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Currently, the most accurate and stable clocks use optical interrogation of either a single ion or an
ensemble of neutral atoms confined in an optical lattice. Here, we demonstrate a new optical clock system
based on an array of individually trapped neutral atoms with single-atom readout, merging many of the
benefits of ion and lattice clocks as well as creating a bridge to recently developed techniques in quantum
simulation and computing with neutral atoms. We evaluate single-site-resolved frequency shifts and short-
term stability via self-comparison. Atom-by-atom feedback control enables direct experimental estimation
of laser noise contributions. Results agree well with an ab initio Monte Carlo simulation that incorporates
finite temperature, projective readout, laser noise, and feedback dynamics. Our approach, based on a
tweezer array, also suppresses interaction shifts while retaining a short dead time, all in a comparatively
simple experimental setup suited for transportable operation. These results establish the foundations for a
third optical clock platform and provide a novel starting point for entanglement-enhanced metrology,
quantum clock networks, and applications in quantum computing and communication with individual
neutral atoms that require optical-clock-state control.
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Quantum Physics

I. INTRODUCTION

Optical clocks—based on interrogation of ultranarrow
optical transitions in ions or neutral atoms—have surpassed
traditional microwave clocks in both relative frequency
stability and accuracy [1–4]. They enable new experiments
for geodesy [2,5], fundamental physics [6,7], and quantum
many-body physics [8], in addition to a prospective
redefinition of the SI second [9]. In parallel, single-atom
detection and control techniques have propelled quantum
simulation and computing applications based on trapped
atomic arrays; in particular, ion traps [10], optical lattices
[11], and optical tweezers [12,13]. Integrating such tech-
niques into an optical clock would provide atom-by-atom
error evaluation, feedback, and thermometry [14]; facilitate
quantum metrology applications, such as quantum-
enhanced clocks [15–18] and clock networks [19]; and

enable novel quantum computation, simulation, and com-
munication architectures that require optical-clock-state
control combined with single-atom trapping [20–22].
As for current optical clock platforms, ion clocks already

incorporate single-particle detection and control [23], but
they typically operate with only a single ion. Research
towards multi-ion clocks is ongoing [24]. Conversely,
optical lattice clocks (OLCs) [1,2,4] interrogate thousands
of atoms to improve short-term stability, but single-atom
detection and control remains an outstanding challenge.
An ideal clock system, in this context, would thus merge
the benefits of ion and lattice clocks, namely, a large array
of isolated atoms that can be read out and controlled
individually.
Here, we present a prototype of a new optical clock

platform based on an atomic array, which naturally incor-
porates single-atom readout of currently about 40 individu-
ally trapped neutral atoms. Specifically, we use a magic-
wavelength 81-site tweezer array stochastically filled with
single strontium-88 (88Sr) atoms [25]. Employing a repetitive
imaging scheme [25], we stabilize a local oscillator to the
optical clock transition [26,27] with a low dead time of
approximately 100 ms between clock interrogation blocks.
We utilize single-site and single-atom resolution to

evaluate the in-loop performance of our clock system in
terms of stability, local frequency shifts, selected systematic
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effects, and statistical properties. To this end, we define an
error signal for single tweezers, which we use to measure
site-resolved frequency shifts at otherwise fixed parame-
ters. We also evaluate statistical properties of the in-loop
error signal, specifically, the dependence of its variance on
atom number and correlations between even and odd sites.
We further implement a standard interleaved self-

comparison technique [28,29] to evaluate systematic
frequency shifts with changing external parameters—
specifically, trap depth and wavelength—and find an
operational magic condition [30–32] where the dependence
on trap depth is minimized. We also demonstrate a proof of
principle for extending such self-comparison techniques to
evaluate single-site-resolved systematic frequency shifts as
a function of a changing external parameter.
Using self-comparison, we evaluate the fractional short-

term instability of our clock system to be 2.5 × 10−15=
ffiffiffi
τ

p
.

To compare our experimental results with theory predic-
tions, we develop an ab initio Monte Carlo (MC) clock
simulation [33] (Appendix A), which directly incorporates
laser noise, projective readout, finite temperature, and
feedback dynamics, resulting in higher predictive power
compared to traditionally used analytical methods [1]. Our
experimental data agree quantitatively with this simulation,
indicating that noise processes are well captured and
understood at the level of stability we achieve here.
Based on the MC model, we predict a fractional instability
of ð1.9–2.2Þ × 10−15=

ffiffiffi
τ

p
for single-clock operation, which

would have shorter dead time than that in self-comparison.
We further demonstrate a direct evaluation of the 1=

ffiffiffiffiffiffiffi
NA

p
dependence of clock stability with atom number NA, on top
of a laser-noise-dominated background, through an atom-by-
atom system-size-selection technique. This measurement
and the MC model strongly indicate that the instability is
limited by the frequency noise of our local oscillator. We
note that the measured instability is comparable to OLCs
using similar transportable laser systems [34].
We note the very recent, complementary results of

Ref. [35] that show seconds-long coherence in a tweezer
array filled with approximately 5 88Sr atoms using an
ultralow-noise laser without feedback operation. In this and
our system, a recently developed repetitive interrogation
protocol [25], similar to that used in ion clocks, provides a
short dead time of approximately 100 ms between inter-
rogation blocks, generally suppressing the impact of laser
noise on stability stemming from the Dick effect [36].
Utilizing seconds-scale interrogation with such low dead
times, combined with the feedback operation and realistic
upgrade to the system size demonstrated here, promises a
clock stability that could reach that of state-of-the-art OLCs
[2,4,37,38] in the near-term future, as further discussed
in Sec. VI.
Concerning systematic effects, the demonstrated atomic

array clock has intrinsically suppressed interaction and
hopping shifts: First, single-atom trapping in tweezers

provides immunity to on-site collisions present in one-
dimensional OLCs [39]. While three-dimensional OLCs
[37] also suppress on-site collisions, our approach retains a
short dead time as no evaporative cooling is needed.
Furthermore, the adjustable and significantly larger inter-
atomic spacing strongly reduces dipolar interactions [40]
and hopping effects [41]. We experimentally study effects
from tweezer trapping in Sec. IV and develop a corre-
sponding theoretical model in Appendix E, but we leave a
full study of other systematics, not specific to our platform,
and a statement of accuracy to future work. In this context,
we note that our tweezer system is well suited for future
investigations of blackbody radiation shifts via the use of
local thermometry with Rydberg states [14].
The results presented here and in Ref. [35] provide the

foundation for establishing a third optical clock platform
promising competitive stability, accuracy, and robustness,
while incorporating single-atom detection and control
techniques in a natural fashion. We expect this to be a
crucial development for applications requiring advanced
control and readout techniques in many-atom quantum
systems, as discussed in more detail in Sec. VI.

