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Measurement-device-independent quantum key distribution (MDI-QKD) can eliminate detector side
channels and prevent all attacks on detectors. The future of MDI-QKD is a quantum network that provides
service to many users over untrusted relay nodes. In a real quantum network, the losses of various channels
are different and users are added and deleted over time. To adapt to these features, we propose a type of
protocol that allows users to independently choose their optimal intensity settings to compensate for
different channel losses. Such a protocol enables a scalable high-rate MDI-QKD network that can easily be
applied for channels of different losses and allows users to be dynamically added or deleted at any time
without affecting the performance of existing users.
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I. INTRODUCTION

Quantum computing threatens the security of conven-
tional public key cryptography [1]. To address this increas-
ing threat, quantum key distribution (QKD) allows two
parties to share a pair of random keys with information-
theoretic security and protects users from the attack of even
quantum computers. Because of this, QKD is considered
as one of the strong candidates for the next-generation
technology for secure communications. Moreover, as we
now live in the era of the Internet of Things that inter-
connects many users and devices, for QKD to be widely
deployed in the future, an important step is to study it in a
network setting, i.e., designing quantum networks that can
connect and provide service to numerous users, who may
freely join or leave a network.

The problem is, while QKD is theoretically secure, side
channels still exist in a system built with practical compo-
nents. Therefore, an important question in quantum cryp-
tography is to determine how secure a system really is in
practice. There have been multiple quantum hacking attacks,
e.g., Refs. [2-7], that target the practical weaknesses in QKD
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systems. Among the components of a QKD system, detec-
tors are especially susceptible to attacks (and a majority of
hacking attempts target the detectors), making them the
Achilles’ heel of QKD systems. The measurement-device-
independent (MDI) QKD [8] protocol allows an untrusted
third party to make measurements, thus avoiding all security
breaches from detector side channels. Since its proposal,
MDI-QKD has attracted worldwide interest, and there have
been hundreds of follow-up theory and experimental papers.
For example, some notable experimental implementations
have been reported in Refs. [9-15]. An illustration of the
MDI-QKD setup is shown in Fig. 1.

Up till now, multiple field implementations of point-
to-point QKD networks have been reported in, e.g.,
Refs. [16-18]; however, they all relied on trusted relays
(where the information stops being quantum at the relays),
which are undesirable for security. MDI-QKD solves this
problem by allowing untrusted relays in a quantum net-
work, which is a huge advantage over previous point-to-
point QKD networks, making MDI-QKD a powerful
candidate for future quantum networks. For instance, the
first three-user star-shaped MDI-QKD network experiment
in a metropolitan setting has been reported in Ref. [19].

However, a major limitation of MDI-QKD is that it
requires all users to have near-identical (i.e., symmetric)
distances to the untrusted relay for the protocol to work
well [20,21], and the key rate will degrade very quickly
with an increased level of asymmetry between channels.
[22] Because of this limitation, previous experiments of
MDI-QKD either were performed in the laboratory over
symmetric fiber spools [9-14] or had to deliberately add a
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FIG. 1. An example schematic setup of MDI-QKD [8]. Alice
and Bob, respectively, send signals through mwo channels, and
Charles measures the signals with a Bell-state measurement [by
observing the coincidence click events in detectors Dy, Dy,
D,y, D,y behind the beam splitter (BS) and polarizing beam
splitters (PBSs)] and announces the results. Here, weak coherent
pulse (WCP) sources are used, in combination with decoy states
created with intensity modulators (Decoy-IM). In this particular
setup, polarization encoding is used [with polarization modu-
lators (Pol-M)], but MDI-QKD can be performed with other
degrees of freedom, such as time-bin phase encoding, too.

tailored length of fiber to the shorter channel (to introduce
additional loss) in exchange for better symmetry [15].
Adding additional fibers not only is cumbersome as it
requires halting the system (and not practical when there
are many pairs of connections in a quantum network or
when channel loss is changing), but also results in a
suboptimal key rate when the channels are asymmetric.
An intuitive illustration of this can be found in the
Appendix A.

In a realistic setup, a quantum network will very likely
have asymmetric channels due to different geographical
locations of sites. For instance, the channel losses in
Refs. [16,17] are largely different. Here, we select five
nodes from the Vienna QKD network [16] and show them
in Fig. 2(a), where the biggest difference between channels
is as large as 66 km. If we want to perform MDI-QKD over
these locations, although one can add additional fibers
to each channel to compensate for channel differences,
users have to accommodate for the lowest-transmittance
channel—just like in “Liebig’s barrel”—and have a sub-
optimal rate. Moreover, in a scalable network with large
numbers of dynamically added or deleted users, it is not
practical to add fibers and maintain symmetry between

FIG. 2. (a) Part of the QKD network setup from Ref. [16]. Here
as an example, we focus on the five nodes with high asymmetry
(nodes Aj, Az, Ay, As connected with A,, corresponding to nodes
1-5 in Ref. [16]), where A, can be set up as an untrusted relay. We
keep the same topology and redraw it as a star-shaped MDI-QKD
network with four users connected to a single untrusted relay.
When performing MDI-QKD, all users need to accommodate for
the longest channel (i.e., A;) and add losses to their channels
(e.g., extending to A%, A}, A%) if previous protocols are used.
(b) Ship-to-ship communication and ground-satellite communi-
cation, where the participants’ distances to the detector are
constantly changing, and the channels will thus have quickly
varying asymmetry.

each pair of users all the time. Additionally, if one is to
implement a MDI-QKD network over free space between
mobile platforms (e.g., satellite-based MDI-QKD [25] or
maritime MDI-QKD between ships), the losses in the
channels are constantly changing, and the channels will
often be highly asymmetric, as shown in Fig. 2(b). In
summary, the requirement on symmetric channels signifi-
cantly limits the key rate of previous MDI-QKD protocols
in a general quantum network, thus seriously hindering the
widespread deployment of MDI-QKD.

The issue of MDI-QKD with asymmetric channel losses
was first considered in Ref. [4], which provided a rule of
thumb on the ratio of intensities between Alice’s and Bob’s
signals. However, Ref. [4] assumes infinitely large data
size and was also restricted to protocols where the same set
of intensities for the optical signals are used in the two
bases X and Z. In this paper, we make no such assumptions.

In this work, we present a new method to overcome this
crucial limitation directly and enable high-rate MDI-QKD
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with arbitrary user locations. First of all, our work provides
an important conceptual insight: A common folklore in the
field is that MDI-QKD relies on the Hong-Ou-Mandel
(HOM) dip, and therefore, it is important to use matched
intensities at the beam splitter of the receiver Charles in
MDI-QKD. Here, we show that such a folklore is, in fact, a
misconception. We show that there is an intrinsic asymmetry
between the two bases of MDI-QKD: Only the X basis relies
on the indistinguishability of photons from the two beams,
while the Z basis does not. We later show that one can make
use of such an asymmetry to create protocols resilient
against asymmetric channels. We also show that this is a
general theoretical result applicable to many protocols,
including various types of MDI-QKD protocols and poten-
tially other protocols such as MDI quantum-digital signature
[26,27] and twin-field QKD [28] in asymmetric settings.

Following this conceptual insight, we present a novel
method in this paper to combat channel asymmetry. We
make use of the inherent asymmetry between bases in
MDI-QKD and propose a type of asymmetric MDI-QKD
protocol where intensities are not only different for Alice
and Bob, but also different in the X and Z bases. In this
way, by decoupling the bases and also allowing Alice and
Bob to independently vary their intensities, the users can
effectively compensate for channel asymmetry in one basis
and optimize the key generation rate in another basis,
enabling a much higher key rate of our asymmetric
protocols in the presence of channel asymmetry.
Additionally, we present a technique that makes it possible
to efficiently perform a local search for high-speed param-
eter optimization over the extremely large parameter space
for such asymmetric protocols (which would be otherwise
impossible to optimize using previous algorithms such as in
Refs. [20,29]).

The protocols we propose have important practical
impacts. We show that, when channels are asymmetric,
our protocols can provide a much higher key rate than
previous protocols [30,31] that were designed for sym-
metric channels [for instance, 1 to 2 orders of magnitude
higher rate at mid-to-close distances, e.g., 60 km (10 km)
for Alice’s (Bob’s) channels, with a 50-km difference in
channel distances]. Moreover, it enables a much larger
region of possible combinations of channels: For instance,
even at a small data size of N = 10" (N is defined as the
total number of pulses sent by Alice and Bob), one can
generate a high secret key rate of R = 10~/ per pulse even
through an extremely asymmetric channel pair of 0 km
(90 km) for Alice’s (Bob’s) channels, whereas with
previous protocols no key could be generated at all.
Using the type of protocol we propose, one can completely
remove the requirement of symmetric channels in MDI-
QKD. This makes our proposal a powerful solution that
enables high-rate MDI-QKD under arbitrary asymmetry,
which paves the way for practical MDI-QKD networks
where users can be placed at arbitrary locations.

The structure of this paper is as follows: In Sec. IT A,
we point out a theoretical insight that there is an
inherent asymmetry between the two bases of MDI-
QKD. In Sec. II B we make use of this insight and propose
a type of asymmetric protocol that simultaneously has two
kinds of asymmetries: the asymmetry between Alice and
Bob and the asymmetry between the X and Z bases, which,
together, enable the protocol to effectively compensate for
different pairs of channels and maintain a good key
generation rate. We show the security of such a scheme
in Sec. II C. We then describe how to optimally choose the
asymmetric parameters in Sec. Il D. While our proposal
applies to a general type of MDI-QKD protocol, we also
highlight a specific implementation, a “seven-intensity
protocol,” and show that it is a good trade-off between
the key rate and ease of implementation. Lastly, we present
the simulation results to show the effectiveness of our
protocol compared with prior protocols in Sec. III.

II. ASYMMETRIC PROTOCOLS

In this section, we present a general theoretical frame-
work for designing protocols that can effectively compen-
sate for channel asymmetry and provide a good key rate.
Note that our method proposed here is a general result that
can be applied to any decoy-state MDI-QKD protocol with
WCP sources for both asymptotic and finite-size cases as
long as (1) decoupled bases are used and (2) Alice and Bob
have asymmetric intensities. We show in Appendixes B
and C that the scaling of the key rate versus distance is
determined by the signal states, so in principle, any number
of decoy states (e.g., two decoys, three decoys, and four
decoys) can be used so long as they can effectively estimate
the single-photon contributions. In principle, such a method
can potentially be applied even to other types of protocols
in asymmetric settings, such as MDI quantum digital
signature [26,27] and twin-field QKD [28], which are also
currently limited to symmetric intensities between Alice
and Bob and which also use two asymmetric bases X and Z.

A. Asymmetry between bases in MDI-QKD

Here, we start by making a key theoretical observation
on MDI-QKD:

Observation 1: For MDI-QKD, there is an inherent
asymmetry between the bases: Only the diagonal (X) basis
requires the indistinguishability of the signals from Alice
and Bob, while the rectilinear (Z) basis does not.

Such an observation is because in MDI-QKD, Charles
performs a Bell-state measurement with postselection,
making the protocol different from a simple two-photon
interference in a standard HOM dip. Here, let us follow the
discussions in Ref. [8] (and consider the experimental setup
from Fig. 1 in Ref. [8]). Note that while Alice and Bob
randomly send signals in the X and Z bases, Charles always
measures in the Z basis (as defined by his PBS) and
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postselects detector click events that correspond to the
two Bell states |y*) = 1/vV2(|HV) + |VH)) and |y~) =
1/V2(JHV) — |VH)). Such a postselection results in an
asymmetry between the two bases. In the Z basis, only
events where Alice and Bob sent opposite states (e.g., |HV)
or |VH)) are accepted as bits. In these cases, no photon
interference takes place, and indistinguishability between
the two input photon beams is not required because each of
the clicking detectors, respectively, receives only a signal
from either Alice or Bob but never both. For WCP sources,
in the ideal case with no misalignment or dark counts, the
intensities of the pulses and even their spectrum and timing
need not be matching at all. In the X basis, however, the
events may correspond to identical states sent by Alice and
Bob [e.g., | ++) and | — —) corresponding to |yT) =
1/V2(] + +) = | = =))], which do interfere at the beam
splitter. [35] To ensure that the correct events are triggered,
a good visibility of such a two-photon interference is
required. Note that for WCP sources, the interference
visibility is at most 50% (resulting in a 25% observed
QBER in the X basis even in the ideal case—for instance,
EX,, EX, when Alice and Bob use decoy states with inten-
sities py, pp and v, vp—but we can perform a decoy-state
analysis to correctly estimate a low QBER among single-
photon components, e)fl’U), and the visibility will quickly
drop when intensities are mismatched, such as observed
in Ref. [21].

Therefore, a low QBER in the X basis heavily relies on
the indistinguishability of the signals and the balance of
incoming intensities at Charles, while such a dependence is
not present in the Z basis. [37] Such a conclusion is rather
general and also not dependent on the degree of freedom
used for qubit encoding, such as polarization encoding or
time-bin phase encoding (where |HV) and |VH) in the Z
basis correspond to pairs of early and late pulses, which
will similarly not interfere at the beam splitter since they
have different timing).

B. Using decoupled bases and asymmetric intensities

Here, let us consider the key rate formula of MDI-QKD
[8,30]:

R = PsAPsB{(SAE_‘YA)(SBe_SB)YfiL[l = hy(efi")]
_fe SZ\hZ(E\Zs)}9 (1)

where s, s are the intensities of signal states, Q%,, EZ are

the gain and QBER in the Z (signal) basis, Y}fl'L , e)l(l’U are
the lower (upper) bounds of single-photon yield and QBER
estimated from the decoy-state statistics in the X basis (i.e.,
the observed gain and QBER for decoy states Qf;, EY,
where i, j are decoy intensities, such as in {u,, 4, @} and
{up,vp,w} if Alice and Bob each choose three decoy
states), /1, is the binary entropy function, and f, is the error-
correction efficiency.

In the key rate formula, the first part corresponds to key
generation (where the privacy amplification depends on the
single-photon contributions estimated from decoy-state
analysis), and the second part corresponds to error correc-
tion for the signal states. We can make another key
observation on the intensities used in the two bases:

Observation 2: In our protocol, the intensities of the
signal states {s4, sz} used in the Z basis are independent
from those of the decoy states used in the X basis, which
means that the privacy amplification process (to bound
Eve’s information on the final key, i.e., estimate the phase
error rate) in the X basis is completely decoupled from error
correction in the Z basis for key generation.

This decoupling of bases means that it is possible for us
to independently adjust the decoy states and the signal
states in their respective bases to compensate for channel
asymmetry or to optimize the key rate.

