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Abstract

The phase operator for an oscillator is shown not to exist. It is replaced by a pair 
of non-commuting sin and cos operators which can be used to define uncertainty rela-
tions for phase and number. The relation between phase and angle operators is care-
fully discussed . The possibility of using a phase variable as a quantum clock is demon-
strated and the states for which the clock is most accurate are constructed.

I. Introduction
We shall discuss quantities which are special cases of time operators, that is, variables conjugate to 

the energy. Bohm and Aharanov1 have attempted to use such operators in their discussion of the energy-
time uncertainty principle. They suppose that an operator exists which is an appropriate quantum variable 
describing the generalized clock. In fact, Bohm and Aharanov assert that such operators exist for all 
quantum systems. For example, they consider a clock composed of a single free particle, whose position 
measures the time. The suggested time operator is

The questions of existence, Hermiticity, eigenvectors, etc., were not considered.
What we shall do is consider an example of a generalized time operator, the phase of a quantum oscil-

lator, and give answers to these questions for the system of an oscillator clock.
Another reason to study the phase of the quantum oscillator is its possible relevance to the quantum 

theory of coherence.
The following convention is used. A caret will be used above a quantity to denote an operator. A 

quantity without a caret is a c number. Also <£ will be used as an operator with 6 its eigen-values.

II. Definition of Phase Variables
We are going to study the quantum oscillator described by the Hamiltonian

(1)

with special emphasis on the time phase variable. 
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Classically the solution to this Hamiltonian is the well-known
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(2)

(2')

The A ’s may be chosen real

(3)

(3 ')

In quantum mechanics the equivalent equations are

(4)

(4 ')

where we think of a 1- and a~ as the positive and negative frequency components of x. In analogy with (2) 
and (2 ') we will consider a+ to be the product of 2 operators, one Hermitian representing the amplitude of 
oscillation and one complex representing the phase. Ideally we should like to be able to express a+ and a~

in the form Re+‘^ and e~ ‘^R where R is Hermitian and e '^  is a unitary operator defining a Hermitian 0. 
This is what Heitler [2] and Dirac [3] try to do. We shall find, however, that their arguments are not correct.

Since the number operator, n, is given by a+a “  = Re~'^>e , >̂R, where e '^  is unitary, then

(5)

Suppose R is Hermitian. Then its representation in some basis is

(6)

But n is diagonal in but one basis system. Hence the system in which R is diagonal is the number repre-
sentation and therefore

(7)

These equations can be used to obtain

(8)
This plus the supposed unitarity of e '^  is used to obtain

(8')

However, taking matrix elements of this commutation relation we get

(9)

This is obviously impossible since when n, = n2 the left side is zero while the right side is -1. The
difficulty is not a basic one and lies in not properly taking account of the periodic nature of d>. This will be 
discussed in detail with angle operators.



A more important objection is that e l^ defined above is not unitary and does not define an Hermitian <£. 
Consider
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Taking matrix elements in the n representation

(10)

For n = 0 both sides are identically zero. For n / 0 we get <n\e *̂ \ m> = Sn#in+1. The arbitrariness of

<0 |e“ '^| m> is due to n having zero eigenvalues and therefore no inverse.
Let

Then

(ID

This cannot equal unity for any choice of the rh Therefore we shall cease to denote these operators by e i<p 
but rather call them e1̂ , to indicate that cf> is not an operator. We can restrict the choice of rf by demanding 

= 1 which gives = 0. In fact by so restricting rf we can replace our definition of e i(  ̂ by

(12)

This definition gives the same operators as the previous one. In fact e i<f> is just the lowering operator

(13)

It must be kept in mind that e1̂  and e ”*'^ are symbolic expressions and do not represent some exponential 
function of a Hermitian phase. We can use these operators, however, to define trigonometric functions of 
phase and investigate their properties especially in the classical limit. We shall show that these operators 
are observables and that they do become the classical functions of phase in the limit of large amplitudes. 
Furthermore, they provide a set of quantities for measuring time. Consider

(14)

Clearly they are Hermitian operators. According to the principles of quantum theory they are observable 
dynamical variables if they possess a complete set of eigenvectors. Therefore we shall proceed to investi-
gate their eigenvalue spectrum and eigenvectors.



Since
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the eigenstates of cos 0 and sin 0 will be distinct. That [cos 0, sin 0 ] ^ 0 is not too surprising since 
one is essentially the time derivative of the other. In fact, it is the non-commuting nature of cos 0  and sin 0  
which makes ei(  ̂ not unitary.