II. FUNCTIONAL PRINCIPLE

The basic functional principle is as follows. We gen-
erate a tweezer array with linear polarization and 2.5-μm
site-to-site spacing in an ultrahigh-vacuum glass cell using
an AOD and a high-resolution imaging system [Fig. 1(a)]
[25]. The tweezer-array wavelength is tuned to a magic
trapping configuration close to 813.4 nm, as described
below. We load the array from a cold atomic cloud and
subsequently induce light-assisted collisions to eliminate
higher trap occupancies [25,42]. As a result, approxi-
mately 40 of the tweezers are stochastically filled with a
single atom. We use a recently demonstrated narrow-line
Sisyphus cooling scheme [25] to cool the atoms to an
average transverse motional occupation number of
n̄ ≈ 0.66, measured with clock sideband spectroscopy
(Appendix B 7). The atoms are then interrogated twice
on the clock transition, once below (A) and once above (B)
resonance, to obtain an error signal quantifying the
frequency offset from the resonance center [Figs. 1(b)
and 1(c)]. We use this error signal to feedback to a
frequency shifter in order to stabilize the frequency of the
interrogation laser—acting as a local oscillator—to the
atomic clock transition. Since our imaging scheme has a
survival fraction of greater than 0.998 [25], we perform
multiple feedback cycles before reloading the array, each
composed of a series of cooling, interrogation, and readout
blocks [Fig. 1(d)].
For state-resolved readout with single-shot, single-atom

resolution, we use a detection scheme composed of two
high-resolution images for each of the A and B inter-
rogation blocks [Fig. 1(e)] [25]. A first image determines
if a tweezer is occupied, followed by clock interrogation.
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A second image, after interrogation, determines if the atom
has remained in the ground state jgi. This process yields an
instance of an error signal for all tweezers that are occupied
at the beginning of both interrogation blocks, while
unoccupied tweezers are discounted. For occupied tweez-
ers, we record the jgi occupation numbers sA;j ¼ f0; 1g
and sB;j ¼ f0; 1g in the images after interrogation with A
and B, respectively, where j is the tweezer index. The
difference ej ¼ sA;j − sB;j defines a single-tweezer error
variable taking on three possible values, ej ¼ f−1; 0;þ1g,
indicating interrogation below, on, or above resonance,
respectively. Note that the average of ej over many inter-
rogations, heji, is simply an estimator for the difference in
transition probability between blocks A and B.
For feedback to the clock laser, ej is averaged over all

occupied sites in a single AB interrogation cycle, yielding
an array-averaged error ē ¼ ð1=NAÞ

P
j ej, where the sum

runs over all occupied tweezers and NA is the number of
atoms present. We add ē times a multiplicative factor to the
frequency shifter, with the magnitude of this factor opti-
mized to minimize in-loop noise.

III. IN-LOOP SPECTROSCOPIC RESULTS

We begin by describing results for in-loop detection
sequences. Here, feedback is applied to the clock laser (as
described before), and probe blocks, for which the inter-
rogation frequency is varied, are added after each feedback
cycle. Using a single probe block with an interrogation time
of 110 ms (corresponding to a π pulse on resonance) shows
a nearly Fourier-limited line shape with full width at half
maximum of approximately 7 Hz [Fig. 1(b)]. We also use
these parameters for the feedback interrogation blocks,
with the A and B interrogation frequencies spaced by a total
of 7.6 Hz. Using the same in-loop detection sequence, we
can also directly reveal the shape of the error signal by
using two subsequent probe blocks spaced by this fre-
quency difference and scanning a common frequency offset
[Fig. 1(c)]. The experimental results are in agreement with
MC simulations, which have systematic error denoted as a
shaded area throughout, stemming from uncertainty in the
noise properties of the interrogation laser (Appendix A 3).
Importantly, these data also exist on the level of

individual tweezers, both in terms of averages and
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FIG. 1. Atomic array optical clock. (a) We interrogate about 40 88Sr atoms, trapped in an 81-site tweezer array, on the ultranarrow
clock transition at 698 nm and use high-resolution fluorescence imaging at 461 nm to detect population changes in the clock states
(labeled jgi and jei) with single-atom resolution. This information is processed by a central processing unit (CPU), and a feedback signal
is applied to the clock laser frequency using an acousto-optic modulator (AOM). (b) Tweezer-averaged probability to remain in jgi as a
function of frequency offset measured with an in-loop probe sequence (circles). Dashed horizontal lines indicate state-resolved detection
fidelities (Appendix B 5). To generate an error signal, we interrogate twice: once below (A) and once above (B) resonance. (c) Tweezer-
averaged error signal as a function of frequency offset (circles). The shaded areas in (b) and (c) show results from MC simulations.
(d) Simplified experimental sequence, consisting of tweezer loading and N-times-repeated AB feedback blocks followed by an optional
probe block, with N ¼ 10 throughout. (e) To detect the clock state population in block A, we take a first image before interrogation to
identify which tweezers are occupied and a second image after interrogation to detect which atoms remain in jgi (images 1 and 2). The
same procedure is repeated for block B (images 3 and 4). We show fluorescence images with identified atoms (circles) (Appendix B 4)
and examples of single tweezer error signals ej.
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statistical fluctuations. As a first example, we show a
tweezer-resolved measurement of the repetition-averaged
error signal heji for all 81 traps [Fig. 2(a)] as a function of
frequency offset.
Fitting the zero crossings of heji enables us to detect

differences in resonance frequency with sub-Hz resolution
[Fig. 2(b)]. The results show a small gradient across the
array due to the use of an AOD: Tweezers are spaced by
500 kHz in optical frequency, resulting in an approximately
linear variation of the clock transition frequency. This effect