For the decoy states, their role is to estimate the single-
photon contributions as accurately as possible. As we
mention above, when channels are asymmetric, using the
same intensities for Alice and Bob (hence different inten-
sities arriving at Charles after the channels’ attenuation)
will result in poor interference visibility and high QBER in
the X  basis, and consequently poor estimation
of ¢;Y. For a good interference visibility, Alice and
Bob should try to maintain similar intensities arriving at
Charles, so the decoy intensities should be chosen to
roughly satisfy

Halla = Hplp, (2)

where 1, and np are the channel transmittances in Alice’s
and Bob’s channels. A similar equation holds true for v,
and vp.

In contrast, for the signal states, they are not involved in
privacy amplification. On the other hand, they affect the
signal-state gain and QBER Q% EZ (which determine the
amount of error correction) and the probability of sending
single photons for key generation sye *4sge™ 5. The key
point is, the QBER E% does not require indistinguishability
of the signals. If there is no misalignment or noise, EZ
would be zero regardless of incoming intensities. In
practice, due to imperfections such as misalignment, the
QBER EZ% [whose full expression can be found in
Appendix C Eq. (C3)] still slightly depends on channel
asymmetry and is also minimal if incoming intensities at
Charles are balanced, but this dependence is for a much
different reason (due to misalignment) than that in the X
basis (mostly due to two-photon interference).
Furthermore, EZ is much less sensitive to channel asym-
metry than QBER in the X basis. We can observe this
from Fig. 3.

Note that, not only do signal intensities affect the signal-
state. QBER, they also determine the probabilities of
sending single photons, hence affecting key generation,
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FIG. 3. An example of the respective quantum bit error rate
(QBER) in the X basis and Z basis, Ej, and E% (we consider a
pair of decoy states with intensities p,, up in the X basis and
signal-state intensities s4, sp in the Z basis) versus the ratio of
intensities for MDI-QKD using WCP sources. Parameters from
Table II are used. Here we consider the case where the respective
distances from Alice and Bob to Charles are L, = 60 km, Ly =
10 km (i.e., the ratio of transmittances in the two channels
satisfies np/n4 = 10). We fix sz = 0.2 (or up = 0.2) and scan
over different s, (or u,). Specifically, we also mark out the
position where s,14 = spnp (Uana = ppnp)- Because QBER in
the X basis heavily depends on the visibility of two-photon
interference, it is lowest when intensities arriving at Charles’s
beam splitter are equal (a similar observation has been made in
Ref. [21]). However, importantly, the Z basis does not require
signal indistinguishability, and its QBER is determined mainly by
misalignment. The misalignment makes the Z basis QBER also
slightly dependent on the interference visibility and lowest when
arriving intensities are equal, but such a QBER is much less
sensitive to unbalanced intensities and is relatively low even if
sana # spnp. Therefore, by decoupling the X and Z bases, we
can maintain highly balanced decoy-state intensities arriving at
Charles in the X basis, while further optimizing signal intensities
to obtain a higher key rate. As a quantitative example of such a
difference in sensitivity, let us consider L, =60km, Lz = 10 km,
and N = 10! (Table 1V, line 1) and focus on two pairs of decoy
states with intensities py, Hp, Vs, V. An optimal key rate of
R=3.1x107 can be achieved, where optimal decoy-state
intensities satisfy u,/pup =va/vg =9~ np/ns and EY,. E},
are both close to 25% (see Table IV for the full list of intensities
and probabilities). Even a relatively small deviation, such as
choosing pi/pp = va/vg = 10%5 = 3.16 when fixing up, vg
(which results in Eff” and EY, close to 32%) results in zero rate.
On the other hand, the optimal signal states satisfy s,/s5 = 3.5,
which deviates from 77z /n,, but Efﬂ is still a rather small 0.013. In
fact, even if we choose s, = s = 0.2 here, we can still get R =
1.0 x 107> while EZ%, = 0.029.

Hp

too. This means that, while having similar received signal
intensities at Charles is surely one important criterion in
achieving a good key rate, the optimal choice of signal-state
intensities requires a trade-off between the single-photon
probabilities and the error correction (and their optimal
values can be found by numerical optimization). Generally
speaking, the ratio of signal intensities s,/sz does not
satisfy a similar relation as Eq. (2), i.e., generally,

SANA £ Sphp. (3)

Therefore, the protocols we propose have two inherent
asymmetries: an asymmetry between Alice and Bob (so
that they can have different intensities and establish good
two-photon interference in the X basis) and an asymmetry
between the X and Z bases (which allows decoy and signal
states to be independently optimized). Such inherent
asymmetries in the protocols allow us to have a novel
choice of parameters and maintain a good key rate of MDI-
QKD, even when Alice’s and Bob’s channels have very
different levels of loss. A more detailed discussion on how
such independent choices of decoy and signal states affect
the key rate can be found in Appendix D.

We discuss the security of such a scheme in Sec. 11 C,
and in Sec. II D, we discuss how to actually choose the
optimal decoy and signal intensities. We introduce the main
challenge in implementing such asymmetric protocols—
performing efficient parameter optimization over a huge
parameter space—and how we address this problem by
proposing two important theoretical results for the key rate
function of asymmetric MDI-QKD and using them to
design an efficient optimization algorithm.

C. Security

In this subsection, we show that the security of our
protocol with decoupled bases and asymmetric intensities
is not compromised compared to prior art protocols. Here,
we state two facts that its security relies upon, both of
which have been proven in established papers [8,32]:

(1) Given the same photon number i in a pulse, Eve has
no way of differentiating whether it came from the
decoy states or the signal states in the same basis.

(2) The single-photon pairs in the X and Z bases cannot
be distinguished from each other.

The first fact is proven in Ref. [32], which ensures the
decoy-state analysis works even with asymmetric inten-
sities, and the second fact is proven in Ref. [8], which
ensures that the decoupling of bases works.

For fact (1), note that the density matrices for the two
states are the same, independent of whether they came from
the decoy states or signal states. In quantum mechanics,
whenever two density matrices are the same, they are
indistinguishable. Similarly, for fact (2), note that the density
matrices for the two cases are the same. Therefore, it is not
possible to distinguish them even in principle.
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In more detail, for fact (1), let us first consider a very
similar process in traditional decoy-state BB84 [32-34].
Consider Alice using a laser with intensities y or v to send
weak coherent pulses to Bob. The photon number i follows
a Poissonian distribution, e.g.,

4)

]
plil) = e 5.
Ui
plilv) = e .
il
The crucial point is that the conversion from such a
probability distribution described by intensities y or v to a
certain photon number i is a Markov process, i.e., it is
memoryless, and for any given photon number i in the
channel, it does not contain any information of the intensity
it came from. Surely, Eve can guess with a conditional
distribution, e.g., p(u|i), the likelihood that it comes from a
certain intensity, but whatever actions Eve chooses to
perform on the signal (e.g., choosing different levels of
yields YEU YE2 .. with different probabilities for a given
photon number i) will be completely independent of the
intensities Alice chose when sending the signal. This means
that in the asymptotic case with infinite data, [38] given the
same photon number i in a pulse, we will still always have
yield Y; and QBER e; satisfying

Yi(u) = Yi(v),
e;(n) = e;(v) (5)

when Alice uses intensities yu, v. This is the exact
observation made in Ref. [32] [in Egs. (4) and (5)].

Similarly, for MDI-QKD, for any given pair of i-photon
and j-photon pulse, there is no information on which pair of
intensity settings (e.g., u}, pk or yi, u3) they came from.
That is, the yield Y; ; and QBER e¢; ; will satisfy

h<

5wk mp) = Y5 (50 15),
eXi(uhs ) = el (3. 1),
Y7 (uho ) = Y7 (u3 1)
e (. mp) = ef (1. uy) (6)

for signals in each of the bases X and Z (the latter two
equations are meaningful if one also uses multiple decoy
intensities in the Z basis, although here we use only the first
two equations as decoy-state analysis is performed only in
the X basis for our protocols). This, again, is a well-
established result for decoy-state MDI-QKD as used in the
original MDI-QKD paper [8]. Note that this result (which
simply comes from the fact that the sending of photon
number i from an intensity u is a Markov process) does not
rely on the fact that Alice and Bob use the same intensities,
and will remain unchanged for asymmetric intensities, too,

i.e., u # uh and p3 # p3. Also, note that for successful
decoy-state analysis, we do not require the symmetry
between the two bases, i.e., ij(,u},,yg) = ij(yi,,u%)
or ef;(uy, py) = ef; (5, up) for multiphoton pulses are
not required.

Fact (2) stems from the fact that, for single-photon
components, Alice and Bob send the same density matrices
pY, =pf,: that is, the single-photon pairs are basis
independent. This is an important result explicitly stated
in the original MDI-QKD paper [8] (in the Security
Analysis section in the Supplemental Material). Using
decoupled bases (i.e., a different set of intensities for the
X and Z bases) does not affect the single photons
themselves at all but affects only the probability of sending
these single-photon pairs. However, this process of sending
single-photon pairs is again a Markov process. That is,
although the single-photon pairs might have different
probabilities of coming from either the X or Z bases
(which Eve can fully be aware of, just like in “efficient
BB84” [39], where basis choice probability is biased on
purpose), for any given pair of single photons that are sent,
they are described by exactly the same density matrix, and
there is no information contained on which basis they came
from; i.e., they are basis independent. Therefore, we can
safely conclude that Y, = Y4, which is the reason we can
perform decoy states in the X basis only to estimate Y7, and
use Y% = Y% to obtain the single-photon yield in the
Z basis.

The security of a scheme of decoupling the bases in
MDI-QKD and using Y%, = Y%, has also been theoretically
studied in Ref. [30] and in the Appendix of Ref. [40,41],
and the scheme has also been experimentally demonstrated
in Refs. [13,40], although all these works were focused on
the scenario of symmetric channels only and did not discuss
the role of decoupled bases in compensating channel
asymmetry, which is one of the main novelties of our
work. However, physically, the only difference between the
signals sent from Alice and Bob in our protocol and those
in prior protocols is the different intensities on the two arms
[which we know, from fact (1) Y, (i}, up) = Y¥;(u3. u3)
will not affect the security of the decoy-state analysis], and
for decoupled bases, we use the same result Y7, = Y?| for
single-photon pairs, which is no less secure than prior
works either.

D. Parameter optimization

In this section, we discuss how to perform efficient
parameter optimization for such asymmetric protocols.
Here, we highlight an implementation which we denote
as the seven-intensity protocol (which is the case where
three decoy intensities are used in the X basis). We show
that it is a good trade-off between the key rate and ease of
implementation and focus on this implementation when
discussing parameter optimization (and the following
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numerical simulations). Nonetheless, we also show the
generality of our method by including the results for other
protocol cases (e.g., two-intensity and four-intensity) in
Appendix E.

Note that the results in the previous subsection are
general and not limited to the number of decoys Alice
and Bob use in the X basis. For instance, while using signal
states {sy4, sz} in the Z basis, in the X basis Alice and Bob
can each use a different set of two decoy states {u, v}, three
decoy states {u,v,w}, or even four decoy states
{u,v,v5,w}. In principle, the concept of asymmetric
intensities between Alice and Bob can also be applied to
prior art protocols with nondecoupled bases, such as in
Refs. [20,43] (where Alice and Bob use the same three
decoy states {u,v, w} for both bases, and the Z basis u is
used as the signal state for key generation)—it is just that
such a protocol will have a lower key rate since y cannot
simultaneously satisfy asymmetry compensation and key
rate optimization.

As an example, in Table I we list a comparison between
the key rate of using different numbers of decoy states (with
and without asymmetric intensities between Alice and Bob)
in the presence of asymmetric channels. We include the
non-decoupled-bases case [20,43], too. We can see that,
regardless of the protocol, using asymmetric intensities
between Alice and Bob always provides a higher key rate
when the channels are asymmetric. Also, the three-decoy
case provides significant performance improvement over
the two-decoy case or the prior art protocol (which also has
three decoy states, meaning that decoupled bases are
crucial in the compensation for channel asymmetry).
While the asymmetric four-decoy case can provide the
highest key rate, it provides a limited performance increase
(60%) over the three-decoy case, but it comes at a cost of a
more complex experimental implementation as well as
more difficult data collection and analysis. See Appendix E
for a more detailed comparison between the protocols.
Overall, we can see that the three-decoy case provides
a good balance between ease of implementation and
performance.

TABLE L.

Therefore, for practicality here, in the following we focus
on the three-decoy case as a concrete example (whose
symmetric case is the four-intensity protocol [30]) and
generalize it to the asymmetric case by allowing Alice and
Bob to have independent intensities and probabilities. Such
a setting enables a seven-intensity protocol (with three
independent {s, u, v} for each of Alice and Bob, and the
vacuum state wy, = wp = @ = 0) in the asymmetric case.

For such a protocol, efficient and accurate parameter
optimization is crucial for obtaining a good key rate
(especially when considering the finite-size effects). For
the seven-intensity protocol, we need to use a total of 12
parameters for a full finite-size parameter optimization:

1_} = [SA’MAvI/Av Ps,\’ PMAv Pl/,\? SB> B> VB> P.v,;’PyB’ PI./B]'
Here, we denote the parameters as a vector ¥, and when all
devices and channel parameters (e.g., channel loss, mis-
alignment, dark count rate, detector efficiency, etc.) are
fixed, the key rate is a function of the intensities and
probabilities R(7), and the question of intensity parameter
optimization can be viewed as searching for

ﬁopt = arg maxﬁeV[R(/I_j)]v (7)

where V is the search space for the parameters.

To provide a high key rate under finite-size effects, the
optimal choice of parameters is very important in imple-
menting the protocol. However, the seven-intensity proto-
col has an extremely large parameter space of 12
dimensions, for which a brute-force search is next to
impossible. Therefore, to efficiently search over the param-
eters in a reasonable time, a local search algorithm must be
applied. But, as we show here, an important characteristic
of asymmetric MDI-QKD is the discontinuity of first-order
derivatives for the function R(7) with respect to the
intensity parameters in 7. This means that a straightforward
local search algorithm, such as previously proposed in
Ref. [29], will inevitably fail to find the optimal point, since

Example key rate comparison among MDI-QKD protocols where Alice and Bob use different numbers

of decoy states in the X basis (and each keep one signal state in the Z basis). The protocol in Refs. [20,43] where the
bases are not decoupled is also included for comparison. We use parameters from Table II, L, = 60 km,
Lg =10 km, and N = 10'". We can see that, regardless of the protocol, using asymmetric intensities between Alice
and Bob always provides a higher key rate when the channels are asymmetric. The three-decoy protocol has a
significantly higher key rate than either the prior art protocol (which also uses three decoy states but uses
nondecoupled bases) or the two-decoy case. While the asymmetric four-decoy case can provide the highest key rate,
it provides a limited performance increase of 60%, but comes at a cost of a more complex experimental
implementation and more difficult data collection and analysis. Therefore, in the presence of channel asymmetry, the
three-decoy case, whose asymmetric case corresponds to the seven-intensity protocol (marked in bold), provides a
good trade-off between ease of implementation and performance.

