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Thermalization of chaotic quantum many-body systems under unitary time evolution is related to the
growth in complexity of initially simple Heisenberg operators. Operator growth is a manifestation of
information scrambling and can be diagnosed by out-of-time-order correlators (OTOCs). However, the
behavior of OTOCs of local operators in generic chaotic local Hamiltonians remains poorly understood,
with some semiclassical and large-N models exhibiting exponential growth of OTOCs and a sharp chaos
wave front and other random circuit models showing a diffusively broadened wave front. In this paper, we
propose a unified physical picture for scrambling in chaotic local Hamiltonians. We construct a random
time-dependent Hamiltonian model featuring a large-N limit where the OTOC obeys a Fisher-
Kolmogorov-Petrovsky-Piskunov (FKPP) type equation and exhibits exponential growth and a sharp
wave front. We show that quantum fluctuations manifest as noise (distinct from the randomness of the
couplings in the underlying Hamiltonian) in the FKPP equation and that the noise-averaged OTOC exhibits
a crossover to a diffusively broadened wave front. At small N, we demonstrate that operator growth
dynamics, averaged over the random couplings, can be efficiently simulated for all time using matrix
product state techniques. To show that time-dependent randomness is not essential to our conclusions, we
push our previous matrix product operator methods to very large size and show that data for a time-

independent Hamiltonian model are also consistent with a diffusively broadened wave front.
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I. INTRODUCTION

Information scrambling describes a process whereby
information about the initial condition of a unitarily
evolving system spreads over the entire system, becoming
inaccessible to any local measurement [1-4]. Because it
describes an effective loss of memory, scrambling is
relevant for understanding quantum thermalization (e.g.,
Refs. [5-8]), i.e., the emergence of irreversibility from
unitary time evolution, and is also tied to the black hole
information problem. Scrambling is also closely related to
the dynamics of initially simple Heisenberg operators, with
the growth in size and complexity of these operators
probing the spreading of quantum information [9-16].
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Given two local operators W, and V, at positions 0
and r, the out-of-time-order correlator (OTOC),

F(r.1) = (Wo()ViWo(1)V,), (1)

provides one way to quantify scrambling by probing how
the Heisenberg operator Wy (z) grows with time. Although
scrambling can also be usefully characterized in entropic
terms, OTOCs are more directly measurable, with early
experiments having already been carried out in a variety of
platforms [17-27]. A closely related quantity is the squared
commutator between V and W, defined as

C(r.1) = (Wo(1). V,]'[Wo(1). V,]) = 2[1 = Re(F)].  (2)

The physical picture is that under Heisenberg dynamics,
the operator W, expands and eventually fails to commute
with V., as manifested by the growth of C(r, ¢) from zero.
For chaotic local Hamiltonians, W;(z) is expected to
expand ballistically, with speed called the butterfly velocity,
so the OTOC exhibits a causal light-cone-like structure in
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space-time. The squared commutator remains small outside
the light cone and grows rapidly as the boundary of the light
cone is crossed. Inside the light cone, C(r, 1) saturates for
chaotic systems regardless of the specific form of operators
W and V.

A particularly interesting question concerns the specific
growth form of C(r, r) near the wave front of the light cone.
In some models, C(r, ) grows exponentially with time, a
phenomenon proposed as a quantum analog of the classical
butterfly effect, the exponential divergence of initially
nearby trajectories. This observation has led to an emphasis
on probing the footprint of quantum chaos at an inter-
mediate timescale, especially with a view towards defining
the notion of the quantum Lyapunov exponent. A well-
defined Lyapunov exponent /;, i.e., purely exponential
growth of C(r, 1), plus the ballistic growth of the OTOC,
implies that the wave front is sharp, and sharp wave fronts
have been identified in a broad class of holographic or
large-N models, including the O(N) model [28], the
diffusive metal [29], and the coupled Sachdev-Ye-Kitaev
(SYK) model [30-32]. On the other hand, although signifi-
cant efforts have been made [33-36], a clear signature of
purely exponential growth of the OTOC in more physical
systems with finite on-site degrees of freedom (d.o.f.) is
absent, and there are some counterexamples in random
circuit models [9,10,37-39].

To reconcile the many different scenarios, in a recent
paper [11], we proposed a universal form for the early
growth region of the squared commutator,

C(r. 1) ~exp (= 4, (x/vp = 1)FP/17), 3)

assuming that there is a well-defined butterfly velocity vp
(a different ansatz is needed for localized systems [40—43]),
which was further studied in [44]. The shape of the wave
front is controlled by a single parameter p, denoted as the
broadening exponent, associated with the growth rate 4,,.
For large-N or holographic models, p = 0, and the corre-
sponding 4, is the Lyapunov exponent. However, an exact
calculation in a Haar random brickwork circuit model gives
p = 1 in one dimension, indicating a diffusive broadening
of the wave front. Saddle-point analysis shows p :% for
general noninteracting systems with translational invari-
ance [11,36,44]. Large-scale matrix product state (MPS)
simulations using the time-dependent variational principle
[45] and matrix product operator (MPO) simulations [11]
also give strong evidence of wave-front broadening for
chaotic local Hamiltonian systems.

In this work, we make two contributions to under-
standing the early growth region behavior of the OTOC.
First, to understand the intriguing differences between the
large-N models and the Haar random brickwork circuit
models, we design and analyze a new random circuit
model, denoted as the Brownian coupled cluster model
(BCC). BCC, as an extension of the single cluster version

[46,47], describes the dynamics of clusters of N spins
connected in a one-dimensional array (or more generally,
connected according to any graph), similar to coupled SYK
cluster models but with the couplings random in both space
and time. We show that in the large-N limit, BCC is similar
to other large-N models and has a well-defined Lyapunov
exponent, but the finite-N correction qualitatively changes
the broadening exponent from p =0 to p =1 in one
dimension. We find that finite-N corrections are actually
quite dramatic, with the broadening of the wave front
characterized by a diffusion constant that scales as
1/1og® N atlarge N. We also find that there is a finite region
in space-time where the wave front remains sharp, indicating
strong finite-size effects on the broadening exponent.

With this new point of view, our second contribution is to
push our numerical matrix product operator simulations of
operator growth in a local Hamiltonian Ising system to
include 200 spins in the wave front and up to 250 in units of
the nearest-neighbor Ising coupling. By directly analyzing
the way contours of constant C deviate in space-time,
we find that the broadening exponent indeed converges to
p = 1 in the large space-time limit. Therefore, we conclude
that diffusive broadening of the wave front is generic for
one-dimensional chaotic systems.

In more detail, our analysis of the BCC proceeds by
focusing on operator dynamics, suitably averaged over the
random couplings in the Hamiltonian. Any operator may be
expanded in a complete basis of operators, with the
expansion coefficients called operator amplitudes and with
the square of the amplitudes forming a probability distri-
bution, the operator probability distribution. This procedure
is completely analogous to expanding a time-evolving
wave function in a complete basis of states. The starting
point of the analysis is the derivation of an equation of
motion for the circuit-averaged operator probability dis-
tribution of a Heisenberg operator. The effect of averaging
over the couplings in the quantum Hamiltonian is to give a
closed stochastic equation for the operator probability
distribution; physically, the operator amplitudes evolve
via unitary time evolution for each choice of couplings,
and the averaging dephases this dynamics to yield a master
equation for the operator probability distribution. One point
should be emphasized: The randomness of the couplings in
the Hamiltonian, which we sometimes call “disorder,” is
physically distinct from the quantum randomness mani-
fested in the operator probability distribution. The latter
will, in a certain limit, be instantiated as a random process,
which we call “noise.” One of the key assertions of this
paper is that the disorder average is a technical conven-
ience, while the noise average contains essential physics of
quantum fluctuations.

Starting from the master equation for the operator
probability distribution, the analysis proceeds from two
limits. In the large-N limit, a mean-field-like treatment of
the operator distribution becomes exact, and the operator
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dynamics can be translated into a closed nonlinear partial
differential equation for the operator weight, a measure
of the size of the operator that is linearly related to the
OTOC. The resulting dynamical equation is similar to the
Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation
[48,49], which occurs, for example, in studies of combus-
tion waves, invasive species, and quantum chromodynam-
ics, among others; it was recently introduced in the context
of scrambling to describe the growth of OTOCs [28,50,51].
The key physical effects embodied by FKPP-type equations
are unstable exponential growth, diffusion, and eventual
saturation; together, these effects lead to traveling-
wave solutions with a sharp wave front, and they describe
the spreading of local Heisenberg operators. The leading
finite-N correction results in a stochastic partial differential
equation, a noisy FKPP-like equation in which the noise is
multiplicative and 1/N suppressed. Drawing from the noisy
FKPP literature [52,53], we argue that the noisy FKPP-like
equation in the BCC has a diffusively broadened wave front
after averaging over noise. These analytical arguments are
verified by direct numerical integration of the large-but-
finite-N BCC stochastic equation. It should be emphasized
again that the noise in the noisy FKPP-like equation
represents quantum fluctuations not different instances of
the microscopic couplings.

In the small-N limit, a different analytical treatment
shows that the OTOC exhibits the same diffusive broad-
ening as in the Haar random brickwork circuit model.
Moreover, we show that by representing the operator
probability distribution as a “stochastic” matrix product
state, it is possible to numerically solve the master equation
for the time dynamics. Thanks to the dephasing provided
by the disorder average over couplings, one can show that
the late-time operator probability distribution has low
“correlation or entanglement” when viewed as a matrix
product state. We further find that the operator probability
distribution never has high correlation or entanglement, so
matrix product state techniques can accurately capture the
operator dynamics for all times. A modest bond dimension
of y = 32 is already sufficient to converge the dynamics for
200 sites for all time.

