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Continuous-variable quantum key distribution (CV QKD) protocols with discrete modulation are
interesting due to their experimental simplicity and their great potential for massive deployment in the
quantum-secured networks, but their security analysis is less advanced than that of Gaussian modulation
schemes. In this work, we apply a numerical method to analyze the security of discrete-modulation
protocols against collective attacks in the asymptotic limit, paving the way for a full security proof with
finite-size effects. While our method is general for discrete-modulation schemes, we focus on two variants
of the CV QKD protocol with quaternary modulation. Interestingly, thanks to the tightness of our proof
method, we show that this protocol is capable of achieving much higher key rates over significantly
longer distances with experimentally feasible parameters compared with previous security proofs
of binary and ternary modulation schemes and also yielding key rates comparable to Gaussian modulation
schemes. Furthermore, as our security analysis method is versatile, it allows us to evaluate variations of the
discrete-modulated protocols, including direct and reverse reconciliation, and postselection strategies. In
particular, we demonstrate that postselection of data in combination with reverse reconciliation can
improve the key rates.

DOI: 10.1103/PhysRevX.9.041064 Subject Areas: Quantum Information

I. INTRODUCTION

Quantum key distribution (QKD) [1,2] is an important
cryptographic primitive in the era of quantum technology,
since it enables two honest parties, traditionally known as
Alice and Bob, to establish information-theoretically secure
keys against any eavesdropper (Eve) who is bound by the
laws of quantum mechanics. By now, there are plenty of
QKD protocols (see Ref. [3] for a review), which can be
categorized into two families according to their detection
technology: discrete variable (DV) and continuous variable
(CV). DV QKD protocols like the Bennett-Brassard 1984
(BB84) protocol [1] are realized by encoding the informa-
tion into qubitlike degrees of freedom of photons, such as
polarization and time bin, and by measuring with single-
photon detectors. DV QKD enjoys great success in exper-
imental implementations and corresponding security
analyses and can currently reach longer distances than
CV QKD. However, CV QKD (e.g., see Refs. [4–6]) uses
detection technology that is widely used in modern optical
(classical) communication methods, which turns those

classical methods and the CV QKD apparatus into nearly
identical devices. This technological similarity gives CV
QKD a competitive edge for large-scale deployment in
quantum-secured networks.
A main security proof technique for CV QKD is the

optimality of Gaussian attacks [7,8] for protocols with
Gaussian modulation. In fact, security proofs are quite
mature for CV QKD with Gaussian modulation (see
Ref. [9] for a review). However, this type of protocol puts
a lot of demands on the modulation devices and classical
error-correction protocols. In addition, the effect of a finite
constellation needs to be taken into account carefully
[10,11]. In probing quantumness of devices using coher-
ent states, we notice that even a small number of coherent
states have the same quantumness verification power as a
Gaussian modulation of states [12]. We thus expect that a
discrete-modulated CV QKD protocol will approach the
performance of Gaussian-modulated CV QKD with just a
few different modulation amplitudes. However, the cor-
responding security proof is more involved due to missing
analytical tools. The binary [13] and ternary modulation
schemes [14] are proven secure against collective attacks.
Unfortunately, the key rates obtained are not tight, and the
proof technique is not expected to be generalizable to
discrete-modulation schemes with more states. For the
quaternary modulation scheme, also known as the quad-
rature phase-shift keying scheme, its security was
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previously analyzed under the assumption of linear
bosonic channels [15] or Gaussian attacks [16,17], which
restricts Eve’s ability. (Unfortunately, the analysis [15]
with the additional linear channel assumption is not
expected to be tight and, thus, cannot be used as an
upper bound of the key rate.)
In this work, we apply a versatile numerical method to

study the security of discrete-modulated schemes with a
focus on the quaternary modulation scheme. Specifically,
we analyze two variants of the quadrature phase-shift
keying modulation scheme: one with homodyne detection
and the other with heterodyne detection. Our method
enables us to obtain tight key rates against collective
attacks in the asymptotic limit. Recently, we noticed an
independent work [18] that analyzes the asymptotic secu-
rity of the quaternary modulation scheme with heterodyne
detection. In this security analysis [18], Ghorai et al. use a
reduction to the Gaussian optimality proof method and
apply a semidefinite program (SDP) technique with a
photon-number cutoff assumption. We emphasize here that
our proof technique is quite different from their work, and,
in particular, we do not invoke the arguments of Gaussian
optimality. For this reason, we also directly compare our
results with their results in this work. Remarkably, com-
pared with the similar heterodyne scheme considered in
Ref. [18], we obtain quite higher key rates. Furthermore,
our approach can be extended to variants of the protocol
using homodyne measurements. Since our method does
not rely on the arguments of Gaussian optimality, it also
allows us to investigate the effects of the postselection
of data [19,20], which is not considered in Ref. [18] due to
their proof technique. Postselection is commonly done
for the classical telecommunication protocols and DV
QKD protocols to discard noisy data and to improve
the performance of the protocols. However, postselection
strategies are currently not compatible with the Gaussian
optimality proof technique, since the relevant states are
non-Gaussian and Gaussian attacks are not expected to be
optimal in the presence of postselection. Previously,
postselection for discrete-modulation schemes was con-
sidered under a restricted class of attacks [16,21]. In this
work, we show that postselection can improve the key
rates under collective attacks. Finally, we remark that
our security proof method works for both direct recon-
ciliation and reverse reconciliation protocols. However,
we focus on reverse reconciliation in this work, since
reverse reconciliation is known to have better performance
than the direct reconciliation in terms of transmission
distances.
For our security analysis, we rely on the numerical key

rate optimization methods developed in Refs. [22,23], and
we use the version of Ref. [23] to prove the security against
collective attacks in the asymptotic limit. Another contribu-
tion of this work is that we further develop the framework to
handle the classical postprocessing for the numerical method

presented in Ref. [23]. This development allows us to study
the postselection strategies and also simplifies some aspects
of the numerical calculation. In order to perform such an
optimization numerically, we impose the photon-number
cutoff assumption, which is the same assumption considered
in Ref. [18]. Although, ultimately, one would like to prove
the security without this assumption, this assumption is
reasonable, because we numerically verify that our key rate
results do not depend on the choice of cutoff when the cutoff
photon number is much larger than the mean photon number
of each received state. We leave it as future work to remove
this assumption. It is also interesting to point out that, even
though we demonstrate our proof method on only the
quaternary modulation scheme here, our approach can be
easily generalized to other discrete-modulation schemes
beyond four coherent states.
The rest of the paper is outlined as follows. In Sec. II, we

present two variants of the protocol: Protocol 1 uses
homodyne detection and uses only two out of four states
to generate keys; protocol 2 uses heterodyne detection and
encodes two-bit information in each round. In Sec. III, we
first review the relevant numerical approach used for this
work, discuss the photon-number cutoff assumption, and
then present the specific setup of the optimization problems
for those two protocols such as choices of constraints,
the postprocessing map, and the pinching map related to
the key map. We then perform simulations and show the
simulation results in Sec. IV. Finally, we summarize the
results and provide insights for future directions in Sec. V.
We discuss some technical details in the Appendixes.
Particularly, we present a complete framework for post-
processing in Appendix A.

II. DESCRIPTION OF PROTOCOLS

In the following description, let [N] denote the set of
positive integers from 1 to N. A coherent state with an
amplitude α or γ is denoted by jαi or jγi.

A. Protocol 1 (homodyne detection)

(1) State preparation.—For each round k ∈ ½N� (where
N is sufficiently large), according to the probability
distribution ½pA=2; pA=2; ð1 − pAÞ=2; ð1 − pAÞ=2�,
Alice prepares a coherent state jψki from the set
fjαi; j − αi; jiαi; j − iαig, where α ∈ R is predeter-
mined. Alice sends this state to Bob through an
insecure quantum channel.

(2) Measurement.—After receiving Alice’s state, Bob
performs a homodyne measurement on the state.
Bob first generates a random bit bk according to the
probability distribution ðpB; 1 − pBÞ. If bk ¼ 0, he
measures the q quadrature, and if bk ¼ 1, he mea-
sures the p quadrature. He obtains the measurement
outcome yk ∈ R.

(3) Announcement and sifting.—After N rounds of first
two steps, Alice and Bob communicate via the
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authenticated classical channel to partition all the
rounds [N] into four subsets defined as

Iqq¼fk∈ ½N�∶ jψki∈ fjαi; j−αig;bk ¼ 0g;
Iqp¼fk∈ ½N�∶ jψki∈ fjαi; j−αig;bk ¼ 1g;
Ipq¼fk∈ ½N�∶ jψki∈ fjiαi; j− iαig;bk ¼ 0g;
Ipp¼fk∈ ½N�∶ jψki∈ fjiαi; j− iαig;bk ¼ 1g: ð1Þ
Then Alice and Bob randomly select a small test

subset Iqq;test ⊂ Iqq. This selection allows them to
define Ikey as the subset of Iqq after removing
Iqq;test and to define I test¼Iqq;test∪Iqp∪Ipq∪Ipp.
Let m denote the size of the index set Ikey, and let f
be a bijective function from ½m� ¼ f1; 2;…; mg to
Ikey. After sifting, Alice sets her string X ¼
ðx1; x2;…; xmÞ according to the rule

∀ j ∈ ½m�; xj ¼
(
0 if jψfðjÞi ¼ jαi;
1 if jψfðjÞi ¼ j − αi: ð2Þ

(4) Parameter estimation.—Alice and Bob perform
parameter estimation by disclosing all the informa-
tion in the rounds indexed by the test set I test. To
perform such an analysis, they process the data by
computing quantities like the first and second mo-
ments of q and p quadratures conditioned on each of
four states that Alice sends. These quantities allow
them to constrain their joint state ρAB. They then
calculate the secret key rate according to the opti-
mization problem in Eq. (16). If their analysis shows
that no secret keys can be generated, then they abort
the protocol. Otherwise, they proceed.

(5) Reverse reconciliation key map.—Bob performs a
key map to obtain his raw key string. This key map
discretizes his measurement outcome yk to an
element in the set f0; 1;⊥g for each k ∈ Ikey. For
each j ∈ ½m�, Bob sets zj according to the rule

zj ¼

8>><>>:
0 if yfðjÞ ∈ ½Δc;∞Þ;
1 if yfðjÞ ∈ ð−∞;−Δc�;
⊥ if yfðjÞ ∈ ð−Δc;ΔcÞ:

ð3Þ

Note that Δc ≥ 0 is a parameter related to the
postselection of data. A protocol without postselec-
tion can set Δc ¼ 0. At the end of this process, Bob
has a string Z ¼ ðz1; z2;…; zmÞ. In communication
between Alice and Bob, positions with the symbol⊥
are deleted from their strings. With a slight abuse of
notation, we use X, Z to mean the strings after
removing the positions related to ⊥. Z is called the
raw key string.

(6) Error correction and privacy amplification.—Bob
chooses a suitable error-correction protocol and a

suitable privacy-amplification protocol according to
the security analysis done in the parameter estima-
tion step and communicates the choices to Alice.
Alice and Bob then apply the chosen error-correc-
tion protocol and privacy-amplification protocol to
generate a secret key.

We remark on the asymmetric roles of these four states
and asymmetric choices of quadrature measurements con-
sidered here. In this specific setup, Alice and Bob use only
signal states fjαi; j − αig and q quadrature measurement
data to generate keys and use all other combinations to probe
eavesdropping activities. In the asymptotic limit, we can set
pA andpB arbitrarily close to 1 so that the sifting factor of the
protocol is 1 (in the absence of postselection) [24]. However,
for a finite number N, it is unlikely that pA and pB can be
arbitrarily close to 1, since one needs to balance the trade-off
between the sifting factor and the accuracy of parameter
estimation. In this case, one needs to optimize the choices of
pA andpB for a given choice ofN. The reason thatwe choose
this asymmetric version here is to simplify some numerical
calculation and to maximize the sifting factor. We may also
consider another variant of this protocol, that is, allowing
Alice and Bob to generate keys from both Iqq and Ipp.
Then, for pA ¼ pB ¼ 1

2
, the protocol has 1

2
sifting factor (in

the absence of postselection). However, we point out that the
essential idea of our security proof in the asymptotic limit is
the same for these different variations.