Parameters Prior art protocol in Refs. [20,43] Two-decoy Three-decoy Four-decoy
Symmetric 6.834 x 10710 0 3.890 x 1077 1.057 x 1073
Asymmetric 5.378 x 1077 7.715 x 1076 3.106 x 1075 4.932 x 1073
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it requires continuous first-order derivatives of the searched
function.

Here, we present two important theoretical results for the
key rate versus parameter function and propose a method to
circumvent the problem of discontinuous derivatives and
perform an efficient and correct local search in parameter
space. This method helps us overcome the biggest challenge
in successfully implementing the seven-intensity protocol.

First, we propose that there is an inherent symmetry
constraint for the ratio of optimal decoy intensities.

Theorem I: For any arbitrary choice of device and

channel parameters, the optimal decoy intensities ﬂzpt, vf‘pt,
u', vy that maximize the key rate always satisfy the
constraint
opt opt
/’lA _ UA (8)
opt — _opt*
Hp Up

Second, we make an important observation.

Theorem II: The key rate versus (uy, pg) function for
any given v,, vp does not have continuous first-order
derivatives.

Both of these theorems result from the fact that the lower
bound for single-photon yield Y4, in the decoy-state analysis
(whose expression can be found in Refs. [20,43]) is a
piecewise function that depends on whether (uy/up) <
(v4/vg), where a boundary line (uy/ug) = (v4/vp) exists.

Theorem 1 states that the optimal parameters that
maximize the key rate must lie exactly on this boundary
line, while Theorem II states that the key rate does not have
a continuous partial derivative with respect to u, or up
across this boundary line. This will cause the boundary line
to behave like a sharp “ridge,” on which the gradient is not
defined. An illustration for this ridge can be seen in Fig. 4.
A rigorous proof for Theorems I and II in the asymptotic
limit can be found in Appendix F.

!
’///’(

il
|

|

0.05

0.6
0.4

g 0.2 o 0

FIG. 4. An example of the discontinuity of first-order deriva-
tives of the Y%, vs u,, pp function in decoy-state MDI-QKD for
fixed values of v, = 0.2, vz = 0.1. Note the ridge on the line

(ua/ug) = (va/vp) = 2.

Using Theorems I and II, it is possible to transform the
coordinates of the search variables and eliminate the
undefined gradient problem of the key rate function.
More specifically, instead of expressing (p4, tg), (Va,Vg)
in Cartesian coordinates, we can express them in polar

. 1 I 1 I
coordinates (ri>", 5>"), (127", 0", where polar angles

satisfy 9E°1ar — 0™ due to Theorem I. This means we can
Jjointly search for

egglar _ QEOIM — egolar (9)

with respect to which the key rate is a smooth function
(graphically, this is because we are now always searching
along the ridge). In Appendix G, we describe in more detail
how to perform an optimization of the parameters effi-
ciently based on local search to obtain a high secure key
rate for our seven-intensity protocol. Our method allows
extremely fast and highly accurate optimization for asym-
metric MDI-QKD and takes below 0.1 s for each full local
search (at any given distance) on a quad-core i7-4790k 4.0-
GHz PC. Such computing efficiency makes it possible for
real-time optimization of intensities on the field and also
makes possible a dynamic MDI-QKD network that might
add or delete new user nodes in real time. In addition, in
Appendix G we also discuss the effect of inaccuracies and
fluctuations of the intensities and probabilities on the key
rate and show that our method is robust even in the presence
of inaccuracies and fluctuations of the parameters.

In summary, using our two theorems and switching to
polar coordinates as in Eq. (6) allow us to greatly simplify
the optimization problem and allow the standard coordinate
descent method to be applied here.

III. SIMULATION RESULTS

Now, we can proceed to study the performance of asym-
metric MDI-QKD protocols with full parameter optimiza-
tion. Again, we use the seven-intensity protocol as a
concrete example, as it provides a good trade-off between
performance and practicality. We also include simulation
results for protocols with alternative numbers of decoy
states in Appendix E.

In the main text, we focus on the practical case of having
finite data size. The asymptotic case of infinite data size
(and an analytical understanding of the ideal infinite-decoy
case) is discussed in Appendixes B and C, and its
simulation results can be found in Fig. 9.

Our finite-key analysis is described in more detail in
Appendix H. For simplicity, we consider a standard error
analysis in numerical simulations, but it is important to note
that our theory is fully compatible with composable security.
See Appendix H for discussion. In addition, compared to the
“joint-bound” analysis as proposed in Ref. [21] (which
jointly considers the statistical fluctuation of multiple
observables; such an analysis model increases the key rate
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but introduces multiple maxima undesirable for local search),
in the main text here, we choose use an “independent-bound”
analysis for our simulations, which considers each variable’s
statistical fluctuations independently and is far more stable
and faster in simulations. However, we specifically note
here that all our methods are fully compatible with joint-
bound analysis. We list some representative results generated
with joint-bound analysis in Table IV for comparison and
discuss the different finite-size analysis models in more
detail in Appendix H.

First, we consider the key rate for an arbitrary combi-
nation of (L4, L) and perform a simulation of the key rate
over all possible range of Alice and Bob’s channels. This
provides a bird’s-eye view of how using 7-intensities can
affect the performance in asymmetric channels. We show
the results in Figs. 5(a) and 5(b). From the plot, we can
make three important observations:

(a) 0 ()

x=1L=1L,
- X =025,L,= L, +30 km|
—x = 0.1, L,= L,+50 km

100
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- x=025,L,= £, +30 km
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| 5
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FIG. 5. Left: Comparison of rate vs (L4, Lg). The rates are
plotted in contours in log scale from 1072 to 10719, We use the
parameters from Table II, and N = 10'!. (a) Using a previous
four-intensity protocol; (b) using our seven-intensity protocol. As
can be seen, while four-intensity MDI-QKD is limited to only
high-symmetry regions, using seven-intensity can greatly in-
crease the applicable region of MDI-QKD, even in extremely
asymmetric regions such as (L,,0) where one channel has zero
distance (point B). Moreover, we see that with seven-intensity
protocol, both L4, Lz components of the gradient for the key rate
(red dotted arrow) are always negative, meaning that with seven-
intensity protocol, it is always optimal to adjust only the
intensities and never necessary to add any fiber, while for
four-intensity protocol, adding fiber (e.g., increasing Ly at point
C) will sometimes increase the rate. Right: Comparison of rate vs
distance (Bob to Charles) for various fixed levels of mismatch
x = (na/np) where n4, ng are the channel transmittances (c) using
four-intensity protocol and (d) using seven-intensity protocol. As
can be observed, the higher the mismatch, the more advantage
seven-intensity protocol has (and only when the channels are
symmetric will the two protocols perform identically). Data
points from A1, A3, B1, and B3 from Table III are also shown
in the plots.

(1) Using seven-intensity protocol, we have a much
wider applicable region for asymmetric MDI-QKD,
and an acceptable key rate can be acquired even
for highly asymmetric channels. In addition, seven-
intensity protocol will always provide a higher key
rate than four-intensity protocol, except when chan-
nels are already symmetric.

(2) No matter what position one is at, there is never any
necessity for adding loss when seven-intensity pro-
tocol is used, and optimizing on the spot always
provides the highest rate. Details are provided in the
Fig. 5 caption.

(3) Using seven-intensity protocol, even extremely
asymmetric scenarios, such as (L,0) where
Lp =0, can be used to generate a good key rate.
In fact, such a scenario provides an even higher rate
than with symmetric channels such as (L, L) (as the
comparison between points A and B in Fig. 5).

Point 3 has an important practical implication: It can lead
to a new type of “single-arm” MDI-QKD setup. More
details can be found in Appendix I and Fig. 14.

Here, for points 1-3, we have a good physical under-
standing of why allowing different intensities for Alice and
Bob can provide a larger region where the key rate is
positive. As we discuss in Sec. II B, MDI-QKD requires
highly balanced intensities arriving at Charles on the two
arms in the X basis for good interference visibility, as well as
roughly similar (but not necessarily balanced) levels of
arriving intensities in the Z basis, which optimize a trade-off
between error correction and the probability of sending
single photons. (The optimal choice of intensities is subject
to numerical optimization as described in Sec. II D). Prior
methods with the same intensities for Alice and Bob will
suffer from high QBER in both the X and Z bases, while our
method decouples the X and Z bases and optimally chooses
Alice’s and Bob’s signal and decoy intensities, respectively,
to compensate for channel asymmetry in both bases, ensuing
low QBER and allowing for a much higher key rate under
channel asymmetry. Such an effect is present in both
asymptotic and finite-key scenarios, and it is the underlying
reason that the seven-intensity protocol can allow high-rate
MDI-QKD regardless of channel asymmetry.

Additionally, we show that when channels are highly
asymmetric, the asymptotic key rate of the seven-intensity
protocol scales quadratically with the lower transmittance

TABLE II. Parameters for numerical simulations adopted from
Ref. [13] including detector dark count rate and efficiency Yy, 14,
optical misalignment e,, error-correction efficiency f, and failure
probability e. Here the value Y|, we use is for each rwo detectors,
while the dark count rate per detector p; = 1 — /1 — Y, which
is approximately half of Y.

f €
0.5% 1.16 1077

Y Na ey
8 x 1077 65%
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TABLE III.  Simulation results for asymmetric MDI-QKD in two scenarios: case A (10 km, 60 km) and case B (30 km, 60 km) using
parameters from Table Il and N = 10'!. We define channel mismatch as x = (17, /575) where 174, 173 are the channel transmittances. Note
that in reality, Alice and Bob cannot modify the physical channels, and they can either add loss to the channels or keep them as is, but
they cannot decrease channel loss. Three strategies are compared here: A1 and B1 represent using the old four-intensity protocol directly.
A2 and B2 (not in Fig. 5) represent adding fiber to the shorter channel to match the longer channel, i.e., making the channels (60 km,
60 km). A3, B3 represent using our new seven-intensity protocol without modifying the channels. As shown here, seven-intensity
protocol always returns a higher rate than both strategies using four-intensity protocol.

Protocol Point X Lg Ly Rate Comparison with four-intensity protocol
Four-intensity protocol Al 0.1 10km 60 km  3.891 x 1077 e

Four-intensity protocol + fiber A2 1 60km 60 km  1.862x 107° +379%

Our protocol A3 0.1 10 km 60 km 3.106 x 1073 +7883%

Four-intensity protocol B1 0.25 30km 60 km  4.746 x 107° e

Four-intensity protocol + fiber B2 1 60km 60 km  1.862x 107° —61%

Our protocol B3 0.25 30km  60km  1.445x 107 +204%

among the two channels, which means that, albeit always
being able to provide a higher key rate and being much more
convenient than, e.g., adding fibers when channels are
asymmetric (which is a relation we rigorously prove in
Appendix C2 for the asymptotic case), the seven-intensity
protocol will not change the asymptotic scaling properties of
the MDI-QKD key rate, which is still quadratically related to
transmittance. Physically, this behavior is understandable,
since although we effectively compensate for channel
asymmetry with optimized intensities and allow good
Hong-Ou-Mandel interference at Charles for the decoy
states, MDI-QKD still fundamentally depends on two single
signal photons both passing through the channels; hence, its
key rate is quadratically related to transmittance, even in the
asymmetric case with compensated intensities. More
detailed discussions and analytical proofs of the above
observations can be found in Appendixes B and C.

Now, as a concrete example, let us consider two sets of
channels at (L = 10 km, L, = 60 km) and (Lz = 30 km,
L, = 60 km), through which Alice and Bob would like to
perform MDI-QKD. We compare strategies of using the
four-intensity protocol, directly or with fibers added until the
channels are symmetric, with directly using our seven-
intensity protocol. As can be seen in Table III, in this
specific example, using seven-intensity protocol can provide
1 or 2 magnitudes higher key rate, and its rate is also always

higher than either strategy with the four-intensity protocol. In
fact, we can also show such an advantage of our protocol by
plotting the key rate vs Lp under a fixed mismatch
x = (na/ng), where n4, ng are the channel transmittances
(i.e., a fixed difference between L, and Lp). This is also the
scenario studied by Ref. [20]. The results are shown in
Figs. 5(c) and 5(d). The data points A1, A3, B1, and B3 in
Table III are also plotted. As can be seen, the higher the
asymmetry between the channels, the more improvement we
can gain from using seven-intensity protocol.

Here, we also list some examples of optimal parameters
found by the optimization algorithm, which are listed in
Table I'V. As we can observe from the table, Alice and Bob
adjust their intensities to compensate for channel asym-
metry. Physically, since MDI-QKD depends on Hong-Ou-
Mandel interference of two WCP sources in the X basis, we
expect the received intensity for decoy state at Charles to be
similar on the two arms to ensure good visibility (and
consequently lower QBER) in the X basis; i.e., the ratio of
decoy intensities p,/pp and v, /vg would roughly follow
the rule of thumb of u,n4 = upnp, which is indeed what we
can observe from Table IV and Fig. 6.

On the other hand, the ratio of signal intensities s4/sp
deviates more from 75/n,4. This is because, as we mention
in Sec. I A, signal intensities not only affect the Z basis
QBER, but also need to optimize a trade-off between the

TABLEIV. Examples of optimal parameters for the seven-intensity protocol using simulation parameters from Table II. The numerical
values are rounded to the accuracy of 0.001 in the table here. As can be observed, Alice and Bob’s intensities compensate for channel
asymmetry, while their intensity probabilities are mostly identical—since the intensities have already compensated for the asymmetry—
despite having have some numerical noise (as the key rate is not sensitive to the probabilities near the maximum, the algorithm satisfies
with them having close enough, rather than perfectly identical, values, so the optimal values found are still slightly different even when
x = 1). As we show in Sec. II, the optimal decoy-state intensity ratios are the same, i.e., (4 /ug) = (v4/vg). Moreover, we can observe
that the ratio of decoy-state intensities more closely follows 1/x than the ratio of signal intensities.