Finally, taking these lessons from the BCC, especially the
crucial role of noise, meaning quantum fluctuations, we
argue that the diffusive broadening of the operator growth
wave front is generic in one dimension. This idea has been
previously conjectured based on work with random circuit
models [9,10,37-39]. One piece of evidence is direct
numerical simulation of the time-independent Hamiltonian
dynamics of Heisenberg operators in a system of 200 spins
for a very long time. A new analysis of the space-time
contours of a constant squared commutator conclusively
demonstrates diffusive broadening of the wave front at the
largest sizes. Another piece of evidence is the prevalence of
noiseless FKPP-like equations describing OTOC dynamics
in large-N or weakly coupled models, including linearized

FKPP-like equations obtained in resummed perturbation
theory [28] and fully nonlinear FKPP-like equations
obtained from self-consistent Keldysh treatments [50]. We
argue that, starting from these known results, quantum
fluctuations should invariably be described by adding noise,
specifically multiplicative noise of the type found in the
BCC. Hence, these models will also suffer similar dramatic
finite-N effects resulting in diffusively broadened wave
fronts.

The remainder of the paper is organized as follows.
Section II describes, in detail, the notion of operator
dynamics used throughout the paper and their relations
to OTOCs. Section III introduces and analyzes the BCC,
both at small and large N. Section IV discusses implica-
tions of the results for generic Hamiltonian systems. We
conclude with an outlook, including the effects of con-
served quantities and going beyond one dimension, as well
as open questions.

II. GENERAL FORMALISM OF OPERATOR
DYNAMICS AND ITS RELATION TO THE
OUT-OF-TIME-ORDER CORRELATOR

Consider a generic quantum system consisting of L sites
with N spin-1/2’s per site. The dynamics of the system is
governed by a local unitary circuit U(t). In the Pauli basis, a
Heisenberg operator W(¢) takes the form

W) = c(S)S, (4)

where S is a product of Pauli operators with length NL
and the time dependence is encoded in the coefficients
¢(8,1). The normalization is tr[W(#)"W ()] = 2VE, so
> sle(S,1)|* = 1. Under Heisenberg time evolution in a
chaotic quantum system, an initially localized operator
grows and eventually equilibrates, as far as local probes are
concerned. The initial configuration cannot be recovered
from local data, a manifestation of scrambling. The OTOC
is designed precisely to quantify this process since the
deviation of the correlator from its initial value for certain
positions indicates that the Heisenberg operator has devel-
oped a nontrivial component at that site. To understand the
relationship between the OTOC and the operator string
picture, we consider the following averaged OTOC,

F(r1) =S ot Te(W(0) ot W(D)ot),  (5)
AN 2

a,a

where a runs from 1 to N and a from O to 3, representing
the identity and the three Pauli matrices.
Using the decoupling channel identity, we obtain that

) = 1= () = ()P (Sw(5.0). )

where S, , is the r, a Pauli operator in the string S and the
weight is w(6%) = 1 — §,9. Therefore, ¢(r, t) measures the
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average number of nontrivial local operators within a single
spin cluster located at r, growing from 0 and saturating to 3 /4
in a thermalizing system. Similarly, the average squared
commutator C(r, 1) equals §¢(r, 1). There are two implica-
tions. First, C(r, 1) does not depend on the phase information
of the coefficients ¢(S) [which are, in fact, real for Hermitian
W(#)] since it is completely determined by the probability
distribution |c(S)|?. Second, C(r, ) is not concerned with
the specific operator configuration S since only the number
of nontrivial operators matters. Both features significantly
simplify the calculations.

In general, dealing with the Schroédinger equation is
overcomplicated for the purposes of studying operator
dynamics due to the unimportant phase information and
associated high operator entanglement entropy. However,
deriving a closed set of dynamical equations for the
operator probability |c(S)|* from the Schrodinger equation
is difficult. Random circuit models are useful to overcome
this difficulty by introducing disorder as a dephasing
mechanism, making the probability distribution dynamics
tractable both numerically and analytically, for example, in
recent studies of the Haar random brickwork circuit. This
paper introduces another class of random circuit models,
the BCC, describing the dynamics of a system of coupled
spin clusters with interaction that is random in both space
and time. BCC can be regarded as a smoother version of the
random brickwork circuit, in which the interactions are
only between pairs of spins (or, more generally, few-body
interactions) even in the large-N limit; thus, it is naturally
more tied to holographic and SYK models. While in the
random brickwork circuit, the dimension of the on-site
Hilbert space does not qualitatively affect the operator
dynamics, in the BCC, we expect a smooth crossover from
the random brickwork circuit result for small N to holo-
graphic and SYK physics in the large-N limit.

III. BROWNIAN COUPLED CLUSTER MODEL

Figure 1 shows a schematic of the BCC model. It is best
described using discrete time steps dt, with the limit dr — 0
taken later. For small dt, the whole time evolution unitary
breaks into pieces,

t/dt

U(t) = [ exp <—iZH£’”) - iZHﬁj’P), (7)
m=1 r rr

with m a discrete time index. The on-site terms and the
bond terms read

E :erubara r.b?

ab,ap

rr’ _gZ‘Imrrabg”l r.b’ (8)
a,b.ap

NN M
Q\” F(/_\/

FIG. 1. The Brownian coupled cluster model. Spins within the
same cluster interact with each other and also interact with the
spins in the neighboring clusters. The intracluster coupling J and
the intercluster coupling J are random in both space and time.

\ =

J

where a and f are the Pauli matrix indices running from 0
to 3 (including the identity, for convenience), a and b from
1 to N label the spins in the cluster,  and 7’ label clusters
(sometimes called sites), and (rr/) stands for nearest
neighbors. At each time step, the models contains two
sets of uncorrelated random variables J and J with mean
zero and variance {1/[8(N —1)]}dr and [1/(16N)]dt,
respectively.

With the help of the random couplings, one can derive a
master equation for the averaged probability distribution
h = |¢(S)[. To simplify the calculation, we assume that &
only depends on the operator weight w, = > w(S,,) of
each cluster instead of on the details of the operator
configuration S. This approximation is valid after a short
relaxation time even though W starts as a specific operator. To
proceed further, introduce the operator weight probability

h(w) = h(w)D(w), ©)

with D the number of operators with weight configuration w,

D(w) = H(?j) £ (10)

The operator weight probability is a properly normalized
probability distribution over the (N + 1)f possible weight
strings.

The derivation of the master equation for / is recorded in
the Appendix A, with the result being

(=77 W)h(W) +77 (w=1)h(w—e,)]

+[-r7

+Z[ }’Z(W,,W,)h( )+yb (Wr+1 W/)il(w+e )]
)

+ [_7;(erwr’)ljl(w) +}’b (Wr - l’wr’)il(w_ er)]

+[r< 7. (11)
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The evolution equation manifestly conserves the total
probability, > (w} h =1 for all time, independent of the

specific form of the functions y* and y~. For this particular
problem, these functions are

7o) =l =1). 77 () = 3V -,

N-1 -1
2
g _ '
YZ(Wth):—ZNWle, Vb (Wl,Wz):—zN?’(N—Wl)Wz-
(12)

In the following subsections, we analyze this master
equation in the infinite-N limit, study its large-N expan-
sion, and compare the result with small-N results.
Complementing these analytical results are numerical
simulations of the master equation for 200 spin clusters
using tensor network methods.

A. Infinite-N limit

In the infinite-N limit, the master equation (11) can be
approximated by a Fokker-Planck equation,

o pa)i@)+0 (1)
&

e +¢m>)

0;h= Za¢

o) = (4, ~3) <¢,+ +Lag,-1)4,

N

) =35 (-20)20,+ PG d)l (13)

where ¢, = w,/N is the scaled operator weight.
Using the Ito stochastic calculus, the Fokker-Planck
equation can be mapped to a Langevin equation,

01, = —ald,) +  2(,)n, (1), (14)

with (5,(t)n. (1)) = 8,,6(t — ¢'). This mapping explicitly
demonstrates that the noise 5 arises from the deterministic
master equation for the operator weight probability as a
1/N eftect. It is important that this noise # is conceptually
different from the randomness of the Brownian circuit
introduced to obtain the master equation; it originates
purely from the quantum fluctuation in the BCC. Later,
we show that the noise, although suppressed at large N, has
a drastic effect on the operator dynamics.

First, we study the infinite-N limit in which the noise is
set to zero and the stochastic Langevin equation becomes
deterministic. After taking the continuum limit of the
Langevin equation, in which ¢(r,t) is assumed to vary
slowly with respect to r, we obtain a FKPP-type equation,

4000 = 3= 49(r0) (L Bo0) + (14 P(r) ).
(15

describing a growth-diffusion-saturation process. For sim-
plicity of presentation, we hereafter refer to Eq. (15) as a
FKPP equation. There are two fixed points of the dynamics,
an unstable solution ¢(r,#) =0 and a stable solution
o(r,t) = 3 The stable solution describes the equilibrium
state where every operator string is equally probable. An
initially localized operator configuration translates to an
initial condition for the FKPP-type equation, which is the
unstable solution everywhere away from the initial local
operator.

Similar to the FKPP equation, Eq. (15) admits a
traveling-wave solution ¢(r,t) = f(r —vt) when the

velocity v is larger than v, = 1/18¢*(1 + ¢%). Ahead of

the wave front, r > vt, the traveling wave decays expo-
nentially with r. For an initial operator profile that is
sufficiently localized, the wave front travels with the
minimal velocity ». and approaches the traveling-wave
solution at late times. A detailed analysis can be found in
Appendix C. Ahead of the wave front, the traveling wave
decays as exp (6(1 + ¢*)(t—r/v.)), consistent with a
sharp wave front. Therefore, the infinite-N limit of the
Brownian coupled cluster model exhibits a well-defined
Lyapunov exponent. The butterfly velocity and the
Lyapunov exponent are

= /184%(1 + &%),

A =6(1+ ). (16)

Within the framework described by Eq. (3), the infinite-N
limit has a broadening exponent p = 0.