The non-commuting of cos 0 and sin 0 prevents us from constructing states of known 0. In fact, we 
shall show that eigenstates of cos 0  can be considered superpositions of states with ±0, and sin 0  states 
are superpositions of states with 0 and n -  0.

We now find the eigenvalues and eigenvectors of cos 0.

Let |cos 6> = ^  ^C jn > . Remembering that e ^  is a lowering operator and e " 1̂  a raising operator we
n

obtain

(15)

for the eigenvalue equation. Hence

(16)

Apart from an over all multiplicative factor this recursion relation has only one solution for each value of A. 
The general solution to the second equation is

(17)

where P + 1/p 2 A. Then if I cos <9 > is to be a normalizable vector |p| must equal 1. Let p = e 10. Then
A = cosd  and we find that cos<f> has the eigenvalue spectrum -1 to +1. Inserting this into equation (16) we

The eigenstate of cos <f> with eigenvalue cos 0 is

(18)

Notice that for each value of cos 6 there is only one state and not two.

Now cos 6 is a superposition of T V " 0 |n > and V *
L u  2 ^  ' x  These states are the states that one

n n

might think should be the eigenstates of thp ~
g ot the conjugate to the n operator in analogy with the usual situation

for an operator and its conjugate. Thus it might be suspected that V ' e in* |„^ j  , ,
P lnat /  ( e ln> provides a good definition

of the eigenstates of <£. Might we have done much better in n,ir j-r- -*• r .
ne much better in our definitions of phase by considering an

operator <f> which multiplies each state ^ J e ,n0|n> by 0?

n



For such an operator to be an observable at all, the states
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must form an orthonormal complete set. Consider the inner product

Were the sum from -<*> to +<» this would equal 8 (6 ' -  6). But as it stands it is not the delta function and 
the states are not orthogonal [4]. Thus if the operator exists at all it is not Hermitian. Furthermore the 
superposition of states

(19)

if m is a positive integer. The states are not even all linearly independent. Hence <f> was not defined in a 
consistent manner.

Before going on we shall directly prove the orthogonality and completeness of the |cos 6> 

<cos0|cos0/> = sin (n + 1 )6  sin (n + 1) 6'
n

(20)

Now we have found that for each value of 6 there exists only one state. That is |cos 6> = -  |cos (-# )> .
We can put the cos cf> states in 1 -to- 1 correspondence with the angles only if we restrict 6 to half its range, 
say from 0 to n. Then one of the delta functions is spurious. The states |cos 6> are then orthogonal.

The remaining question is whether the cos 6 states are complete. If we can expand an arbitrary |n> 
state in |cos 6> states then the |cos 6> states are indeed complete. Hence we try

(22)

Let i{6 ) = — sin (n + 1)6 . Then
77

(23)

Summarizing the results for the cos cf> operator, it is an observable with spectrum —1 to 1 and the eigen-
values are nondegenerate. Each |cos 6> state can be thought of as a superposition of \+6> and \—6> 
states. The sense in which the \6> states can be thought of as states of known phase w ill be described 
later.

Similar results can be obtained for the sin <£ operator. The recursion relation for the eigenstates be-
comes

(24)



where Cm = <m|sin d> where fi is the eigenvalue of sin <£.
We find the non-increasing solutions to be
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(25)

Hence the state |sin 6> is the same as |sin (n -  6)>.
To put these states into 1-to- 1 correspondence with angles we use only those angles in the first and 

fourth quadrant. The proof that <sin 0|sin d'> = 8(8 -  O') and the completeness of the |sin 6> states fol-
lows in much the same way as the corresponding proof for the cosines.

Thus the observables sin 0and cos 0 exist but don’t commute or define an operator 0. In particular 
the equation sin2 0 + cos2<£ = 1 must be replaced by

(26)

We would like to show that <cos 0|sin $'> is large only if sin2#' + cos26 = 1. It turns out that

where f(d) = l ne ,nd which is very sharply peaked at 6 = 0.4 Thus if 6 is in the first quadrant the func- 
tion is peaked at 0 = +6. If 0 is in the second quadrant the function is peaked at d' = 6 — n and n — d. 
As expected <cos #|sin 0'> is peaked at sin2#' + cos26 = 1.