Ly Lg X SA Ha Va Py, P, P, Sp KB Up P, P, P, R

60km 10km 0.1 0.662 0.522 0.100 0.600 0.033 0.255 0.202 0.058 0.011 0.600 0.031 0.256 3.106 x 1073
60 km 30km 0.25 0593 0.457 0.089 0.581 0.036 0266 0.294 0.125 0.024 0.580 0.034 0269 1.445x 1073
60 km 60 km 1 0.402 0.305 0.063 0.478 0.047 0.330 0.402 0.305 0.063 0.480 0.047 0.329 1.862 x 10~
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FIG. 6. Here we plot the ratios of signal intensities and decoy
intensities versus distance, when the channel mismatch is fixed at
x =0.1(.e., Ly = Ly + 50 km). The simulation parameters are
from Table II [this plot of intensities corresponds to the solid red
key rate line in Fig. 5(d)]. We also include the line (n3/1,4) = 10
for comparison. We can observe that the ratio of decoy states
roughly follows ng/n4 (to maintain good HOM interference
visibility in the X basis), while the optimal ratio of signal
intensities varies greatly between 1 (optimal for probability of
sending single photons) and /5, (optimal for EZ). This is
because signal states affect both key generation and error
correction, so having similar intensities arriving at Charles after
channel attenuation is not the only criteria for a good key rate, and
optimal parameters do not necessarily satisfy s 14 = spnp. In
fact, since signal states in the Z basis are decoupled from the X
basis, and EZ is less sensitive to unbalanced arriving intensities,
s4/sg can be much more freely optimized between 1 and 5z /1y,
allowing seven-intensity protocol to have a higher key rate.

single-photon probabilities and error correction. This
makes it usually not follow s,74 = spnp. An illustration
of the ratios of decoy intensities and signal intensities can
be seen in Fig. 6.

Now, having demonstrated the new seven-intensity proto-
col, we proceed to introduce a powerful reality application for
it: a scalable high-performance MDI-QKD network where
any node can be dynamically added or deleted. We consider
the channels from a real quantum network setup in Vienna
reported in Ref. [16]. We focus here on the high-asymmetry
nodes Aq, A,, Az, Ay, As, as shown in Fig. 2(a). We find that
our method leads to much higher key rates and allows easy
dynamic addition or deletion of nodes. Since intensities can be
independently optimized for each pair of channels, the
establishment of new connections does not affect any existing
connections, hence providing good scalability for the network
(compared to, e.g., the case of using four-intensity protocol
with the strategy of adding fibers, where each channel needs to
accommodate for the longest link among all channels). See
Appendix J for numerical results.

IV. CONCLUSION

In summary, we propose a method of effectively com-
pensating for channel asymmetry in MDI-QKD by adjusting
the two users’ intensities and decoupling the two bases. Such
a method can drastically increase the scenarios that MDI-
QKD can be applied to while maintaining a good key rate.
This study provides a powerful and robust software solution
for a scalable and reconfigurable MDI-QKD network.

Our method is also a general result that can in principle be
used, e.g., for various numbers of decoys or various finite-
size analysis models (e.g., joint-bound analysis or compos-
able security with Chernoff’s bound). It is also potentially
applicable to other types of quantum communication pro-
tocols such as twin-field QKD [28] or MDI quantum digital
signature [26,27], which both use WCP sources and decoy-
state analysis. We hope that our proposal can inspire more
future work on the study of asymmetric protocols.
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APPENDIX A: NOTE ABOUT ADDING FIBER

In this Appendix, we provide an intuitive description of
why adding additional loss is suboptimal and how our
method works better with asymmetric channels.

Previously, when Alice and Bob have asymmetric
channels, a common solution is to add fiber (thus adding
loss) to the shorter channel in exchange for better sym-
metry, such as in Ref. [15]. Afterwards, one selects
symmetric intensities for Alice and Bob and acquires a
higher rate. However, the added fiber lies in Bob’s lab and
is in fact securely under control of Bob. But by assuming a
symmetric setup, we are effectively relinquishing its control
to Eve and pessimistically estimating the key rate, as
illustrated in Fig. 7. Therefore, intuitively, this is not
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necessarily the optimal strategy. We show with our new
protocol that when the channels are asymmetric, Alice and
Bob can independently choose their optimal intensities, and
that optimizing intensities and probabilities alone is suffi-
cient to compensate for the different channel losses.

APPENDIX B: SCALING OF KEY RATE WITH
TRANSMITTANCE

In this Appendix, we discuss the scaling properties of the
key rate versus transmittance for prior protocols with the
same parameters for Alice and Bob and our new protocol
that uses different intensities for Alice and Bob. We show
here and in Appendix C that the scaling of the key rate
versus distance is mainly determined by the signal states
(so long as we have a good single-photon estimation from
the decoy states). This also means that the advantage of our
method is really not dependent on the number of decoy
states used or the finite-size analysis model used (or lack
thereof, in the asymptotic case), and our results are in
principle applicable to any protocol that decouples the
signal and decoy states in the Z and X bases and allows
different intensities for Alice and Bob.

The transmittance of the two channels are (14, 75), and
the asymmetry (mismatch) x is defined as

_ N
B

X (B1)

1. Single-photon source

Now, let us consider the single-photon case first. That is,
suppose Alice and Bob both send perfect single photons
only, and the key is generated from two-photon interfer-
ence. If we ignore the dark counts, the asymptotic key rate
can be written as [48]

Rsp = na X ng x [1 = 2hy(eqy)]. (B2)

Charles

Bob's lab

FIG. 7. Setup for asymmetric MDI-QKD. When channels are
highly asymmetric (e.g., Alice and Bobl), to increase the
symmetry in the channel, sometimes one adds additional loss
to the system in Bob’s lab [15] in exchange for better symmetry.
When estimating the key rate, Bob assumes that both Charles-
Bobl and Bob1-Bob2 channels are controlled by Eve. This is
therefore a pessimistic estimation of the key rate, and it is not
necessarily the optimal strategy.

where h, is the binary entropy function, and e;; is the
QBER (which is a quantity that, when the dark count rate is
ignored is independent of the transmittance). Here we can
see that in the perfect single-photon case, the key rate is
proportional to n,np, and the mismatch x does not ex-
plicitly appear in its expression:
Rsp o nanp. (B3)
In fact, for a given total distance L, + Lz = L, any
positioning of the untrusted relay Charles (e.g., at the
midpoint, in Alice’s lab, or in Bob’s lab) would not affect
the key rate, since 415 depends only on L.

2. Weak coherent pulse source

The previous discussion for single-photon MDI-QKD
suggests that, by nature, there is not really any limitation on
symmetry for MDI-QKD, at least for the ideal single-photon
case. Then, where does this dependence of the key rate on
channel symmetry which we observe come from? In this
section, we show that the scaling of the key rate depends on
the signal states’ trade-off between error correction and the
probabilities of sending single photons when using WCP
sources rather than privacy amplification (which depends on
the estimation of single-photon contributions).

More concretely, (as we prove in the next section) for
protocols with symmetric intensities, there are two sharp
cutoff values for the mismatch x™* and x™" that prevent
the protocol from acquiring any key rate when x > x™* or
x < x™ (and optimizing identical intensities s, = sp
cannot circumvent this problem). This is why protocols
such as the four-intensity protocol are limited to near-
symmetric positions.

On the other hand, when a protocol allows independent
intensities for Alice and Bob (such as our new seven-
intensity protocol described in the main text), we show that
the mismatch can always be compensated by optimizing
intensities s, and sp (hence lifting the limitations x™* and
x™m). In fact, we show that for positions with high
asymmetry, the key rate no longer depends on mismatch
x = (n4/np) at all, and the optimal key rate scales only
with the smaller of the two channel transmittances. That is,

Roptima] & min(ni, 77%?)’ (B4)
which means that the biggest advantage of protocols with
independent intensities for Alice and Bob (e.g., seven-
intensity protocol) is to completely lift the limitation on
channel asymmetry. When compared with adding fiber to
maintain asymmetry, we see that its scaling property is still
the same, i.e., quadratically related to the (smaller of)
channel transmittances, although our method will always
perform better (by a constant coefficient) than adding fiber.
Moreover, it provides the convenience of not needing
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additional fiber, which may not be feasible in free-space
channels or when channel mismatch is changing.

Proofs for the above scaling properties can be found in
the next Appendix.

APPENDIX C: PROOF OF SCALING
PROPERTIES OF THE KEY RATE WITH
TRANSMITTANCE

In this Appendix, we outline the analytical proofs for the
observations on the scaling properties of the asymptotic
MDI-QKD key rate versus transmittance in the presence of
asymmetry described in Appendix B. We also discuss how
the finite-decoy and finite-size effects can be considered as
imperfections in the infinite-decoy, infinite-data case, and
that the scaling properties are still approximately the same,
which are determined only by the signal states’ trade-off
between error correction and probabilities of sending single
photons and not affected by decoy states.

To simplify the discussion, it is convenient to first use a
few crucial approximations as described in Ref. [20].

(1) We consider the asymptotic case with infinite data

size.

(2) We assume an infinite number of decoy states, i.e.,
Alice and Bob can perfectly estimate the single-
photon gain Y;; and QBER e¢;. In this case, Alice
and Bob need only to choose appropriate signal
intensities sy, Sp.

(3) We ignore the dark count rate Y, when studying the
scaling properties with distance (as background
noise affects only the maximum transmission dis-
tance where transmittance is at the same order as the
dark count rate, but it does not affect the overall
scaling properties of the key rate versus distance).

(4) When describing the channel model to estimate the
observable gain and QBER Q% and EZ% (which
affect the error correction), we make second-order
approximations to two functions:

)C2

7t o(x*),

Io(x) ~ 1 +

2

e~ 1 tx ot O(x?),

where [ is the modified Bessel function of the first

kind. This approximation is relatively accurate when

Sanang and spngn, are both small, where 7, is the
detector efficiency.

With the above approximations, one can write the key

rate conveniently as [excerpting Egs. (C.1) and (C.2) from

Ref. [20]],

(C1)

1
R :%G(x, S4,58), (C2)

where G(x, 54, sg) is a function determined by (sy4, sz) and
the asymmetry x only:

2
G(x, s4,55) = xs45ge”02+95) {1 — h, (ed - %)}

_ 2xsp55 + (5% + x%53)(2e, — €2)
2
X feha[ES(x, 54, 58)]
(55 + x5, 2 — )
2[2xsy5p + (53 + x2s3)(2e4—€3)]’

(C3)

EsZs(x’S/wSB) =

where h, is the binary entropy function.

Now, having described the key rate function, we are
interested in how it scales with the transmittances 7,4, 1
using different optimization strategies for the intensities.
We discuss two cases:

(1) Ryymmewic» Where Alice and Bob use the same

intensity s = 54 = sp and optimize s.

(2) Ropiimal» Where Alice and Bob fully optimize a pair of

intensities s4, sz, which can take different values.

1. Symmetrically optimized intensities

Let us consider the case where Alice and Bob use the
same intensity s = s, = sp and optimize s. This is the case
discussed by previous protocols (such as the four-intensity
protocol, although here to simplify the proof we focus on
the infinite-decoy case and consider only signal intensities).

In this case, the function G is optimized over s (and is a
function of x only). The rate satisfies

Rsymmetric = m‘aXR & n%m?XG(x’ S, S); (C4)
therefore, Rgymmeric 18 proportional to n% when channel
mismatch 7, /np is fixed.

Moreover, since Rymmeric is also proportional to G(x),
we have Rymmewic = 0 if G(x) =0. Note that we can
rewrite the signal-state QBER EZ as

(14 x)*(2e4—€2)

) = e+ (1 %) (2, - )

(C5)

since the equal intensities are canceled out; i.e., EZ is only
a function of x. In fact, EZ is a function that minimizes at
x = 1 and reaches 50% (wWhere Rgypmeric 1S naturally zero)
when x — 0 or x — oco. Therefore, if G(x) #0 at x =1,
there must exist some critical values of x™* and x™" which
result in a sufficiently large QBER such that G(x) = 0 (and
Ryymmeric = 0). This means that Ryyymeric 18 quadratically
related to 57y (or 4) when mismatch 7, /7p is fixed, but it
also has two cutoff positions for critical levels of mismatch,
beyond which no key can be generated. These two critical
mismatch positions are what limit previous MDI-QKD
protocols to near-symmetric positions. Also, as we have
previously mentioned, we see that this critical dependence
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on mismatch actually comes from the error-correction part
(which involves E%).

2. Fully optimized intensities

Now, let us consider the case where Alice and Bob are
allowed to fully optimize their intensities s,, s (such as in
the seven-intensity protocol, although again, here we focus
only on the signal states in the infinite-decoy case).

In this case, the function G is optimized over s,, sz. The
rate satisfies

Roptimal = MaxR o n3maxG(x, sy, sp). (C6)
SAsSB

SA.Sp

Now, let us focus on the properties of G(x,s4,sp).
Looking at its expression Eq. (C3) in the previous section,
we make the important observation that, except for the term
e~atss) in the single-photon probabilities, every other
term is only a function of s and xs4 (rather than x and s,
separately). We can rewrite G(x, s4, ) as

2
G'(x,5),s5) = sysgel=s/e=ss [1 - h, (ed — %)}
25" sp + (5% + 542)(2e, — €2)
2
X fehy[E% (s, 55)]

(55 + 51)* (24 = €3)

EZ(s,, = , c7
R T & S [T M

where we define equivalent intensity s/, as
S =54 X X. (C8)

Moreover, if 14 > np (i.e., mismatch x > 1), we can
approximately assume that

el 1,

(€9)

which means that we can rewrite max;

"A,.\'BG(x’ SA» SB) as

G™™ = maxG' (s}, sp),
5458

(C10)

which, importantly, is a constant value not dependent on the
value of x when x > 1. The actual value of s, equals

Sh
=-£, Cl1

Sa =7 (C11)
Physically, this means that when there is asymmetry
between Alice and Bob’s channels, we can compensate
for this asymmetry by adjusting the intensities to keep the
same ‘“‘equivalent intensity” received by Charles and keep
EZ at a low value. In this case, EZ is no longer limited by
the mismatch x, and we can perform MDI-QKD at arbitrary
values of asymmetry. Also, the key rate is now given by

Roptimal & W%Gmax- (C12)
This means that when 7, > np (e.g., the “single-arm” case
previously mentioned where L, is much shorter than Lp),
the key rate of asymmetric MDI-QKD is related only to 75
and still quadratically scales with 7. When #5p > 5,4,
though, we can rewrite x’ = (13/n,) and rewrite

Roptimal & ”I%I;I,I%XG/(S}% SA)' (C13)
B'PA
Therefore, overall,
Roptimal & min(ﬂ/zp 77%5’) (C14)

Now, we plot the two cases (symmetric intensities and
fully optimized intensities) in a contour plot. As we can
observe in Fig. 8, the key rate Ryymmeuic has two cutoff
mismatch positions beyond which the key rate is zero. This
limitation is removed when full optimization of intensities
is implemented. Moreover, for Ryima, We see that the
contours are perpendicular to the axes in high-asymmetry
regions, which means that the key rate scales only with the
longer of the two channels.

