fermi level.

FIGURE 1

Having summed over Wl and co2 we get in place of T2 1 , the expression:

“ lw2

Assuming A »  T, we get simply -1. Averaging over the positions ? of

the impurity atom, and summing over all the impurity atoms, integrating over p " and discarding 
the constant part of I which gives only a small renormalization of the chemical potential, we

(5)

where Nt is the number of impurity atoms per unit volume.

on only^one^mpurity^atom'and t0 there may be terms depending
first of all the second ord^ J ^ 8 d®*)e“dlnK on a great number of such atoms. Let us consider 

two diagrams cLresZdine to ft?’ ^  °n 8 slngle imDuri^  atom. There are

the positions and summing over all thTatSj.’ we *** di&erm 2a’ after averaging over
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In this expression, one can easily see the rules for writing the formula corresponding to a 

diagram, (a) Each dotted line has its own frequency. The electron frequencies are determined by 

conservation rules, (b) The electron momentum on every internal line is independent, and one

FIGURE 2.

should integrate over the momenta, (c) One takes the aa' component of the product of electron 
spin operators in the order of their position on the electron line, (d) All the dotted lines 

corresponding to one atom form together a closed loop. A trace is taken of the product of the 

impurity spin operators in the order of their position along the loop.

Summing over co1, co2» 911(1 w3 911(1 assuming A »  T, we get:

These are two completely symmetrical expressions. One can readily see that the first term gives 

a logarithmic integral, for positive values of in the region T, £(p') «  €(p") «  e/r-

In principle, the integral over p " extends over a larger range. In fact, its upper limit is a 

momentum of the order of the reciprocal radius of interaction; the latter can be considerably 

lower than l/p0 for d or / orbitals. However, as will be shown in Section 3, this inconvenience 
disappears in a renormalization of the scattering amplitude J. As to the remaining integral, in 

that we can take §(p')~w. Thus, in diagram 2a one of the integrals over §(p), can be loga-
rithmic, but then the other one must necessarily be non-logarithmic. Since e ith e r  integral may



be logarithmic, two identical terms appear.

As a whole, we get, with logarithmic accuracy:
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In the same way we find that the l2b corresponding to diagram (26) is equal to I2a. The result 
can be interpreted as a modification of the quantity 1/t0:

(6)

( ' is the number of electrons per atom). This is in fact the result obtained by Kondo [l] by a 
different method.

Having analysed the above calculations, one can easily see that they can be described as 

follows: In each of the diagrams 2a and 26 we can draw two vertical sections through one 

electron line and two spin lines. Let us make such a section. In two summations and one inte-

gral corresponding to such a section, the essential values of the variables are of the order 

of co. The remaining sum and integral are of logarithmic type, in which the essential values of 
the variables are:

In each diagram one must draw all the possible sections across three lines. The diagrams may be 

analysed in the following way. If one retains those terms which have the highest power of the 

log for a given value of J [these are the terms Jn+2(ln £/r/|<o|)n], then we must conclude that 
these are diagrams in which the integral along the section is taken for |§|, |0 .| ~  |»|f while 

all the other integrals are logarithmic and the important values of the variables are jgj,

I I >>l i ®I • This situation strongly reminds one of the study of electron damping in a Fermi 
liquid by G.M. Eliashberg [4], and this is why we use his method.

However, before doing so, let us consider the diagrams of the next order in which not one, 
but two impurity atoms participate. Elementary diagrams are shown in Figs. 3a and 36. If one

FIGURE 3

averages over impurity positions, one can readily see that the contribution of diagram 3a com-
pared to diagram 1 is I/te )̂, i.e. very small.

This pertains to all other diagrams with intersecting lines from various atoms. As to dia-
grams with internal inclusions (Type 36). one can reason as follows. In accord with the fore- 
going, the role of the internal inclusion (see Ref. 5) consists in replacing G = (iu _ f)-1 
by G (iu i/2t sign co - £)-i. Let us introduce in diagram 36 the substitution G'=G+(G'-G)



and in the term with G' - G we shall integrate again over §. This yields zero, This means that 

only the integral with G remains. This happens in all the diagrams with internal inclusions. 