I I I .  The Oscillator Clock

Since [cos <£, sin 0] ^ 0 and sin <£ is essentially the time derivative of cos we can expect spread-
ing of the wave packet in cos d. That is to say if we prepare a state |cos d> at time t = 0, at time

t = ~  the state is not lcos(^ ± cot)> but some wave packet in cos space. If we define an operator

C° S1j  /  ^  ^  2 C° S^  + f) = e '€e‘4‘ + e~ ‘(e~ 7  which incidentally does not commute with cos d>, we 
would find the system in an eigenstate of cos(0  -  a i) at time t. In this sense there is no spreading. How- 
ever for any fixed choice of r, wave packets in cos space spread with time. We might think that this spread-
ing would prevent us from using the oscillator as a clock since a clock parameter must increase in time

rater T  *  Z  7  7 ^  7 ^  ^  ° f the Ume which is mea^ d- However, we shall show
ter that the oscillator can be used as a clock which can measure time with arbitrary accuracy i f  it is pre-

pared in the correct states. y y p

(27)

,he 

(28)

Th„ /  r  . . ■ Sm‘,“  both cos i  and sin }  simultaneously.
J . 1 1  SUCJ St,1“  ,s c,ucial f“  ‘ bo « i « « n c e  of a classical limit. It might bo questioned 

whether such states do exrst smce every |cos « >  state is a superposition of |sin 9> and (sin - 0 ,  states

Since L i m e s  |«>“  ' H  "< £ >  ' ? !  Sta,' J s'“ h that < « a i>  -  cos 0 and Csin } >  .  sin 0.
‘ “  I  !  lY  ~ 1  1 States ° f 0 su8gested by a naive theory, we might expect them

to have the desired properties. Consider first the inner product ^



id
The normalization swamps out the e term. Similarly <sin cf>> = sin 0. The uncertainty in cos cj> can be 
defined as <cos 0 > 2 -  <cos2 0>.
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(29)

since the normalization again swamps out the finite terms. Hence

(30)

In fact, one can show

(31)

If an oscillator is in a state \6> and sin cf> or cos 0  are measured, it is overwhelmingly probably that 
the measurements w ill yield cos 6 and sin 6.

Thus, although the states \6> are not eigenstates of a Hermitian they are states for which the un-
certainties in the non-commuting operators sin <f> and cos <f> are zero!

We can now see to what extent an oscillator can be used as a clock. We start by preparing the oscil-
lator in the state

After time t the state will have become

Since the uncertainties in sin <£ and cos <£ are “ zero”  in such states, simultaneous measurements of both 
can be performed to any degree of accuracy. That is, given any 8 > 0 both sin cf> and cos <f> can be meas-
ured within accuracy 8. But from what was said before, it is overwhelmingly probably that the measurement 
will yield cos(0 + co t) and sin (0 + cot) within accuracy 8 which uniquely tell us the value of J . And, in 
fact, any quantum oscillator can be used as an arbitrarily accurate clock if its cos <fi and sin cf> can be 
measured.

IV . Periodic Systems
Now why does the phase operator have such strange properties? Why can we not define the conjugate to 

the n operator? The reason is that the n operator does not have all integer eigenvalues but only positive 
values. To understand this better it is instructive to examine the conjugate to an operator with such a full 
integer spectrum from -  <*> to + °o.

The system is the angle-angular momentum system which has many formal similarities with the phase- 
energy system. Consider a bead on a circular wire. The position of the bead will be denoted by d, and the 
momentum conjugate to 6 is L, the angular momentum. The allowable wave functions are functions of 6 de-
fined between 6 = — tt and 6 = +n. In order to handle the difficulties that arise at the endpoints of the 
interval the functions are usually continued past the ends periodically in 6. Hence we consider the space

t • d
of periodic functions of 6, where 6 can be considered the rotation parameter. Letting L  = — i we get



and as usual m must be an integer to insure the periodic character of im(0 ).
The commutation relations for 6 and L  are usually taken to be
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However, this is clearly inconsistent. Taking matrix elements

(33)

which is impossible for m = n.
The difficulty lies in not treating the periodic nature of 6 correctly. 6 is taken to be the rotation 

parameter and as such takes on values from -<*> to + <*>. Clearly 6 operating on a periodic /(#) gives a non-
periodic function. Hence multiplication by 6 is not a good operator in the space of periodic functions. To 
remedy this we introduce an operator which is periodic in 6:

(34)

and is periodic. The operator <£ is represented in Figure 1.

FIGURE 1

But [L , <?] is i ~  and not i In particular
dO dcf)

(35)

The choice of the delta function is somewhat arbitrary. It signifies that in a full 2n rotation the value of 0  
must somewhere jump through 2n. We conventionally choose this point to be 0  = n. Evaluating this com-

mutator assuming <m\6> = where \0> is an eigenvector of 0, we obtain

(36)

This is the general relation between a momentum and periodic coordinates and one finds that any argument 
based on the c number character of [L, <f>] must be revised.