The existence of a Lyapunov exponent in the infinite-N
limit is in sharp contrast with the random brickwork circuit
model result, where the diffusive-spreading nature of the
wave front is independent of the dimension of the on-site
Hilbert space. The reason for this difference is that the
brickwork model has no notion of few-body interactions
within an on-site cluster due to the use of Haar random
unitary matrices in the circuit. In Fig. 6(b), we explicitly
verify the sharp wave front by numerically solving Eq. (15).

B. Large-N expansion

Having established the purely exponential growth of the
squared commutator in the infinite-N limit, we now
investigate the behavior away from this limit. Comparing
with the infinite-NV limit, the large-N expansion affects
Eq. (15) in two significant Ways First, ¢(r, t), in principle,
only takes discrete values 0, - N N .. Therefore, in Eq. (15),
¢(r, 1) is set to zero when it is below 1/N. This hard cutoff
allows the traveling wave to propagate with velocity
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smaller than v., and as such, the cutoff is important for
obtaining the correction to the butterfly velocity. Second,
the noise term in the Langevin equation (14) becomes
important. The deterministic differential equation (15) is
augmented by a multiplicative noise term

f noise

- \/%(3 —2(r.1)) <%za%¢(r, N+(1+g)(r. t))ﬂ(r, f).
(17)

Because of its multiplicative nature, the noise term only
affects the physics when ¢(r, t) is nonzero, and therefore,
the noise does not violate the causal structure of the
noiseless FKPP equation. The effect of the noise is most
prominent near the forward edge of the wave, with its most
important effect being to make the position of the wave
front a random variable described by a biased random walk.
The resulting noise-averaged front spreads diffusively with
the diffusion constant D in addition to the drift vz(N)r.
Following an analysis of the original noisy FKPP equation
[52,53], which we review in Appendix C, we are able to
obtain the scaling of the vz(N) and D in the large-N limit,

1

ovg = vp(N) — vp(c0) ~ (log N2’

1
(logN)*

~

(18)

This result is remarkable, indicating that the system
approaches the infinite-N limit very slowly. It also shows
that at large but finite N, the broadening exponent becomes
p = 1 instead of 0.

In each realization of the noise, ¢(r,t) still grows
exponentially. But as v/2Dt grows larger than the width
of the traveling wave, the exponential growth of ¢(r, 1) is
smoothed out by the diffusive movement of the wave
front’s position, leading to a diffusive broadening of the
noise-averaged wave front. To quantitatively understand
the effect of the noise induced by finite N on the wave front,
we approximate the traveling-wave solution in a single
realization of the noise by the following phenomenological
model,

if r < wpt+ry+%logs

if r > vpt 4 ro + “£1og(N)

o Blw

h(r.1) =

M (t=(r=ro)/vs)  otherwise,

(19)

which accounts for the saturation behind the wave front and
the growth ahead of the wave front.

Using this simple model, the noise-averaged squared
commutator, which is proportional to the noise-averaged
¢(r,1), is the convolution of ¢(r, 1), with a Gaussian
distribution describing the diffusive motion,

1
VarDt

To simplify the notation, we introduce the dimensionless
units 7 = A;t, u = (1, /vg)r and & = [(DA,)/v3], with &
describing the strength of the noise. The result of the
convolution is

C(r.1) = / dAx§¢<r+ A, 1)e-I62)/600) (20

Clu,7) = eﬁ(%) +1
4 log(4/3) +2ér—z
_ _ pét—z
e ()
4 .. log(N) 4+ 2é7— ¢
+§eé erf( N ), (21)

where erf(x) is the error function (2//7) [} e~"dt, and
z=u— uy — 7 is the position in the traveling frame with
some unimportant offset u, determined by the initial
condition.

The next step is to analyze the behavior of Eq. (21) in
space-time. It exhibits a light-cone structure with a butterfly
velocity independent of & since the butterfly velocity is
entirely set by the cutoff approximation and does not
depend on the diffusion constant explicitly. This can be
seen from the fact that C(z, r) asymptotically approaches %
The space-time of the #-r plane can be approximately
divided into three regions based on the behavior of Eq. (21),
as illustrated in Fig. 2. The region near the wave front is the
diffusive region, where the last two terms of Eq. (21)
roughly cancel each other and C(u, 7) is dominated by the
single error function,

limC(z+2,7) = 1 +erf <— \/j_&) . ()

In the limit that \/4é7r < z < 7, C(r, 1) ~exp{—[(r — ro—
v,pt)%]/4Dt}, consistent with the universal form with the
broadening exponent p = 1. This result clearly demon-
strates that the wave front spreads diffusively. The growth
behavior near the wave front is dominated by the noise, and
the original Lyapunov exponents do not enter.

This case should be contrasted with the chaotic region
where the first two error functions are far from saturation,
but the last error function is already saturated. In this
region, the squared commutator is C(u,7) ~%e‘fr—z,
a pure growth form with a modified Lyapunov exponent
A1 (1 + DAy /v%). The size of this region scales as log N,
and the value of C in this region can be arbitrarily small in
the long-time limit since it is enclosed by two lines with a
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t T =uvpt
T e (w22
vor=|(v —
¢3°¢ \.// B »
& /
&
s
Qg 4 0 r=(vg+2=% t+v—Blog—N
& 1, %82
/ o,-\\c /
/ W .
S ¢
/ Perturbative region
/ /

r

FIG. 2. The scrambling “phase diagram” in space-time. An
overall unimportant spatial offset is omitted. The bold line marks
the wave front. The space-time is roughly divided into three
regions. In the diffusive region, the squared commutator exhibits
a diffusively broadening wave front, quantitatively different from
the exponential growth in the large-N limit. Away from the wave
front, there is a region where the squared commutator grows
exponentially with a modified Lyapunov exponent. Further ahead
of the wave front, the chaotic region gives way to the perturbative
region. As N increases, the chaotic region expands as indicated
by dashed arrows, and it eventually dominates the wave-front
behavior in the infinite-N limit.

bigger velocity v = vg(1 + 2£) than the butterfly velocity.
Therefore, it is difficult to extract this region from numeri-
cal data of finite-N spin chains.

There is also a third region, which we denoted as the
perturbative region, where z is the largest scale in the system.
In this case, the squared commutator is infinitesimally small

and behaves as [8/(3N)]\/[(é7)/(n2?)] exp(—z2/4&7).

C. Small-N limit

The large-N analysis presented in the last section cannot
be naively generalized to the case of small N. In the small-
N limit, the master equation (11) is still valid, but the
approach of approximating the master equation with the
Fokker-Planck equation (13) to derive the Langevin equa-
tion (14) is not.

Instead, we take a rather different approach by consid-
ering the probability of the operator string ending on a
specific site at a given time, similar to what was studied in
the random brickwork model. This probability p(r,f) is
defined as

o) =3 (w1 =30 Jono ). @3

{w} s>r

Note that the sum of p(r, t) is conserved.

From Eq. (11), one can derive the rate equation for
p(r,1) as

Oip(r.1) = =Ep(r.t) + Y 15 (0. Dpy(r—1.1)
1

+Z7’b+(lvl)pll(r+ L1), (24)
I

where a subindex on p indicates a restriction: The operator
string must end with that particular configuration. For
example, p; (r+ 1,1) is the probability of the operator
string withw =l on site r, w = l onsite r + 1, and w = 0
for all sites beyond r + 1.

Now, we use the approximation of local equilibrium,
which is crucially different from the large-N case, to relate
pi(r,t) and py(r,t) to p(r). The approximation of local
equilibrium states that all the local Pauli strings instantly
have the same probability to appear once the operator
front reaches there, as a result of small on-site d.o.f.
This idea suggests that p;(r, 1) = [3!/(4Y = 1)](Y)p(r. 1)
and py (r,1) = (3'/4")(N)[BN /(4N = 1)]p(r. 7). With this
approximation, we obtain a closed equation for p(r, 1),

ON 4N
Oip(r.t) = =&p(r.1) +?mgzp(r— 1.1)
ON

The conservation law of p(r,¢) determines that
E=[(9N)/8][(4N +1)/(4"¥ —1)]. In the continuum limit,
the equation reads

ON ON4N 41
Oup(rit) = =5 G0mp(rit) + Je v

Fop(r.1).  (26)

This result leads to

4Dt

L exp <_M> (27)

with

9N
/UB:?Q’

_ON4Y 41,
T leav 17

(28)

The average squared commutator is related to p(r, ) as

Clrt)=2 7 p(s.t)ds = 1 + erf (”5;_;) . (29

r

The final result is consistent with the Haar random circuit
result and has a broadening exponent p = 1.
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The above analysis relies on the local equilibrium
approximation, which holds in the small-N limit.
However, as N increases, the relaxation time f,,, increases
as well, scaling as log N. Consequently, Eq. (29) needs to
be modified to incorporate the delay in the relaxation. For
finite #,,., the operator on the rightmost site never reaches
full local equilibrium, and the conditional probability
pi(r,t)/p(r,t) is always biased towards small / compared
with the equilibrium value [3//(4" —1)](), with the
extreme case p,(r,t)/p(r,t) = &;,. Therefore, to incorpo-
rate the effect of finite #,,., we write p;(r, 1) as

r,t 3! N
o ):K4N_1(l>—51,1>(1‘€_A’/"°°)+51,1 .+ (30)

p(r.t)

which approaches the equilibrium distribution as #,. — 0
and approaches the extreme case as #;,. — 0. Here, At can
be interpreted as 1/ v, the timescale for operator expansion.