Therefore, it is sufficient to consider only diagrams for a single impurity atom.
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2. The Self-Energy Part

As already stated, we shall use the method of Reference 4. In any of the diagrjps which may

be of interest to us, we can make a section across three lines. The sums and integrals over

these variables must be calculate accurately since the values of the arguments are quite small. 

As to the other portions of the diagram, their variables have quite large values, and, with

logarithmic accuracy, we can replace all the sums over frequencies by integrals. Thus, we must

calculate the full sum of diagrams having the form shown in Fig. 4, where the cross-hatched

FIGURE 4.

squares represent the sum of all "four tails" calculated with logarithmic accuracy. We shall 

designate this by the symbol:

The following expression corresonds to the diagram of Fig. 4:

(7)

where G(co, p) = [ico - §(p)] ^  (co) = (ico - A) 1. We shall see later that T will de-

pend only on In e/r/1 co |. Therefore, we can make the transition from a summation over imaginary 
frequencies to an integration over real values and place co on the real axis. From symmetry con-

siderations, it follows that the spin dependence of f has the form:

As in Reference (4) we have:



Having transformed th sum over the frequencies to, and to, as in reference (4) we get:
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(8)

Here, we note that in the integrals small values of <o1( to2 are essential (considering that 
T «  A «  ey). Setting Im Gfl(to) = - ir8((o - §), Im eg fl(to) = - TrS(oo - A) and taking into account 
the condition A »  T, we get:

(9)

which differs from the first approximation (see eq. 5) by the substitution of the square 
bracket for (J/N) 2S(S + l).

Now let us examine r. As already mentioned, r can be calculated as if it were at T = o. re-

placing all the summations over frequency by integrals. But these are still integrals along 
the imaginary axis. The author of this paper has demonstrated (unpublished) that all these 

integrals can be transformed to the real axis, together with all the external arguments. There-

upon, all the temperature Green functions may be replaced by time functions at T = o via the 
transformation ito - to + i8 sign to. Then we shall do the following. The integrals over to- in-

volve only the frequencies on the spin lines. Since all these integrals are taken from - a> to 

+ ®, we can substitute to - A - to. Since at every vertex there is a spin line entering and one 
leaving, conservation laws are not violated. We must only make a transformation from to - A to 
to in the external frequencies of the lines.

Since we must find T(to, A; to, A), after all the transformations the task is reduced to a 
calculation of T(to, o: to, 0) in the usual method of time diagrams at T = o, whereupon the G 
function becomes (to - % + i6 sign §-l and the <s function (to + i6)-i since A > 0).

The first diagrams for the vertex part are shown in Fig. 5. We can express them as follows 
(corrections to J/N):

(10a)
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(10b)

i 1, x > 0\
where 0(x) = < > We left the non-logarithmic imaginary term here because it will

10, * < oJ
be needed for further reasoning.

FIGURE 5

By examining higher order diagrams (Fig. 6) one can easily see that the diagrams with the 

highest power of the logarithm for each order are only those diagrams which can subsequently be 

reduced by two lines, an electron line and a spin line, in such a way that the result is a

FIGURE 6

simple vertex. For example, by simplifying Fig. 6c. one can first obtain a diagram of the 6a 

type, then 66, then a simple vertex. These properties are exhibited by so-called "parquet- 

diagrams 5a and 6, 6a, 6, c and are not exhibited by, for example, diagram 6d.

We make a summation of the -parquet- by the method of V.V. Sudakov [5]. Let us point out 
that there are two different elements of a -parquet-, as shown in Fig. 5a and 56. We can intro-

duce two different summations of the diagrams as shown in Fig. 7a and 76. Let us designate as 

the diagram which can be cut through two parallel lines (Fig. 7a) and A2 the diagram which



can be cut through two antiparallel lines (Fig. lb). It is obvious that r = T0 + + A2,

where T0 is the original interaction J/N(a S). Let us point out that in the logarithmic inte-
gration inside the internal Ax, A2 of Fig. la and lb, the essential values of arguments are 
larger than in the external lines, i. e. than in corresponding pairs of two parallel or two 

antiparallel lines.
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FIGURE 7