Also, note that from Egs. (C4) and (C6), we can make the
observation that there is never any need to add fiber to the
shorter channel when fully optimizing the intensities, and
our new method always provides a higher key rate than the
prior art technique of adding fiber until channels are
symmetric, while using same intensities for Alice and Bob.

To show this point, consider the system having a fixed
longer channel Lp (i.e., suppose np is fixed and 74 > 5,
x = (na/ng) > 1). Adding loss to 74 is equivalent to
decreasing x.

With symmetric intensities (and adding loss till
n4 = np), the key rate can be written as

2.2
= %m‘axG(l, 5,5).

R (C15)

symmetric

Suppose we fully optimize the intensities for this case
with added fiber, we will obtain the same key rate (since for
x =1, i.e., symmetric setup, the optimal choice of inten-
sities satisfies s4 = s3):

maxG(1,s,s) = maxG(1, sy, sg).
s S-S

(C16)

However, let us compare it with the case of using fully
optimized intensities and no additional loss:
Ml

optimal — TﬂnaSXG(X, SAs SB).
A-SB

R (C17)

As we describe in Eq. (C7), we can rewrite G(x, 54, 5g)
as G'(x, s/, sp) (recall that the equivalent intensity s, is
defined as xs,). We make the observation that G'(x, s, sp)
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strictly increases with x. That is, for any two given values of
s, sp, and x > 1,

G'(x, s, sp) > G'(1,5),sp); (C18)
hence, after optimization we also have
rpaxG’(x, s, sp) > n/laxG’(l,sg,sB), (C19)

SySB S4.SB

which means that when fully optimizing Alice and Bob’s
intensities (which already compensate for the mismatch
between channels), it is always optimal not to add any
additional loss to the channels. Moreover, combining
Egs. (C15)—(C17) and (C19), we can see that

2.2

nan

Roptimal = MmaxG(x, SAs SB)
SAsSB

2.2

nan
> d2 £ InSaXG(l’ S, S) = Rsymmetric~

(C20)

That is, compared to the case where one adds loss to 7,
until 74 = 5p, our new protocol always provides a higher
key rate as long as the channels are asymmetric. Intuitively,
this is because adding fiber while using the same intensities
for Alice and Bob is in fact an suboptimal subset of the
overall set of strategies Alice and Bob can take (which
includes adjusting Alice and Bobs intensities independ-
ently, as well as adding any length of fibers to change x).
Even when considering adding fiber as one of the valid
variables, we show that the optimal point always happens
when no fiber is added. Therefore, our method is a better
optimized strategy than adding fiber because it considers a
larger parameter space.

Note that fully optimizing Alice and Bob’s intensities does
not change the fundamental scaling property; the key rate is
still quadratically related to transmittance in the longer arm.
However, it always provides a better key rate than prior art
techniques, and it also offers the great convenience of not
having to physically add loss to the channels and being able
to implement everything in software.

3. Practical imperfections

Up to here, we have analytically shown how choosing
to fully optimize the intensities can affect the key rate
for the asymptotic, infinite-decoy case. The behavior
of contours as shown in Fig. 8 is a result of s4, sp
compensating for the difference in channel loss. However,
we have so far assumed perfect knowledge of single-
photon contributions and have not yet discussed the
decoy-state intensities. Moreover, nonideal experimental
parameters (including dark count rate and detector effi-
ciency) and finite-size effects will both affect the key rate.
Here in this subsection, we compare the key rate under
more practical assumptions and show that the above
factors can be considered as imperfections that reduce
the key rate but maintain similar contour shapes and
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FIG. 8. Rate vs distance contours for single-photon MDI-QKD
Rgp, decoy-state MDI-QKD with symmetric intensities Rymmerrics
and with fully optimized intensities R pima- We plot the contour
line of R = 107%°. Here, for a better comparison with WCP
sources, we arbitrarily set a probability P, = s,sp X e~ (5aF58)
(where s4, = sp = 0.6533) of single photon pairs being sent
when calculating Rgp. For the decoy-state case, as we describe at
the beginning of this appendix we assume infinite decoys, infinite
data size, ignore dark count rate, and take second-order approxi-
mation when calculating gain and QBER (so that we focus only
on the ideal scaling properties of the key rate with distance). As
can be seen, Rgp is not limited by asymmetry and takes a constant
value for any fixed L4 + Lp (meaning that the dependence of the
key rate on asymmetry does not come from single-photon
contributions in the privacy amplification part when using
WCP sources). For decoy-state MDI-QKD, we can clearly see
R ymmeric being limited by the two cutoff lines where |L, — Lpg|
takes maximum value (which corresponds to critical values of
channel mismatch x™* and x™"). On the other hand, Ropiimal 18
not limited by asymmetry and has contours nearly perpendicular
to the axes when asymmetry is high (meaning that, when one
channel is significantly longer than the other, Ropima is dependent
only on the longer channel).

scaling properties for the key rate; that is, we still observe
a high dependence on asymmetry for protocols with
identical intensities for Alice and Bob, and fully optimiz-
ing intensities can completely lift this limitation.

In practice, with a finite number of decoys (for instance,
for four-intensity and seven-intensity protocols, where
Alice and Bob each choose three decoy intensities y, v,
), the estimation of Y;; and e;; is not perfect; therefore,
the key rate will be slightly lower than the aforementioned
infinite-decoy case. Moreover, to accurately estimate Y,
and e;;, the decoy intensities need to be optimized to
compensate for channel loss, too. As we describe in Sec. II
A in the main text, the decoy states should maintain
balanced arriving intensities at Charles (e.g.,
Ually = uphp) to ensure good HOM visibility and low
QBER in the X basis. Note that the optimization of decoy
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FIG.9. Contours of rate vs distance for decoy-state MDI-QKD
under different assumptions for practical imperfections, for the
key rates for the asymptotic case with infinite decoys (and ideal
assumption of zero dark count rate and 100% detector effi-
ciency), asymptotic case with four-intensity or seven-intensity
protocol (with practical device parameters), and finite-size
case with four-intensity or seven-intensity protocol. Top: Pro-
tocols with identical intensities for Alice and Bob. Bottom:
Protocols with fully optimized intensities. (Note that in the
bottom plot there are some noises in the asymptotic seven-
intensity protocol key rate. This is because the optimal v can
take a very small value in the ideal case where data size is
infinitely large, which results in some numerical noise in
computer simulations). We plot the contour lines of R=10"".
As can be observed here, the finite number of decoys, the
nonideal experimental parameters, and the finite-size effects are
all imperfections that reduce the key rate. However, the overall
shapes of the contours still remain largely the same, which
follow the upper bounds given by the ideal infinite-decoy case.
(Except for four-intensity protocol under finite-size effects,
which no longer has two clear cutoff mismatch positions, but
it is still severely limited by channel asymmetry, while seven-
intensity protocol lifts this constraint completely).

intensities has a very different purpose from that of the
signal intensities s4, sp; the signal intensities are optimized
so as to reduce E% (while keeping single-photon proba-
bility s,5ze~(%a*$5) high) and maximize the key rate, while
the decoy intensities are optimized to estimate Y4, and €Y
as accurately as possible, whose ideal values Y;; and e,
(used in the infinite-decoy case above) provide an upper
bound for the practical key rate with a finite number of
decoys. As we see in Fig. 9, the asymptotic key rate with a
finite number of decoys follows a similar shape as its
upper bound, the infinite-decoy case.

Additionally, the detector efficiency (which is equivalent
to channel loss) contributes to a uniformly shifted key rate
in both L, and Ly directions, while dark counts reduce the
key rate more significantly in the higher loss region (both of
which we have so far ignored in the ideal case as we
describe at the beginning of this section). However, as we
observe in Fig. 9 (the solid lines consider both finite-decoys
and practical parameters), these factors do not change the
overall shape of the contours either.

Lastly, finite-size effects will reduce the key rate sig-
nificantly. As we observe in Fig. 9 bottom plot, while the
key rate is reduced, the contour shapes remain largely
unchanged (meaning that even under finite-size effects, the
seven-intensity protocol can still effectively compensate for
channel asymmetry effectively). In Fig. 9 top plot, we can
find similar observations that finite-size effects reduces the
overall key rate. However, note that under finite-size
effects, the shapes of the key rate contours for the four-
intensity protocol are somewhat different and no longer
follow the two cutoff positions x"PPr, x!o¥er for channel
mismatch (which appear as straight lines in, e.g., Fig. 8).
This is because, though the key rate is still limited by E%
(which causes the cutoff mismatch positions), it is also
limited by the estimation of Y%, and e!| using the decoy
states. Compared to the asymptotic case, here under finite-
size effects, the increased e!| is likely a more severe
limiting factor than E%, and not being able to choose
independent intensities for Alice and Bob prevents an
accurate estimation of Y%, and eV, (due to poor HOM
visibility in the X basis caused by unbalanced intensities).
Therefore, here the dependence of the key rate on channel
asymmetry is present in both privacy amplification and
error-correction terms, and the shapes of contours are a
result of both effects. (The difference in contour shape from
the infinite-decoy case is more prominent for the finite-size
case, likely because the key rate is more sensitive to el
here). Importantly, under finite-size effects, the key rate for
four-intensity protocol is still highly limited by channel
asymmetry, while seven-intensity protocol completely
removes such a constraint and allows two channels with
arbitrary asymmetry between them.
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APPENDIX D: NOTE ABOUT DECOUPLING
SIGNAL AND DECOY INTENSITIES

In this Appendix, we provide a simple intuitive explan-
ation for why our protocol provides a better choice of decoy
and signal intensities.

Let us recall again the key rate formula of MDI-QKD
[8,30]:

R = PsAPsB{<SA6_“)(SB€_SB)Y)1({L[1 - hZ(e)l(I’U)]

_ferZshZ(EsZs>}‘ (Dl)

Here, there are three criteria that determine whether a
MDI-QKD protocol generates good key rate in the presence
of channel asymmetry:

(a) Similar arriving intensities at Charles in the X basis in
order to have good HOM interference and keep QBER
low in the X basis (which is important for a good
estimation of ;).

(b) Similar arriving intensities at Charles in the Z basis in
order to keep QBER E% low in the Z basis (which is
due to misalignment), although this term is much less
sensitive to difference in intensities than (a).

(c) A high enough probability of sending single photons
sse A spe™ s, Note that both criteria (b) and (¢) involve
the signal states s,, s, so there is a trade-off between
(b) and (c).

Prior protocols require Alice and Bob to use the same set
of intensities. This overly constrains the solution space
[because Alice and Bob try to use the same set of intensities
to satisfy (a)—(c) simultaneously] and leaves high QBER in
both the X and Z bases and thus resulting in a low key rate
when channels are asymmetric.

By relaxing this constraint (allowing Alice and Bob to
have different intensities) and decoupling criteria (a) from
criteria (b) and (c) by allowing independent decoy and
signal intensities, we can satisfy (a) nicely, while simulta-
neously achieving a good trade-off between (b) and (c),
hence ensuring a high key rate.

Remark: For more detail on the trade-off between (b) and
(c), here (b) is optimal when arriving intensities are
matched, i.e., s4/55 = /N4, and (c) is independent of
asymmetry and is optimal when signal intensities are both
1. In fact, since EZ is much less sensitive to s,/sg, such a
trade-off between two terms favors (¢) more than (b); thus,
the optimal s,/sp is often closer to 1 than 5g/n4. The
actual optimal signal intensities can be found by numerical
optimization, as we describe in Sec. II D. An example of
us/up and s, /sp can also be seen in Fig. 6, where we
observe that u,/up follows ng/n, rather closely, while
54/ sp has relatively much more freedom in its optimization
(between 1 and 775/n,4).

APPENDIX E: GENERALITY OF OUR METHOD:
MDI-QKD PROTOCOLS OTHER THAN THREE
DECOY STATES

In the main text, we focus on the seven-intensity
protocol, where Alice and Bob each use one signal intensity
s, (sp), and three decoy intensities py, vy, @ (1g, Vg, ®).
However, the core idea of our protocol lies in two key
points: (1) the X and Z bases are decoupled, where decoy
states in the X basis bound Eve’s information and the signal
state in the Z basis encodes the key, and (2) Alice and Bob
use different intensities to compensate for channel asym-
metry. This means that our protocol is not limited to the
seven-intensity protocol, but can easily be applied to other
protocols, too, as long as points (1) and (2) are satisfied.

In this Appendix, we demonstrate the generality of our
method by actually applying it to other kinds of MDI-QKD
protocols where Alice and Bob use a different number of
decoy intensities in the X basis and show that similar
advantages as with the seven-intensity protocol can be
observed when using asymmetric intensities. We also show
with numerical results, that although these alternative
protocols will certainly work, the seven-intensity protocol
provides a good balance between performance and ease of
experimental implementation.

Here we compare three cases:

(1) Alice and Bob each use two decoy intensities p,, v4
(up, vp) in the X basis. We denote this case as a six-
intensity protocol (including the two signal inten-
sities), where the parameter choices are

[SAnuA’UAﬂPsA?P PI./A’

Ha?
sB’l“B’”B’PSB’PﬂB’PDB]' (El)

Here, P, =1-P, —P, and P, =1-P, —
P,,. This is similar to the “one-decoy” setup that
was discussed in Ref. [29]. Note that here it is not a
“five-intensity” protocol because using p,, pp, ®
alone is not sufficient to satisfactorily bound the
single-photon contributions and will result in a low
or zero key rate. Therefore, in this setup, the vacuum
state is not used, and Alice and Bob each use two
nonzero decoy states.

(2) Alice and Bob each use three decoy intensities i ,
Vs, @ (Up, Vg, w) in the X basis. This case is the
seven-intensity protocol that we discuss in the main
text, where the parameter choices are

[SasHa.va. @, Pg P, P, P, .

Ha* " Vs>
Sp.pg.vp. 0, Py, P, . P, P, ]  (E2)

Here, P, = 1- Py - P,,A -P,, P, = 1- Py, —
P,, — P,,, and w is the vacuum state (for simplicity,

we can assume @ = 0).
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(3) Alice and Bob each use four decoy intensities piy, V4,
Vap, @ (Up, Ug, Uag, @) in the X basis. We denote this
case as a nine-intensity protocol, where the param-
eter choices are

[Sa»Ha>Vastop, @, Py, P, P, P, P,
sB?/‘B?”B?”Zva’PS,yPﬂB?PquPL/ZB?PwB]' (E3)
Here, P, =1-P, —P, —P, —P, ,P, =1—P, —

P, —P, — P, , and o is the vacuum state.