could be avoided by using a spatial light modulator for
tweezer-array generation [43]. We note that the total
frequency variation is smaller than the width of our inter-
rogation signal. Such “subbandwidth” gradients can still
lead to noise through stochastic occupation of sites with
slightly different frequencies; in our case, we predict an
effect at the 10−17 level. We propose a method to eliminate
this type of noise in future clock iterations with a local
feedback correction factor in Appendix D 3.
Before moving on, we note that ej is a random variable

with a ternary probability distribution [Fig. 2(c)] defined
for each tweezer. The results in Fig. 2(a) are the mean of
this distribution as a function of frequency offset. In
addition to such averages, having a fully site-resolved
signal enables valuable statistical analysis. As an example,
we extract the variance of ē, σ2ē, for an in-loop probe
sequence where the probe blocks are centered around
resonance.
Varying the number of atoms taken into account (via

postselection) shows a 1=NA scaling with a prefactor
dominated by quantum projection noise (QPN) [1] on top
of an offset stemming mainly from laser noise [Fig. 2(d)].
A more detailed analysis reveals that, for our atom number,
the relative noise contribution from QPN to σē is only
approximately 26% (Appendix C). A similar conclusion can
be drawn on a qualitative level by evaluating correlations
between tweezer-resolved errors from odd and even sites,
which show a strong common mode contribution indicative
of sizable laser noise [Fig. 2(e)].

IV. SELF-COMPARISON FOR EVALUATION
OF SYSTEMATIC SHIFTS FROM

TWEEZER TRAPPING

We now turn to an interleaved self-comparison [28,29],
which we use for stability evaluation and systematic
studies. The self-comparison consists of having two feed-
back loops running in parallel, where feedback is given in
an alternating fashion to update two independent AOM
frequencies, f1 and f2 [Fig. 3(a)]. This self-comparison is
used for a lock-in-type evaluation of clock frequency
changes with varying parameters. As a specific example,
we operate the clock with our usual interrogation trap depth
U1 during blocks for feedback to f1 and with a different
trap depthU2 during blocks for feedback to f2. The average
frequency difference f2 − f1 now reveals a shift of the
clock-operation frequency dependent on U2 [Fig. 3(b)].
For optimal clock operation, we find an “operationally
magic” condition that minimizes sensitivity to trap-depth
fluctuations [30–32] by performing two-lock comparisons
for different wavelengths [Fig. 3(b)] (Appendix E). We note
that this type of standard self-comparison can only reveal
array-averaged shifts.
In this context, an important question is how such lock-in

techniques can be extended to reveal site-resolved system-
atic errors as a function of a changing external parameter.
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FIG. 2. Site-resolved error signal. (a) Repetition-averaged
single-tweezer error signal heji as a function of frequency offset
measured with an in-loop sequence. (b) Fitted zero crossings as a
function of tweezer index for our usual interrogation trap depth
of U1 ¼ 245ð31ÞEr, where Er ¼ h × 3.43 kHz (circles). Solid
lines correspond to theory predictions, with the shaded area
resulting from systematic uncertainty in trap depth (Appendix E).
(c) Ternary probability distribution for ej for a selected tweezer.
The vertical dashed line shows the mean. (d) Variance of the error
signal as a function of atom number, calculated through post-
selection. The solid line is a fit with a 1=NA function plus an
offset. The purple region is a MC simulation. (e) Plot of
correlations between the error signals of even and odd sites.
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To this end, we combine the tweezer-resolved error
signal heji with interleaved self-comparison [Fig. 3(c)].
Converting heji to frequencies [using measured error
functions, such as in Fig. 2(a)] yields frequency estimators
δf1;j and δf2;j for each tweezer during f1 and f2 feedback
blocks, respectively. These estimators correspond to the

relative resonance frequency of each tweezer with respect
to the center frequency of the individual locks. Plotting the
quantity δf2;j − δf1;j þ f2 − f1 then shows the absolute
frequency change of each tweezer as a function of trap
depth [Fig. 3(c)].

V. SELF-COMPARISON FOR STABILITY
EVALUATION

We use the same self-comparison sequence to evaluate
the fractional clock instability by operating both locks
with identical conditions [Fig. 4(a)]. This approach
follows previous clock studies, where true comparison
to a second, fully independent clock system was not
available [28,29]. We plot the Allan deviation σy [44] of
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FIG. 3. Systematic evaluation of clock shifts with tweezer depth
and wavelength. (a) Illustration of interleaved self-comparison,
where two independent AOM frequencies (f1 and f2) are updated
in an alternating fashion. Respective interrogation blocks are set
to two independent tweezer depths U1 and U2. (b) Average
frequency difference f2 − f1 as a function of U2=U1, with U1

fixed to our usual interrogation depth, for multiple frequency
offsets of the trapping laser (see legend for color coding). We fit
the data with a model for light shifts in optical tweezers (colored
lines) with only a single free parameter (for all data simulta-
neously), accounting for an unknown frequency offset (Appen-
dix E). Operational magic intensities are found at the minima of
these curves (gray squares and connecting line), which minimize
the sensitivity to trap-depth fluctuations. The trap laser frequency
is tuned such that the minimum coincides with our nominal
depth. (c) Combining this technique with the single-tweezer-
resolved error heji, we can extract a frequency dependence with
trap depth for each tweezer (colored squares). Solid lines show
the expected dependence for the outermost and central tweezers.
The data correspond to the −7 MHz set in (b). Inset: Local
frequency shifts for U2=U1 ¼ 10. The color coding of the inset
defines the color coding of its subfigure.
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ffiffiffi
τ

p
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MC results. The purple solid line shows the quantum projection
noise limit obtained from MC by switching off all other noise
sources. (b) Based on atom-by-atom feedback control, we
perform a series of self-comparisons with fixed atom number
NA. Shown is the Allan variance σ2y at 1 second (from a 1=
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τ

p
fit)

as a function ofNA. Inset: Allan variance σ2y as a function of 1=NA.
Solid lines show a fit with a functional form σ2y ¼ σ2∞ þ σ2NA