Let us examine now the diagram la in order to determine Ar It is obvious that the lower 

limit for the logarithmic integrals in this diagram is © (if the external ©x = ©2 =0). We shall 

select that internal dotted line in which ©^ is minimum. To the left and to the right of this j

element there can be any element of r, i.e. in other words, in the sum there is a full r both I
on the left and on the right sides. The quantity ©* plays the role of © for these T. Thus one 
can write (with logarithmic accuracy) the equation:

(11a)

and similarly:

(lib)

Adding these expression we get:



Vol.2, No.1 SCATTERING AND RESISTIVITY EFFECTS 15

(12)

Let us introduce the transformation In e/r/oo = x and let us look for a solution in the form 

f = r(0) + (a S) Then we get:

(13)

Solving the integral equation, we obtain:

(14)

Substituting into (9), we get:

(15)

Expressions (14) and (15) have an important property. If J < 0, for some value of |q | these 
expressions have a pole. The presence of such a pole indicates that there is a resonance in the 

scattering. When taking into account the final resonance width one must add to the logarithmic

J p o m
term in the denominator of formula (14) an imaginary component proportional in i ------ . This

N TT2
can already be seen from formula (10). Our approximation is not applicable for finding such 

terms. Hence, we shall use expressions (14) and (15) far from the pole; but in the vicinity of 

the pole we shall evaluate only orders of magnitude, on the basis that a term proportional to 

iir is added to In e/r/|co| in the denominator.

3. Ordinary Interaction. Transition to the Scattering Amplitude
}

Until now we have limited ourselves to the study of the exchange interaction. However, the 

; interaction of the electron with the impurity atom involves necessarily the usual non-exchange 

; term which is of considerably larger magnitude. Naturally, this raises the question of possible 

interference effects.

The usual interaction, in the absence of exchange interaction, can be considered as an ex- 

■ ternal field, and it is designated by a cross on the electron line.

First of all let us mention that, for the same reasons as earlier, it is sufficient to



examine the interaction with only one atom. Now let us assume that in diagram 5a we have placed 

on the electron line a number of crosses (Fig. 8). Considering for simplicity's sake that the 

interaction is isotropic, we get
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where 9 designates the whole insert from the first to the last cross. An integration will con-
vince us that the logarithmic expression is not obtained in this case. Taking into account the 
fact that the sum of all the possible 9 has a magnitude eF/N, we find that the diagram having 
the insert is (In ,sf/q) -1 times smaller than the diagram without insert.

However, a cross can be placed also on that electron line which does not participate in 

logarithmic integrals. The simplest is to place crosses in the very first diagram la. Then, one 

can be convinced that the diagram with the insert has a magnitude u>/ef . From this it follows 
that the usual interaction gives a separate component in 5 and cannot interfere with the ex-

change part. The usual part has been studied in a whole series of papers (see for example, ref.

1  Hip Q  1 I 2

3, § 39.2). It has the form -i/2Tord sign co, where-----= Ni -----  \a\ ; a is the scattering
T ord ^

amplitude corresponding to the non-exchange interaction.

Now, let us examine the second relevant problem. In all of the foregoing calculations, the 
integrals over § were taken in the range - eF < £ < eF. As a matter of fact, these integrals are

limited, for positive values of E only by the condition Ip I < l/rint. where r- «. is the 

interaction radius, which may be much smaller than l/p0. Therefore a renormalization of the 
interactions must be made.

Instead of the Born scattering amplitude, we shall introduce the true amplitude of scatter-

ing of an electron by an atom. If f is the Born amplitude and is the actual amplitude, then 
by analogy of ref. 3 § 25.4 we have:

(16)

Until now, the role of / was played by the quantity - -rr o S. But now we shall take
j ”

/ = --jy o S + / 0 where / 0 does not depend on spins, and we shall choose f0 in such a way

that equation (16) will be satisfied for /, = - — (o S) This means that in the interaction
N