Note that in all of these three protocols, the key rate
formula stays the same as Eq. (1):

R = PsAPsB{<SA€_3A)(SB€_SB)Y)1(1’L[1 — hy(e1;")]
_ferZshZ(EsZs>}‘

What is changing here is only the estimation of the single-
photon contributions, namely, the yield Yfl’L and QBER
e};V. While we have analytical bounds for the decoy-state
analysis [20] for the seven-intensity protocol, we use a
linear programming approach to numerically estimate Y )](I’L

(E4)

and QBER ¢}V in the six-intensity and nine-intensity
cases. Such an approach has been widely discussed in the
literature, as in Refs. [29,49,50].

Now, we perform numerical simulations with the six-
intensity, seven-intensity, and nine-intensity protocols and
show that they all have much higher performance than their
symmetric intensity counterparts when channel asymmetry
is present. This demonstrates the generality of our method,
as using asymmetric intensities can always improve the
performance of MDI-QKD with asymmetric channels.

We also compare the performances of the three protocols
with each other and show that using more decoy intensities
can always guarantee higher or equal performance than
using fewer decoy intensities, regardless of data size and
asymmetry. The seven-intensity protocol never provides a
smaller key rate than the six-intensity protocol, and
although the nine-intensity protocol can potentially provide
an even higher key rate, the advantage is small, and the
seven-intensity protocol that we use in the main text is a
good balance between key rate performance and ease of
experimental implementation.

Interestingly, as observed in Figs. 10(a) and 10(b), for the
six-intensity and nine-intensity protocols, although the
yield Y};" and QBER e7;" are estimated numerically using
linear programming, there is still a ridge (discontinuity in
first-order derivatives) along (us/up) = (v4/vg), and
(va/vg) = (va,/v2,) as we see for the seven-intensity
protocol in the main text. For the six-intensity protocol,
the ridge is very clearly shown. For the nine-intensity
protocol, the ridge exists but it is less prominent and
sometimes not visible (likely because, e.g., if two pairs of
proportional decoy states (v4/vp) = (v, /v2,) already

(a) (c) T aimensty

—— Tintensity
Gintensity

log  o(rate)
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FIG. 10. Left: Examples of Y)fl’L versus py and ug where other
parameters are all fixed for (a) six-intensity protocol and (b) nine-
intensity protocol. Just like for the seven-intensity protocol, we
can see a ridge along (ua/up) = (va/vs) or (ua/up) =
(va/vp) = (v2,/v2,). Note that the ridge is a lot less obvious
for the nine-intensity protocol (and sometimes is not visible),
likely because two proportional pairs of decoy states can estimate
single-photon contribution reasonably well, so the third pair (u,,
ug) here has more freedom in the choice of intensities. Right:
Comparison of rate vs Ly for six-intensity, seven-intensity, and
nine-intensity protocols, where mismatch x = 0.1, ie., Ly =
Lz + 50 km (assuming fiber loss 0.2 dB/km). The rates are
plotted in log scale. We use the parameters from Table II and
N = 10", (c) Using symmetric intensities for Alice and Bob;
(d) using fully optimized asymmetric parameters for Alice and
Bob. As can be seen, using asymmetric intensities can greatly
improve the key rate for all three protocols when channel
asymmetry is present. Note that there is a higher amount of
noise present for the nine-intensity case due to the numerical
instability brought by linear program solvers (similar to that of
joint-bound finite-size analysis, which we discuss in Appen-
dix H), but the key points here are that the nine-intensity protocol
also benefits considerably from using asymmetric intensities, and
that the nine-intensity protocol does not have a significant
advantage over the seven-intensity protocol despite being more
complex to implement.

. . . X,L XU . .
provide good estimation of Y7, e} , the third pair yuy,
up has more freedom, and would not affect the decoy-state
analysis or the key rate too much even if it does not provide
good HOM visibility and results in high E}; ).

We plot the simulated key rate for the protocols in
Figs. 10(c) and 10(d). We first consider a similar scenario as
Figs. 5(c) and 5(d) using parameters from Table II, a
channel mismatch of (17,/17z) = x = 0.1, and data size of
N = 10'? (here we use a larger data size than in the main
text, since for N = 10'! the six-intensity protocol with
symmetric intensities cannot generate a key rate even at
Ly = 0 km, so a comparison is not immediately clear in the
plot). As we show in Fig. 10, for each protocol, allowing
asymmetric intensities provides a much higher key rate
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than using symmetric intensities only, demonstrating the
general effectiveness of our method for different protocols
under channel asymmetry.

We also make an important observation here: The more
decoy intensities one uses, the higher key rate one can
obtain after parameter optimization, even with finite-size
effects considered (e.g., the nine-intensity protocol always
has a higher key rate than the seven-intensity, and the
seven-intensity also always has a higher rate than the six-
intensity). This is because, for instance, the six-intensity
protocol can in fact be considered a special case of the
seven-intensity protocol, just with P, and P, infinitely
close to zero, and with nine instead of four constraints, e.g.,
the gains QZ’S- when estimating ¥};*. With close to zero data,
the five new constraints are obviously very loose (with very
large finite-size fluctuation) and will not provide any useful
information, but the key point is, in a linear program these
loose constraints will not decrease the key rate. Therefore,
any optimal set of parameters for the six-intensity protocol
can also be considered a valid set of parameters for the
seven-intensity protocol; i.e., the parameter space of the
six-intensity protocol is a subset of that of the seven-
intensity protocol, and the latter protocol always provides
no smaller key rate than the former (and often the seven-
intensity protocol can find a better parameter set in the
larger parameter space, resulting in a higher key rate).

The same goes for the nine-intensity protocol, but as we
see in Fig. 10, the advantage it provides over the seven-
intensity protocol is rather small (compared to, e.g., six-
intensity versus seven-intensity), while requiring more
complex control of the intensity modulators in the exper-
imental setup and more complicated data collection and
analysis: The users need to collect 16 sets of gains and error
gains, and the parameter optimization is also a lot slower
and more unstable (evaluating the linear program is on
average slower than analytical expression by about 50
times, and linear programs also introduce numerical insta-
bilities). Similar observations have been made for the
symmetric case in Ref. [29] (although in this paper,
the signal states are not decoupled from decoy states, so
the protocols are slightly different), that using decoy states
{u,v, w} provides a higher key rate than {x, v}, but adding
one more decoy state v, provides little further advantage.

Therefore, our conclusion is that, while our method
of asymmetric intensities and decoupled bases surely works
well with other protocols such as the six-intensity and
nine-intensity protocols, the seven-intensity protocol we
introduce in the main text strikes a good balance between
key rate performance and the ease of both experimental
implementation and data analysis.

APPENDIX F: DECOY-STATE INTENSITIES

In this Appendix, we describe Theorems I and II in more
detail and show their theoretical proofs in the asymptotic

limit of infinite data size (moreover, numerically, we find
that Theorems I and II in fact hold true even under finite-
size effects).

1. Symmetry of Optimal Decoy Intensities

To prove Theorem I, here we actually propose an even
stronger assumption for p4, up:

Theorem III: For any arbitrary choice of device and
channel parameters and any two given values of v4, vg, the
optimal decoy intensities u"", u3f" that maximize R always

satisfy the constraint

opt

Ba 24 (F1)
Hy Vs

Remark: As we show below, Theorem I is simply a
corollary of Theorem III.

Proof for Theorem III: Here for convenience, we first
limit the discussion to the asymptotic case (i.e., infinite data
size), and we assume that the vacuum intensity is indeed
® = 0. Throughout the rest of the text, we use Q}; and E};
to denote the observed gain and QBER, where, if not
specified, the first subscript is Alice’s intensity, and the
second is Bob’s intensity, which can be chosen from
{54, s, vp, @} and {sg,pug,vg, w} for Alice and Bob,
respectively. The superscript k signifies the basis X or Z
(although, here we only explicitly write the basis for
illustration purposes, since the basis is already implied
by the choice of intensities).

First, looking at the key rate expression [8,30]

R= PSAPSB{(sAe_SA)(SBE_SB)Y)l(fL[l — hy(e}i")]
_ferZsh2(EsZs)}’ (FZ)

we can see that the term Y2551 — h,(e;Y)], i.e., the decoy-
state analysis and privacy amplification, is determined by
the decoy intensities (and probabilities, if finite-size effect
is considered) only and not affected by the signal intensities
sS4, sp. This is an important and very convenient character-
istic of the four-intensity and seven-intensity protocols, that
the signal state is concerned only with key generation,
while the decoy states are responsible only for privacy
amplification. That is, the optimization of decoy-state
intensities is decoupled from the key generation. Now,
we can make an observation that, under given device
parameters and channel loss, the optimization of the decoy
intensities is independent of s4, s, and its only goal is to
maximize Y3;"[1 = h,(e;Y)]. Furthermore, to perform the
decoy-state analysis, we note that the upper bound for
single-photon QBER satisfies the form of

efi” = (it vavp). (F3)
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where 17" is determined only by Y;*, 14, and v. The full
expression, as in Ref. [20], is

1
XU __ vatv, X X v X X
€ = X.L (e 4 BQWEW —e Aan)Euw
I/AI/BYH

— e QﬁuEzy + szEzw) (F4)

Now, suppose we first fix two arbitrary values of vy, vp
and try to maximize Y7, [1 — hy(ef,)] by optimizing pu4, ug,
we can see that maximizing Y3;" will suffice, since it will

simultaneously minimize e};”, whose only component

dependent on pu,, pp is Yfl’]‘. The question now becomes
simply finding

(W3 u5P) = argmax[Yi" (s, p5)).

(F5)

A very important characteristic of ¥7;" is that its ex-
pression is dependent upon whether (uy/ug) < (va/vp);
i.e., it is a piecewise function, as described in Ref. [20].

Case 1: If (us/pp) < (va/vp):

1 Ha Vg
Yol = ye = [ oM _ M2\ (F6

! ! (Ha —va) [VavB g Hapg " (F6)
Case 2: Otherwise, if (up/ug) > (v4/vp):

1 KB Up
YX'L —yb — M1 _ M2 , F7
! ! (.UB - VB) UpUp Cu HaKB " ( )

0 01 02 03 04 05 06 07 08 09 1

where we denote the two expressions of Y fl’L in the two
cases as Y¢, and Y|, and the two terms Q}!' and Q2 are
linear combinations of the observable gain and are func-
tions of (v4,vp) and (uy, ug) only, respectively. Their full
expressions can be found in Appendix F 3. Also, note that if
(ua/ug) = (va/vp), the two cases Y9, = Y?,.

Now, we can make a key observation that in case 1, for
any given juy, the partial derivative (0Y{,)/(Oup) always
satisfies

ory,
< 0.
Ougp

(F8)

(The actual expression of the partial derivative and proof of
its positivity are shown in Appendix F 3). However, in case
1, pg is bounded by up > [(uavg)/v4l, so the only optimal
case is to take the boundary condition

opt HaVp
Hp =——.

A (F9)

This means that in the region of (uy/ug) < (va/vp),

any pair of optimal values (43, u$") must satisfy

(UP' JuF') = (va/vg), or else we can always decrease
up to get a higher rate, meaning that the previous point
is not the actual maximum. We illustrate this behavior
in Fig. 11.

Similarly, for case 2, the partial derivative with respect to
1y satisfies

FIG. 11. An example of the two different cases of the ¥};" vs u4, up function for fixed values of v, = 0.2, g = 0.1. Left: Y¢,, where
(ua/up) < (va/vp) (case 1). Right: Y?,, where (us/pup) > (va/vp) (case 2). Allowed regions are marked in color for both cases. In case
1, we show that [(0Y{,)/(Oug)] < 0, so any given point A can descend along the yp axis (the solid black arrow) to get a higher rate, until
it reaches the boundary line (5 /up) = (v4/vp) Where up is highest. Similarly, in case 2, [(9Y%,)/(9u4)] < 0, so any given point B can

opt  opt

descend along the u, axis until (us/up) = (v4/vp) to get the highest rate. Therefore, the optimal (u",uy ) that maximize the
piecewise function Y ’l(le always occur on the boundary line. Moreover, for any given point C(u,, 15) on the boundary line, the function
values of Y§,, Y%, are the same. However, we show that (0Y¢,)/(du,) at C, is not equal to (9Y?%,)/(du,) at C, (along the dot-dash red

lines). Therefore, the piecewise function ¥};" is not smooth.
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Yb
ory <0, (F10)
s

and yu, is bounded by p4 > [(sgr4)/vp). In the same way,
in case 2 for any given up, we can acquire
'uopl _ HBVA

A .

’ (F11)

Up to here, we have proven that Theorem III is indeed
correct. n

Proof for Theorem I: Now, following the same idea,
any optimal four values (x5, i, 3%, ") must satisfy
(U Jugt) = WP/, or else we can always vary
(pa,pp) while keeping (v4,vg) fixed and let (uy/pp) =
(v4/vp) to get a higher rate, meaning that the previous
point is not the actual maximum. Therefore, we show that
Theorem I is indeed correct and that the optimal decoy
intensities always satisfy

”opt l/opl
A A
opt — _opt* (F12)
Hp Up
[

Note that the same conclusion does not hold true for
traditional three-intensity MDI-QKD (i.e., using {u,v, w}
for both X and Z bases and using u in the Z basis to
generate the key), that is because the key rate for three-
intensity depends on p for both key generation and error
correction, such that the Q%,, EZ, terms and the single-
photon probability ge™ both depend on y; hence, optimiz-
ing only Y% is no longer sufficient. Therefore, this
independence of s from u, v is an additional advantage
that the four-intensity or seven-intensity protocol can
provide under asymmetric conditions.

Also, one thing to note is that, although the above
theorem provides us with a way to constrain p, /g, va /g,
the actual values of these ratios still need to be found by
optimization. In Ref. [20], the authors have proposed a rule-
of-thumb formula for finding optimal intensities

Halla = UBlB (F13)

for which we now have a good understanding of the reason:
Such a relation keeps the arriving intensities balanced at
Charles in order to maintain good HOM visibility in the X
basis and low QBER. However, this formula is still only a
rough approximation, and it is an exact relation only when
the dark count rate Y, is ignored, the data size is infinite,
and an infinite number of decoys are used [Ref. [20]
considered the case where y is both the signal and decoy
intensity, and only proved Eq. (E13) to be exact in the ideal
infinite-decoy case with no noise]. For a general case,
Ua/up is not always exactly equal to 7z/n, (and does not
only depend on the mismatch x =1,/ng) but rather
deviates slightly from it when (#4,75) changes. But at
least, one general rule is that u,/pp decreases with

X =14/, Or, to put in more simple words, the larger
the channel loss, the higher the intensities we should
choose to compensate for the loss.

2. Nonsmoothness of Key Rate vs Intensities Function

In the previous section, we show that the piecewise
expression for Y3;" causes the optimal value to occur on the
boundary line (uy/pp) = (v4/vg). Here, we continue to
show that Theorem II is a result of this piecewise
function, too.