,
where σNA

scales as 1=
ffiffiffiffiffiffiffi
NA

p
.
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y ¼ ðf2 − f1Þ=ðν0
ffiffiffi
2

p Þ in Fig. 4(a), where ν0 is the clock
transition frequency and the

ffiffiffi
2

p
factor is introduced to take

into account the addition of noise from two identical
sources. The results show a 1=

ffiffiffi
τ

p
behavior after a lock

onset time, where τ is the averaging time in seconds. Fitting
this behavior yields σy ¼ 2.5 × 10−15=

ffiffiffi
τ

p
, in excellent

agreement with MC simulations [Fig. 4(a)].
Self-comparison evaluates how fast averaging can be

performed for systematic studies—such as the one shown
in Fig. 3—and reveals the impact of various noise sources
on short-term stability; however, by design, this technique
suppresses slow drifts that are common to the f1 and f2
interrogation blocks. We performed a separate stability
analysis by locking f1 to the left half of the array and f2 to
the right half of the array [37], a method that is sensitive to
slow drifts of gradients, and found no long-term drift of
gradients to within our sensitivity (Appendix D 2).
Having shown good agreement between our data and

MC simulations, we are able to further use the simulation to
predict properties of our clock that are not directly
experimentally accessible. One of these properties is the
true stability of the local oscillator frequency, computed
directly by taking the Allan deviation of the simulated
laser-frequency time traces under feedback. This method
allows us to simulate the stability of single-clock operation,
which has shorter dead time than the double clock
scheme that we use to evaluate stability in experiment.
Following this protocol, our simulations predict
ð1.9–2.2Þ × 10−15=

ffiffiffi
τ

p
for the local oscillator stability

during single-clock operation (Appendix A). In this con-
text, we note the results of Ref. [35], where stability is
evaluated by converting a spectroscopic signal into a
frequency record (without a closed feedback loop).
Based on interrogation with an ultralow-noise laser system,
they achieve a short-term stability of 4.7 × 10−16=

ffiffiffi
τ

p
, with

approximately 5 atoms in tweezers.
Generically, clock stability improves with increasing

atom number as 1=
ffiffiffiffiffiffiffi
NA

p
through a reduction in readout

noise as long as atoms are uncorrelated. However, in the
presence of laser noise—which is common mode to
all atoms—a limit to stability exists even for an infinite
number of atoms [1]. Intriguingly, we can directly
extract such contributions by performing a series of self-
comparisons, where we adjust the atom number one by one
[Fig. 4(b)]. To this end, we restrict the feedback operation
to a subset of atoms in the center of the array with desired
size, ignoring the remainder. We are able to achieve stable
locking conditions for NA ≥ 3 with typical feedback
parameters. We evaluate the Allan variance at 1 second
as a function of NA and fit the results with a function
σ2y ¼ σ2∞ þ σ2NA

, where σNA
scales as 1=

ffiffiffiffiffiffiffi
NA

p
. We find

σNA
¼ 6.7 × 10−15=

ffiffiffiffiffiffiffiffiffiffiffiffi
NA · τ

p
and σ∞ ¼ 2.3 × 10−15=

ffiffiffi
τ

p
,

the latter being an estimator for the limit of our clock
set by laser noise, in agreement with MC simulation.

VI. OUTLOOK

Our results merge single-particle readout and control
techniques for neutral atom arrays with optical clocks based
on ultranarrow spectroscopy. Such atomic array optical
clocks (AOCs) could approach the sub-10−16=

ffiffiffi
τ

p
level of

stability achieved with OLCs [2,4,37,38] by increasing
interrogation time and atom number. Reaching several
hundreds of atoms is realistic with an upgrade to two-
dimensional arrays, while Ref. [35] already demonstrated
seconds-long interrogation. A further increase in atom
number is possible by using a secondary array for readout,
created with a nonmagic wavelength for which higher-
power lasers exist [42,45]. We also envision a system where
tweezers are used to “implant” atoms, in a structured
fashion, into an optical lattice for interrogation and are
subsequently used to provide confinement for single-atom
readout. Furthermore, the lower dead time of AOCs should
help us to reduce laser noise contributions to clock stability
compared to 3D OLCs [37], and even zero dead time
operation [37,38] in a single machine is conceivable by
adding local interrogation. Local interrogation could be
achieved by addressing through the main objective or
through an orthogonal high-resolution path using spa-
tial-light modulators or acousto-optic devices. For the case
of addressing through the main objective, atoms would
likely need to be trapped in an additional lattice to increase
longitudinal trapping frequencies.
Concerning systematics, AOCs provide fully site-

resolved evaluation combined with an essential mitigation
of interaction shifts while being ready-made for imple-
menting local thermometry using Rydberg states [14]
in order to more precisely determine blackbody-induced
shifts [1]. In addition, AOCs offer an advanced toolset for
generation and detection of entanglement to reach beyond
standard quantum limit operation—either through cavities
[16,46] or Rydberg excitation [15]—and for implementing
quantum clock networks [19]. Furthermore, the demon-
strated techniques provide a pathway for quantum comput-
ing and communication with neutral alkaline-earth-like
atoms [8,20,22]. Finally, features of atomic array clocks
—such as experimental simplicity, short dead time, and
three-dimensional confinement—make these systems
attractive candidates for robust portable clock systems
and space-based missions [31].
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APPENDIX A: MONTE CARLO SIMULATION

1. Operation

We compare the performance of our clock to MC
simulations. The simulations include the effects of laser-
frequency noise, dead time during loading and between
interrogations, quantum projection noise, finite temper-
ature, stochastic filling of tweezers, and experimental
imperfections such as state-detection infidelity and atom
loss. The effects of Raman scattering from the trap and of
differential trapping due to hyperpolarizability or trap
wavelength shifts from the AOD are not included as they
are not expected to be significant at our level of stability.
Rabi interrogation is simulated by time evolving an

initial state jgi with the time-dependent Hamiltonian
ĤðtÞ ¼ ðℏ=2ÞfΩσx þ ½δðtÞ � δo�σzg, where Ω is the
Rabi frequency, δo is an interrogation offset, and δðtÞ is
the instantaneous frequency noise defined such that
δðtÞ ¼ ½dϕðtÞ�=dt, where ϕðtÞ is the optical phase in the
rotating frame. The frequency noise δðtÞ for each
Rabi interrogation is sampled from a pregenerated noise
trace (Appendixes A 2 and A 3) with a discrete time step
of 10 ms. Dead time between interrogations and between
array refilling is simulated by sampling from time-
separated intervals of this noise trace. Stochastic filling
is implemented by sampling the number of atoms NA from
a binomial distribution on each filling cycle, and atom loss
is implemented by probabilistically reducing NA between
interrogations.
To simulate finite temperature, a motional quantum

number n is assigned to each of the NA atoms before
each interrogation, where n is sampled from a 1D thermal
distribution using our experimentally measured n̄ ≈ 0.66
(Appendix B 7). Here, n represents the motional quantum
number along the axis of the interrogating clock beam.
For each of the unique values of n that were sampled, a
separate Hamiltonian evolution is carried out with a
modified Rabi frequency given by Ωn ¼ Ωe−ðη2=2ÞLnðη2Þ
[47], where η ¼ ½ð2πÞ=λclock�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ℏ=ð2mωÞ�p
is the Lamb-