Based on Eq. (30), the summation of p; in Eq. (24) can be
written as

S 7 (0. 0pi(r = 1.1)
1

ON 4N 3\ , At 3
— —_ — e /tloc — 2 —_
KS 1 2)9(1 e ) +597|plr=L1).
(31)

Applying a similar argument to p;;, we obtain

> v (L Dpn(r+1,1)
1
ON 1 _ 7
- (e + St 1. (2

leading to modified v and D,

3 1

— _) gze_At/tloc s

Py — 1_ _At/tloc —
vp =wvp(l—e )+<2 N

- 3 1
D = D(l — e_At/tloc) + < + ) gze_At/tlnc‘ (33)

44N

The above analysis suggests that Eq. (28) overestimates
both v and D for N larger than 1, and the deviation
increases as N. We also note that Eq. (29) relies on the
assumption of local equilibrium and is, in general, not valid
at finite N. To study the operator dynamics and scrambling
at finite N, we directly simulate the master equation using
the matrix-product form, as discussed in the next section.
We see that, indeed, the results deviate from the prediction
in Eq. (28) as N increases and gradually crosses over to the
large-N results discussed in the last section.

D. Finite-N results from tensor network simulation

The large-N analysis, together with the small-N analysis,
convincingly demonstrates that, away from infinite N, the
behavior of the squared commutator is dominated by the
error function near the wave front, leading to a broadening
exponent p = 1. The effect of N is mostly encoded in the
butterfly velocity and the diffusion constant. But the N
dependence of v and of D obtained from the two limits are
not consistent. The small-N analysis suggests that both vy
and d increase with N, while the large-N analysis indicates
that v saturates to a certain value and D decreases with N.
Therefore, it is interesting to study how the two quantities
interpolate between the two limits, especially the diffusion
constant, which is expected to be nonmonotonic.

For this purpose, we directly simulate the master
equation (11) by representing the probability distribution
as a MPS with physical dimension N + 1. Comparing with
the usual TEBD method [54,55], simulating a stochastic
process with MPS (S-MPS) [56] is quite different. In
Appendix D, we discuss the difference and introduce
several useful techniques, including the canonical form
for S-MPS along with the truncation schemes that are
helpful for preserving the 1-norm of the S-MPS instead of
the 2-norm. Notably, the truncation scheme developed by
White et al. [57] can be directly applied here to exactly
preserve the 1-norm for all time.

Generally, S-MPS requires higher bond dimension to
capture local observables accurately compared with unitary
MPS with the same entanglement because the 1-norm
normalization appropriate to S-MPS tends to amplify
errors. Nevertheless, the entanglement entropy is still a
good measure for determining whether the probability
distribution can be represented efficiently as a MPS.
Initially, the probability distribution is a product state with
operator weight 1 in the center cluster of the system and
operator weight O elsewhere. In the early growth region
ahead of the light cone, the probability is not affected by the
stochastic evolution, and it continues to enjoy low entan-
glement. Inside the light cone, the probability distribution
reaches the steady state where every operator string is
equally probable and also admits a simple product state
representation. Therefore, the entanglement entropy only
accumulates around the wave front. In practice, we find that
the entanglement entropy never exceeds one bit, allowing
us to obtain the whole scrambling curve up to N = 10. The
resulting scrambling curve can be fit with the error function
with almost perfect quality to extract the butterfly velocity
and the diffusion constant. The fitting result is shown in
Appendix D.

The result of the butterfly velocity is shown in Fig. 3(a)
together with that obtained from small-N and large-N
analysis for g = 1. We find that at N = 1 (single spin in
the spin cluster), vz from S-MPS agrees with the small-N
analysis perfectly. As N increases, vy deviates from the
linear growth predicted at small N and smoothly connects
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FIG. 3. Comparison between the butterfly velocity vg (a) and

the wave-front diffusion constant D (b) obtained from MPS
simulation of the probability distribution to the small-N and
large-N analysis. When N is small, vz and D agree with the
small-N result, relying on the local equilibrium assumption. As N
increases, the approximation breaks down, and both vz and D
cross over to the large-N result.

to results from the large-N analysis. Figure 3(b) summa-
rizes the N dependence of the diffusion constant from the
different methods of analysis. The result from the S-MPS
indeed exhibits nonmonotonic behavior. At N =1, it
agrees with the small-N analysis. It peaks at N =3 and
drops as N increases, approaching the result from the large-
N analysis. Therefore, the numerical results agree with the
analyses above from both limits. In principle, for large
enough N, one should be able to identify the chaotic region.

E. Comparing with Haar random
brickwork circuit models

It is instructive to compare the Brownian circuit model
studied here with the previously studied random brickwork
circuit models. By designation, in the brickwork circuit, the
Haar random unitary matrices equilibrate the operator
string on the two sites it connects to immediately if there
is nontrivial weight. In this case, the analysis in Sec. III C
becomes exact; the entire region ahead of the wave front is
governed by the error function. On the other hand, in the
BCC model studied here, the operator string takes a finite
time to reach equilibrium even locally, the timescale being
about log N. The direct consequence is that, although near
the wave front the behavior of the squared commutator is
dominated by the error function, there is still a region in
space-time ahead of the wave front where C(r,t) grows
exponentially, as illustrated in Fig. 2. As N increases, this
chaotic region expands and finally dominates the wave
front in the infinite-N limit.

IV. IMPLICATIONS FOR LOCAL
HAMILTONIAN SYSTEMS

The analysis so far has given two results. First, there is a
random circuit model with a parameter N such that, at infinite
N, the model exhibits exponential growth of the squared
commutator with p = 0. Second, for any noninfinite N, the

dynamics of the model inevitably crosses over to a diffusively
broadened wave front with p = 1. It is quite plausible that
any sufficiently generic random circuit model with finite on-
site Hilbert space will also exhibit a diffusively broadened
wave front with p = 1 (with this already being established
for the BCC and the random brickwork circuit). The key
question is, what aspects of this analysis hold when the
couplings are not random in time? We now argue that p = 1
is generic for chaotic quantum many-body systemsind = 1
with finite local Hilbert space dimensions.

The argument has two thrusts. First, we directly numeri-
cally simulate a small-N Ising spin chain with conserved
energy. Combining large-scale numerical simulations with
anew analysis technique, our previous result is improved to
show that the system asymptotically approaches p = 1.
Second, based on previous work in energy-conserving
systems showing the existence of noiseless FKPP-type
equations governing the spreading of chaos at the large-N
and/or weak coupling model, we argue that quantum
fluctuations inevitably introduce multiplicative noise into
these equations. The physics of the noisy FKPP equation
then naturally leads to p = 1. For the latter argument, recall
that we were careful to distinguish the noise in the 1/N
corrected FKPP equation, which was a manifestation of
quantum fluctuations, from the space-time random cou-
plings in the microscopic Hamiltonian.

Although we focus on energy-conserving systems here,
we conjecture that our analysis also applies to Floquet
models where the couplings are not random in time, but
energy is not conserved because the Hamiltonian is time
dependent. In the case of conserved energy, it also makes
sense to talk about noninfinite-temperature states. We
briefly discuss how the story might be modified in this
case, with a focus on the physics of the chaos bound.

A. Wave-front broadening for small-NV
energy-conserving systems

According to the analysis in Sec. III B, for finite on-site
Hilbert space dimensions, each contour of the squared
commutator intersects with the chaotic region for a limited
amount of time and eventually merges into the diffusive
region. The chaotic regime would suppress wave-front
broadening, and the diffusive broadening is only clearly
visible when the diffusive regime is much larger than the
chaotic regime. This result suggests a strong finite-size
effect that will hinder extraction of the broadening exponent
p from fitting the squared commutator with the universal
growth form. This new insight obtained from analyzing the
BCC model is consistent with what we observed in our earlier
result [11] from MPO calculation of the squared commutator,
where the value of p drifts upwards along the contour and the
asymptotic value is not addressed.

To unambiguously analyze the broadening of the wave
front, we improve our numerical result by pushing both the
system size and the simulation time so that the wave front
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travels through about 200 sites. We measure the spatial
difference ox between two contours of the squared com-
mutator as a function of time. For the two contours we
choose, we check that a MPO with bond dimension y = 8
and one with a bond dimension y = 16 give identical
results. Then, assuming that the general form in Eq. (3)
applies, the asymptotic value of the slope is related to the
broadening exponent

dlogox  p

=—. 34
dlogt p+1 (34)

We perform this analysis on the mixed-field Ising chaotic
spin chain described by the Hamiltonian,

L L L
H= —Ei (JZZ,Z,+1 +thX,+hZZZ,>, (35)
0 r=1 r=1 r=1

where X, and Z, are local Pauli operators. The parameters
are set to J =1, h, =1.05, and h, = 0.5. The overall

normalization factor Ey = \/4J? + 2h2 + 2h?. The result
is shown in Fig. 4. The inset of Fig. 4(b) plots 6x with 7 on a
log-log plot. The slope gradually increases and approaches
1/2 in the large space-time limit, indicating that the wave
front broadens diffusively, p = 1, at the largest sizes and
times. The initial deviation may be due to the early-time
microscopic physics where C(r,t) behaves as #*/x!.
However, the fact that the deviation persists to an inter-
mediate scale suggests that there may exist a chaotic region
in the space-time causing a strong finite-size effect.
Extracting this region for local Hamiltonian systems is
an interesting future research direction.

(a) 250 (b)16

200

150 & 10
-~ 8
“
100 5 8
/ ; .
50 s

0 2

FIG. 4. The diffusive broadening wave front in the mixed-field
Ising chain. (a) The contour of logC(r,f) =-20 and
log C(r,t) = —45. The system size and the time limit allow
the front to travel through about 200 sites. The contours obtained
from MPO simulation with bond dimensions 8 and 16 are
identical, showing the excellent convergence of our method.
(b) The spatial distance dx between the two contours increases
with time, showing definitive broadening of the wave front. In the
inset, we plot ox with ¢ on a log-log plot. The slope of the curve
approaches 1/2, strong evidence of diffusive broadening, and the
broadening exponent p = 1.