B. Protocol 2 (heterodyne detection)

This variant differs from protocol 1 in steps 2, 3, and 5.
(1) State preparation.—Like protocol 1, Alice prepares

one of those four signal states with an equal prob-
ability (pA ¼ 1

2
) and sends to Bob.

(2′) Measurement.—Upon receiving Alice’s state, Bob
performs a heterodyne measurement on the state,
which can be described by a positive operator-valued
measure (POVM) fEγ ¼ ð1=πÞjγihγj∶γ ∈ Cg. After
applying this POVM, he obtains the measurement
outcome yk ∈ C.

(3′) Announcement and sifting.—After N rounds of first
two steps, Alice and Bob determine a small subset
I test ⊂ ½N�. Rounds indexed by the set I test are used
for parameter estimation. They use the remaining
rounds indexed by Ikey ¼ ½N�=I test to generate keys.
Let m denote the size of the index set Ikey, and let f
be a bijective function from [m] to Ikey. After
sifting, Alice obtains her string X ¼ ðx1;…; xmÞ
by the following rule:

∀ j ∈ ½m�; xj ¼

8>>>><>>>>:
0 if jψfðjÞi ¼ jαi;
1 if jψfðjÞi ¼ jiαi;
2 if jψfðjÞi ¼ j − αi;
3 if jψfðjÞi ¼ j − iαi:

ð4Þ
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(4) Parameter estimation.—As with protocol 1, Alice
and Bob perform parameter estimation to decide
whether they abort the protocol.

(5′) Reverse reconciliation key map.—Bob performs
a key map to obtain his raw key string. This key
map discretizes his measurement outcome yk
to an element in the set f0; 1; 2; 3;⊥g for each
k ∈ Ikey. As yk ∈ C, we write yk ¼ jykjeiθk , where
θk ∈ ½−π=4; 7π=4Þ. Bob sets each zj of his key
string Z ¼ ðz1;…; zmÞ according to the rule

zj¼

8>>>>>>>><>>>>>>>>:

0 if θfðjÞ∈ ½−π
4
þΔp;

π
4
−ΔpÞ and jyfðjÞj≥Δa;

1 if θfðjÞ∈ ½π
4
þΔp;

3π
4
−ΔpÞ and jyfðjÞj≥Δa;

2 if θfðjÞ∈ ½3π
4
þΔp;5π4 −ΔpÞ and jyfðjÞj≥Δa;

3 if θfðjÞ∈ ½5π
4
þΔp;7π4 −ΔpÞ and jyfðjÞj≥Δa;

⊥ if θfðjÞ and jyfðjÞj arenoneof the above:
ð5Þ

Δa ≥ 0 and Δp ≥ 0 are two parameters related to
postselection. A protocol without postselection can
setΔa ¼ Δp ¼ 0. This key map is depicted in Fig. 1.
Like protocol 1, positions with the symbol ⊥ are
deleted from their strings. Again, we use X, Z to
mean the strings after removing the positions related
to ⊥. Z is called the raw key string.

(6) Error correction and privacy amplification.—As
with protocol 1, they perform error correction and
privacy amplification to generate a secret key.

Alice and Bob may decide to recast their strings to binary
strings before or during the error-correction step depending
on their choice of error-correcting code. For the consistency
of our presentation, we use the alphabet f0; 1; 2; 3g in the
following discussion.

III. SECURITY PROOF APPROACH

Our security proof applies the numerical key rate
calculation framework developed in Refs. [22,23], which
allows us to calculate the secret key rate against collective
attacks in the asymptotic limit. Specifically, we implement
the approach in Ref. [23] to solve the key rate optimization
problem in this work. We begin with reviewing relevant
components of the key rate calculation. For the purpose of
reviewing, we keep this part of the discussion general. We
direct readers to Refs. [22,23] for the derivation of the key
rate optimization problem and specifically to both Ref. [23]
and Appendix A for the technical details regarding the
framework of handling the postprocessing steps of the
protocol. We then discuss the photon-number cutoff
assumption and possible ways to remove it. Finally, we
present the specific numerical optimization problems for
these two protocols considered in this work.

A. Numerical method background

We first review the source-replacement scheme, which
allows us to recast a prepare-and-measure protocol into an
entanglement-based protocol. In the asymptotic limit and
under collective attacks, the key rate formula is given by the
well-known Devetak-Winter formula [25]. We then briefly
discuss how to reformulate the Devetak-Winter formula to
obtain the relevant convex objective function for the
numerical optimization. Finally, we discuss the feasible
set of our optimization problem.

1. Source-replacement scheme

Both protocols presented in Sec. II are prepare-and-
measure schemes. When we prove the security of a prepare-
and-measure scheme, we apply the source-replacement
scheme [26–29] to obtain an equivalent entanglement-
based scheme and prove the security of the entanglement-
based scheme, which is easier to analyze. (This idea
of equivalence is first realized in Ref. [26] for BB84
and in Ref. [27] for Gaussian-modulated CV protocols.
References [28,29] identify and formulate the general
principle that applies to any protocol.) The key rate
that we obtain from this entanglement-based scheme is also
the key rate for the corresponding prepare-and-measure
scheme.
If Alice prepares states from the ensemble fjφxi; pxg in

the prepare-and-measure scheme, by the source-replacement
scheme, she effectively prepares the following bipartite
state in the entanglement-based scheme:

FIG. 1. Key map for protocol 2. When Bob has a measurement
outcome γ ∈ C, if γ is in one of the four shaded areas, then Bob
maps the measurement outcome to the corresponding value of
that area for his key string. If γ is not in the shaded areas, Bob
obtains the symbol ⊥. Δa and Δp are two parameters related to
postselection.
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jΨiAA0 ¼
X
x

ffiffiffiffiffi
px

p jxiAjφxiA0 ; ð6Þ

where Alice keeps the register A and sends A0 to Bob via a
quantum channel. For both protocols considered in this
work, fjφxig ¼ fjαi; j − αi; jiαi; j − iαig. To determine
which state she sends to Bob, Alice performs a local
measurement described by a POVM MA ¼ fMx

A ¼ jxihxjg
on register A. Upon obtaining a measurement result x, she
effectively sends to Bob the state jφxi. Their bipartite state
ρAB after transmitting the register A0 via a quantum channel,
which is described by a completely positive and trace-
preserving (CPTP) map EA0→B, is

ρAB ¼ ðidA ⊗ EA0→BÞðjΨihΨjAA0 Þ; ð7Þ

where idA is the identity channel on the register A. Bob then
performs a measurement on the register B to obtain his
measurement result. When Alice performs a projective
measurement jxihxj, the corresponding conditional state ρxB
that Bob receives is defined as

ρxB ¼ 1

px
TrA½ρABðjxihxjA ⊗ 1BÞ�: ð8Þ

2. Key rate formula

The secret key rate under collective attacks in the
asymptotic limit is given by the well-known Devetak-
Winter formula [25]. In the case of reverse reconciliation
[5,27], this formula reads

R∞ ¼ ppass½IðX;ZÞ −max
ρ∈S

χðZ∶EÞ�; ð9Þ

where IðX;ZÞ is the classical mutual information between
Alice’s string X and the raw key string Z, χðZ∶EÞ is the
Holevo information that quantifies Eve’s knowledge about
the raw key string Z, and ppass is the sifting probability,
that is, the probability that a given round is used for key
generation after the sifting step. The set S contains all
density operators compatible with experimental observa-
tions, which we discuss later. One can rewrite the Devetak-
Winter formula as

R∞ ¼ ppass½min
ρ∈S

HðZjEÞ −HðZjXÞ�; ð10Þ

where HðZjEÞ and HðZjXÞ are conditional von Neumann
(Shannon) entropies.
In this formula, HðZjXÞ is the amount of information

leakage during the error-correction step performed at the
Shannon limit. In reality, since the error correction cannot
be done at the Shannon limit, to take the inefficiency of
error correction into account, we replace this term by the
actual amount of information leakage per signal (denoted
by δEC) during the error-correction step.

The crucial step to turn this problem into a convex
optimization problem is to rewrite HðZjEÞ in terms of the
bipartite quantum state ρAB. As shown in Refs. [22,23], the
key rate expression can be reformulated as

R∞ ¼ min
ρAB∈S

D(GðρABÞkZ½GðρABÞ�) − ppassδEC: ð11Þ

In this equation, DðρkσÞ ¼ Trðρlog2ρÞ − Trðρlog2σÞ is the
quantum relative entropy. According to Ref. [23], G is a
completely positive and trace nonincreasing map that
describes several classical postprocessing steps of the
protocol in terms of actions on the bipartite state ρAB.
Briefly speaking, G is composed of an announcement map
A, a sifting projection Π, and a key map isometry V. The
roles are explained as below.

(i) A is a CPTPmap that introduces classical registers eA
and eB to store announcements and also introduces
quantum registers A and B to store measurement
outcomes in a coherent fashion (via isometries).

(ii) The sifting projection Π projects the state after
announcements to the subspace spanned by an-
nouncement outcomes kept for the key generation
purpose.

(iii) The key map isometry V then utilizes classical
announcement registers and quantum measurement
outcome registers to perform the key map step
described in the protocol and stores the result of
key map to a quantum register R.

Thus, GðσÞ ¼ VΠAðσÞΠV† for an input state σ. We remark
that this output state may be subnormalized. The normali-
zation factor is actually ppass. Due to this property of Gmap,
the factor ppass is not shown in front of the first term in
Eq. (11). Finally, Z is a pinching quantum channel, which
completely dephases the register R to read out the result of
key map. If fZjg is the projective measurement that can be
used to obtain the result of key map from the register R,
then, for an input state σ,

ZðσÞ ¼
X
j

ZjσZj: ð12Þ

3. Constraints

We now explain the feasible set S of our optimization
problem. The set S contains all bipartite density operators
ρAB that are compatible with experimental observations. If
fΓijΓi ¼ Γ†

i ; 1 ≤ i ≤ Mg is the set of experimental observ-
ables for some integer M and fγi ∈ Rj1 ≤ i ≤ Mg is the
corresponding set of expectation values observed for each
Γi, then the feasible set S of our optimization problem is

S ¼ fρAB ≥ 0jTrðρABΓiÞ ¼ γi; ∀ ig: ð13Þ
In particular, we include the identity operator in the set fΓig
to ensure TrðρABÞ ¼ 1. Since Eve cannot modify Alice’s
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system A in a prepare-and-measure scheme, we addition-
ally require that ρA ¼ TrBðρABÞ is fixed as

ρA ¼
X
x;x0

ffiffiffiffiffiffiffiffiffiffiffi
pxpx0

p hφx0 jφxijxihx0jA: ð14Þ

A final remark is that this optimization problem is a
convex optimization problem, and, in particular, it is a
nonlinear SDP problem. The objective function here is the
quantum relative entropy function whose arguments
involve additional linear maps and it is a nonlinear convex
function of ρAB, since quantum relative entropy is jointly
convex in both arguments. The feasible set is a convex set
inside the positive semidefinite cone.