Dicke parameter, Ln is the nth order Laguerre polynomial,
and Ω is the bare Rabi frequency valid in the limit of
infinitely tight confinement.
At the end of each interrogation, excitation probabilities

peðnÞ ¼ jhejψnij2 are computed from the final states for
each n. State-detection infidelity is simulated by defining
adjusted excitation probabilities p̃eðnÞ≡ fepeðnÞ þ
ð1 − fgÞ(1 − peðnÞ), where fg and fe are the ground-
and excited-state detection fidelities (Appendix B 5),

respectively. To simulate readout of the jth atom on the
ith interrogation, a Bernoulli trial with probability p̃eðnjÞ is
performed, producing a binary readout value sj;i. An error
signal ē ¼ ð1=NAÞ

P
jðsj;i−1 − sj;iÞ is produced every two

interrogation cycles by alternating the sign of δo on
alternating interrogation cycles. This error signal produces
a control signal (using the same gain factor as used in
experiment), which is summed with the generated noise
trace for the next interrogation cycle, closing the feed-
back loop.

2. Generating frequency noise traces

Using a model of the power spectral density of our
clock laser’s frequency noise (Appendix A 3), we generate
random frequency noise traces in the time domain [48]
for use in the Monte Carlo simulation. Given the
power spectral density of frequency noise SνðfÞ, we
generate a complex one-sided amplitude spectrum AνðfÞ ¼
eiϕðfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SνðfÞΔf

p
, where ϕðfÞ is sampled from a uniform

distribution in ½0; 2πÞ for each f and Δf is the frequency
discretization. This spectrum is converted to a two-sided
amplitude spectrum by defining Aνð−fÞ ¼ A�

νðfÞ. Finally,
a time trace νðtÞ ¼ FfAðfÞgðtÞ þ νlðtÞ is produced by
taking a fast Fourier transform (FFT) of AðfÞ and adding an
experimentally calibrated linear drift term νlðtÞ.

3. Frequency noise model

The power spectral density of the frequency noise of our
clock laser is modeled by the sum of contributions from
random walk frequency modulation (RWFM) noise (f−2),
flicker frequency modulation (FFM) noise (f−1), and
white frequency modulation (WFM) noise (f0), such that
SνðfÞ ¼ αf−2 þ βf−1 þ γf0. We obtain these parameters
through an estimation of the thermal noise of our reference
cavity and a fit of a partially specified frequency-noise
power spectral density obtained via beating our laser with a
reference laser (Fig. 5). Because of the remaining large
uncertainty in the white noise floor of our laser, we define
worst-case and best-case noise models. The range between
these models is the dominant source of uncertainty in our
Monte Carlo simulations.
FFM noise results from thermal mechanical fluctuations

of the reference cavity [49,50]. By estimating the noise
contribution from the ultralow-expansion spacer, fused
silica mirrors, and their reflective coating, we estimate a
fractional frequency instability of σy ¼ 1.6 × 10−15 at 1 s,
which corresponds to a frequency-noise power spectral
density of βf−1 ¼ 0.34 Hz2=Hz at f ¼ 1 Hz.
As a worst-case noise model, we assume a crossover

frequency from FFM to WFM noise at 1 Hz (Fig. 5),
such that γ ¼ βf−1 ¼ 0.34 Hz2=Hz, and we estimate a
frequency-noise power spectral density of αf−2 ¼
0.05 Hz2=Hz at 1 Hz for RWFM noise. As a best-case
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noise model, assuming no crossover from FFM to WFM
noise (such that γ ¼ 0.00 Hz2=Hz), we estimate a fre-
quency-noise power spectral density for RWFM noise of
αf−2 ¼ 0.08 Hz2=Hz at f ¼ 1 Hz. We note that the differ-
ence in predicted clock stability between the best- and
worst-case models is relatively minor. This minor differ-
ence indicates that dominant contributions to clock insta-
bility stem from frequencies where we have experimental
frequency noise data and where both models exhibit
similar frequency noise. This case is confirmed by an
analytical Dick noise analysis [36] (not shown).

APPENDIX B: EXPERIMENTAL DETAILS

1. Experimental system

Our strontium apparatus is described in detail in
Refs. [25,42]. Strontium-88 atoms from an atomic beam
oven are slowed and cooled to a few microkelvin temper-
ature by a 3D magneto-optical trap operating first on the
broad dipole-allowed 1S0 ↔ 1P1 transition at 461 nm and
then on the narrow spin-forbidden 1S0 ↔ 3P1 transition at
689 nm. Strontium atoms are filled into a 1D array of 81
optical tweezers at λT ¼ 813.4 nm, which is the magic
wavelength for the doubly forbidden 1S0 ↔ 3P0 optical
clock transition. The tweezers have Gaussian waist radii of
800(50) nm and an array spacing of 2.5 μm. During filling,
cooling, and imaging (state detection), the trap depth is
2447ð306ÞEr. Here, Er is the tweezer photon recoil energy,
given by Er ¼ h2=ð2mλ2TÞ, where h is Planck’s constant
and m is the mass of 88Sr. The tweezer depth is determined
from the measured waist and the radial trapping frequency
found from sideband measurements on the clock transition
(discussed in more detail in Appendix B 7). After parity

projection, each tweezer has a 0.5 probability of containing
a single atom, or otherwise being empty. Thus, the total
number of atoms NA after each filling cycle of the
experiment follows a binomial distribution with mean
number of atoms N̄A ¼ 40.5.