Proof of Theorem II: The theorem means that the key
rate does not have a continuous partial derivative with
respect to u, or up at the boundary line. Such discontinuity
will cause the boundary line to behave like a sharp ridge. To
prove this theorem, instead of differentiating Y{, vs sz and
Y%, vs py, here we perform partial differentiation of both
Y4, Y%, vs py, and observe this discontinuity of derivative.

First, we rewrite Y, into

v 1 1 1
Y?lz—A [—Q%l——Q%f] +——0M1,
(Ha —va) [Vavp HAMB Ualp

Up 1 1 1
vh= [— w1 %,2]+— i
(ﬂB VB) Valp HalB Ualp

(F14)

The last term is not dependent on either p, or pup. Note
that here on the boundary of (14 /ug) = (va/vp), the values

of Y4, and Y%, are equal:
Y{, = Y?l' (F15)

Performing the partial differentiation against y,, we can
get

oryy _ Ya i( ;}ZIQ>
Opa Ha = Va Opg

HaKB

M2 M1
Vj Jiu w
+ 2 < - >7
(Ma —va)” \Hakp Valp
8Y}1’1 i Up 8 < %2)
Opa pp — vg Opa \Hatip)
We can see that on the boundary of (uy/ug) = (va/vg),
the first terms are again equal; however, the second term in

(0Y4,)/(Ouya) is strictly larger than 0 (A detailed proof
by expanding QM2 OM! is shown in Appendix F 3).

(F16)

up o Lo
Therefore,
aye, oY’
e (F17)
Opta Opa

The derivatives of Yf,’l‘ vs u, on the two sides of the
ridge are not equal, causing the rate function R to have a
nondefined gradient. A similar proof can be applied to up,
and it leads to the same result. [
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An illustration can be seen in the main text Fig. 2, which
chooses a given set of values (v, =0.2,03 =0.1) and
plots the key rate over (uy4, ug). As can be clearly observed,
there is a sharp ridge on the line (uy/up) = (v4/vg) = 2,
meaning the key rate function versus intensities is not
smooth.

3. Proof of Negativity of Partial Derivatives
for Decoy Intensities

As we describe above, the expression for the single-
photon yield Y%;* depends on whether (i, /up) < (v4/vg).
For case 1, if (uus/pp) < (v4/vg), we would like to
prove that

Lemma I: (0Y¢,)/(dup) and (0Y?,)/(Ou,) are both
always negative.

Proof of Lemma I: Here, we use a simplified model
of the gains fg as in Ref. [20], which ignores the dark
count rate Y, and takes a second-order approximation for
the modified Bessel function:

2.2
3N
Ol = 2xpuapip + (uf + %415) (2eq = €)),

where 7p is the transmittance in Bob-Charles channel,
x = (n4/np) is the channel mismatch, 7, is the detector
efficiency, and e, is the misalignment. Here for conven-
ience, we can further define

(F18)

€=2e4—¢2, T:%, (F19)
such that
o = T(2xuapg + epy + ex’u3). (F20)
Now, let us consider (9Y{,)/(Oug), where
1 U v
Yiit=v{ = Ao - A o) (Rat)

12%
(Ha —va) [Vavs HalB
To calculate the single-photon gain, the two terms
X X X
—e Qwu — e le/ =+ wa’
2/,[42 = e”A+”B Q;)fy — et QX — el Q()f)ﬂ + Qr)z(}w (FZZ)
z

HO
are linear combinations of the observable gains Q7.
We can make the observation that, only the term

i ()
(HA—VA)HA HB

contains yg, so, we only need to prove the positivity of
(0/Oup)(OM2 /ug), where

M2 X X X X
i = eHaTHhs Qﬂﬂ — ek Qﬂw — eHB Qam + wa

—= etaths Q/)fu — et Q/)fa) — eMs Qﬁﬂ

M1 __ us+v X
w — et BQI./Z/

(F23)

(F24)

substituting with Eq. (E20),

1
TQ%? = (2xppp+x2eul +eps) et T — X2yl et —epd et

:2xﬂAﬂBeﬂA+ﬂB
+x2eu et (ets —1) +epders (ets —1). (F25)
Therefore,
M2 ets — 1
=R T % [2xﬂAeﬂA+ﬂB + xzeﬂieﬂA
KB Hp
+ e(e! — 1)ugers]. (F26)

Note that here, as py, pp > 0, we have e, s > 1, and
each of the three functions satisfy

0
——(etatts) > (),
oy )

i (@”B — 1) >0
Opp 13:3 ’

0
- HB) > ().
aﬂB (MBe )
Therefore, we have proven that (0/9ug)(OM?/ug) > 0
and that 0Y¢,/0up < 0. Similarly, we can also prove that
OY?,/du, < 0. Thus, the optimal point (5™, x5") must
happen on the boundary, i.e.,

(F27)

opt

H Ua
g‘pt =4, (F28)
Hg VB .

4. Proof of Discontinuity of Partial Derivatives
for Decoy Intensities

Now, to prove the discontinuity of the first-order
derivatives of the key rate function, we need to show that
Lemma II: Partial derivatives of Y¢, and Y%, with
respect to py, i.e., (0Y4)/(Ouy) and (OY%,)/(Ouy), are

not equal.
Proof of Lemma II:
8Y?1 N Uy 0 < 2//142>
Opta Ha = Va Opa \Hapip

M2 M1
17\ MU w
+ 2 ( - )’
(ﬂA - VA) HaMp ValUp
8Yl])] o Up 0 < %42>
Oy Hp — Vg Oup \Makip)
On the boundary of (uy/pg) = (v4/vp), the first terms
are equal, i.e.,

M2 M2
a0 (OF)___w b ()
Ha = Va Opis \Hakp KB — Vg Ops \Hakp

However, here we have to show that the second term in
(0Y{,)/(Ouy) is strictly larger than zero:

(F29)
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y M2 M1
4 2("”— ””>>0, (F31)
(Ha —va)” \Hakp  Vas
or, since pu, > vy and uy, v, > 0, simply
M2 M1
= _EW 5, (F32)
Habp VaUp
X

Just like in Appendix F 3, we can expand the gains
using Eq. (E20):

ij

M1 "
woo_ 2xevA+uB +X2€—A€l/A<eUB _ 1)
Ualp Up
+ ey—Be”B(e”A -1),
L7\
M2
=he D xetatHs _|_x2€/ﬂelh\ (eﬂB _ 1)
HaKB KB
KB
+e—=eks(ets —1). (F33)
Ha

Subtracting them, we can acquire

M2 M1
R =W 2x(eﬂA+ﬂB — e’/A'H/B)
HaMB VAlp
5 ets — 1 L e —1
+ x“€| pqets — v et
KB Up
etr — 1 e — 1
+ €| pgets —vpes .
Ha Va

(F34)
Note that when a given variable x > 0, the functions

diic (e*) > 0,

d (e"—1

— > 0,
dx ( X >

d

— (xe*) > 0.
7 (xe”)
Therefore, these three functions strictly increase with their
variable x, i.e., for any x; > x,, f(x;) > f(x,). Now, we
can use the conditions py > vy, ug > vg, and acquire

(F35)

eHaths > olatls
//lAeﬂA > I/AeyA,

ﬂBeﬂB > I/BeyB,

etr —1  er—1
Ha va ’
HB — 1 Up 1
¢ ¢ (F36)
HB Up

Therefore, we have proven that QM2/(usugp) — OM!
(I/AI/B) > O, i.e.,

oy, %. (F37)
Opa Opa

Similarly, one can show that
ary, |, ory, (F38)

Oug = Oup

Therefore, for any given intensities (v4,vp), the rate
function R(p4, ug) is not smooth against the two intensities
(HasHB)- u

Remark: Also, though not explicitly proven here, since
v4, v also not only Y;" but also e;", their derivatives will
be a lot more complex than py, pup. Numerically, we
observe that for any given (uy4,pp), the rate function
R(vy,vp) is actually not smooth against the two inten-
sities (v4,vp) either, and the ridge still appears

at (ua/ug) = (va/vp)-

APPENDIX G: LOCAL SEARCH ALGORITHM

In this Appendix, we describe how to perform the
optimization for the parameters, which is an indispensable
process in obtaining the optimal key rate. In addition, we
also discuss the effect of inaccuracies and fluctuations of
the intensities and probabilities on the key rate and show
that our method is robust even in the presence of inaccur-
acies and fluctuations of the parameters.

To provide a good key rate under finite-size effects, an
optimal choice of parameters is an extremely important
factor in implementing the protocol. However, the seven-
intensity protocol has an extremely large parameter space
of 12 dimensions, for which a brute-force search is next to
impossible. To put it into context, a desktop PC (quad-core
i7-4790k 4.0 GHz) can evaluate the function R(7) at
approximately 10° parameter combinations 7 per second.
Simply searching over a very crude ten-sample resolution
for each parameter would take over four months, and
a 100-sample resolution for each parameter would take
3 x 10! years, a time longer than the age of the Universe!
Therefore, a local search algorithm must be used to effici-
ently search the parameters in a reasonable time.

There have been studies to apply convex optimization to
QKD, e.g., in Ref. [29] to find the optimal set of parameters
and in Refs. [51-53] to bound the information leakage and
secure key rate. Here, we start by adopting a local search
algorithm for parameter optimization proposed in Ref. [29]
called “coordinate descent” (CD), which requires drastically
less time than using an exhaustive search. Instead of
performing an exhaustive search over the parameter space,
we can descend along each axis at a time and iterate over each
axis in turn. For instance, suppose we currently iterate sy,
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Ritl = max Pi
A

SAE(sp™N, 5, ™)

R(sq. ply, Vi, PE P

i i i i i i
sB’/’tB’ vapsB3PﬂB7PDB)
_ i+ i 0 i i i
= R(s', My Vys Py PP
slB’ﬂ%’y%’Pég’P[llg’PLB)’ (Gl)

which freezes the other coordinates and replaces s, with the
optimal position on the current coordinate axis s, . In the next
iteration, the algorithm will descend along axis p,, etc.,
hence the name coordinate descent. The search space
satisfies that the probabilities lie within (0,1), and while
the intensities could be larger than 1 in principle, typically
that does not provide a good key rate, so here we also define
the domain for all intensities as (0,1). The decoy intensities
also follow two additional constraints ys > v, and pup > vp.
The CD algorithm is able to reach the same optimal position
as a gradient descent algorithm (which descends along the
gradient vector), the commonly used approach for parameter
optimization.

However, a significant limitation of coordinate descent is
that it does not work correctly over functions that have
discontinuous first-order derivatives (which cause the
gradient to be nondefined). For instance, in the presence
of a sharp ridge as in Fig. 2 in the main text, any arbitrary
point P on the ridge will cause the CD algorithm to
terminate incorrectly and fail to find the maximum point.
Mathematically, this is caused by the gradient being not
clearly defined at a position where derivatives are discon-
tinuous. Therefore, coordinate descent does not work
anymore for asymmetric MDI-QKD.

As we discuss above, such a discontinuity of derivatives
comes from the ridge (ps/ug) = (va/vg). Moreover, we

know that the optimal parameters must satisfy (u" /u") =

WP /vF"). Therefore, here we propose to use polar
coordinates instead of Cartesian coordinates to perform
coordinate descent and jointly search u, /up and vy /vg. In
this way, we can make the rate vs parameter function
smooth. We redefine ¥ as

Up;lar = [SA7SB’rw rwe/w’PsA’P/AMPL/A’PsBﬂPﬂB?PvEL
(G2)
where
ry:\/ﬂ,zq+/‘129’ ry:vyi—ky%,
0, = tan! (uy /pup) = tan™' (v, /up). (G3)

In this way, the expression of Y4 always takes the
boundary value (and has only a single expression).
Therefore, when other parameters are fixed, R(6,,) is
actually a smooth function; therefore, by searching over

the parameters vpglar, we can successfully find the optimal
parameters and maximum rate.
After converting to polar coordinates and jointly search-

ing 6, the coordinate descent algorithm becomes

R+ = max

SAG(SA mm’SAmax

i i i i
Py Py Py, Py

)R(sA, S Tys Ty Oy

Pi

KB’ Pli/s)

A’ B’

I
= R(s)" . 55,77, 71,0,

P. P, P P P

570 Ha? 1 7% Sg? ;[Bapf/B)' (G4)

Additionally, when searching along each coordinate (for
instance, fixing other parameters and searching s,), we
employ an iterative searching technique to further accel-
erate the algorithm, which starts out with a coarse reso-
lution and iteratively narrows the search region while
increasing the resolution (this is a similar technique as
introduced in Ref. [29] but efficiently parallelized to utilize
multithreading on modern PCs). For instance, we can start
out with, e.g., 100 samples within the (0,1) region and
evaluate them in parallel. After the maximal point is found,
we can then choose two neighboring samples on the left
and right of the maximal point and start a finer search
among ten more samples between them. This process can
be iterated until the maximum value no longer changes
significantly or until the maximum depth is reached. Such a
technique allows a search resolution that dynamically
changes as needed (from 10~ down to even 1073, although
in practice often 1073 is sufficient), and it efficiently uses,
e.g., all eight threads on a quad-core CPU, enabling fast and
accurate optimization below 0.1 s.

One more note is that the key rate obtained by our
method is in fact robust against small inaccuracies in the
parameters. For instance, for point A3 (10 km, 60 km) in
Table I11, if we round all parameters to an accuracy of 0.001
(as shown in Table IV) and use it for simulation, we can still
get 99.5% of the optimal key rate 3.106 x 107>, while
rounding the parameters to 0.01 will still give us 93.0% of
the optimal key rate. In fact, even if we just keep one
significant digit of each parameter, we can still get 47.6% of
the optimal key rate. This would make it much easier for an
experimental implementation of our method, as the key rate
is very forgiving of inaccuracies in the parameters, which
makes a much less stringent requirement on the intensity
modulators and random number generators.

Note that the above “accuracy” discusses how strict the
requirement is for us to generate an intensity or probability
with mean value close to the desired optimal value (e.g.,
limited by bits in the random number generator or the
accuracy of the intensity modulator), but we are still
assuming we have perfect knowledge of the variables we
generate. In addition, here we would like to point out that
our conclusions remain unchanged, even in the presence of
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intensity fluctuations or imprecision in the intensity
probabilities.

First, the system is not very sensitive to the probabilities
(since the partial derivatives with respect to them are zero at
the optimal points), so even if all signal and decoy
probabilities are simultaneously set 5% away from optimal
value (and we take the global worst-case key rate value
among all possible combinations of positive or negative
deviation for each variable), the key rate will not signifi-
cantly drop; for instance, for the (10 km, 60 km) case, one
can still obtain 92.3% the ideal key rate (2.869 x 107>
versus 3.106 x 107) even with a 5% deviation for the
probabilities.