B. Photon-number cutoff assumption

The key rate optimization problem in Eq. (11) involves
optimizing over all possible bipartite states ρAB in the
feasible set S. The number of free variables depends on the
size of ρAB. In order to numerically perform the optimi-
zation by computer optimization packages, we can deal
only with finite-dimensional ρAB. In our optimization
problem, as we can see from the source-replacement
scheme, the dimension of Alice’s system A is determined
by the number of different signal states that she prepares.
For both protocols considered in this work, the dimension
of register A is 4. However, since each state that Bob
receives is an optical mode and, in principle, can be
manipulated by Eve, Bob’ state lives in an infinite-
dimensional Hilbert space HB. A basis for this Hilbert
space is the photon-number states fjni∶ n ∈ Ng. We
immediately see that Bob’s POVM elements are infinite-
dimensional operators and ρAB is also infinite dimensional.
For DV QKD, one method to reduce the dimension of
the system is to apply a squashing model [30–32] for the
protocol to obtain a lower-dimensional representation of
his POVM. This reduction is possible for many DV QKD
protocols, since one can explicitly formulate the squashing
model. However, it is not clear how one can formulate a
squashing model for CV systems. Instead, we have to
impose an additional assumption in this work in order
to perform the numerical optimization. This additional
assumption is what we call the photon-number cutoff
assumption. We impose the assumption that Bob’s system
lives in the Hilbert spaceHB ¼ spanfj0i; j1i;…; jNcig for
some cutoff photon numberNc. Namely, if we defineΠNc

¼PNc
n¼0 jnihnj with a suitable choice of photon-number cutoff

parameterNc, we assume ρ ¼ ΠNc
ρΠNc

for the state ρ under
consideration. This assumption allows us to truncate the
infinite-dimensional Hilbert space. If Nc is chosen to be
large enough, this assumption is a reasonable working
assumption based on the following observations.

(i) Bob can obtain the mean photon number nx ≔
TrðρxBn̂Þ of each conditional state ρxB via homodyne

or heterodyne measurements, where n̂ denotes the
number operator.

(ii) Since nx is known, we can pick Nc ∈ N such that Nc
is much larger than nx for each x ∈ f0; 1; 2; 3g. For
such a choice of Nc, the probability of finding the
state to have a photon number n ≤ Nc is close to 1.
This probability suggests that the contribution from
n > Nc photon subspace becomes negligible. Sim-
ilarly, the off-diagonal blocks ð1 − ΠNc

ÞρΠNc
and

ΠNc
ρð1 − ΠNc

Þ also have vanishing contributions.
(iii) We can increase Nc to have a numerical verification

that the key rate is unchanged after we choose a large
enough Nc.

This photon-number cutoff assumption renders our
numerical optimization of the key rate problem feasible.
Although this assumption sounds reasonable as our
numerical verification suggests, we emphasize that one
has to deliver an exact analysis to remove this assumption
for a watertight security proof. In this sense, our proof
is restricted. Nevertheless, we expect the key rates of
these protocols to not be affected much by this working
assumption.
We now provide some insights for removing this

assumption and also for extending our current analysis
to include finite-size effects and general attacks. To remove
the photon-number cutoff assumption, one needs to com-
bine our numerical optimization approach with some
appropriate analytical tools. One possible approach is to
develop a CV version of the squashing model. If such a
squashing model exists, the key rate optimization problem
then becomes a finite-dimensional problem even without
the photon-number cutoff assumption. Since the effective
dimension is finite, it might also be possible to apply
existing tools (which are valid for finite-dimensional
systems) such as the quantum de Finetti representation
theorem [33] or the postselection technique [34] to obtain
the composable security [35] of the protocol against general
attacks in the finite-size regime.
Another possible method for removing the photon-

number cutoff assumption is to adopt a similar idea used
in Ref. [11], that is, using the entropy continuity bounds
[36] to provide a tight error analysis of the key rate due to
the truncation of Bob’s Hilbert space. If one can tightly
bound the trace distance between the optimal state in the
truncated subspace and the optimal state in the original
infinite-dimensional space, then the existing continuity
bound for the Holevo information allows us to obtain a
small correction term due to the photon-number cutoff.
Then, one obtains a full security proof against collective
attacks in the asymptotic limit. To reach a full composable
security proof along this path, one may first manage to
include the finite-size effects with collective attacks and
then apply appropriate tools similar to the quantum de
Finetti representation theorem for CV QKD [37] to take the
general attacks into consideration.
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Each of these two approaches has its own challenges that
need to be overcome, and, thus, we have to defer these
extensions to the finite-size and coherent attacks regime
without the working assumption of the photon-number
cutoff to future research.

C. Optimization problem for protocol 1
(homodyne detection)

Let â and â† be the annihilation and creation operators of
a single-mode state, respectively. They obey the commu-
tation relation ½â; â†� ¼ 1. To be consistent in this work, we
define the quadrature operators q̂ and p̂, respectively, as

q̂ ¼ 1ffiffiffi
2

p ðâ† þ âÞ; p̂ ¼ iffiffiffi
2

p ðâ† − âÞ: ð15Þ

They obey the commutation relation ½q̂; p̂� ¼ i.
From the homodyne measurement, we can obtain

expectation values of the first and second moments of
the quadrature operators hq̂i, hq̂2i, hp̂i, and hp̂2i. We can
calculate the mean photon number of each conditional state
ρxB from the homodyne measurement outcomes, since
n̂ ¼ 1

2
ðq̂2 þ p̂2 − 1Þ ¼ â†â. In addition to n̂, we define

an operator d̂ ¼ q̂2 − p̂2 ¼ â2 þ ðâ†Þ2 to utilize the second
moment observations hq̂2i and hp̂2i to constrain ρAB.
The relevant optimization problem is

minimize D(GðρABÞkZ½GðρABÞ�)
subject to

Tr½ρABðjxihxjA ⊗ q̂Þ� ¼ pxhq̂ix;
Tr½ρABðjxihxjA ⊗ p̂Þ� ¼ pxhp̂ix;
Tr½ρABðjxihxjA ⊗ n̂Þ� ¼ pxhn̂ix;
Tr½ρABðjxihxjA ⊗ d̂Þ� ¼ pxhd̂ix;
Tr½ρAB� ¼ 1;

TrB½ρAB� ¼
X3
i;j¼0

ffiffiffiffiffiffiffiffiffi
pipj

p hφjjφiijiihjjA;

ρAB ≥ 0; ð16Þ

where x ∈ f0; 1; 2; 3g and hq̂ix, hp̂ix, hn̂ix, and hd̂ix denote
the corresponding expectation values of operators q̂, p̂, n̂,
and d̂ for the conditional state ρxB, respectively. In
Appendix B, we discuss how we make these operators
finite dimensional under the photon-number cutoff
assumption.
We remark that one can add more fine-grained con-

straints using the POVM description of homodyne mea-
surements or using the interval operators I0 and I1, which
we define shortly. Additional constraints can only improve
the key rate, as it reduces the size of the feasible set S.
Nevertheless, we observe that this set of constraints already

gives us quite tight key rates. We expect that additional
constraints will provide only marginal improvements. For
the ease of presentation, we choose this set of coarse-
grained constraints.
We now specify the maps G and Z. For the reverse

reconciliation, the postprocessing map GðσÞ ¼ KσK† is
given by the following Kraus operator:

K ¼
X1
z¼0

jziR ⊗ ðj0ih0j þ j1ih1jÞA ⊗ ð ffiffiffiffi
Iz

p ÞB; ð17Þ

where I0 and I1 are interval operators defined in terms of
projections onto (improper) eigenstates of q quadrature:

I0 ¼
Z

∞

Δc

dqjqihqj; I1 ¼
Z

−Δc

−∞
dqjqihqj: ð18Þ

In the definition of K, we project Alice’s register A onto the
subspace spanned by the first two basis states (which are
related to the states jαi and j − αi) and act on Bob’s register
by interval operators from the q quadrature measurement,
since secret keys are generated only from the rounds where
Alice sends jαi or j − αi and Bob performs q quadrature
measurements in this protocol. We remark how the post-
selection is handled in our security proof. Since Δc is a
postselection parameter, the effect of postselection is
reflected in the definition of interval operators which are
used in the postprocessing map G. Finally, the pinching
quantum channel Z is described by the projections Z0 ¼
j0ih0jR ⊗ 1AB and Z1 ¼ j1ih1jR ⊗ 1AB.
We remark that we make an additional simplification for

the Kraus operator K. Unlike the general discussion in
Sec. III A or in Ref. [23], we do not introduce the registerseA, eB, A, and B in the postprocessing map G for this
protocol. The aim of such a simplification is to reduce the
total dimension of the quantum states in the key rate
optimization without affecting the calculated key rates. We
provide a detailed analysis in Appendix A to explain why
such a simplification can be made. Here, we discuss the
ideas behind this simplification.

(i) The quantum register A is Alice’s private register that
stores her measurement outcome after she performs
her POVM fMx

Ag on register A in a coherent fashion.
Since Eve has no access to register A, Alice can
choose to first performa coarse-grainedmeasurement
that introduces only the announcement register eA and
then perform a refined measurement conditioned on
the announcements, which is described by a local
isometry. Moreover, in the reverse reconciliation
scheme, since the key map isometry V does not
depend on Alice’s measurement outcome, the isom-
etry for the refinedmeasurement commuteswith both
the key map isometry V and the pinching map Z. As
our objective function is invariant under this type of
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local isometries, we can choose not to apply this
isometry, and, thus, we do not introduce register A.

(ii) In the announcement step, Alice and Bob each
announce whether a given round is kept for the
key generation. Then the sifting process keeps only
one announcement outcome, that is, when they both
decide to keep the round. So, both classical registerseA and eB after applying the sifting projection Π are
effectively one dimensional. We then use another
property of the quantum relative entropy regarding
quantum-classical states to show that the calculated
key rates remain the same if we omit registers eA
and eB.

(iii) The key map in this protocol uses only the coarse-
grained information about Bob’s measurement out-
comes, that is, in which interval Bob’s measurement
outcome lies. As with the previous discussion about
register A, we can view Bob’s measurement in two
steps. At the first step, Bob performs a coarse-
grained measurement in a coherent fashion to store
the desired coarse-grained outcomes in register B. At
the second step, Bob performs a refined measure-
ment conditioned on the coarse-grained information
to update register B, which is described by a local
isometry (denoted by W). Since the key map uses
only the coarse-grained information, the key map
isometry V effectively needs to first undo the
isometry W. So, we can choose not to perform
the isometry W and let the key map isometry V use
the coarse-grained information directly. The calcu-
lated key rates remain the same after we ignore the
isometry W. In this case, the key map isometry V
simply copies register B to register R in the standard
basis. Thus, we combine these two registers and
retain the name of R. The calculated key rates are
unaffected, because copying register B to register R
in the standard basis is done by a local isometry,
which we can omit.

D. Optimization problem for protocol 2
(heterodyne detection)

The optimization problem for protocol 2 has essentially
the same form as described in Eq. (16). The differences
here are that expectation values are now obtained via
heterodyne detection, and the postprocessing map G and
the pinching map Z have different forms, as we present
shortly. In principle, we can use additional information
about second moments like hq̂ p̂i to constrain ρAB as the
information becomes available via heterodyne detection.
However, our calculation shows that additional constraints
like this one can provide only marginal improvements on
the key rates in our simulated scenarios. We expect these
constraints to be more useful if we introduce squeezing in
either the protocol or the simulation.

For an input state ρ, heterodyne measurements give us
the Husimi Q function QðγÞ ¼ ð1=πÞhγjρjγi ¼ TrðρEγÞ,
where fEγ ¼ ð1=πÞjγihγj∶γ ∈ Cg is the POVM description
of heterodyne detection. From the Q function, we can also
obtain values of hq̂i, hp̂i, hn̂i, and hd̂i, whose operators are
functions of â and â†, by the following equation [38]:

Tr½ρf̂ðâ; â†Þ� ¼ hf̂ðAÞðâ; â†Þi ≔
Z

d2γQðγÞfðAÞðγÞ; ð19Þ

where f̂ðAÞðâ; â†Þ is the antinormally ordered operator of an
operator f̂ written in terms of â and â†, fðAÞðγÞ is the
corresponding expression by replacing â by γ and â† by γ�,
and d2γ ¼ dReðγÞdImðγÞ.
To write out the Kraus operator for the postprocessing

map G including postselection, we define region operators
that tell us in which region in Fig. 1 Bob’s measurement
outcome lies. We express them using the polar coordinate
for the integration as

R0 ¼
1

π

Z
∞

Δa

Z ðπ=4Þ−Δp

−ðπ=4ÞþΔp

γjγeiθihγeiθjdθdγ;

R1 ¼
1

π

Z
∞

Δa

Z ð3π=4Þ−Δp

ðπ=4ÞþΔp

γjγeiθihγeiθjdθdγ;

R2 ¼
1

π

Z
∞

Δa

Z ð5π=4Þ−Δp

ð3π=4ÞþΔp

γjγeiθihγeiθjdθdγ;

R3 ¼
1

π

Z
∞

Δa

Z ð7π=4Þ−Δp

ð5π=4ÞþΔp

γjγeiθihγeiθjdθdγ: ð20Þ

The area of integration for each operator corresponds to the
relevant region shown in Fig. 1. Again, Δa and Δp are
parameters related to postselection.
In this case, the postprocessing map GðσÞ ¼ KσK† is

given by the Kraus operator

K ¼
X3
z¼0

jziR ⊗ 1A ⊗ ð ffiffiffiffiffi
Rz

p ÞB: ð21Þ

The pinching quantum channel Z is given by the projec-
tions Zj ¼ jjihjjR ⊗ 1AB for j ¼ 0, 1, 2, 3, that is, for a
valid input state σ:

ZðσÞ ¼
X3
j¼0

ðjjihjjR ⊗ 1ABÞσðjjihjjR ⊗ 1ABÞ: ð22Þ

Like protocol 1, we make a simplification for the Kraus
operator K by a similar line of argument.