(a) 250 (b)
12 e

200 T
2 10 L

i3
150 /
100 % 7/ . 2
'}Z ox ¢ i s 1
50 / 4 ' Yy=3T

FIG.5. The same figure as Fig. 4 but for a transverse-field Ising
model describing noninteracting fermions. The slope of the curve
on a log-log plot approaches 1/3, agreeing with exact results for
this model.

To further validate this method, the same analysis is
performed for the transverse-field Ising model (setting £, to
zero), which describes noninteracting fermions and has a
broadening exponent p = 1/2. The result is shown in
Fig. 5 where one can indeed see that the slope of the curve
on a log-log plot approaches 1/3.

B. Conjectured wave-front broadening
for large-N energy-conserving systems

Given that one generic energy-conserving model exhibits
p = 1, itis plausible that this is a universal behavior among
local chaotic Hamiltonians in one dimension. To bolster
this conjecture and to give a physical picture for it in one
limit, it is useful to return to the noiseless FKPP equation.
Indeed, a number of different models have been shown to
have operator growth described by a noiseless FKPP-type
equation, in some cases linearized and in some cases fully
nonlinear, at large N or weak coupling. What we argue is
that such equations should inevitably be augmented by a
noise term describing quantum fluctuations, which has the
form considered in this work, implying that this broad class
of large-N models also has p =1 at the largest sizes and
times. Assuming this is true, p = 1 then occurs at large and
small N and weak and strong coupling, so it is reasonable to
conjecture that it is a universal property of one-dimensional
chaotic systems.

The argument proceeds in three steps of increasing
specificity. The background assumptions are that one has
a closed dynamical equation governing ¢ o« C and some
parameter N that measures the local d.o.f. First, quantum
fluctuations are expected to add a noise term to any
approximate set of closed equations governing the dynam-
ics of the OTOCs of simple operators. This is because
operator growth is not deterministic in a quantum system
since a single Heisenberg operator is a superposition of
many different complex operator strings. Second, the
specific form of the noise term must be multiplicative
for local Hamiltonians, meaning proportional to some
power of ¢, because operator growth arises from the failed
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cancelation between U and U" due to the insertion of the
perturbation W. Operator growth never spontaneously
occurs far away from the current support of W(¢) precisely
because U and U' cancel in far away regions. Third, the

form of the multiplicative noise term should be /¢/N.
This form is necessary to ensure that the noise iS most
important when ¢ is small, which should be true since
larger values of ¢ are more self-averaging. This term also
guarantees that the associated Fokker-Planck equation has a
sensible 1/N expansion, i.e., with no unusual powers of
1/N appearing. Then, assuming the dynamical equation for
C includes saturation effects, we have all the components
necessary for the noisy FKPP analysis to apply.

One caveat here is that the analysis is framed in terms of
large-N models. While FKPP-type equations have also
been derived in weak coupling approximations, it is less
clear how to identify the precise role of the N parameter in
that case. One simple intuition is that N should arise
because the dynamics is effectively coarse grained over a
long length scale corresponding to the inelastic mean free
path. Identifying N ~ £, with £ some kind of inelastic mean
free path, would then predict butterfly velocity corrections
and a diffusion constant going like vy ~ 1/log?# and
D ~1/log* . It would be interesting to better understand
the situation at weak coupling.

C. Finite temperature

Here, we make some comments about the dynamics of
operator growth at noninfinite 7. The key point is that the
FKPP equation and its noisy counterpart make no particular
reference to temperature, so it is reasonable to suppose that
they could hold at noninfinite 7. The noiseless FKPP
equation has already been derived at finite 7 for a variety of
models; temperature only enters insofar as the parameters
in the FKPP equation are temperature dependent. Thus, the
results on the BCC from small to large N provide some
hints on the interplay between quantum fluctuation and
local scrambling.

The manifestation of this interplay is the distinction
between the diffusive region and the chaotic region in the
space-time structure of the OTOC. In the infinite-N limit,
quantum fluctuations are completely suppressed, and the
local scrambling time of about log N is infinite. In this case,
the chaotic region occupies the entire space-time. For large
but finite N, as soon as quantum fluctuations are present,
the wave front broadens diffusively, while the chaotic
region occurs ahead of the front. In the small-N limit,
with the local equilibrium assumption implying that the
local scrambling time is short, the diffusive region extends
to the entire space-time. This result is also consistent with
the analytical results on the random brickwork circuit.

Now, consider a local Hamiltonian system, say, a spin-
1/2 system. Assuming the mixed-field Ising behavior is
generic, we show that, at infinite temperature, the wave

front also broadens diffusively. But it is difficult to tell
whether there exists a chaotic region in addition to the
diffusive region ahead of the wave front due to the
microscopic details affecting the behavior of OTOC at
early times. On the other hand, at finite temperature and
assuming a separation of timescales, there is a thermally
regulated version of the OTOC whose growth rate is
bounded by the temperature [58]. If we assume the same
bound applies to the nonthermally regulated object [59], we
would have

dlogC
dt

Given this chaos bound, the diffusive broadening form

C(r,t) =exp <— M) (37)

< 2aT. (36)

4Dt

can only be valid up to a finite distance ahead of the front
because its growth rate diverges in the large r limit. Imposing
the chaos bound, we can estimate the maximum distance
from the wave front for which the diffusive behavior is valid.
The growth rate of the diffusive growth from is

vg (1 1 [r 2
—|-= — | -= . 38
2D <t vB) i <t UB) (38)
Demanding that y(r,t) < 2zT predicts that the diffusive
region can at most persist up to the space-time line given by

r(r.t) =

r 4D(2rT
r_ e
UBt UB

(39)

One might also imagine that even at infinite temperature,
the logarithmic derivative cannot be too large; for example,
it should be bounded by the size of the microscopic
couplings. In the BCC, this was indeed true at large N
where the crossover from the diffusive to chaotic region
was roughly where the rate of growth in the diffusive region
was approaching the Lyapunov rate (which itself was of
order the microscopic scale). A similar argument might also
apply when the system has a Lyapunov exponent less than
2zT. In any event, at finite 7, there may generically be a
region ahead of the wave front, at least at large but finite N
or weak coupling, where the Lyapunov exponent is still
visible. One issue is that we could run into the perturbative
region before any exponent can be extracted. More gen-
erally, one should carefully study the thermally regulated
commutators to see the precise consequences of the chaos
bound, something we will report on in forthcoming work.

V. CONCLUSION AND OUTLOOK

In this work, we studied a random time-dependent
Hamiltonian model with a large-N limit in which we could
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study in detail the way the infinite-N Lyapunov exponent
gave way to a diffusively broadened scrambling wave front.
Based on this model and an analysis of large-scale MPO
simulations in a time-independent Hamiltonian model, we
conjectured that the local operator growth wave front broad-
ens diffusively in generic local chaotic Hamiltonians with
finite local Hilbert space dimensions. We also showed how a
modified stochastic MPS formalism could be used to
simulate the operator dynamics for all times after averaging
over different Hamiltonian realizations in the random model.
A unifying element was the emergence of a noiseless FKPP
equation at infinite N and a corresponding noisy FKPP
equation at finite N. The noise was an effect of quantum
fluctuations, and it ensured that both large N and small N
exhibited p = 1 dynamics.

It is straightforward to extend the BCC model to any
dimension or, indeed, to any graph. In higher dimensions,
there will still be a Lyapunov exponent and sharp wave
front at infinite N. Finite-N corrections will then introduce
noise into the FKPP-type equation. The analog of the cutoff
on ¢ is an extended cutoff front where ¢» = 1/N. This front
will then experience some random dynamics with a
constant drift (the butterfly velocity) and noisy local
dynamics. Although the general long-distance structure
may be complex (e.g., in high dimensions the noise may be
relevant or irrelevant), one expects KPZ-like dynamics in
low dimensions. It will be interesting to analyze the higher-
dimensional case in more detail and possibly also study the
model on more general graphs.

In terms of future directions, we have several works in
progress. One is to consider the effect of a conserved U(1)
symmetry on the operator spreading. This effect has already
been studied in the random brickwork circuit [38,39], but
we anticipate new interesting physics associated with the
interplay with the large-N effects. Another direction is
a study of the entanglement dynamics in the model as a
function of N, as well as a study of the noise physics in a
large-N Hamiltonian model.
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APPENDIX A: DERIVATION OF THE
MASTER EQUATION OF THE
BROWNIAN COUPLED CLUSTER

In this Appendix, the derivation of the master equation
governing the operator dynamics of the Brownian coupled
cluster model is presented. Consider a chain of L clusters

with open boundary conditions where each cluster contains
N qubits. At every time step, all the qubits within a cluster
interact, and all the qubits between neighboring clusters
interact. The time evolution operator is stochastic and
obeys

U(t+dt) - U(1)

_ _N(L + 92(L - 1)) U(l‘)dl

L
— A Z Z Z G(f,aaf,b U(t)dBr,a.b.a,/}
r=1
N —

b>a=1 ap
) 1 L-1 N
—ig\/——A

r.a r+lb dBraba/}

o
r=1 a,b=1 a,f

Here, r labels the cluster, a, b are labels within a cluster,
and «a, S label Pauli matrices. The coupling constant g can
be used to dial the relative strength of the within-cluster and
between-cluster interactions. Some of the other factors
are chosen for convenience, and the sum over a, b is
unconstrained in the between-cluster term. The coefficient
A is determined by demanding that UU' = 1 on average,
leading to

(A1)

Given an operator W, the Heisenberg operator is
W(t) = UWUT. We may expand W(¢) in a complete basis
of operators,

(A2)

=> c(S)S
S

where S is a product of cluster operators S,, with each S,
a product of Pauli operators within the cluster. The
coefficients ¢(S) can be determined from

c(S) = 2NL tr(SW(r)). (A3)
We study the average operator probabilities,
h(S) = ¢(S)? (A4)

To determine the equation of motion of 4(S), we must
compute dh(S). There are two kinds of terms, depending
on whether dB or dB appears in the same trace or not.
When they appear in the same trace, we find
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dh, ==2N(L+ ¢ (L - 1))hdr+2A2(

S g, <S>>hdr

ra<b,af

N-1 ~a.
+292WA2( Z qr"[;b(S))hdt,

r.a<b.afp

where q‘r’"gb = +1 depending on whether o-f;‘adf p COm-

~(l

mutes or anticommutes with S and g, , = 1 depending

on whether a,aaﬁ .1, commutes or anticommutes with S.