2. Clock laser system

Our clock laser is based on a modified portable clock
laser system (Stable Laser Systems) composed of an
external cavity diode laser (Moglabs) stabilized to an
isolated, high-finesse optical cavity using the Pound-
Drever-Hall scheme and electronic feedback to the laser
diode current and piezoelectric transducer. The optical
cavity is a 50-mm cubic cavity [51] made of ultralow-
expansion glass maintained at the zero-crossing temper-
ature of 40.53 °C with mirror substrates made of fused silica
with a finesse of F > 300 000 at 698 nm. The clock laser
light passes through a first AOM in a double-pass con-
figuration, injects an antireflection-coated laser diode
(Sacher Lasertechnik GmbH, SAL-0705-020), passes
through a second AOM, and goes through a 10-m-long
fiber to the main experiment with a maximum output
optical power of 20 mW. The first AOM is used for shifting
and stabilizing the frequency of the clock laser, whereas the
second AOM is used for intensity-noise and fiber-noise
cancellation. The clock laser light has a Gaussian waist
radius of 600 μm along the tweezer array. This large width
is chosen to minimize gradients in clock intensity across the
array arising from slight beam-angle misalignments.

3. Bosonic clock transition

Optical excitation of the 1S0 ↔ 3P0 clock transmission in
a bosonic alkaline-earth-like atom is facilitated by applying
a bias magnetic field B [26]. This field creates a small
admixture of 3P1 into 3P0 and results in a Rabi frequency
of ΩR=2π ¼ α

ffiffi
I

p jBj, where I is the intensity of the clock
probe beam and α is the coupling constant. For 88Sr, α ¼
198 Hz=TðmW=cm2Þ1=2 [26]. The probe beam induces an
ac Stark shift ΔνP ¼ kI, where k ¼ −18 mHz=ðmW=cm2Þ
for 88Sr [26]. The magnetic field gives rise to a quadratic
Zeeman shift ΔνB ¼ βB2, where β ¼ −23.3 MHz=T2 for
88Sr [26].
We choose B ≈ 900 μT, for which ΔνB ≈ −18.9 Hz, and

we choose I≈1560mW=cm2, for which ΔνP ≈ −28.1 Hz.
The quoted values for B and I are experimentally calibrated
by measuring ΔνB and ΔνP via two-clock self-comparison
(Sec. IV), where the value of the systematic parameter in
the second rail is varied. We fit the measured frequency
shift to a quadratic model for the magnetic shift and to a
linear model for the probe shift (not shown) and extrapolate
both fits to the known zero values of the systematic
parameters, thus extracting ΔνB and ΔνP.
We note that our measured π time of 110 ms (Fig. 6) is

longer than what would be expected from the calibrated
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FIG. 5. Frequency noise spectrum of the clock laser. Power
spectral density of the frequency noise of our clock laser
measured from a beat signal with a reference laser over a 42-
hour period (red trace). Our theoretical estimate of the thermal
noise contribution is plotted in yellow. We also plot our best-case
(purple) and worst-case (blue) models for total frequency noise,
as used in Monte Carlo simulations.
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beam intensity. This result is likely explained by the
spectral impurity of the interrogating light, which has
servo-induced sidebands at approximately 600 kHz. These
sidebands are spectrally resolved enough so as not to affect
clock interrogation, but they still contribute to the probe
light shift of the transition frequency.

4. Interrogation sequence

We confirm the presence of atoms in each tweezer using
fluorescence imaging for 30 ms on the 461-nm transition
while cooling on the 689-nm transition and repumping
atoms out of the metastable 3P0;2 states. This imaging
procedure initializes the atoms in the 1S0 electronic ground
state jgi. We then further cool the atoms for 10 ms using
attractive Sisyphus cooling [25] on the 689-nm transition
and adiabatically ramp down to a trap depth of 245ð31ÞEr
for 4 ms. We apply a weak bias magnetic field of B ≈
900 μT along the transverse direction of the tweezer array
to enable direct optical excitation of the doubly forbidden
clock transition at 698 nm [26,52]. After interrogating
the clock transition for 110 ms (Fig. 6), we adiabatically
ramp the trap depth back up to 2447ð306ÞEr to detect the
population of atoms in jgi using fluorescence imaging for
30 ms without repumping on the 3P0 ↔ 3S1 transition. This
interrogation sequence is repeated a number of times before
the array is refilled with atoms.

5. Clock state detection fidelity

Based on the approach demonstrated in Ref. [25], we
analyze the fidelity of detecting atoms in the 1S0 (jgi) and
3P0 (jei) states under these imaging conditions. We diagnose
our state-detection fidelity with two consecutive images. In
the first image, we detect atoms in jgi by turning off the
3P0 ↔ 3S1 repump laser such that atoms in jei, in principle,
remain in jei and do not scatter photons [25]. Hence, if we

find a signal in the first image, we identify the state as jgi. In
the second image, we turn the 3P0 ↔ 3S1 repump laser back
on to detect atoms in both jgi and jei. Thus, if an atom is not
detected in the first image but appears in the second image,
we can identify it as jei. If neither of the images shows a
signal, we identify the state as “no atom”.
The inaccuracy of this scheme is dominated by off-

resonant scattering of the tweezer light when atoms are
shelved in jei during the first image. By pumping atoms
into jei before imaging, we observe that they decay back to
jgi with a time constant of τp ¼ 370ð4Þ ms at our imaging
trap depth of 2447ð306ÞEr. This result leads to events in the
first image where jei atoms are misidentified as jgi atoms.
Additionally, atoms in jgi can be misidentified as jei if they
are pumped to jei in the first image. We measure this
misidentification probability by initializing atoms in jgi
and counting how often we identify them as jei. Using this
method, we place a lower bound for the probability of
correctly identifying jei as fe ≡ e−t=τp ¼ 0.922ð1Þ, and we
directly measure the probability of correctly identifying jgi
as fg ¼ 0.977ð2Þ. These values are shown in Fig. 1(b) as
dashed lines.

6. Stabilization to the atomic signal

The clock laser is actively stabilized to the atomic signal
using a digital control system. The frequency deviation of
the clock laser from the atomic transition is estimated from
a two-point measurement of the Rabi spectroscopy signal at
δo=2π ¼ �3.8 Hz for an interrogation time of 110 ms,
which produces an experimentally measured line shape
with a full width at half maximum of 7 Hz. Here, ē is
converted into a frequency correction by multiplying it by a
factor of κ ¼ 3 Hz. We choose κ to be the largest value
possible before the variance of the error signal in an in-loop
probe sequence begins to grow. Feedback is performed by
adding the frequency correction to the frequency of the rf
synthesizer (Moglabs ARF421) driving the first AOM
along the clock beam path.