E. Generalization to other discrete-modulation
schemes beyond four coherent states

From the description of our security proof method, we
remark that this proof technique does not depend on the
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distribution of the statistics, whether it is Gaussian or not.
Also, it is not difficult to see that our method can be
generalized to analyze discrete-modulated CV QKD pro-
tocols with more coherent states. If Alice modulates using
l coherent states, then Alice’s system A is l dimensional
from the source-replacement scheme. In this case, the
corresponding optimization problem essentially has the
same form as in Eq. (16), except that the index x now runs
from 0 to l − 1 and the maps G and Z need to be modified
accordingly to match the description of the protocol in a
straightforward way. A guide to defining the postprocess-
ing map G is also provided in Appendix A.

IV. SIMULATION AND KEY RATES

In this section, we first discuss our model for simulating
experiments that execute each protocol. From the simu-
lation, we can obtain relevant expectation values like hq̂i
and hp̂i that we usually obtain from an actual experiment
and which are the starting point of our key rate optimization
problem in Eq. (16). Then we comment on the numerical
performance of our current algorithm and discuss relevant
numerical issues. Finally, we present key rates for both
protocols with different variations. We emphasize that our
security proof technique, of course, does not depend on the
model of experiment that we use to predict the experimental
behavior.

A. Simulation model

To understand how the protocols behave in a realistic
scenario, we simulate the quantum channel as a realistic
physical channel in the absence of Eve. Such a channel in
the context of optical fiber communication can be described
by a phase-invariant Gaussian channel with transmittance η
and excess noise ξ which is defined as

ξ ¼ ðΔqobsÞ2
ðΔqvacÞ2

− 1; ð23Þ

where ðΔqvacÞ2 is the variance of q quadrature for the
vacuum state and ðΔqobsÞ2 is the variance of q quadrature
observed for the signal state. Here, we consider the case
where both q and p quadratures have the same variance.
With our definition of quadrature operators, ðΔqvacÞ2 ¼ 1

2
.

In the literature, the value of excess noise is usually
reported in a couple of different ways, depending on
who makes the observation of ðΔqobsÞ2. To avoid possible
confusion when discussing the value of excess noise, we
clarify these definitions. We use ξ to mean the excess noise
in the case where Alice measures ðΔqobsÞ2 at the output of
her lab and use δ in the case where Bob measures ðΔqobsÞ2
for the received signal state.
A natural way to simulate this phase-invariant Gaussian

channel is that, when Alice prepares a coherent state jαi
and sends to Bob via this channel, the output state from the

channel becomes a displaced thermal state centered at
ffiffiffi
η

p
α

with the variance 1
2
ð1þ δÞ for each quadrature. An alter-

native but equivalent way is that, when Alice wants to
prepare a coherent state jαi, the state after preparation
becomes a displaced thermal state centered at α with the
variance 1

2
ð1þ ξÞ for each quadrature at the output of her

lab. Then, the state is transmitted via a pure-loss channel,
and the final output state that reaches Bob’s lab is a
displaced thermal state centered at

ffiffiffi
η

p
α with the variance

1
2
ð1þ ηξÞ for each quadrature. Therefore, we see that, for

this physical channel, δ ¼ ηξ. In this work, we use the
definition of ξ when we discuss the value of excess noise.
Readers should be able to translate between these two
definitions by the relation δ ¼ ηξ.
Given a displaced thermal state centered at

ffiffiffi
η

p
α with the

variance 1
2
ð1þ ηξÞ for each quadrature, we can then

calculate our simulated values for hq̂i, hp̂i, hn̂i, and hd̂i
(by either using quasiprobability distribution like the
Wigner function or Q function of the final state or
expanding the final state in the photon-number basis).
These values can then be supplied to the optimization
problem in Eq. (16), which, in turn, can be solved
numerically.

B. About numerical algorithm and performance

To perform the numerical calculation of secret key rates,
we apply the two-step procedure mentioned in Ref. [23]. At
the first step, we adopt the Frank-Wolfe algorithm [39] to
find a suboptimal attack that gives rise to a suboptimal
bipartite state ρAB. At the second step, we use this
suboptimal ρAB to solve a linear SDP problem to obtain
a reliable lower bound on the key rate, which also takes the
constraint violation into consideration. The Frank-Wolfe
algorithm used in the first step is an iterative first-order
optimization algorithm. We start with an initial choice of
ρAB in the feasible set S, and, in each iteration, we solve a
linear SDP problem to update the choice of ρAB until a
stopping criterion is satisfied. Since this optimization
algorithm may have a very slow rate of convergence near
the optimal point in some scenarios, in order to have a
reasonable running time, we limit the maximum number of
Frank-Wolfe iterations to be 300. To solve linear SDP
problems in both the first and second steps, we employ the
CVXpackage [40,41] and SDPT3 [42,43] solver inMATLAB.
In Fig. 2, we plot the results of the first step and the

second step for protocols 1 and 2 in the case of the pure-loss
channel (ξ ¼ 0), which is discussed in detail in Sec. IV C.
Here, we utilize this figure to illustrate some aspects of
the numerical analysis. The result from the first step can be
treated as an approximate upper bound, since it is given
by a suboptimal ρAB. (It is only approximate, because
the feasible set S might be enlarged either due to the
coarse-graining of constraints or due to the numerical
constraint violation.) The result of the second step is a

ASYMPTOTIC SECURITY ANALYSIS OF DISCRETE-MODULATED … PHYS. REV. X 9, 041064 (2019)

041064-9



reliable lower bound on the key rate. There are three
regions in each plot. Since both plots have similar numeri-
cal behaviors, we take Fig. 2(a) as an example to discuss
these three regions. The first region is where both steps
give essentially the same results, as we can see for points
between 0 and around 120 km. The second region is
between around 120 and 150 km, where there is a
noticeable gap between our approximate upper bound
and the reliable lower bound. This gap is an indicator that
the first-step algorithm fails to find a good suboptimal ρAB.
In fact, the chosen number of maximum iterations for the
first-step Frank-Wolfe algorithm is reached for those

points. The third region is beyond 150 km, where the
lower bound is missing in the plot. This result is because
the suboptimal ρAB from the first step also has some
noticeable constraint violation when the first step termi-
nates prematurely after 300 iterations. Since we take
constraint violations into account in the second-step cal-
culation to obtain a reliable lower bound according to
Ref. [23], these points correspond to the case where the
lower bound obtained is zero. To obtain a better lower
bound, one needs to improve the result of the first-step
calculation. There are several possible ways to improve the
first step result:

(i) replacing the Frank-Wolfe algorithm by other opti-
mization algorithms,

(ii) using a different SDP solver,
(iii) choosing a different initial point (ρAB) for the first

step, and
(iv) increasing the number of iterations.
The main reason behind these alternatives is that differ-

ent solvers and different algorithms can have different rates
of convergence and, thus, can potentially give better results
within the time limit. Since the aim of this work is not about
optimizing the numerical optimization algorithm, we
choose to report results based on our current choice of
algorithm and solver mentioned before with the limitation
of 300 iterations in the first step, and we see that such a
choice works well in many scenarios.
For all the remaining figures in this work, we report only

the reliable lower bound obtained from the second step. For
some of the curves shown in this work, even though there are
data points from the second and third scenarios mentioned
above,which are not compatiblewith the general trend of the
curve, these numbers can still be safely interpreted as
reliable (but very pessimistic) secret key rates. We may
expect that, ifwe improve the optimization algorithm (which
is not the goal of this work), we can obtain smoother curves.
It is also interesting to point out that, when we add some
nonzero excess noise, the curves that we obtain (shown in
later sections) can be smoother than the loss-only curves.
We can understand this behavior from the fact that the rank
of the density matrix ρAB is much smaller than its dimension
for the loss-only case, and, thus, the problem is not numeri-
callywell conditioned.One can improve on this aspect if one
can reformulate the problem using a lower-dimensional
representation.

C. Loss-only scenario: Comparison to analytical results

We first present the results for the loss-only scenario, that
is, ξ ¼ 0. For this scenario, we can also obtain an analytical
result to have a direct comparison with our numerical
result. A direct evaluation of the Devetak-Winter formula is
possible in this scenario, since we can determine Eve’s
relevant conditional states (up to irrelevant unitaries).
As shown in Ref. [21], in the loss-only case, we need
only to consider the generalized beam-splitting attack.

(a)

(b)

FIG. 2. Secure key rates versus the transmission distance for the
pure-loss channel to demonstrate the numerical behavior of our
two-step key rate calculation procedure and to compare with the
analytical results (direct evaluation of Devetak-Winter formula)
for both protocols. The transmittance is η ¼ 10−0.02L for each
distance L in kilometers, and the reconciliation efficiency is
β ¼ 0.95. The curve with circle markers is the approximate upper
bound from the first step, and the curve with star markers is the
reliable lower bound obtained from the second step. The curve
with square markers is the analytical results presented in
Appendix C. The solid line with no markers is the repeaterless
secret key capacity bound [44,45]. (a) The key rate for protocol 1
(homodyne detection). The coherent state amplitude α is opti-
mized via a coarse-grained search in the interval [0.36, 0.6].
(b) The key rate for protocol 2 (heterodyne detection). α is
optimized via a coarse-grained search in the interval [0.6, 0.95].
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When Alice sends jαxiA0 to Bob, the state becomes
j ffiffiffi

η
p

αxiBj
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
αxiE after the pure-loss channel. Eve’s

conditional states conditioned on Alice’s string value x
and Bob’s raw key string value z effectively live in a
two-dimensional subspace for protocol 1 and a four-
dimensional subspace for protocol 2. This result makes
the direct analytical evaluation possible. We leave the
procedure of this analytical evaluation to Appendix C.
For the numerical key rate optimization, the loss-only
scenario follows as a special case of the noisy scenario
(using ξ ¼ 0), which we discuss in later sections.
A pure-loss channel is characterized by its transmittance

η ¼ 10−ðαattL=10Þ for each distance L in kilometers with the
attenuation coefficient αatt, which is 0.2 dB=km for the
relevant communication fiber. One may take the quantum
efficiency of realistic homodyne and heterodyne detectors
into account. A simple but pessimistic way to deal with the
detector efficiency is that the loss due to the imperfect
detector is also attributed to Eve. In such a worse-case
scenario, we can define the total transmittance as
η ¼ ηdet10

−0.02L, where ηdet is the quantum efficiency of
the detectors. If one defines an effective distance L0 for the
detector inefficiency, that is, ηdet ¼ 10−0.02L0 , then L0 is less
than 13 km for practical homodyne and heterodyne
detectors with the quantum efficiency ≥55% [46]. For
the ease of presentation and convenience of comparison
with other works using different values of detector effi-
ciency, we set ηdet ¼ 1 in this work unless noted otherwise.
One may obtain the key rate value corresponding to a
realistic value of efficiency by subtracting the effective
distance L0 from all relevant figures.
We plot the key rate versus transmission distance in the

loss-only scenario for protocol 1 in Fig. 2(a) and for
protocol 2 in Fig. 2(b). For both protocols, we plot both
the numerical key rate calculation results and the key
rate that can be obtained by a direct evaluation of the
Devetak-Winter formula. Interestingly, we see that our
numerical results are close to the analytical results for
both protocols up to a distance around 120 km. Above
120 km, we notice that there is a visible gap between our
approximate upper bound and the reliable lower bound,
which indicates there is room for improvement on the
numerical algorithm. We also notice that our first-step
result is slightly lower than the analytical result. The reason
is that, by analytical analysis, we know the feasible set S
effectively should contain only one state (up to irrelevant
unitaries from the perspective of entropy evaluation).
However, we use coarse-grained constraints in our numeri-
cal optimization, and, thus, the feasible set S is actually
enlarged. We expect that, if all fine-grained constraints are
used, we should be able to reproduce the analytical results
in this loss-only scenario (when a better optimization
algorithm is used).
We also include the repeaterless secret key capacity

bound for the pure-loss channel [44,45] in both plots, that

is, R∞ ≤ − log2ð1 − ηÞ. With the reconciliation efficiency
β ¼ 0.95 (explained in the next section), the key rate for
protocol 1 is roughly 1

15
of the secret key capacity bound,

and the key rate for protocol 2 is approximately 1
10

of the
bound. Since Gaussian modulation schemes with the
perfect reconciliation efficiency can reach 1

2
of this bound

[45], we see that the performance of the quaternary
modulation scheme is not far away from that of the
Gaussian modulation schemes in the loss-only scenario.