Let us suppose there exist a pair of hermitian operators L  and 0  such that [L, d>\ = r ( l  -  2nS(d> -  rr)) i 
L  with a discrete integer spectrum and 0  with a continuous spectrum from to Can we infer anything :

about the spectrum L? To answer this we introduce an operator &  = - i ~  with the restriction that
dtp j

S f> tm =  - i ^  if/Or) = / (- * ) and ^ / (0 )  = -  i [/ (-* ) -  f (n )]8 {d  -  n) otherwise. Now one can '



prove that [j^7, <£] = [L, 0 ] and that [J ?  -  L, 0 ] = 0. This means that L  = &  + g {$ ) if is to have a 
complete set of eigenvectors. The g (cf>) can always be removed by unitary transformation, hence we lose no

generality in assuming L  = J2? [5], But now the eigenstates of <£ are clearly J 'd Q e ime\d> and its spec-

trum, m goes from -«> to +<*>. That is to say i f  L  and <£ obey the commutation rules of conjugate variables 
it is possible to show that there exist functions of 6 which are eigenfunctions of L  with all integer eigen-
values. Clearly angular momentum has the required spectrum.

This sheds light on the phase operator. We see that since n goes from 0 to +<» it is impossible to find 
any phase operator that w ill be periodic in time and have the properties required by a conjugate of n. The 
point is that because there are no negative energy eigenvalues the phase operator can’t exist. We have 
proved a generalization of this theorem for arbitrary systems. A time operator cannot exist for any system 
with a lowest energy state.
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V. Phase Difference of Two O scillators

To further understand the nature of phase and its relation to interferences, consider the c o s ^ i  -  0 2) 
sin(<£i -  <£2) operators for a pair of oscillators. We define them in a manner similar to the coS0 and sin<£ 
for a single oscillator. Suppose e 1̂ 1, e " 1̂ 1, e i(^2, e""*^2 are the exponential phase variables for the sepa-
rate 1 and 2 oscillators. Then define e i(^ ^ 2) = e ^ e -1^ 2 (remember that they commute), e “ ,(^ 1~^2) =

(37)

/V a /S
The eigenvalue spectrum of cos(0x -  <f> 2) and sin(<£i -  <f>2) has some interesting properties. Let \if/> 

be an eigenstate of co s (0 i -  <£2).

(38)

Let \if/> = ^  ^amn|m> ln) where \m> is a number eigenstate of oscillator 1 and |n), a state of oscillator
m n

2. Then

(39)

which gives

(40)

Notice that each term of each equation is an amplitude for a total number of excitations n + m. This means 
that we may separately write the recursion relations involving a total of R excitations. Let R be the total



number of excitations and m, the excitation in oscillator 1. Denote the amplitude antR-m by Rm. Then
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(41)

Each eigenstate of cos (0 i -  <£2) determined by these equations is an eigenstate of m + n. This is simply 
a consequence of the commutation relation

As we have seen, the general solution to the first of equations (41) is Rn = a pn + b p n where A = p + —.
P

The second 2 relations determine the allowable values of p. The values of p are plotted on a complex plane 
in Figure 2. Note that the state with p = 1/p is the same as the state with p -  p . Hence only 1/2 the

FIGURE 2

plane need be used We shall use the top half. Also, the states with p = ±1 do not exist. Altogether then 
there are R + 1 orthonormal eigenstates of c o s ^  -  <£2), all of which are eigenstates of m + n But 
there are R + 1 linearly independent eigenstates of m + n and hence the eigenstates of cos (5 , -  <L) 
form a complete set for the Hilbert space of R excitations. Considering the total of all eigenstates of

eigenvalues^2 ^  ^  3 C° mplete S6t and cos< ^  ~ & )  can have no other eigenstates or

• f  >he r r nValU6S f  C0S? 1 "  ^ 2)6 d°  not include a11 points from -1  to +1 but only a countable 
infinity of them, namely cos 9 where 9 is a rational multiple of n. We do not expect the phase difference
“  have many significant analogies with classical phase variables for states of low excitation 

tHe ’T lue Sp6<; Um ia Very unlike the classically allowed values of cos (9, -  92) and

is dense. * ' OW6Ver’ * “ S ° ° k ^  Stat6S Wlth 3 large number of quanta for which the cos, sin spectrum 

Consider the “ states with phase difference 6 "

and the amplitudes
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(42)

Now if R is large, this function is very strongly peaked at 6 = 6 '  and Q -  -O ' or equivalently cos 6 = 
cos 6'. Similarly for sin 4>.

A ^
The expectation value of cos0  in state |R, 0> is —---- - cos 0 and

(43)

Also

(44)

and the uncertainty in cos 0  is

(45)

which goes as 1/R for large R . This justifies our use of |R ,6 >  as states of well known phase difference 
when R is large.