Let w, denote the total weight of & on site r,
w, =0,...,N. The sums above can be written in terms
of the w,. The first sum is

(AS)

a, - N — r)(N_ r_1
Z qr,f,b:]6;( v 2 v )

ra<b.afp

If S has a nonzero Pauli on spin r, a or r, b, then
D oap q:’f‘b = 0; otherwise it is 16. Thus, we need to count

the number of pairs a, b, which are both the identity
operator. This number is {[(N —w,)(N —w,—1)]/2}.
Similarly, the second sum is

> q“ﬁb—mZ(N W) (N =wpp1).

ra<b.ap r=1

(A6)

Putting everything together gives

dhy = =2N(L + ¢*(L -

L_IZ(N —w,)(N —w, — 1)hdt

1))hdt

2
g
+ Z(N —w,)(N = w,.1)hdt.

When the dB or dB factors appear in different traces,
then we get terms connecting 4(S) to h(66S). These terms
are

The total on-site contributions are thus

1

th,on—site = 2(7_1

Zw (N —w,)[2h(W)dt + 6h(w + e,)dt] +

L
d Zzzqrabl qrab)h(draaebs)dt
r:l <b ap
g 5 b S 8
16N2 T @rap(1=Tyap) (o} 6’,+1,b8)dt.

(A7)

To proceed further, let us assume that 4 depends only on
the total weight w, on site r and not on the particular
operator S. The dh, terms already manifestly depend just
on the total weight. The dh, terms connect probabilities for
different weights. The dh; term can be written

L
2N = 1w, — ]
dh, = hdt
X e
A
_ﬁZ(ZNW* —ww)hdt+r<r. (A8)
]

To compute the dh, terms, we can consider a particular
operator of the desired weight. Consider, first, the on-site
terms. Suppose S, = o7} ,...07,, I,,, 11...1,y. Now, con-
sider all a‘;“ao/ib. If 66 commutes with S, then the dh,
contribution vanishes. If 66 anticommutes with S, then the
q(1 — q) factor is —2. If S, is the identity on one of a or b,
say b, then the anticommuting terms are ¢*¢” and 6%6”. Of
these eight, two keep the weight the same and six increase
the weight by 1. There are w,(N — w,) choices of a, b in
this class. The contribution is thus

2w, (N —w,)[2h(w)dt + 6h(w + e,)dt]. (A9)
Here, e, = (0, ...
to weight w,..

If S, is a nonidentity on both a and b, then the
anticommuting terms are (y or z) (/ or x) and (I or x)
(v or z). Of these eight, four keep the weight the same and
four decrease the weight by 1. There are w,.(w, — 1)/2 such
choices of a, b. The total contribution from these terms
is thus

,0,1,,0,...,0) is a unit vector that adds 1

2= Dy wde + ah(w—e)dd. (A10)

4h(w)dt + 4h(w —e,)d1].
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For the non—on-site contributions, we choose S to be an
operator with w, ¢*s on cluster r and w, | ¢*s on cluster
r+ 1. If S is the identity on r, a, then the anticommuting
operators are ¢ ,0,,, , and o} ,0%, ,. Of these eight, two
keep w, the same and two increase w, by 1. There are
(N —w,)w,, such a, b. The contribution is

=2(N = w,)w,1[2h(w)dt + 6h(w + e,)df].  (All)
Similarly, if S is the identity on r + 1, b, then by the same
logic, we find a contribution of

2w, (N = w,1)[2h(w)dt + 6h(W + e, )dt]. (A12)
Finally, suppose S is not the identity on both r, a and
r + 1, b. Then, the anticommuting operators are (y or z) (/
or x) and (/ or x) (y or z). Of these eight, four leave both
weights unchanged, two decrease weight w, by 1, and two
decrease weight w, | by 1. There are w,w,. | such a, b. The
contribution is

=2w,w, 1 [4h(w)dt + 2h(w — e, |)dt + 2h(w —e,)d1].
(A13)

The total non—on-site contribution is thus

th,non—on—sitc = % ZNW/ (Zh(W) + 6/’l(W + e,))
)

—ww,(6h(w+e,)—2h(w—e,))+r<r.
(A14)

By combining Eqgs. (AS8), (Al1), and (A14), we obtain
the complete equation of motion for (w) in the case where
h(S) depends only on the weights w, of P at the different
clusters. It is, however, convenient to take one more step
and include degeneracy factors.

The number of operators with weights w,. is

o -1(2)

r

(A15)

While h(w) is the probability of a single operator with
weights w,, the object /1(w), defined by

h(w) = D(w)h(w), (A16)
is the total probability of all operators with weight w,, i.e.,
the probability of weights w,.

The equation of motion for 4 can be obtained from that
of h. The dh, terms immediately translate to dh, terms
since the weights are the same on both sides of the
equation. However, the dh, must by modified. We replace
each h(w) with 2(w)/D(w). Then, the various rates are
modified by ratios of D(w) to D(w =+ e,.). These ratios are

D(w) o owet 1 (A17)
D(W+er) 3(N_Wr)
and
D(w) _ 3(N-w,+1) (A18)
D(W_ er) Wy '
Thus, we have
dhy  E~=2[(2N = 1)w, —w?] -
_]:Z r— Tl
dr & N-1
g .
- 2Nwy—ww,)h+r<r,
N =
(r.r')
dilZ on-site - Wy 7 Wr""1 7
: = h h
di ;(N—l)[ TN, Ve
L
wo(w,—1) - 3(N—w,+1)-
h h(w—e,)],
(A19)
and

dilz_non-on—site :g—ZZ?)(N—W + I)W ]jl(W— e )
dt 2N & r . r

+Nwoh+wy(w, +1)h(w+e,)+r<r.
(A20)

Combining everything together, we obtain the master
equation of & presented in Eq. (11) in the main text.

APPENDIX B: MORE DETAILS ON
THE BROWNIAN COUPLED CLUSTER
IN THE INFINITE-N LIMIT

In this Appendix, some additional details on the infinite-
N noiseless limit of the BCC model are presented. The
continuum limit of Eq. (14) resembles a FKPP-type partial
differential equation, Eq. (15).

To justify the continuum approximation, here we directly
study the original discrete ordinary differential equation on
the lattice. Starting with

2

Op(r,1) =3 <¢(r, 1)+ % (p(r—11)+¢(r+1, t))) ,
(B1)

we look for the traveling-wave solution exp(A(7 — r/v)) in

the small ¢ limit, so the nonlinearity can be safely ignored.
The relation between the velocity v and the growth rate is
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FIG. 6. (a) The difference of vz and 4; between the discrete

infinite-N BCC and the continuum approximation. (b) Direct
simulation of the discrete model by numerically solving the
differential equation (B1). The spatial distance between two
contours of log C(r, ) saturates in the late time, showing that the
front is sharp. On a log-log plot, the slope of the curve decreases
to zero. This result is in sharp contrast to the local Hamiltonian
systems, where the slope increases to 1/2 and 1/3 for the chaotic
case and noninteracting case, respectively, as shown in Figs. 4
and 5.

A=3+3¢ cosh%. (B2)
The minimum velocity for the positive growth rate is the
butterfly velocity vg, and the corresponding growth rate is
the Lyapunov exponent. In Fig. 6(a), we plot vz and 1; as a
function of g and compare them with the analytical result
from the continuum limit. Overall, the result from the
continuum approximation tracks that from the discrete
model. The main difference occurs in the limit that
g < 1: Analyzing Eq. (B2) shows that

3
g~ ———————,
B 2log gl + 1
3
Ay ~3— B3
L 2loglgl +1 (B3)

while the continuum approximation predicts that vg ~
3v/2|g| and A ~6(1 + ¢2).

Furthermore, we directly simulate the discrete nonlinear
ordinary differential equation. The result is shown in
Fig. 6(b). As time increases, the spatial difference between
two contours of log C(r, 1) saturates. This result explicitly
verifies the sharp wave front and the exponential growth of
the squared commutator.

APPENDIX C: BUTTERFLY VELOCITY
AND DIFFUSION CONSTANT FROM
THE NOISY FKPP EQUATION

In this Appendix, we discuss how to obtain Eq. (18) for
large but finite-N BCC by analyzing Eq. (15) with the hard-
cutoff approximation and the noise term Eq. (17). This
material is essentially a review of the analysis of Brunet

et al. [52,53]. To simplify the notation, we rescale ¢, r, and
t as follows:

4
45_)545’

r—/200+¢)/¢,

t—3(1 + ¢t
After the rescaling, Eq. (15) becomes
Oip=(1-¢) (¢ + ).

and the noise term becomes

2424 1

(39)1/2 55 2= )2+ dn(r.). (C3)

fnoise =

In this section, we mainly focus on Egs. (C2) and (C3).