Similarly, for intensity fluctuations, even if we add a 5%
deviation to all intensities [again, taking the (10 km, 60 km)
case as an example], we can still get 73.1% the ideal key
rate (2.270 x 10~ versus 3.106 x 1075). Moreover, one
important point to note is that intensity fluctuation is not a
problem unique to asymmetric MDI-QKD (or the new
asymmetric protocol that we propose in this work). Even if
one uses prior protocols (such as the four-intensity proto-
col), one would still obtain a significantly lower key rate if
taking intensity fluctuation into consideration, such as
39.9% the key rate (3.671 x 107 versus 9.206 x 107°
with no fluctuation) at (O km, 50 km), and zero key rate
(versus 3.891 x 10~7 with no fluctuation) at (10 km,
60 km). Therefore, the advantage of our method remains
unchanged, even if intensity fluctuations are considered.

APPENDIX H: FINITE-SIZE ANALYSIS

In this Appendix, we describe the finite-key analysis
used in our simulations.

The analytical proofs in Appendix F are shown for the
asymptotic case. Numerically, we show that the seven-
intensity protocol works effectively in the finite-key regime
too, as can be observed in the main text Fig. 5.

To account for finite-size effects, we perform a standard
error analysis [29,30] and estimate the expected value (n)
of an observable n by

n=n-yJ/n<(n)<n+y/n=m  (HI)

where we define the upper and lower bound for an
observable n as 7 and n. Here, y is the number of standard
deviations the confidence interval of the observed value is
from the expected value (for instance, for a required failure
probability of no more than e =107, we should
set y = 5.3).

We can denote the observed counts as nffi.”j,
X
counts as my, , , where y; € {ps.va, 0}, pj € {up,vp, @}.

Then, the observed gain and error can be acquired from

and error

X

QX _ nﬂisﬂj
HisHj ’
NPﬂiPﬂf
X
TX _ mﬂi»ﬂj
HisHj ’
NPﬂiPﬂf
X
X _ T HiHj
B, ~or (H2)
HisHj

where N is the total number of signals sent, and P, , Pﬂj are

the probabilities for Alice and Bob to send the respective
intensities. Note that here we define the QBER in terms of
error gains:

T/)fi;ﬂj = Q/')fi;ﬂjE/’)‘(iv/‘j' (H3)

As we describe in Appendix F, we can define the key rate
expression as [8,30]
R = PSAPSB{sAsBe‘(SA“B)Yﬁ'L[l - hz(e}fl'u)]

_fe %shZ(ESZS)}’ (H4)

and the single-photon gain and error estimated by [20]
1 Ha Va
Yyt = (— oM ——- ol
Ha — VA \VaAlB Hakp

Sv_ 1
11 = X,L
I/AI/BYU

— e Twu + Twa))’

(EUA s TDI./ —en va

(H5)

where QM!, QM2 are linear combination terms of the
observables

%l = etatis Ql)/(l/ —en Ql)/(w —e qu + ng

M2 __ X X X X
i = etaths QW’ — et Qyw —et's Qa)y + wa' (H6)

Now, with standard error analysis, we can define the
upper and lower bounds for the gain and error gain:

X
X _ X Hilj
Qﬂiﬂ/ T XU +7r NP”[PM/_’
X
QX — X _ v Qﬂiﬂ/
iy Hibtj NP, P,’
i Hj
TX
X _ 7X Hilt
Tﬂiﬂj - Tﬂiﬂj +7r NP”_I{)ﬂ_’
i Hj
X
X X Hilj
Zﬂiﬂj - Tﬂiﬂj -7 NPﬂ,éﬂ (H7)

Therefore, we have
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M1 _ X nx X X
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— pHatH X _ LU X _ u X X
Hp =en BQ## eAan) eBQwﬂ+wa’

yXL — 1 < HA  ~m1 _ VA M2>
11 = = Hy 5
Ha —Vp \ValVp =" HaMB
1 _
XU __ Vs+v, v,
e = X.L (6 4 BTI./I./ —e AZD(H

UAUBY1£

- eyBZwu + m)’ (HS)
which we can use to substitute into Eq. (G4) to obtain the
key rate under finite-size effects. (Note that here, Q¥ , takes

the lower bound in both Q¥ ""and QM2 because its overall

coefficient is positive in ¥2;".)

Note that in Ref. [30], in addition to proposing the four-
intensity protocol, Zhou et al. has proposed a “joint-bound”
finite-key analysis which jointly considers the statistical
fluctuations of observable gain and QBER. It is a tighter
bound and can provide a higher rate than considering each
observable’s fluctuation independently as we discuss above
in this section (i.e., using “independent bounds”). To
illustrate this, we perform a simple simulation of the key
rate versus distance plot using independent bounds and
joint bounds (as well as using traditional three-intensity
protocol [29] for comparison). As can be seen in Fig. 12,
the four-intensity protocol with joint-bound analysis pro-
vides a higher rate than independent bounds (and both have
a higher rate than the three-intensity protocol). However,
the joint-bound analysis is based on linear optimization and
sometimes brings multiple maxima for R(7), which is
undesirable for local search and will result in unpredictable
behaviors (such as sudden “jitters” in the resulting rate
versus distance plot, as can be observed in the joint-bound
plot in Fig. 12; similar behavior is observed in
Ref. [30], too).

Here, just for comparison, we list in Table V some
example data points where we apply both independent-
bound and joint-bound analysis. As can be seen, using joint
bounds, we can indeed gain a further improved key rate.
However, this comes at the expense of not knowing
whether we are indeed at the global maximum or not,
due to the existence of multiple maxima (and it is not ideal
for comparing asymmetric and symmetric protocols, as the
key rate estimated could be just local maxima for both of
them). Therefore, as the purpose of this work is studying
asymmetric MDI-QKD, we focus on independent bounds
throughout the main text.

Also, note that although we have so far used standard
error analysis for simplicity, our method here can in
principle be applied to finite-key analysis with composable
security, too, such as using the Chernoff bound [50]. The
key point is that (as explicitly demonstrated in Appendixes
B and C), the scaling of the asymmetric MDI-QKD key rate
versus distance depends on the signal states (which perform

-4 T T T T T T T T

e — 3-intensity, independent bounds
e —4-intensity, independent bounds

—-—-4-intensity, joint bounds h

as

log,, (rate)

of

0 10 20 30 40 50 60 70 80 90
Distance (km)

FIG. 12. Rate vs distance (Alice to Bob) for the symmetric case,
for N = 10" using parameters Y, = 6.02 x 107, 5, = 14.5%,
ey = 1.5%, a parameter set in Zhou et al.’s paper [30]. Here, we
compare the traditional three-intensity protocol as proposed in
Ref. [29] (red solid line) and the four-intensity protocol [30] with
independent-bound (blue solid line) and joint-bound analysis
(blue dot-dash line).

a trade-off between error correction and single-photon
probability). The decoy states need to maintain balanced
arriving intensities at Charles but serve only to estimate the
single-photon contributions as accurately as possible,
whose asymptotic bounds are given by the infinite-data,
infinite-decoy case. Adopting a different finite-key analysis
(or no analysis at all, as in the asymptotic case) affects the
bounds on single-photon yield and QBER Y%, and e¥|. The
finite-size case can be seen as the asymptotic case with
correction terms (i.e., imperfections) added to the privacy
amplification, but its key rate will have a similar scaling
property as the asymptotic case. This means that the
advantage of our method is independent of the finite-size
analysis model used (or lack thereof, in the asymptotic
case).

TABLE V. Simulation results of the key rate estimated with
independent bounds versus joint bounds using the parameters in
Table II. The data points for independent bounds correspond to
the solid red curve in Fig. 5(d). As can be seen, using joint bounds
for finite-size estimation can improve the key rate significantly.
However, this will result in multiple maxima and cause insta-
bilities in simulations. Therefore, we use independent bounds
throughout the main text.

LA L B Rindependem R joint

60 km 10 km 3.106 x 1073 6.714 x 107>
100 km 50 km 4.677 x 10711 7.568 x 1078
113 km 63 km 0 7.311 x 10710
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FIG. 13. Single-arm MDI-QKD where Bob and Charles are
both in the same lab, with Bob’s channel having as little loss as
possible. By optimizing intensities, we can achieve the maximum
distance (loss) in the single channel between Alice and Charles,
while enjoying the security of MDI-QKD.

APPENDIX I: SINGLE-ARM MDI-QKD

In the main text, we propose a new type of “single-arm”
MDI-QKD setup, which is the extremely asymmetric case
where one channel has high loss while the other channel
has close to zero loss. In this Appendix, we describe it in
more detail and outline its potential applications.

Suppose we have one crucial channel (e.g., a free-space
channel, say, in a satellite-ground connection, or a ship-to-
ship connection) through which we would like to send
quantum signals. We would like to prevent all attacks on the
detector and improve the security with MDI-QKD, but we
cannot add a third party in the middle of the free-space
channel. In this case, it is possible to add another source
Bob in the laboratory (alongside Charles’s detectors, with
as small loss as possible in the Bob-Charles channel) and
use it to interfere with the signals coming from Alice over
the longer free-space channel, as shown in Fig. 13. With
seven-intensity protocol, a high key rate can be generated

TABLE VL

from this extremely asymmetric case, providing the secu-
rity of MDI-QKD to a single channel where relays cannot
be added while still maintaining good performance.

If one uses four-intensity protocol, Bob has to add a fiber
similar in loss to that of the free-space channel (to maintain
the symmetry), while as we show with seven-intensity
protocol, Bob can simply choose as small a loss as possible
and obtain maximum acceptable loss in Alice’s channel.
Not only does seven-intensity protocol make such a highly
asymmetric MDI-QKD possible, it actually provides a
higher rate compared to the symmetric case (if Bob adds
a fiber). Moreover, since Alice’s channel loss might be
constantly changing, it can be very difficult to adjust an
added fiber and maintain the symmetry; thus, the conven-
ience of not having to add any loss with seven-intensity
protocol is a significant factor, too.

As we can observe in the main text Figs. 5(a) and 5(b),
for the same required minimum rate, rather than performing
an experiment at (L., Linax ), if we are free to adjust one
channel (and want maximum distance in the other channel),
we can set the shorter channel to zero and obtain a longer
distance in the other channel, e.g., (L}, 0) with L}, >
L ,..x- For instance, in the main text Figs. 5(a) and 5(b),
choosing point B (102 km, 0 km) can extend the longer arm
from 85 to 102 km, from the symmetric point A (85 km,
85 km) for the same R = 10710,

Here, we list the simulations results for single-arm MDI-
QKD. To demonstrate the advantage, we study three cases:
using four-intensity (but being able to add fiber until the
channels are symmetric), using four-intensity (however,
due to being, e.g., in a free-space channel or a dynamic
network, without the luxury to add fibers and compensate
for the channels), and using seven-intensity directly on the
asymmetric channels. As can be seen in Fig. 14, seven-
intensity protocol provides better performance than both
strategies using four-intensity and increases maximum
distance from 56.8 and 72.5 km (respectively, for adding
or not adding fiber) to 90 km. Thus, our new protocol can
enable a unique new application of providing the security
of MDI-QKD to a single channel where relays cannot be
added (e.g., a free-space link), while still maintaining a
high key rate.

Simulation results of the key rate between each pair of nodes in a MDI-QKD network, using parameters from Table II,

N = 10'!, and channels in main text Fig. 1(a). As can be seen, using seven-intensity protocol always provides a higher rate than either
using four-intensity directly (which fails to establish some connections) or using four-intensity after adding fiber to each channel to
accommodate the longest channel (which results in an identical low rate for every connection since every channel equals the longest
channel after adding fiber). The seven-intensity protocol therefore enables high scalability and reconfigurability because each link is
independent of other links and no added fiber is needed.

Method AI—A3 AI—A4 AI_AS A3-A4 A3—A5 A4—A5

Four-intensity, add fiber 1.28 x 10710 1.28 x 10710 1.28 x 10710 1.28 x 10710 1.28 x 10710 1.28 x 10710
Four-intensity, direct 0 0 0 241 x 107 322 x 107 5.77 x 1074
Seven-intensity, direct 1.97 x 1077 2.42 x 1077 2.77 x 1077 248 x 1074 353 x 1074 5.87 x 1074
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FIG. 14. Simulations of single-arm MDI-QKD. We use param-
eters from Table II and set N = 10''. The three lines are
generated using four-intensity protocol and adding fiber until
L, = Ly (black solid line), using four-intensity protocol but
without being able to add fiber (black dashed line), and using
seven-intensity protocol directly (red dot-dash line). As can be
seen, using seven-intensity protocol tremendously increases the
key rate and maximum distance for the longer single arm. At
R =1077, using seven-intensity protocol (having maximum
distance at 90 km) increases the maximum distance by 17.5 or
33.2 km (or 3.5 to 6.6 dB of loss) compared to four-intensity with
or without fiber, respectively.

APPENDIX J: MDI-QKD NETWORK
NUMERICAL RESULTS

In this Appendix, we consider the channels from a real
quantum network setup in Vienna reported in Ref. [16] and
numerically show that using seven-intensity protocol can
provide high-rate communication between each pair of
users, while previous protocols either fail to establish some
connections in the network or suffer from low key rate for
all connections.

Here, we focus on the high-asymmetry nodes in
Ref. [16] A;, A,, Az, A;, As plotted in the main text
Fig. 1(a) and consider the case where an untrusted relay is
placed at A,. The topology here is a commonly studied
model of a star-type network, which is considered for a
QKD network in Refs. [54,55], and it is also the model for
the MDI-QKD network experiment in Ref. [19]. Such a
network can provide a complete graph of connections
between any two users, but it requires only one physical
connection from each user. We show the simulation results
in Table VI, where using seven-intensity protocol consis-
tently provides high-rate connections even for nodes with
very high asymmetry and maintains the same (in fact,
moderately higher) key rate for nodes that are near-
symmetric; i.e., including a long channel does not affect
the rate between pairs of existing shorter channels.

Being able to establish connections with arbitrarily placed
new nodes without affecting existing nodes is a very
important property for a protocol to be used in a scalable
and reconfigurable network, whose links will obviously be,
more often than not, asymmetric. For the four-intensity
protocol, to accommodate the highest-loss channel, all
connections will suffer from a nonoptimal key rate.
Moreover, since new users might be added or deleted
dynamically, such an adding-fiber strategy will have poor
scalability, since each new node affects the performance of
all existing nodes and also causes interruption of service
when users update their fibers. With seven-intensity proto-
col, we are completely free of the worries of asymmetry and
can directly use the protocol on any channel combination
optimally, so each node can be added or deleted without
affecting the rest. This greatly improves not only the key rate
but also the scalability of a MDI-QKD network.
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