V I. Uncertainty Relations
The primary reason for Bohm and Aharonov’ s investigation of time operators was to demonstrate the 

energy-time uncertainty relations. We have shown that an oscillator’ s phase can be used as a clock varia-
ble, but we have not investigated limitations on the clock’s accuracy due to the uncertainty principle. What 
is a good measure of the uncertainty in the phase? We should like to find some measure of probability for 
phase which reflects the probability distribution for its measurable trigonometric functions, and use this to 
define the uncertainty relations. Now the phase must be measured by measuring its trigonometric functions. 
Suppose our apparatus is designed to measure the quantity cos (0  + e). Denote the probability that the 
measurement yield cos (0  + e) = cos(0 + e) by P [co s (0  + e) = cos (8 + e)]. Then classically

(46)

where P [0  = 8\ is the probability that 0  has value 8.
Another way of saying the same thing is that if the original state is displaced through phase angle e 

then the probability, Pe, that in the new state cos0  = cos (8 + e) is the probability, Po, that in the old 
state 0  = 0 plus the probability that in the old state 0  = -  0 -  2e.

(47)

Now quantum mechanically a measurement of cos0  does not distinguish between + 0  and - 0 .  Because of 
this we must replace probabilities by corresponding probability amplitudes.

(48)

where el€ compensates for the rotation through angle e and eia is an arbitrary undetermined phase. This is 
the equation we w ill use to define A o(0  = 0). This definition is not trivial because for different values of € 
the measurements of cos0  are not compatible and it is not clear, a priori, that a function A o(0 = 0) can be 
found which obeys (48) independently of the value of e.



Suppose now that equation (48) does define an amplitude A 0 for the phase taking on various values.
Then we can be sure that for any value of e the projections of a state onto an eigenstate of cos (0  + e) with 
eigenvalue cos(0 + e) will be large only if either A 0(<fi = 0) or A o(0  = - 0  -  2 e) is large. Furthermore, 
suppose A o(0  = ff) is large. For any given e, Ae(cos 0 = cos (0 + t)) may not be large. But we can always 
find some value of € for which it will be large. For example, suppose Ao(0 = 0') is small. Then let 
e = - {0  -  0')/2. Thus if cos(0  + e) is measured in a state in which it is probable that it equals a given 
value, then one of the two angles which could yield this value must be in the region where A (0  = 0) is 
large. Also, for some method of measuring the phase (measuring cos (0  + t) the probability w ill be large 
that cos (0 + e) is obtained for every angle in this region. We conclude that the width of an A function obey-
ing (48) is a true measure of the uncertainty in phase, taking into account both the ordinary quantum me-
chanical uncertainty in measuring the trigonometric functions of phase and the incompatibility of the differ-
ent methods of measuring it. Now it remains to construct a suitable A.

Consider any state |0> which can be expanded in the form
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such that the Fourier expansion of p (0 ) contains only exponentials with negative integers multiplying 6.

(49)

To find Ae[cos0 -  cos(0 + e)] we rotate |0> through angle e and take its projection on cos states 

4 f[cos<£ = cos (d + f)] = < co s (0 + i ) \ Y f d 6 P<6)e'~*e‘- '\m>
m

(50)

Now since p has Fourier projections only on negative integer exponentials we can write this as

(51)

fntl t t  , ? e ST  7  aS eTaatir  (48) With ^  = e ~ id P ( d ) .  The factor can be absorbed
into the relative phase factor e . Actually the particular choice of phase can be made plausible by a self-
consistency argument but, since our only use of A w ill be to define an uncertainty for / t h e  question of the 
elative phase in unimportant. Thus for such states p can be used for A.

the J >  " , 7  T I Can 156 exPanded in the manner described, we make use of a special property of 
\6> states. Although they are overcomplete they resolve the identity in the same way That a basis does.

(52)

Any state can be expanded in 0 >.

(53)

fa c ,o rs  ° ,h “  ,h * “
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(54)

Also, if

then

But then

The |m> are linearly independent so that

And f is totally composed of positive integer exponentials. Hence for any state \if/> we may simply choose 
A to be <6\if/>.

The uncertainty relations become statements about the widths of functions

with am being spread over Am. Such functions have the property that their width, Ad times Am, is greater 
than 1 when Ad becomes small. As the spread in m becomes small, Ad must increase until p (d ) is spread 
over 2n. More exact statements could be derived, but our purpose here is only to show such uncertainty re-
lations can be defined by the rigorous use of well defined quantum operator trigonometric functions of phase.
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