1. Noiseless case

We first discuss the case without noise, corresponding to
the infinite-N limit of the BCC model. Equation (C2) is
similar to the Fisher-KPP equation,

b = 2+ d(1 - ), (C4)
describing a growth-saturation process occurring in a wide
class of systems, including population dynamics, combus-
tion, and reaction-diffusion systems. One of the interesting
features of the Fisher-KPP equation is that it admits
traveling-wave solutions ¢(r, t) = w(r — vt) that the initial
configurations converge to [60]. We expect that Eq. (C2)
obtained from unitary dynamics also falls into the FKPP
universality class because the linearized version of Eq. (C2)
is the linearized Fisher-KPP equation and because Eq. (C2)
also has saturation physics so that ¢p =1 is a stable
solution.

For the Fisher-KPP equation, given an initial condition
¢(r,0) that is sufficiently well localized, it asymptotically
approaches the traveling-wave solution,

lime(z + m(1). 1) = w, (2),

im0 _ (C5)
t—oo f
where m(1) is the position of the wave front defined by the
equation ¢(m(t), t) = constant.

Traveling waves.—The first question to answer is, what
is the shape of the traveling-wave solution w,(z) for
different velocities? It can be determined from the follow-
ing equation,

—v0.w(z) = (O2w(z) + w(z))(1 - w(z)). (C6)
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with the boundary conditions w(oo) — 0 and w(—c0) — 1.
In the region that z > 0 and w(z) < 1, the shape can be
understood from the linearized equation. For each velocity,
there are two modes e 7% and e~%/7, where y + 1 /y = v. At
the critical velocity v, =2, y =1/y =1, and the two
modes are ze™® and ze *. On the level of the linear
equation, for a given velocity, any combination of the
two modes is valid. The effect of the nonlinearity can be
regarded as setting a boundary condition for the linearized
equation, say, at z = 0,

(€7)

where a(v) and f(v) are tied to each other based on the
solution to the full nonlinear equation. The above boundary
condition forces both decay modes to appear, with the
slower decaying mode dominating the behavior of w(z) in
the large-z limit. In the case where v < 2, y becomes
complex, and both modes can appear as long as the
combination is real. Therefore, we have

ey <1 if v>2
w(z) ~ ] ze™”* ifv=2 (C8)
ae 4+ a‘et if v <2.

In the current context, ¢ is interpreted as the operator
weight and is always positive. Therefore, the last case
where w(z) oscillates is physically irrelevant, setting the
minimal physical velocity to v. = 2. However, the last case
becomes important for the noisy case discussed below.
Approaching the traveling waves.—Great efforts have
been made to understand the relationship between the
initial configuration and the final traveling wave it asymp-
totes to. It is found that for an initial perturbation which is
sufficiently localized, ¢(r,t) approaches the critical trav-
eling wave in the long time limit. This result can be
understood from the linearized equation,
0, = 02 + . (C9)
Using Green’s function, we can write down the general
solution as

=2

[T

e

NN

where ¢(r/,0) is given by the initial condition. Starting
with ¢(r,0) = e, we obtain

¢@o:/ﬁﬂ (#,0,  (CI0)

Le1=5)75 if p <22
limg(vt 4 z,1) ~{ V7 (C11)

[—oo e(l—/ler/Iz)t—/lz if v> 2.

The velocity of the wave front is determined by choosing v
to cancel the ¢t dependence in the exponent so that ¢
approaches a constant in the traveling frame. As a result,

2, if A>1 c1
Vp =
PUla+l ifa<l (€12)
This result demonstrates that an initial, sufficiently local-
ized configuration travels with the minimal velocity
v. = 2; i.e., the leading term of the wave-front position
m(t) is 2t. The asymptotic form is

P(v.t+z,1) ~\/Lie_z. (C13)

From this result, one can also obtain the subleading term of
m(t) by canceling the 1/+/7 prefactor, which gives rise to
m(t) ~ 2t —tlog(r). Then, ¢p(m(t) +z.1) — e

The linearized equation gives the right velocity.
However, the subleading term in m(z) is not correct. The
nonlinearity forces the waveform at the critical velocity to
decay like ze™¢, more slowly than the e¢~¢ form obtained
above. To take into account the nonlinear effects, we note
that 0,¢(r, t) is also a solution to the linearized equation,
and we can combine 0,¢(r,t) and ¢(r, ) to obtain a new
solution ¢ that minimizes the effect of the nonlinear term
¢(r,t)%. By expanding Eq. (C13) to the next order, one
finds that

Doct+2.0) = (§+0,¢) = 55e, (C14)

which indeed has the corrected asymptotic behavior as a
function of z. We can again obtain the subleading term in
m(t) by canceling the time dependence,

m(t) ~2t—%10g(t). (C15)
The second term was found by Bramson [60] and turns out
to be independent of the specific shape of the initial
condition as long as it is sufficiently localized.

To incorporate a simple saturation mechanism into the
linearized equations and enforce the asymptotic shape of
the traveling-wave solution, Berestycki ef al. [61] recently
solved the linearized equation with the following moving
boundary condition,

d(m(1),1) = a,

in order to obtain the vanishing correction of m(¢). They
found that

9,¢(m(1),1) = p.  (C16)

m(t)~2t—§10g(t)—ﬁ+---.

: v (C17)
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The same correction has been identified in other models
and is therefore expected to be universal, applying to the
original Fisher-KPP equation and Eq. (C2) as well.

2. Noisy case

The above picture applies to the infinite-N limit of the
BCC model. As stated in the main text, 1/N expansion
away from the limit has two main effects. First, we need the
cutoff ¢(r,t) to O whenever it is below 1/N; second, we
need to include the noise term Eq. (C3) in Eq. (C2).

Cutoff velocity.—We first discuss the effect of the cutoff
without considering the noise. As discussed above, due to
the positivity of ¢, the velocity of the traveling wave can
never go below v. = 2. However, with the cutoff, the part
of ¢ below 1/N is set to zero by hand, and a smaller
velocity becomes possible. The scaling behavior of the
velocity as a function N can be obtained following
Ref. [52]. When v < 2, the tail of the traveling wave
acquires an oscillating part with a long wavelength in
addition to the decay,

w(z) ~ sin(y;z)e 7%, (C18)
with y; and yy the real and imaginary parts of y, respec-
tively. Even with the cutoff, w(z) should still remain
positive until it decays to 1/N. This case imposes a
constraint on the wavelength of the oscillation part, which
is determined by y;, requiring y; < [z/(log N)]. In conse-
quence, v > v, — [7*/(log?N)]. Therefore, the velocity
correction scales as 1/log? N, which is consistent with
the numerical result presented in the inset of Fig. 3(a).

To quantify the above picture, and especially to under-
stand how different initial conditions approach the asymp-
totic traveling wave with the cutoff, Brunet et al. [52]
introduced a third boundary condition ¢(m(t) + L,t) =0,
with L ~log N, to the linearized equation in addition to
Eq. (C16). This new boundary condition is to account for
the hard cutoff occurring at the leading edge of the traveling
wave. They also set a =0 for simplicity, which seems
unnatural but does not affect the shape of the traveling wave
in the large-z limit. In the following, we repeat their
analysis in some detail. With this setup, it is convenient
to go to the traveling frame by performing the substitution
¢(r, 1) = w(r —m(t),1). Then, the boundary conditions
are

Aw = m(1)0.w + O*w +w,
w(0,7) =0, w(L, 1) =0,

O.w(0,1) = 1. (C19)

We first approximate ri1(#) as its asymptotic value », which
is to be determined. By setting the time derivative of m to

zero, the boundary conditions uniquely determine the form
of the asymptotic traveling wave,

L
w(z):—sinﬂzexp ~22). (C20)
z L 2

with the velocity v = 24/1 — (#%/L?).

Understanding the asymptotic form, we restore (t) in
the equation and study the full dynamics of w(z, 7). To the
leading order of L, w(z, r) can be written as a superposition
of eigenmodes,

L . nx
w(z, 1) = Za,,;smfz

X exp <—z +Z—z(1 —n?)t+ vt — m(t)), (C21)

where a, is obtained from Fourier expanding the initial
condition, and m(t) is tuned so that O,w(0, ) = 0 for all
time. All modes with n > 1 decay exponentially. In the
long-time limit, since m(f) — vt, we obtain

L
w(t = 00,2) = a —sin%exp (—=z+vt—mf(z)),
n

_27r

=_— C22
= (€22)

a w(0, z) exp(z) sin%dz.

Therefore,

m(t) — vt =loga, (C23)

in order to match the boundary condition. In other words,
the relaxation to the asymptotic traveling wave causes an
additional shift to the wave-front position.

Noise-induced diffusive motion.—Now, let us analyze
the role of the noise term on top of the hard cutoff. Based on
Eq. (C3), the noise scales as y/¢/N and therefore is most
prominent at the leading edge of the traveling wave where
¢ ~ (1/N). We argue that the wave front obeys

m(t) ~ vt + dvt + X, (C24)

where X is a random diffusive process with (X) = 0 and
(X?) =2Dt.

Different from the deterministic model studied above, in
the actual noisy equation, it is possible that ¢(r, ) is on the
order of 1/N even when z > L. Let L + 6 denote the
maximal distance that w(r, 1) # 0, where § is a random
variable. Then, in the region that L < z < L + 6, the noise
term scales as ¢°/N, significantly larger than w(z, t) itself,
which scales as 1/N. The wave-front shift caused by the
noise in a unit time is
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L
2
Az(8) ~log (l + L—Z / etk sin%dz)

L-6

o0
~log (1 + L3)

Based on a phenomenological reaction-diffusion model,
Brunet et al. [53] obtained the probability for a large 6 to
appear in a unit time as

(C25)

p(8) ~ed, (C26)

decaying with the natural decay constant in the system.
Then, the additional velocity correction and the diffusion
constant can be calculated straightforwardly as

.
D~ /(Az(é))zp(é)dé N %

50~ / AZ(8)p(8)d5 ~ =
(C27)

This suggests that the system approaches its infinite-N limit
extremely slowly.