D. Noisy scenario: Protocol 1

1. Simulated statistics and error-correction cost

We now consider the noisy scenario with nonzero excess
noise ξ. From the homodyne measurement, for each
αx ∈ fα;−α; iα;−iαg, the simulated statistics is given as

hq̂ix ¼
ffiffiffiffiffi
2η

p
ReðαxÞ;

hp̂ix ¼
ffiffiffiffiffi
2η

p
ImðαxÞ;

hn̂ix ¼ ηjαxj2 þ
ηξ

2
;

hd̂ix ¼ η½α2x þ ðα�xÞ2�: ð24Þ

With these values specified, we perform the optimization to
bound Eve’s information.
Since we simulate the experimental behavior and the cost

of error correction is not a part of the optimization, we now
present the analytical formula to estimate δEC from the
simulated statistics and numerically evaluate the formula.
In this protocol, we use only j þ αi, j − αi (α ∈ R) and the
q quadrature measurement to generate keys. After Bob
performs his key map, Alice and Bob effectively commu-
nicate via a binary channel for the purpose of error
correction. From the simulation, the probability distribu-
tions of Bob’s q quadrature measurement outcomes for
conditional states ρ0B and ρ1B are

Pðqj0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðηξþ 1Þp e½−ðq−

ffiffiffiffi
2η

p
αÞ2�=ðηξþ1Þ;

Pðqj1Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðηξþ 1Þp e½−ðqþ

ffiffiffiffi
2η

p
αÞ2�=ðηξþ1Þ: ð25Þ

Since we allow postselection with the cutoff parameter Δc,
the sifting probability reads

ppass ¼ 1 −
1

2

Z
Δc

−Δc

Pðqj0Þdq −
1

2

Z
Δc

−Δc

Pðqj1Þdq: ð26Þ

The error probability between Alice’s and Bob’s
strings is
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e ¼ 1

ppass

�
1

2

Z
−Δc

−∞
Pðqj0Þdqþ 1

2

Z
∞

Δc

Pðqj1Þdq
�
: ð27Þ

For the error correction performed at the Shannon limit,
we have δEC¼HðZjXÞ¼hðeÞ, where hðxÞ ¼ −x log2ðxÞ −
ð1 − xÞ log2ð1 − xÞ is the binary entropy function. To take
into account the inefficiency of error correction, we first
write δEC ¼ HðZjXÞ ¼ HðZÞ − IðX;ZÞ in terms of
IðX;ZÞ and then scale IðX;ZÞ to be βIðX;ZÞ, where β
is the reconciliation efficiency whose value is usually
reported in the CV QKD literature. Therefore,

δEC ¼ HðZÞ − βIðX;ZÞ
¼ ð1 − βÞHðZÞ þ βHðZjXÞ
¼ ð1 − βÞHðZÞ þ βhðeÞ: ð28Þ

In this work, we use β ¼ 0.95 in all figures unless
mentioned otherwise.

2. Key rates for protocol 1

We first investigate the optimal choice of coherent state
amplitude α in the absence of postselection, that is,Δc ¼ 0.
In Fig. 3, we plot the key rate versus the choice of α for a
selected set of distances in the case of the excess noise
ξ ¼ 0.01. The optimal choice of α for each distance
L ¼ 20, 50, 80, 100 km lies around 0.4, corresponding

to a mean photon number of 0.16 from Alice’s source.
We also see that the optimal choice does not change
significantly for different distances. This observation
allows us to search in a restricted interval when we optimize
α to maximize the key rate for each transmission distance.
In Fig. 4, we show the secret key rates as a function of

the transmission distance for protocol 1 with homodyne
detection for different choices of excess noise ξ. For this
plot, we optimize the coherent state amplitude α by a
coarse-grained search in the interval [0.35, 0.6]. As we
can see from the plot, we can reach around 200 km with
an experimentally feasible value of excess noise, say, ξ ¼
0.01 [46,47] with the current technology before the key
rate becomes insignificant (say, less than 10−6 per pulse).
To put the number in a more concrete and realistic
context, if we consider a system with the repetition rate
of 1 GHz and with the detector efficiency 55%, we can
obtain 103 bits per second at the distance of around
170 km if the total excess noise ξ can be made to be 1%
or less.
We also investigate the effects of postselection. The idea

of postselection was initially introduced to CV QKD
protocols in order to beat the 3 dB limit [19]. The key
rate can be potentially improved by discarding very noisy
data where Eve has more advantages in determining the raw
key than the party (Bob in the case of direct reconciliation
and Alice in the case of reverse reconciliation) who needs
to match the raw key via the error correction. Intuitively, if
we optimize the postselection parameter Δc, the key rate
can never be lower than the protocol without postselection,
since one can always set Δc ¼ 0 if it is optimal to do so.
The important observation here is that our security proof

FIG. 4. Secure key rate versus the transmission distance for
protocol 1 (with homodyne detection) for different values of the
excess noise, from top to bottom, ξ ¼ 0.002, 0.005, 0.01, 0.015,
0.02. The coherent state amplitude α is optimized via a coarse-
grained search in the interval [0.35, 0.6], the transmittance is
η ¼ 10−0.02L for each distance L in kilometers, and the recon-
ciliation efficiency is β ¼ 0.95.

(a) L = 20 km (b) L= 50 km

(c) L = 80 km (d) L = 100 km

FIG. 3. Secure key rate for protocol 1 versus coherent state
amplitude α for selected choices of distances (a) L ¼ 20 km,
(b) L ¼ 50 km, (c) L ¼ 80 km, and (d) L ¼ 100 km with the
excess noise ξ ¼ 0.01 and reconciliation efficiency β ¼ 0.95.
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technique allows us to consider postselection with Δc > 0
by a simple modification of the postprocessing map G,
unlike previous security proofs based on Gaussian opti-
mality. In Fig. 5, we take the case with an excess noise
ξ ¼ 0.02 and a fixed coherent state amplitude α ¼ 0.45 as
an example to illustrate how the postselection strategy can
improve the key rate in the reverse reconciliation scheme
and to what extent it can help. We first search an optimal
value for the postselection parameter Δc by a coarse-
grained search, and we see, in Fig. 5(a), that the optimal
value is around 0.6 at the distance L ¼ 20 km. We also
obtain similar plots for different choices of distance and
find that the optimal value falls roughly in the interval
[0.5, 0.7]. In Fig. 5(b), we compare the key rate with
postselection (Δc > 0) to that without postselection
(Δc ¼ 0) for two values of reconciliation efficiency β. In
this plot, we optimize the postselection parameter Δc via a
coarse-grained search in the interval [0.5, 0.7]. Since the
curves with postselection are above the curves without
postselection, we see that the postselection strategy can
improve the key rates. We also notice that, for reverse
reconciliation schemes, the advantage of postselection also
depends on the reconciliation efficiency β. The gap between
these two scenarios Δc ¼ 0 and Δc > 0 is smaller when a
more efficient code (larger β) is used.

E. Noisy scenario: Protocol 2

1. Simulated statistics and error-correction cost

We now investigate protocol 2, which uses heterodyne
detection. From the heterodyne measurements, for each
conditional state ρxB with αx ∈ fα; iα;−α;−iαg, we obtain a
Q function Qx as

QxðγÞ ¼
1

πð1þ ηξ=2Þ exp
�
−
jγ − ffiffiffi

η
p

αxj2
1þ ηξ=2

�
: ð29Þ

From each Q function, we can then calculate

hq̂ix ¼
1ffiffiffi
2

p
Z

ðγ þ γ�ÞQxðγÞd2γ ¼
ffiffiffiffiffi
2η

p
ReðαxÞ;

hp̂ix ¼
iffiffiffi
2

p
Z

ðγ� − γÞQxðγÞd2γ ¼
ffiffiffiffiffi
2η

p
ImðαxÞ;

hn̂ix ¼
Z

ðjγj2 − 1ÞQxðγÞd2γ ¼ ηjαxj2 þ
ηξ

2
;

hd̂ix ¼
Z

½γ2 þ ðγ�Þ2�QxðγÞd2γ ¼ η½α2x þ ðα�xÞ2�: ð30Þ

Note that those values are exactly the same as from the
homodyne measurements, since we have the same state
after the simulated quantum channel. We obtain those
values here indirectly via the Q function.
We also present the procedure to calculate δEC for

protocol 2. We can numerically evaluate HðZjXÞ via the
probability distribution:

Pðz ¼ jjx ¼ kÞ ¼ TrðRjρ
k
BÞ

¼
Z

∞

Δa

Z ½ð2jþ1Þπ=4�−Δp

½ð2j−1Þπ=4�þΔp

expð− jγeiθ− ffiffi
η

p
αkj2

1þηξ=2 Þ
πð1þ ηξ=2Þ γdθdγ; ð31Þ

where j, k ∈ f0; 1; 2; 3g, Rj’s are the region operators
defined in Eq. (20), and the conditional state ρkB is defined
in Eq. (8). (In the case of postselection, we then renorm-
alize this probability distribution by the probability of being
postselected.) Then, δEC can be calculated by the second
line of Eq. (28), as we now take into account that we have
an alphabet of four symbols on both sides in the error-
correction step.

2. Key rates for protocol 2

As with the case of protocol 1, we start by investigating
the optimal choice of coherent state amplitude α for
protocol 2. In Fig. 6, we plot the key rates versus α for
selected distances when the excess noise ξ is 0.01.
Comparing to Fig. 3, we see that the optimal α for this
variant with heterodyne detection is, in general, larger than
that for protocol 1. The optimal choice of α in protocol 2 is
around 0.7 for those selected distances, corresponding to a
mean photon number around 0.49, while the optimal choice
of α in protocol 1 is around 0.4 for those selected distances,
corresponding to a mean photon number around 0.16. Like
protocol 1, we observe that the optimal value of α for
protocol 2 does not change significantly for a wide range of
distances. From the observation here, we later limit our
search for optimal choice of α in a restricted interval.