7. Sideband thermometry on the clock transition

We perform sideband thermometry on the clock tran-
sition (Fig. 7) using the same beam used to interrogate the
atoms for clock operation. Using a standard technique of
taking the ratio of the integrated area under the first red and
blue sidebands [53], we obtain n̄ ≈ 0.66 along the direction
of the interrogation beam, oriented along one of the tight
radial axes of our tweezers. From the sideband separation,
we measure a trap frequency of ω ≈ 2π × 24.5 kHz. These
values are measured after cooling on the narrow 1S0 ↔ 3P1
transition for 10 ms [25] in a trap of depth 2447ð306ÞEr and
adiabatically ramping down to our clock interrogation
depth of 245ð31ÞEr.
We note that the clock transition is sufficiently narrow to

observe sub-kHz inhomogeneities of trap frequencies
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FIG. 6. Rabi oscillations on the clock transition with π-pulse
length of 110 ms. Each point is probed directly after stabilizing
the clock laser with a feedback sequence as described in the main
text. The shaded area denotes Monte Carlo results.
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between tweezers. This precision afforded by the clock
transition allows for detailed knowledge about inhomoge-
neities in the array, and we envision using it for fine
corrections and uniformization of an array in the future.
However, for the purpose of thermometry, we broaden the
clock line to a degree that these inhomogeneities are
unresolved on an array-averaged level, so we may obtain
a spectrum that can be easily fit and integrated. Specifically,
we use a much higher magnetic field of approximately
75 mT to obtain a carrier Rabi frequency of approximately
360 Hz at the same optical intensity.

8. Evaluating Allan deviations

Repeated interrogation introduces a bimodal distribution
in the time between feedback events due to the periodic
refilling of the array. To account for this variation, we
approximate that all feedbacks are equally spaced in time
with Δt ≈ 835 ms. This method introduces a slight error
Δτ ≈ 100 ms for all τ, though this error is inconsequential
for fitting the long-time Allan deviation behavior. We fit all
Allan deviations from τ ¼ 10 s to τ ¼ 100 s, using
σy ¼ A=

ffiffiffi
τ

p
, with free parameter A ¼ σyðτ ¼ 1 sÞ.

APPENDIX C: STATISTICAL PROPERTIES
OF THE ERROR SIGNAL

1. Probability distribution function

In the absence of additional noise and given NA atoms,
the probability of finding Ng atoms in the ground state after

a single-clock interrogation block is given by the binomial
distribution PBðNg;NA; pÞ, where p is the probability of
detecting an atom in its ground state following clock
interrogation. The probability of measuring a given error
signal ē ¼ ΔNg=NA is thus given by the probability of
measuring the difference in atom numberΔNg ¼ NA

g − NB
g ,

where NA
g (NB

g ) is the number of atoms detected in the
ground state after the A (B) interrogation blocks. It can be
shown that the probability distribution for ΔNg is given by
the convolution of two binomial distributions, P�ðΔNg;

NA; pA; pBÞ ¼
P

N PBðN;NA; pBÞPBðN − ΔNg;NA; pAÞ.
This discrete distribution has support on f−NA;
−NA þ 1;…; NAg, with 2NA þ 1 nonzero values. Thus,
the probability distribution for ē is given by
Pðē;NA; pA; pBÞ ¼ P�ðēNA;NA; pA; pBÞ. In the absence
of statistical correlation between the A and B interrogation
blocks, this distribution has a mean μē ¼ ðpB − pAÞ and a
variance σ2ē ¼ (pAð1 − pAÞ þ pBð1 − pBÞ)=NA.

2. Additional noise

In the presence of noise, such as laser noise or finite
temperature, the excitation probability pA and pB fluctuates
from repetition to repetition. These fluctuations can be
accounted for by introducing a joint probability density
function πðpA; pBÞ, so that

Pðē;NAÞ ¼
Z

dpAdpB(πðpA; pBÞPðē;NA; pA; pBÞ)

¼ hPðē;NA; pA; pBÞi; ðC1Þ

where h·i denotes statistical averaging over πðpA; pBÞ.
Assuming the mean of Pðē; NAÞ to be zero, which is
equivalent to hpAi ¼ hpBi≡ hpi, and the variance of pA

and pB to be equal, σ2pA
¼ σ2pB

≡ σ2p, it can be shown that
the variance of Pðē; NAÞ is given by

σ2ē ¼ 2(hpið1 − hpiÞ − σ2p)=NA þ 2ðσ2p − CÞ; ðC2Þ

where C is a correlation function between pA and pB
defined as C ¼ hpApBi − hpAihpBi.

3. Experimental data

We can directly extract the correlation function C
through the results of images (2) and (4) for valid tweezers
[Fig. 1(e)]. We explicitly confirm that C is independent of
the number of atoms used per AB interrogation cycle and
extract C ¼ −0.025. The anticorrelation is an indication of
laser noise. Note that, in contrast to C, σ2p is not directly
experimentally accessible as it is masked by QPN. The fit
to the variance of the error signal [Fig. 2(d)] yields
σ2ē ¼ 0.379=NA þ 0.169. We can thus use the fitted
offset of 0.169 combined with the knowledge of C to
extract σ2p ¼ 0.059. We can alternatively use the fitted
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FIG. 7. Clock sideband thermometry. Array-averaged radial
sideband spectrum of the optical clock transition, taken with a
carrier Rabi frequency of approximately 360 Hz. A narrow carrier
stands in between two broader sidebands on the red and blue
detuned sides. Sideband broadening is due mainly to small
inhomogeneities in the array. A suppressed red sideband indicates
significant motional ground-state population. The solid line is a
simultaneous fit to two skewed Gaussians. From the ratio of the
area under the red sideband to that under the blue sideband, we
obtain n̄ ≈ 0.66. The carrier is probed for an interrogation time of
1.4 ms, while the sidebands are probed for 3.3 ms.
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coefficient of the 1=NA term of 0.379 with the measured
hpi ¼ 0.41 to extract σ2p ¼ 0.052. To determine the con-
tribution from QPN versus other noise sources in the
standard deviation of the error signal, we take σē;QPN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hpið1 − hpiÞ=NA

p
=σē, which for NA ¼ 40.5 yields

σē;QPN ¼ 0.26, as quoted in the main text.