APPENDIX D: S-MPS SIMULATION
OF STOCHASTIC PROCESSES

In this Appendix, we present more details on using
matrix product state techniques to simulate the master
equation, Eq. (11).

1. Matrix product state for simulating
a stochastic process

The key idea of S-MPS is to represent a probability
distribution in a matrix product form and update the MPS
based on the master equation for the probability distribu-
tion. A probability distribution p (viewed as a diagonal
density matrix) and a quantum state yw have similar
structures, both containing L indices with dimension d,
where L is the number of sites and d is the number of
physical states per site. But the normalization is different.
The normalization of a quantum state is (w|y) =1, a
2-norm condition, while the normalization of a probability
distribution is Tr(p) = 1, a 1-norm condition. Furthermore,
each element of p must be positive. Most conventional
MPS techniques, such as the canonical form, are built
around the 2-norm structure. They can still be applied to a
probability distribution p for small system sizes, but
numerical stability issues are encountered in larger systems.
One reason is that the 1-norm is much larger than 1 if the
2-norm is kept to 1. Therefore, conventional MPS tech-
niques need modification for simulating large-scale sto-
chastic processes.

Decomposition.—The first goal is to decompose a
probability into a matrix product form that facilitates the
calculation of local observables, similar to the infamous
canonical form of matrix product states. To realize this
goal, consider a probability distribution p%, where «a
represents the state in the first site and f§ represents the
rest. The system is assumed to consist of L sites with open
boundary conditions. In the following, we use superscripts
for physical d.o.f. and subscripts for aux111ary indices.

Step 1: Break p into two pieces, p( I m and /)( ) SO that

Zmp?g,mﬂ/(},),m = p®. Here, (1) and (r) stand for left and

right, as we have in mind a sweeping procedure. This can
be achieved using the usual Schmidt decomposition or a
LQ decomposition.

Step 2: Do a local basis change on the auxiliary
dimension so that Zap = 0,,1. This change can be
achieved by performing a LQ decomposition on Zap

Z’o((xl),m = Zlém’,lQm’mv

where Q is unitary and 4 is a number. Then, p

),m>

(D1)

,, and pﬂ

are updated as follows,

(1 ,m -3 Zﬂ mm’
p(r)ﬁm - lemm/pfr)ﬁm’

Now, we factor out the first tensor p(1)% = Py 1o yield

(D2)

the first matrix in the matrix product form.

Step 3: The goal is to factor out the next tensor from
pfr)!m. First, rewrite it as pf,‘ff’ by dropping the (r) label and
breaking f into « and f', with a representing the state on
site 2 and /' the states on sites 3 to L. The label m; indicates
that this auxiliary index is associated with the first link in
the MPS. Because of the previous steps, pf;ﬂ] ’:1 is the
reduced probability distribution for sites 2 to L. We again
decompose it into Emp‘(‘l),mhmp/(}r)‘m by, say, a SVD. Keep
in mind that the auxiliary bond m now has dimension d?
since the combined index am; has dimension d>.

Step 4 (optional): Perform a local basis change on the
auxiliary space m so that p%’ml:l.m =0 for m > d. This
change can be achieved by performing a LQ on p?l).nq:km
and using the unitary matrix Q to update the tensors as
follows,

Zpa )m = 1QOm’
Z'D 0),m;>1,m' mm’
r),ml,m ZQmmpﬂ

)omy=1,m

m1>1m

(D3)
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This step is not necessary to bring the probability distri-
bution into the S-MPS canonical form, but it is important
for the purpose of truncation as discussed later.

Step 5: Similar to step 2, we perform another local basis
change to make sure that Zaﬂ = §,,1 by doing a
LQ decomposition on Zal) and updating the

I),m;=1,m
l),m=1,m
tensors p(l),ml,m and pfrm as in Eq. (D2).

Step 6: Iterate step 3 through step 5 until site L is
reached. The whole procedure is called a right sweep, and it
produces the 1-norm right canonical form of S-MPS. One
could equally well start with site L and perform a left sweep
by changing the LQ decomposition to a QR decomposition
to obtain the left canonical form.

Local observables: To measure a local observable at site
i, one can first right sweep from site 1 to i — 1 and then left
sweep from site L to site i+ 1. Then, the probability
distribution is in the so-called mixed canonical form,

PP = Z/)mpmm -

mm’

(D4)

where y is the index for the states at site i, « is for the states
to the left of i, and f is for the states to the right of i. By
construction, pﬁ.l is the reduced probability distribution for
site 1, Zaﬂp“m , from which the calculation of local
observables is straightforward. Thus, we have realized
the goal sketched in Fig. 7, where the calculation of local
observables is reduced to manipulating local data.

Simulating the master equation and truncation.—To
simulate a local master equation such as Eq. (11), we view
the generator of the stochastic evolution as a non-Hermitian
Hamiltonian, which explicitly conserves 1-norm. Then, we
can roughly follow the usual time-evolving block decima-
tion (TEBD) steps to update the S-MPS after a short time
step but with the sweeping procedures replaced by those
described in the last section.

Similar to TEBD, the bond dimension of the S-MPS
typically grows rapidly with time, and truncation is always
necessary. Consider the situation after updating the tensors
at site i and site i + 1. The probability distribution is in the
following form,

Iz

EEEEE- .

FIG.7. Procedures for measuring local observables in a MPS in
canonical form (top) and a S-MPS in canonical form (bottom).

P 7B —

me,pryn‘,% P (D5)

where y; and y, represent the states on site i and i + 1,
respectively, and, by construction, pi{* is the reduced
probability distribution of site i and site i + 1. Assuming
that the stochastic simulation starts with a S-MPS with
bond dimension y, the dimension of the middle matrix
puls is yd; i.e., the bond dimension at the bond linking
sites i and i + 1 is yd. The goal is to reduce it back to y by
breaking p}i’% into two pieces, pli » and pl2 ,, , where the
dimension of m is y. Then, one can continue to right sweep
or left sweep to update the next bond.

There are two comparable methods to achieve this. The
most straightforward method is to perform a SVD on p,y,if,%,
by regarding it as a matrix with dimension yd. After
keeping only the leading y singular values, the bond
dimension is reduced back to y.

The second method is one developed by White et al. in a
recent paper studying density matrix dynamics. They first
break pli7% into two pieces and perform a single right- or
left-sweeping step (step 3 to step 5) on the left or right

piece, so pli7% is expressed as

pZﬂlz}/"% = me/QOm Py m,? (D6)

mm’

with the propertles that pf', ., = 0 (due to step 4 in the last
section), Zyl pl.’m = 0,, 1, and similarly for P;f’,l' In general,
the rank of the matrix Q is yd.

As they pointed out, given Egs. (D5) and (D6), the right
lower (y — 1)d x (y — 1)d section of Q does not affect the
reduced probability distribution of site 1 to site i, and site
i+ 1 to site L, precisely due to step 4 in the sweeping
procedure. This result gives some freedom to manipulate
that section of the matrix in order to reduce the rank of Q
without affecting local observables (they were concerned
with developing a truncation scheme that respects local
observables). For example, if one performs a SVD on that
section and keeps the leading y — 2d singular values, then
the resulting Q matrix would have rank y, as required. One
could also follow White et al. and reduce the rank while
minimizing the error occurring in the correlation functions
between the left part (1 ~ i) and the right part (i + 1 ~ L) of
the system.

Comparing the two methods, the second one is more
appealing since a truncation step at a particular bond does
not change the reduced probability distribution of the left
and right parts of the system. Furthermore, the truncation
scheme automatically preserves conserved quantities, like
the 1-norm or the total amount of some conserved charge,
for all time regardless of the bond dimension. However, the
accuracy of the time dependence of local quantities still
depends on the bond dimension. After one sweeps through
the system and performs the truncation on each bond, only
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FIG. 8. (a) Up to N = 10 spins in each cluster and L = 200

clusters, the numerical data for the squared commutator converge
excellently with the bond dimension of the S-MPS. Bond
dimension y =32 and bond dimension y = 48 give rise to
almost identical results for all timescales. This result allows us
to access the entire scrambling behavior from early growth to
late-time saturation. (b) Near the wave front, C(r,t) perfectly
agrees with the fitting function Cy;(r,1) =1 +erf((vgt—r—ry)/

V4Dr) for all N.

local observables with support on up to two neighboring
sites remain unaffected. Furthermore, as time increases in
the simulation, the errors made in observables with larger
support could feed back to the dynamics of the two-site
observables.

In practice, for our goal of calculating the squared
commutator from the master equation, Eq. (11), we find
that the results obtained from these two truncation schemes
are similar, and the first scheme is 2 to 3 times faster since it
requires fewer steps of SVD.

2. Applying S-MPS to the master equation
of the Brownian couple cluster

We apply the technique described above to simulate the
master equation, Eq. (11). We first check the convergence
of the resulting squared commutator with the bond dimen-
sion of the S-MPS. As shown in Fig. 8, a S-MPS with bond
dimension y = 32 already produces converged results for
all timescales for N = 10 spins within a single cluster and a
total of L = 200 clusters. This result allows us to access
both early growth and late-time saturation of scrambling in
the BCC. We then fit C(r, 1) in the region near the wave

front with an error function 1 + erf[(r — vgt — ry)/V/4D1]
to extract the butterfly velocity vz and the diffusion
constant D. The fitting quality is shown in Fig. 8(b).
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