(a) (b)

FIG. 5. Secure key rate for protocol 1 (homodyne detection)
with postselection. The excess noise is ξ ¼ 0.02, and the coherent
state amplitude is α ¼ 0.45. (a) Secure key rate versus the
postselection parameter Δc at the distance L ¼ 20 km with the
reconciliation efficiency β ¼ 0.95. (b) Secure key rate versus
the transmission distance with or without postselection for two
different values of β. Solid lines have β ¼ 0.95, and dashed lines
have β ¼ 0.9. Lines with (red) circle markers have Δc ¼ 0, and
lines with (black) triangle markers have Δc optimized via a
coarse-grained search in the interval [0.5, 0.7].
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In Fig. 7, we plot the secure key rate versus the
transmission distance for different values of excess noise
ξ. We optimize the coherent state amplitude α via a coarse-
grained search over the interval [0.6, 0.92]. We observe that
protocol 2 can reach around 200 km even with an excess

noise ξ ¼ 0.02. Interestingly, we see that the key rate for
protocol 2 is much higher than protocol 1 when the excess
noise is large. For a direct comparison, we replot key rates
of both protocols for the values of excess noise ξ ¼ 0.01
and 0.02 from Figs. 4 and 7 in Fig. 8. We observe that
protocol 2 achieves much higher key rates and reaches
longer distances than protocol 1 for the same amount of
excess noise. In this figure, we also plot the key rate of
protocol 2 with the excess noise ξ ¼ 0.04 for a direct
comparison to the key rate of protocol 1 with the excess
noise ξ ¼ 0.02. We see that protocol 2 behaves similarly as
protocol 1 with half of the excess noise for those values of
excess noise considered here.
We then compare our results with an independent

security analysis in Ref. [18] for a similar protocol. In
addition to different proof methods, we differ from that
protocol by how the error correction is done, which affects
the calculation of the error-correction cost term δEC. In
particular, our error-correction cost is higher, because we
discretize Bob’s measurement results and consider only
binary or quaternary error-correcting codes. In Ref. [18],
the mutual information IðX;ZÞ is obtained by the channel
capacity of the binary additive white Gaussian noise
channel, which is approximated by the capacity of an
additive white Gaussian noise channel

IðX;ZÞ ≈ log2

�
1þ 2ηα2

2þ ηξ

�
: ð32Þ

This result leads to a smaller value of δEC by the conversion
formula in the first line of Eq. (28). In Fig. 9, we plot the
key rate results from both our work and Ref. [18] with a

(a) L = 20 km (b) L = 50 km

(c) L = 80 km (d) L = 100 km

FIG. 6. Secure key rate for protocol 2 versus the coherent state
amplitude α for selected choices of distances (a) L ¼ 20 km,
(b) L ¼ 50 km, (c) L ¼ 80 km, and (d) L ¼ 100 km with the
excess noise ξ ¼ 0.01 and reconciliation efficiency β ¼ 0.95.

FIG. 7. Secure key rate versus the transmission distance for
protocol 2 with heterodyne detection for different values of the
excess noise ξ, from top to bottom, ξ ¼ 0.002, 0.005, 0.01, 0.015,
0.02, 0.03, 0.04. The coherent state amplitude is optimized via a
coarse-grained search over the interval [0.6, 0.92], the trans-
mittance is η ¼ 10−0.02L for each distance L in kilometers, and the
reconciliation efficiency is β ¼ 0.95.

FIG. 8. Secure key rate versus transmission distance for a direct
comparison between protocols 1 and 2. Curves for protocol 1 are
plotted with triangle markers (from Fig. 4); the excess noise is
ξ ¼ 0.01, 0.02 from top to bottom for curves with triangle
markers. Curves for protocol 2 are plotted with circle markers
(from Fig. 7); the excess noise is ξ ¼ 0.01, 0.02, 0.04 from top to
bottom for curves with circle markers.
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fixed choice of the coherent state amplitude α ¼ 0.35 for all
distances plotted and with two different values of excess
noise. As we can see, our security proof approach provides
remarkably higher key rates compared with the approach
with a reduction to the Gaussian optimality. Our security
analysis shows that this protocol has a good tolerance on
the excess noise and can extend to significantly longer
distances. We emphasize that this choice of α ¼ 0.35 is not
optimal for both works. While this value is closer to the
optimal value found in Ref. [18], the optimal value of the

coherent state amplitude found in our work is around 0.7
(for ξ ¼ 0.01), as mentioned before. Thus, we also include
two curves from Fig. 7, where the coherent state amplitude
α is optimized via a coarse-grained search in the interval
[0.6, 0.92] for comparisons. As we can see from Fig. 9, the
key rate can be significantly improved after we optimize α.
We summarize two factors that can boost the key rates.
First, our security proof technique gives a tighter estimation
of Eve’s information compared with the reduction to the
Gaussian optimality approach. Second, the key rate can be
improved by using a slightly larger value of α than what is
investigated in Ref. [18]. This regime of α is not explored in
Ref. [18], because the reduction to the Gaussian optimality
approach for discrete-modulation schemes gives tight key
rates only in the limit of α → 0 and can give quite loose key
rates for large values of α. In the same figure, we also
compare our results for protocol 2 with a Gaussian-
modulated CV QKD protocol using heterodyne detection
[6], where the modulation variance is optimized for each
distance. We observe that this quaternary modulation
scheme has key rates comparable to the Gaussian modu-
lation scheme.
Finally, we present the results on the effects of post-

selection. Our coarse-grained search for values of Δp
suggests that the optimal value is Δp ¼ 0; that is, we do
not postselect the data based on the phase. For the
postselection parameter Δa related to the amplitude of
the measured complex value from heterodyne detection, we
then perform a coarse-grained search for its optimal value.
In Fig. 10, we consider the scenario with an excess noise
ξ ¼ 0.04 and with a fixed coherent state amplitude α ¼ 0.6

(a)

(b)

FIG. 9. A comparison of key rates between our work and
Ref. [18] for the heterodyne scheme with two different values of
excess noise: (a) ξ ¼ 0.005 and (b) ξ ¼ 0.01. In each plot, the
curve with triangle markers is from Ref. [18] with a fixed (not
optimal) coherent state amplitude α ¼ 0.35, and the curve with
diamond markers is from this work with the same value of α. The
curve with circle markers is also from this work with an optimal
value of α for each distance. The curve with no markers is the key
rates of a Gaussian-modulated CV QKD protocol [6] with an
optimal modulation variance for each distance. All curves use the
reconciliation efficiency β ¼ 0.95. (a) (b)

FIG. 10. Secure key rate for protocol 2 (heterodyne detection)
with postselection. The excess noise is ξ ¼ 0.04, the coherent
state amplitude is α ¼ 0.6, and one of the postselection param-
eters is Δp ¼ 0. (a) Secure key rate versus the postselection
parameter Δa at the distance L ¼ 20 km. The reconciliation
efficiency is β ¼ 0.95. (b) Secure key rate versus the transmission
distance with or without postselection for two different values of
reconciliation efficiency β. Solid lines have β ¼ 0.95, and dashed
lines have β ¼ 0.9. Lines with (red) circle markers have Δa ¼ 0,
and lines with (black) triangle markers have Δa optimized via a
coarse-grained search in the interval [0.4, 0.7].
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as an example. In Fig. 10(a), we plot the key rate versus this
parameter Δa at the distance L ¼ 20 km with the recon-
ciliation efficiency β ¼ 0.95. From this plot, we observe
that the optimal value of Δa is around 0.6 at this distance.
We also obtain similar plots for various choices of the
distance and find that the optimal value roughly falls in the
interval [0.4, 0.7]. In Fig. 10(b), we compare key rates with
or without postselection for two different values of the
reconciliation efficiency at different transmission distances,
and, for this plot, we optimize the values ofΔa via a coarse-
grained search in the interval [0.4, 0.7]. We again notice
that postselection with reverse reconciliation can improve
the key rates. We remark that the improvement due to
postselection in the reverse reconciliation scheme is more
visible for less efficient error-correcting codes, larger
excess noise, and longer transmission distances. This result
agrees with the observation made in Ref. [21] under a
restricted class of attacks.

V. SUMMARY AND OUTLOOK

In this work, we investigate the asymptotic security
of discrete-modulated CV QKD protocols against collec-
tive attacks and demonstrate our proof method on the
quadrature phase-shift keying scheme. We observe that
CV QKD with quaternary modulation can significantly
improve the key rate compared with previous binary and
ternary modulation schemes [13,14]. We also directly
compare our results with the results in a recent independent
work [18], which uses a different proof technique from
ours. Interestingly, as our security proof approach can give
tight key rates, we are able to obtain significantly higher
key rates than Ref. [18]. Our results show that this protocol
can achieve comparable key rates as Gaussian modulation
schemes. In addition, we consider the effects of postse-
lection and demonstrate that postselection can improve the
key rates.
We remark on possible directions for future work. Since

our security analysis imposes a photon-number cutoff
assumption which truncates the total dimension of the
system by ignoring the subspace that has negligible
contributions, it requires further investigations to remove
this assumption and to generalize the current proof to
include finite-size effects and general attacks. We mention
two possible paths to reach this final goal in Sec. III B, and
there are challenges in each direction. In addition, there are
also possible ways to improve the key rates. In both
protocols, we discretize Bob’s measurement outcomes to
obtain binary or quaternary strings. Therefore, we consider
only binary or quaternary error-correcting codes. One can
potentially improve the key rates by a better choice of key
map and, thus, a better error-correction strategy. For a better
choice of key map, one may run the optimization in
Eq. (16) with modified G and Z maps. Another direction
for improvement is to find a better way to treat the
imperfection of detectors in the security analysis. We

currently treat detectors as perfect detectors. To obtain
key rates with imperfect detectors, we can apply a simple
but pessimistic treatment; that is, additional loss and
additional excess noise due to imperfect detectors are
attributed to Eve. By doing so, we can simply modify
two parameters η and ξ to obtain key rates related to
imperfect detectors. However, since detectors are securely
located in Bob’s laboratory, one may treat the excess noise
due to detector imperfection like the electronic noise as
trusted noises (e.g., see Refs. [46–48]). By not giving Eve
this additional power, one may improve the key rates. We
leave further improvements to future work.
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APPENDIX A: FRAMEWORK FOR
POSTPROCESSING: DERIVATION

AND SIMPLIFICATION

In this Appendix, we present a derivation of a general
postprocessing framework for the numerical method in
Ref. [23], which reproduces the form of postprocessing
map G presented in Ref. [23] when Eve’s systems are traced
out. Based on this derivation, we then make several
observations to simplify the postprocessing map G in
special cases, which leads to a reduction of the dimensions
required in the numerical analysis. Finally, we remark how
G maps are simplified in this work.
We begin with some definitions to set up the notations.

When we write an operator on composite registers, we omit
the identity operator on the unspecified registers and may
reorder registers for ease of writing. Moreover, the relevant
unspecified registers depend on the context. Let X denote
the set of Alice’s measurement outcomes. With Alice’s set
of announcements SA, we partition the set X into subsets
Xa for a ∈ SA such that X ¼ ⋃a∈SAXa. Similarly, we
partition Bob’s measurement outcomes Y as Y ¼ ⋃b∈SBYb

by using his set of announcements SB. To simplify our
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notation, we assume without the loss of generality that
jXaj ¼ ωA for all a ∈ SA and jYbj ¼ ωB for all b ∈ SB for
some numbers ωA and ωB independent of a and b. This
assumption can be easily satisfied by a clever way of
bookkeeping measurement outcomes. Then, we define a
family of maps fa∶ ΩA ≔ f1; 2;…;ωAg → Xa and a fam-
ily of maps fb∶ ΩB ≔ f1; 2;…;ωBg → Yb such that fa’s
and fb’s are bijective. Finally, we label Alice’s POVMPA as
PA ≔ fPA

x∶ x∈Xg¼fPA
½a;faðαÞ�∶ a∈ SA;α∈ΩAg andBob’s

POVM as PB≔fPB
y ∶y∈Yg¼fPB

½b;fbðβÞ�∶b∈SB;β∈ΩBg.