Hamiltonian we have included a part of the usual interaction term. The diagram-method does not 

suffer from this since the operator /0ap+ap also gives zero when it operates on the state with 
zero occupation numbers, while the other improper states are excluded by our procedure. This 
situation, generally speaking, permits a study of the usual interaction together with the ex-
change interaction. However, since the usual term, except for the renormalization, makes no con-

tribution to the logarithmic integral (inserting the usual interaction in integrals 10a and 106



gives a mutual cancellation), we have considered it separately. This has the advantage that the 

usual interaction U is expected to be stronger than the exchange interaction, and therefore a 

simultaneous study would have imposed an unnecessary limitation: J/N In ep/T »  U. The inserted 
term /0, as we shall soon see, has a magnitude of (J/N)(J/ep) and does not impose new limita-
tions.
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FIGURE 8

Solving equation (16) to second order accuracy we have:

(17)

When we find second order terms (formula 10), we renormalize in the following way. We re-

place J by in (10); furthermore, in first order terms, at the pole in T we change to J Y/N 

using (17). If the integration over § is not performed, we get in the sum:

(10a')

Later on we shall be convinced that to find the conductivity, we shall need the case £ «  ep. 
In this case we obtain with logarithmic accuracy:

Since now the integration is performed over negative §i(lpl K P q) • there is no question 
about the range of integration.

This is the situation for the lower approximation. We shall show that such a renormalization 

can also be performed for higher orders of approximation. It is easiest to do so by going from 
the n-th order to the order n + 1. This transition can be accomplished by replacing in turn each 

simple vertex by the sum of the two vertices shown in Fig. 5a and 56.

If in the n-th order all the vertices contained Ji/Nt then in the new diagrams of order n + 1 

there will be a J±/N everywhere after this transformation. Furthermore, we must perfect the 
n-th order diagram by substituting in turn instead of J i/N the expression (17). In other words, 

such a transition from n to n + 1 order of approximation changes the integrals of type (10a) 

into those of type (10a). If in addition, we take into account that in all the logarithmic



integrals co ~  §, then it practically amounts to having a JY/N in all vertices and all the 
integrals are taken over § < 0, i.e., one can take sp as the range for integrals over §.
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4. Resistivity

As we know (see for example ref. (3), § 39.3), the relation between current and vector 

potential, which is frequency dependent, has the following form in the absence of spatial dis-
persion:

(18)

here, in the case of isotropic scattering, Q(q ) represents an analytic continuation to real 
oj of the expression:

(19)

where G are temperature Green functions. Let us change from a summation over co' to an integra-
tion over real frequencies (see Ref. (3), § 21.2); then, considering co > 0 in (19), we can con-
tinue this expression analytically to real values. We obtain then:

(20)

In view of the fact that the G functions do not depend on the direction of p and that the
integrals over p are taken in the neighborhood of the Fermi surface, we can make the substitu- 
tion:

The integration must first be performed over co and then over However, as always [3], we 

shall use the following approach. We shall add and subtract from the expression under the inte-

gral the "free" term, i.e. the term corresponding to no interaction with impurities. Then in j 

the integral with the "free" expression, we shall first integrate over the frequency but ’in 
the convergent term with the difference, we shall integrate first over §.

Instead of GR we shall insert the expression (GA = GR*):

( 2 1 )

where:

(22)



where Tord is the non-exchange collision time, and l/-rex(co) corresponds to the expression (15). 

After all the operations, assuming cd - 0, we get:

Vol.2, No.1 SCATTERING AND RESISTIVITY EFFECTS 19

where

With logarithmic accuracy, we obtain the resistivity:

where

(23)

and where

(24)

and c is the atomic concentration.

If Ji > 0, p decreases with decreasing temperatures and becomes zero when T - 0. In the case 

of Jx < 0, expression (23) becomes infinite when

(25)

(q ~  l). According to the considerations of Section 2, in the vicinity of such a point the 

resistivity goes through a maximum. The maximum value is

According to (24), this expression is of the same order of magnitude as the ordinary resist-
ivity due to the same impurities. The linewidth of the temperature dependent peak is AT ~  T0. 

With further decrease in temperature p*x - 0.

We have not cleared up the effect of ferromagnetic ordering. However, it probably liqui-
dates the effect we have analysed. Since the ferromagnetic transition temperature Tc ~  cJ^/ep 
(see Ref. 2), where c is the impurity concentration, in principle the peak can be obtained with 

any combination of metals with < 0 and for a sufficiently small impurity concentration.

In a future publication we shall consider the effect of impurity ferromagnetism and of ex-

ternal magnetic field.
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