APPENDIX D: EXPLOITING
SINGLE-SITE-RESOLVED SIGNALS

1. Atom-number-dependent stability

To study the performance of our clock as a function of
atom number, we can choose to use only part of our full
array for clock operation [Fig. 4(b)]. We preferentially
choose atoms near the center of the array to minimize errors
due to gradients in the array, e.g., from the AOD. Because
of the stochastic nature of array filling, we generally use
different tweezers during each filling cycle such as to
always compute a signal from a fixed number of atoms.
When we target a large number of atoms, some repetitions
have an atom number lower than the target due to the
stochastic nature of array filling, resulting in a mean atom
number slightly smaller than the target, as well as a small
fluctuation in atom number. The data points in Fig. 4(b)
show the mean atom numbers used for clock operation,
with error bars around these means (denoting the standard
deviation of atom number) being smaller than the marker
size.

2. Clock comparison between two halves
of the array

We use the ability to lock to a subset of occupied traps to
perform stability analysis that is sensitive to slow drifts of
gradients across the array (such as from external fields or
spatial variations in trap homogeneity). In this case, we lock
f1 to traps 1–40 and lock f2 to traps 42–81, such that noise
sources that vary across the array will show a divergence in
the Allan deviation at long enough times. As shown in
Fig. 8, we perform this analysis for times approaching
τ ¼ 104 s and down to the σy ¼ 1 × 10−16 level, and we
observe no violation of the σy ∝ 1=

ffiffiffi
τ

p
behavior. Thus, we

conclude that such temporal variations in gradients are not a
resolvable systematic for our current experiment. However,
this analysis will prove useful when using an upgraded
system for which stability at the σy ¼ 10−17 level or lower
becomes problematic. In principle, the lock could be done
on a single trap position at a time, which would allow trap-
by-trap systematics to be analyzed.

3. In situ error correction

Single-site resolution offers the opportunity both to
analyze single-atom signals, as discussed in the main text,
and to modify such signals before using them for feedback.
As an example, the AOD introduces a spatial gradient in

trap frequencies across the array, leading to a spatial
variation in zero crossings of the error signal [as shown
in Fig. 2(b)] and subsequently leading to an increase in the
Allan deviation at the σy ≈ 10−17 level due to stochastic trap
loading. While this effect is not currently significant in our
experiment, it and other array inhomogeneities may be
visible to future experiments with increased stability.
Therefore, we propose that this problem can be corrected

(for inhomogeneities within the probe bandwidth) by
adjusting the error signal ej of each tweezer by a correction
factor before calculating the array-averaged ē that will
produce feedback for the local oscillator. For instance,
consider the modification ēf ¼ ð1=NAÞ

P
j ζjej − f0;j,

where ēf is the tweezer-averaged error in Hz, ζj is a
tweezer-resolved conversion factor such as could be
obtained from Fig. 2(a), and f0;j is the tweezer-resolved
zero crossing of the error signal. This new formulation
mitigates inhomogeneity without any physical change to
the array. While physically enforcing array uniformity is
ideal, this tool can simplify the complexity of correcting
experimental systematics.

APPENDIX E: TWEEZER-INDUCED
LIGHT SHIFTS

Several previous studies have analyzed the polarizability
and hyperpolarizability of alkaline-earth-like atoms,
including 88Sr, in magic-wavelength optical lattices
[30–32,54]. In their analyses, these studies include the
effect of finite atom temperature by Taylor expanding the
lattice potential in powers of

ffiffi
I

p
(I is the lattice intensity) in

the vicinity of the magic wavelength [54]. We repeat this
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FIG. 8. Spatially resolved clock comparison. The fractional
Allan deviation from an asynchronous clock comparison between
the left and right halves of our array. Fitting a 1=

ffiffiffi
τ

p
behavior past

an initial lock onset time, we find 3.1 × 10−15=
ffiffiffi
τ

p
, slightly higher

than the result measured for a self-comparison of the full array
(Fig. 4). Importantly, we see no upturn for times approaching
104 s and below the 10−16 level, indicating that slowly varying
drifts of gradients across the array do not contribute to instability
up to our sensitivity.
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derivation for an optical tweezer instead of an optical
lattice.
The Gaussian tweezer intensity (assumed to have azi-

muthal symmetry) is given by Iðρ; zÞ ¼ I0(w0=wðzÞ)2×
e−2ρ

2=wðzÞ2 , where w0 is the beam waist, I0 ¼ 2P0=πw2
0 is

the maximum intensity, P0 is the beam power, wðzÞ ¼
w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=zRÞ2

p
, and zR ¼ πw2

0=λT is the Rayleigh range.
The trapping potential is determined from this intensity
Iðρ; zÞ by the electric dipole polarizability αE1, the electric

quadrupole and magnetic dipole polarizabilities αqm ¼
αE2 þ αM1, and the hyperpolarizability effect βI2.
By considering a harmonic approximation in the x and y

directions as well as harmonic and anharmonic terms in the
z direction, we arrive at the following expression for the
differential light shift of the clock transition in an optical
tweezer, where ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and nρð¼ nx þ nyÞ and nz

are vibrational quantum numbers along the radial and axial
directions, respectively:
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where α̃E1 ¼ ΔαE1ðER=αE1Þ, ΔαE1 ¼ αE1e − αE1g is the
differential E1 polarizability; α̃qm¼ΔαqmðER=αE1Þ, where
Δαqm is the differential E2 and M1 polarizability; β̃ ¼
ΔβðER=αE1Þ2, where Δβ is the differential hyperpolariz-
ability; and u ¼ I=ðER=αE1Þ is the tweezer depth.
We use this formula to predict the light shifts studied in

the main text (Fig. 3). As we find the results to be mostly
insensitive to temperature for low temperatures, we assume
zero temperature for simplicity. We allow a single fit
parameter, which is an overall frequency shift due to
uncertainty in the optical frequency of the trapping light.
The other factors are taken from previous studies, as
summarized in Table I.
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