1. A full model for the relevant postprocessing steps

We give a schematic circuit diagram in Fig. 11 to describe
the announcement (including measurement), sifting, and key
map steps. This diagram covers the scenarios related to this
work, and it works for protocols with one round of
announcements and with reverse reconciliation. It is not
difficult to draw a similar diagram in other scenarios,
including the direct reconciliation schemes. Under collective
attacks, Alice and Bob share a bipartite quantum state ρAB
after each transmission of a quantum signal. In the worst-
case scenario, Eve holds a purification ρABE of ρAB. The
initial state in the circuit diagram is ρABE. At each step, the
state is evolved by an isometry; that is, we introduce some
local registers and evolve the state by a local unitary. We also
keep track of the information leakage during the classical
communication. If some information is publicly available
during the classical communication in the protocol, then
each party holds a copy of the relevant registers. One can
recover the classical communication information by meas-
uring a local copy of these registers in the computational
basis. Now, we discuss each of the three steps in detail.
The isometries related to the announcement and meas-

urement step are denoted byWA for Alice andWB for Bob.
In particular, WA first introduces two registers eA and A and
then applies a unitary operator UA

AM to implement Alice’s
POVM PA in a coherent fashion, where announcements are
stored in the register eA and measurement outcomes are in
the register A. Like Alice’s isometry WA, Bob’s isometry
WB implements his POVM PB with the announcement
register eB andmeasurement outcome registerB using a local
unitary UB

AM. Since the announcement information is avail-
able to everyone, Eve obtains a copy (denoted by EÃ) of eA
and a copy (denoted by EB̃) of eB. The coherent version of
copying is represented by the controlled NOT operation.
Also, Alice and Bob each have a copy of the other party’s
announcement register, denoted by eBcopy and eAcopy, respec-

tively. For convenience of writing, we use eA and eB to refer to
bothAlice’s andBob’s copies of eA and eB. Aswe see later, we
can actually combine the register eA with eAcopy and combineeB with eBcopy in the key rate calculation. In this diagram, the
state after the announcement and measurement step is

ρð1Þ½A�½B�EEÃEB̃
¼ ðWA ⊗ WBÞρABEðWA ⊗ WBÞ†, where, for

ease of writing, we reorder the registers and use a shorthand
notation for collections of registers: [A] for registers AeAA
and [B] for registers BeBB.
The sifting step partitions the set of announcement

events SA × SB as SA × SB ¼ K ∪ D, where K is the set
of announcement events to be kept and D is the set of
announcements to be discarded. The sifting isometry
(denoted by VS) introduces a register S to store the result
of sifting (“keep” or “discard”) and performs a unitary
operator US on the local copies of registers eA and eB to
compute the sifting decision. In a common scenario, each
party can implement this unitaryUS from the description of
a protocol. If it is not from the protocol description and

(a)

(b)

FIG. 11. (a) A schematic circuit diagram for the relevant
postprocessing steps: announcement (with measurement), sifting,
and key map. Three dashed boxes separate Alice’s, Bob’s, and
Eve’s domains. The initial pure state ρABE is evolved by an
isometry at each step which introduces additional registers and
applies a unitary operation on relevant registers. UA

AM, U
B
AM, US,

and UK are unitary operations related to the announcement and
measurement, sifting, and key map. (b) An explanation for the
controlled unitary operation used in (a). Here, m, r, and n are
some sufficiently large integers so that we have a representation
of the basis elements for each register in the computational basis
of qubits. See the text in Appendix A for more explanations.
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additional classical communication is needed, then,
after a party implements this unitary operation, other parties
obtain a copy of the register S. For simplicity, we use S to
refer to both Alice’s and Bob’s copies of this register. In the

diagram, the state after this sifting step is ρð2Þ½A�½B�S½E� ¼
VSρ

ð1Þ
½A�½B�EEÃEB̃

V†
S, where we use a shorthand notation [E]

to refer to Eve’s collection of registers EEÃEB̃ES.
The key map isometry VK introduces a register R and

applies a local unitary UK to compute the key map g and to
store the result in the register R. This key map g takes the
announcement ða; bÞ ∈ SA × SB and Alice’s measurement
outcome faðαÞ in the case of direct reconciliation or Bob’s
measurement outcome fbðβÞ in the case of reverse recon-
ciliation as inputs and outputs a value in f0; 1;…; N − 1g,
where N is the number of key symbols. For the purpose of
derivation, we include an additional key symbol ⊥ to this
set and map all discarded events to it. We see later that we
can eventually remove the symbol ⊥ from the set of key
symbols. In the diagram, the state after the key map state

is ρð3ÞR½A�½B�S½E� ¼ VKρ
ð2Þ
½A�½B�S½E�V

†
K .

To give explicit expressions for these isometries WA,
WB, VS, and VK , we first define KA

a and KB
b as

KA
a ¼

X
α∈ΩA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PA
½a;faðαÞ�

q
⊗ jaiÃ ⊗ jαiA;

KB
b ¼

X
β∈ΩB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PB
½b;fbðβÞ�

q
⊗ jbiB̃ ⊗ jβiB; ðA1Þ

where fjai∶ a ∈ SAg and fjbi∶ b ∈ SBg are orthonormal
bases for registers eA (EÃ) and eB (EB̃) and fjαi∶ α ∈ ΩAg
and fjβi∶ β ∈ ΩBg are orthonormal bases for registers A
and B, respectively. (Note that jαi here is not a coherent
state discussed in the main text.) We remark thatKA

a andKB
b

are the same as defined in Eqs. (40) and (41) of Ref. [23] if
we write faðαÞ as αa and fbðβÞ as βb. Then WA, WB, and
VS are defined, respectively, as

WA ¼
X
a∈SA

KA
a ⊗ jaiEÃ

;

WB ¼
X
b∈SB

KB
b ⊗ jbiEB̃

;

VS ¼Π⊗ jKiS ⊗ jKiES
þð1Ã B̃−ΠÞ⊗ jDiS⊗ jDiES

;

ðA2Þ
where Π ¼ P

ða;bÞ∈K jaihajÃ ⊗ jbihbjB̃ and fjKi; jDig is
an orthonormal basis for the register S (ES). To write out the
key map isometry VK, we take the reverse reconciliation
schemes as an example, and it is straightforward to write
out VK in the case of direct reconciliation schemes by
using Alice’s measurement outcome faðαÞ instead of
Bob’s outcome fbðβÞ. We first define an (partial) isometry
V on the subspace that Π projects onto and then write
out VK:

V¼
X
ða;bÞ∈K
β∈ΩB

jg½a;b;fbðβÞ�iR⊗ jaihajÃ ⊗ jbihbjB̃ ⊗ jβihβjB;

VK ¼VΠþj⊥iR ⊗ ð1Ã B̃−ΠÞ: ðA3Þ

We remark that the final state ρð3ÞR½A�½B�S½E� ¼ VKVSðWA ⊗
WBÞρABEðWA ⊗ WBÞ†V†

SV
†
K is a pure state, since ρABE is a

pure state and we apply only isometries to it.

2. Removing the dependence on Eve’s registers

To access the key information, we use the projective
measurement fZj¼jjihjjR∶j∈f0;1;…;N−1;⊥gg. Since

the final state ρð3ÞR½A�½B�S½E� is pure, we apply Theorem 1 of

Ref. [49] to rewrite conditional entropy HðZj½E�Þ as

HðZj½E�Þ ¼ D

�
ρð3ÞR½A�½B�Sk

X
j

Zjρ
ð3Þ
R½A�½B�SZj

�
; ðA4Þ

where ρð3ÞR½A�½B�S ¼ Tr½E�ðρð3ÞR½A�½B�S½E�Þ. We then define an

announcement map A for an input state σ as AðσÞ ¼P
a∈SA

P
b∈SBðKA

a ⊗ KB
b ÞσðKA

a ⊗ KB
b Þ† and rewrite

ρð3ÞR½A�½B�S as

ρð3ÞR½A�½B�S ¼ Tr½E�ðρð3ÞR½A�½B�S½E�Þ
¼ ppassρ

K
R½A�½B� ⊗ jKihKjS

þ ð1 − ppassÞρDR½A�½B� ⊗ jDihDjS; ðA5Þ

where ppass ¼ Tr½VΠAðρABÞΠV†� ¼ Tr½AðρABÞΠ� is the
same sifting probability defined in the main text and

ρKR½A�½B� ¼
VΠAðρABÞΠV†

ppass
;

ρDR½A�½B� ¼
j⊥ih⊥jR⊗ ð1Ã B̃−ΠÞAðρABÞð1Ã B̃−ΠÞ

1−ppass
: ðA6Þ

To show that the symbol⊥ has no contribution to the key
rate, we use the following lemma (see Ref. [50]).
Lemma 1.—For quantum-classical states ρQX and σQX

defined as ρQX¼
P

xpðxÞρxQ⊗jxihxjX, σQX¼
P

xqðxÞσxQ⊗
jxihxjX, where p and q are probability distributions over a
finite alphabetX and ρxQ and σxQ are density operators for all
x ∈ X , the quantum relative entropy is DðρQXkσQXÞ ¼P

x pðxÞDðρxQkσxQÞ þDðpkqÞ.
Applying the lemma to the state ρð3ÞR½A�½B�S with the

classical register S gives us
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D(ρð3ÞR½A�½B�SkZðρð3ÞR½A�½B�SÞ)¼ppassD(ρKR½A�½B�kZðρKR½A�½B�Þ)
þð1−ppassÞDðρDR½A�½B�kρDR½A�½B�Þ

¼ppassD(ρKR½A�½B�kZðρKR½A�½B�Þ)
¼D(GðρABÞkZ½GðρABÞ�); ðA7Þ

where we define GðρABÞ ¼ VΠAðρABÞΠV†, which is the
same as in Ref. [23].
Finally, we remark that, on the subspace where Π

projects, the symbol ⊥ does not show up anymore.
Thus, we can modify fZjg to remove the symbol ⊥ in
the end. This modification gives back to the definition of Z
shown in Ref. [23].

3. Simplifying the postprocessing map

We now provide several remarks to explain how we can
simplify the map G while making sure that such a
simplification does not change our calculated key rates.
Our discussion here takes the reverse reconciliation
schemes as an example. It is straightforward to adapt the
arguments to the direct reconciliation schemes.
We first make a remark about the registers eAcopy and eBcopy

that are hidden in our notation eA and eB. After tracing out
Eve’s registers EÃ and EB̃, Alice’s register eA and
Bob’s copy eAcopy are both classical registers, and,
likewise, Bob’s register eB and Alice’s copy eBcopy are
classical. Since each of the sifting and key map steps is
done locally via a controlled unitary whose target is the
register S or R alone, we can pull out two copies of registerseA and eB to write the final state in the form of the quantum-
classical state to which the previous lemma applies. If we
look at the block diagonal structure of GðρABÞwith respect to
two copies of the register eA, we see directly that the state
with a single copy of the register eA is just embedded in a
larger space with two copies of the register eA. This result
means the eigenvalues of the state are unaffected by
removing one copy of the register eA. A similar argument
works for two copies of eB. Moreover, from the previous
lemma, we see immediately that we can calculate the key
rate from individual announcements if we write the key map
g as g½a; b; fbðβÞ�≕ gabðβÞ for a collection of functions gab,
one for each ða; bÞ ∈ K. In this case, for each ða; bÞ ∈ K,
we define an isometry Vab ¼

P
β∈ΩB jgabðβÞiR ⊗ jβihβjB

and a completely positive map Gab for an input state σ as
GabðσÞ¼VabðeKA

a ⊗ eKB
b ÞσðeKA

a ⊗ eKB
b Þ†V†

ab, where we defineeKA
a such that KA

a ¼ eKA
a ⊗ jaiÃ and eKB

b such that
KB

b ¼ eKB
b ⊗ jbiB̃. Then,

D(GðρABÞkZ½GðρABÞ�)
¼

X
ða;bÞ∈K

D(GabðρABÞkZ½GabðρABÞ�): ðA8Þ

Besides the lemma, our objective function has another
important property. Since the quantum relative entropy is
invariant under an isometry, if an isometry can commute
with G and Z maps, then our objective function is also
invariant under this isometry. In other words, we can add or
remove an isometryW (that acts only on Alice’s and Bob’s
registers) in the final expression of Eq. (A7) ifW commutes
with G and Z maps.
From this property of our objective function, if those

functions gab’s are the identity function, then we see that
each isometry Vab simply copies the register B and stores
this copy to the register R. Adding this copy is a local
isometry, and renaming the register B by the name R is a
unitary. Thus, we can combine the registers B and R and
retain the name of R.
Also, based on this property of our objective function,

we now discuss when we can omit the appearance of
the register A. As depicted in Fig. 12, the announcement
and measurement step can be decomposed into two steps.
First, Alice performs a coarse-grained measurement (with
associated unitary UA

A in this figure) to make announce-
ments. Second, conditioned on her own announcement
result, Alice performs a refined measurement (with a
controlled unitary UA

M in the figure) if needed to obtain

FIG. 12. An alternative description of the announcement step
for the reverse reconciliation schemes. This step can be decom-
posed into two steps. At the first step, Alice performs only a
coarse-grained measurement with a unitary UA

A to obtain an-
nouncement results, and Bob also performs a coarse-grained
measurement with a unitary UB

C to obtain announcement out-
comes and coarse-grained measurement information. At the
second step, they choose to perform optional refined measure-
ments (UA

M and UB
F ) conditioned on the announcements (and

previous coarse-grained measurement information for Bob).
They can postpone the refined measurements after giving Eve
announcement results and, in some cases, choose not to perform
the refined measurements.
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the fine-grained measurement outcomes. As the refined
measurement is done in Alice’s local registers, to which
Eve has no access, Alice’s refined measurement can be
described by a local isometry. This local isometry can be
performed after Eve obtains a copy of the announcement
registers. In the reverse reconciliation scheme, since the key
map isometry V does not depend on the register A, the
isometry that describes Alice’s refined measurement then
commutes with G and Z maps. This result means that, from
the key rate calculation perspective, we can drop this
isometry due to the property of our objective function.
More precisely, if we define PA

a ¼ P
α∈ΩA PA

½a;faðαÞ� for each

a ∈ SA and define KA0
a ¼

ffiffiffiffiffiffi
PA
a

p
⊗ jaiÃ, then we can

replace the map G by the map G0 defined as

G0ðσÞ ¼ VΠ
�X

a∈SA
b∈SB

ðKA0
a ⊗ KB

b ÞσðKA0
a ⊗ KB

b Þ†
�
ΠV† ðA9Þ

for an input state σ. (A similar replacement can be done for
Gab.) A similar argument can be applied to the direct
reconciliation schemes by interchanging the roles of Alice’s
and Bob’s registers to show that we can omit the register B
for direct reconciliation.
Along the same line of argument, we remark that the

refined measurement conditioned on the announcements
can be a coarse-grained instead of the fine-grained meas-
urement if the key map uses only the coarse-grained
information. This process is also described in Fig. 12.
Bob first applies an isometry (with associated unitaryUB

C in
the figure) to implement the coarse-grained measurement
which gives the same coarse-grained information needed
for the key map g and then applies an additional isometry
(with associated unitary UB

F in the figure) to obtain fine-
grained measurement outcomes. As the sifting step depends
only on the announcement, we can move Bob’s refined
measurement after the sifting step (not shown in this
figure). Since the key map uses only the coarse-grained
information, the key map isometry effectively undoes the
unitaryUB

F. Therefore, we can take the POVM related to the
coarse-grained measurement when we write out Kraus
operators KB

b in Eq. (A1).
Finally, we explain how we derive the Kraus operators

shown in Eqs. (17) and (21). First, since we consider the
reverse reconciliation schemes, we can omit the measure-
ment outcome register A. Second, since the key map of
each protocol uses only the coarse-grained measurement
outcomes, instead of using Bob’s fine-grained POVM
corresponding to homodyne or heterodyne measurements,
we use the coarse-grained POVM (fI0; I1; 1 − I0 − I1g
for protocol 1 and fR0; R1; R2; R3; 1 −

P
3
j¼0 Rjg for pro-

tocol 2). Since the set K contains only one element, we
are left with only one term in the summation of Eq. (A8)
after removing registers eA and eB. Finally, the key map in

this case is the identity map. Thus, we combine registers R
and B and retain the name R for this combined register.

APPENDIX B: OPERATORS WITH THE
PHOTON-NUMBER CUTOFF

Let N denote the photon-number basis up to Nc, that is,
N ¼ fj0i;…; jNcig. In this work, we impose a photon-
number cutoff assumption, that is, ρAB ¼ ð1A ⊗
ΠNc

ÞρABð1A ⊗ ΠNc
Þ with the projection ΠNc

onto the
subspace spanned by the basis N . Since Alice’s system
is irrelevant for our discussion here, we focus on the
conditional states ρxB in the following discussion. For any
operator Ô acting on Bob’s system, we observe that

Tr½ρxBÔ� ¼ Tr½ΠNc
ρxBΠNc

Ô�
¼ Tr½ðΠNc

ρxBΠNc
ÞðΠNc

ÔΠNc
Þ�: ðB1Þ

This observation allows us to define the truncated version
of the operator Ô by ΠNc

ÔΠNc
. In our optimization

problem [see Eq. (16)], the relevant operators are of
the forms ΠNc

ρxBΠNc
and ΠNc

ÔΠNc
, which have finite-

dimensional matrix representations. Specifically, we can
find a matrix representation of Ô in the basisN . We start by
writing out the annihilation operator â in this basis, and
then creation operator â† is just its conjugate transpose.
Consequently, other relevant operators q̂, p̂, n̂, and d̂
can be written directly following from their definitions
in terms of â and â†. In this basis,

ΠNc
âΠNc

¼

0BBBBBBB@

0 1 0 0 � � � 0

0 0
ffiffiffi
2

p
0 � � � 0

..

. . .
. ..

.

0 � � � 0
ffiffiffiffiffiffi
Nc

p

0 � � � 0 0

1CCCCCCCA: ðB2Þ

It is not difficult to write out the interval operators I0
and I1 and region operators R0, R1, R2, and R3 in this basis.
To do so, we use the overlap 〈qjn〉 between a quadrature
eigenstate jqi and a photon-number state jni and the overlap
hγeiθjni between a coherent state jγeiθi and a photon-
number state jni.With our definition of quadrature operators
in Eq. (15), the overlaps 〈qjn〉 and hγeiθjni read [51]

hqjni ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π1=22nðn!Þ

p exp

�
−
q2

2

�
HnðqÞ;

hγeiθjni ¼ e−ðγ2=2Þ
γne−inθffiffiffiffiffi

n!
p ; ðB3Þ

respectively, where Hn is the Hermite polynomial of the
order of n. We then perform the relevant integrals to obtain a
finite-dimensional matrix representation in this basis.
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Finally, in the expression of the Kraus operators shown
in Eqs. (17) and (21), we need to take the square root of
each of the interval operators I0 and I1 or region operators
R0, R1, R2, and R3. A caution about the ordering of
truncation and square root is needed. For example, even
though the interval operators are projective on the entire
infinite-dimensional space such that the square root of each
operator is identical to itself, the truncated version of each
interval operator is no longer projective in the finite-
dimensional subspace spanned by the basis N . We now
explain the proper way to handle this issue. With the
photon-number cutoff assumption ρ ¼ ΠNc

ρΠNc
, we see

from Eq. (B1) that, for a POVM element F on the infinite-
dimensional space, the corresponding POVM element on
this finite-dimensional subspace becomes ΠNc

FΠNc
. As we

know from Appendix A, the purpose of taking the square
root of a POVM element is to realize this POVM meas-
urement in an isometric fashion. Since the relevant POVM
element on this finite-dimensional subspace is ΠNc

FΠNc
,

we need to take the square root of ΠNc
FΠNc

. Therefore, we
take the truncation first and then take the square root.

APPENDIX C: EVALUATION OF
LOSS-ONLY KEY RATES

We discuss how to evaluate the Devetak-Winter formula
in the loss-only scenario in the absence of postselection.
When Alice sends jαxiA0 to Bob, in the absence of noise,
Bob can verify that he receives a pure coherent state via
homodyne or heterodyne detections. In the case of homo-
dyne detection, Bob can verify that the received state is a
minimum uncertainty state with the same variance for both
quadratures, which implies it is a pure coherent state. In the
case of heterodyne detection, Bob performs a tomography
to verify that the received state is a pure coherent state.
In particular, if Bob verifies his state to be an attenuated
coherent state j ffiffiffi

η
p

αxi, it is shown [21] that Eve’s
optimal attack is the generalized beam-splitting attack
for this pure-loss channel. Thus, the state shared by Bob
and Eve becomes j ffiffiffi

η
p

αxiBj
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
αxiE after this channel.

Because of the product state structure of Bob and Eve’s
joint state, Bob’s measurement outcome does not influence
Eve’s state. Therefore, conditioned on the value x of Alice’s
string X and the value z in Bob’s raw key Z, Eve’s
conditional state jϵx;zi is

jϵx;zi ¼ j
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
αxi ≔ jϵxi; ðC1Þ

which is independent from z and, thus, we call it jϵxi for
simplicity.

1. Protocol 1

The procedure outlined here is similar to the calculation
in Ref. [21]. For protocol 1, since αx ∈ fα;−αg, Eve’s
conditional states jϵxi are either j

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
αi or j − ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p

αi,

which span only a two-dimensional subspace. We can find
a two-dimensional representation of jϵxi as

jϵ0i ¼ j
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
αi ¼ c0je0i þ c1je1i;

jϵ1i ¼ j −
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
αi ¼ c0je0i − c1je1i; ðC2Þ

where je0i and je1i are defined as

je0i¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh½ð1−ηÞα2�
p X∞

n¼0

ð ffiffiffiffiffiffiffiffiffi
1−η

p
αÞ2nffiffiffiffiffiffiffiffiffiffiffið2nÞ!p j2ni;

je1i¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh½ð1−ηÞα2�
p X∞

n¼0

ð ffiffiffiffiffiffiffiffiffi
1−η

p
αÞ2nþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ1Þ!p j2nþ1i; ðC3Þ

respectively, c0 ¼ e−½ð1−ηÞα2=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh½ð1− ηÞα2�

p
and c1 ¼

e−½ð1−ηÞα2=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½ð1 − ηÞα2�

p
.

We now directly evaluate the Devetak-Winter formula

R∞ ¼ βIðX;ZÞ − χðZ∶EÞ: ðC4Þ

We obtain IðX;ZÞ by a calculation similar to Eq. (28). We
can directly calculate χðZ∶EÞ via

χðZ∶EÞ ¼ HðρEÞ −
X1
j¼0

Pðz ¼ jÞHðρE;jÞ; ðC5Þ

where HðσÞ ¼ −Trðσ log2 σÞ is the von Neumann entropy
and the relevant states are

ρE;j ¼
X1
i¼0

Pðx ¼ i; z ¼ jÞ
Pðz ¼ jÞ hϵiihϵij;

ρE ¼
X1
j¼0

Pðz ¼ jÞρE;j; ðC6Þ

where Pðx; zÞ is the joint probability distribution of x and z
and PðzÞ is the marginal probability distribution of z. Each
of the relevant Eve’s states jϵxi has a two-dimensional
matrix representation in the basis fje0i; je1ig, and, thus, it
is straightforward to directly evaluate the Devetak-Winter
formula.

2. Protocol 2

For protocol 2, since αx ∈ fα; iα;−α;−iαg, Eve’s
conditional states jϵxi are j ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p

αi, ji ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
αi,

j − ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
αi, and j−i ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p

αi, which span only a four-
dimensional subspace. Therefore, we can find an orthonor-
mal basis fjf0i; jf1i; jf2i; jf3ig for this subspace similar
to the basis fje0i; je1ig and find a four-dimensional matrix
presentation for each of Eve’s conditional states (see
Ref. [52] for an explicit expression). All the procedures
are similar to protocol 1 except that the summation
indexes i and j now run from 0 to 3 instead of 0 to 1 in
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Eqs. (C5) and (C6). With a four-dimensional matrix repre-
sentation of Eve’s conditional states jϵxi in the basis
fjf0i; jf1i; jf2i; jf3ig, it is also straightforward to directly
evaluate the Devetak-Winter formula.
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