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Kinetic Turbulence in Astrophysical Plasmas: Waves and/or Structures?
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The question of the relative importance of coherent structures and waves has for a long time attracted a
great deal of interest in astrophysical plasma turbulence research, with a more recent focus on kinetic scale
dynamics. Here we utilize high-resolution observational and simulation data to investigate the nature of waves
and structures emerging in a weakly collisional, turbulent kinetic plasma. Observational results are based on
in situ solar wind measurements from the Cluster and Magnetospheric Multiscale (MMS) spacecraft, and the
simulation results are obtained from an externally driven, three-dimensional fully kinetic simulation. Using a
set of novel diagnostic measures, we show that both the large-amplitude structures and the lower-amplitude
background fluctuations preserve linear features of kinetic Alfvén waves to order unity. This quantitative
evidence suggests that the kinetic turbulence cannot be described as a mixture of mutually exclusive waves
and structures but may instead be pictured as an ensemble of localized, anisotropic wave packets or “eddies”
of varying amplitudes, which preserve certain linear wave properties during their nonlinear evolution.
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I. INTRODUCTION

A wide range of turbulent systems, in different areas of
physics, supports linear waves [1-7]. Prominent examples
are represented by magnetized plasmas [1,8,9], rotating
and/or stably stratified fluids [2,7]. Waves in turbulent
environments are typically supported by a mean field, such
as a mean magnetic field in a plasma or a mean rotation and
gravity field in geophysical flows [10]. Not only does the
mean field introduce waves, it also renders the turbulence
inherently anisotropic and sets the stage for a competition
between linear and nonlinear dynamics, the outcome
of which is presently the subject of ongoing debates
[2,11-16]. Alongside wavelike phenomena, turbulence
exhibits striking features of self-organization in the form
of coherent structures, such as electric current sheets in
magnetized plasmas or columnar vortices in rotating fluids
[11,17-25]. Although these intense structures are believed
to significantly impact the turbulence statistics and the rate
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of energy dissipation [21,22,25-28], their relation to wave
dynamics remains poorly understood.

A series of compelling questions emerge in the above
context such as, which of the two aspects, structures or
waves, 18 more essential and/or fundamental to the turbu-
lent dynamics? And also, are waves and structures mostly
exclusive to each other and simply “coexist” in the
turbulence or is there a deeper connection between
the two? Here, we address these open questions in the
context of kinetic-scale plasma turbulence, where the
topic of waves and structures is hotly debated at present
[15,23,25,26,28-36]. In the following, we explain the
astrophysical background and motivation for the present
study. Our general approach and the qualitative conclusions
drawn from it are, however, not exclusively limited to
kinetic-scale plasma turbulence and could be relevant to a
broad range of turbulent regimes and environments where
waves and structures can be identified.

A. Astrophysical background and motivation

In magnetized astrophysical and space plasmas, the role
of waves in turbulence has been widely debated since the
early days of magnetohydrodynamic (MHD) turbulence
research when the first models based on nonlinearly
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interacting Alfvén waves were proposed [37,38]. Soon
after, in situ spacecraft measurements detected Alfvén wave
signatures in the turbulent solar wind [39]. Observations
and models were followed by pioneering numerical studies
(see, e.g., Refs. [40-42]). These simulations revealed the
development of intense electric current sheets, which are
now believed to play a key role in the (Ohmic) dissipation
of MHD turbulence [20,21,43]. It also soon became clear
that magnetized plasma turbulence is inherently aniso-
tropic, as evidenced by the preferential cascade of energy to
small perpendicular scales with respect to the direction of
the mean magnetic field [44—46].

Motivated by the observational and numerical evidence
available at the time, Goldreich and Sridhar [47] devised
their celebrated model of anisotropic, strong MHD turbu-
lence based on the critical balance conjecture. In short,
they assumed a balance between the linear (wave-crossing)
and nonlinear (eddy turnover) time at each scale. This
allows for a phenomenological prediction of the turbulence
energy spectrum and its anisotropy. The latter is presently
consistent with numerical simulations [48-50] and recent
observations [9,51-53]. Although the Goldreich and
Sridhar model is by no means a rigorous description of
MHD-scale turbulence, their phenomenological approach
received a great deal of interest in the community and it
later paved the way for many notable works on astrophysi-
cal plasma turbulence (see, e.g., Refs. [54-57]).

It is worth noting that the critical balance conjecture [47]
is essentially a statement about the persistence of linear
wave physics in a strongly turbulent wave system. The
rather generic nature of the statement implies that critical
balance may be relevant in a more general context outside
the scope of MHD turbulence. Indeed, the concept has been
more recently adapted in models of subion-scale plasma
turbulence [56,57], and it even received attention in fields
outside of plasma physics [4,6,12]. In particular, Ref. [12]
proposed critical balance as a universal scaling conjecture
for strong turbulence in wave systems, with application to
MHD, rotating flows, and stratified flows.

With advances in observational and computational
techniques, focus has shifted over the years from MHD
towards kinetic turbulence at scales below the ion thermal
gyroradius, where one of the ultimate goals is to understand
how weakly collisional, turbulent astrophysical plasmas
dissipate energy and heat the ions and electrons [26,28,30,
33,35,58-63]. Research in the area has been largely driven
by in situ solar wind observations [9], with the hope that the
key findings could be extrapolated to other astrophysical
systems of interest such as galaxy clusters [61,64], hot
accretion flows [58,63,65], and the warm interstellar medium
[66,67]. Early observations (see, e.g., Refs. [68-71]) were
soon complemented by theory. About a decade ago, a well-
known phenomenological model of kinetic range turbulence
was introduced in the works of Schekochihin et al. [57] and
Howes et al. [56]. Their model, commonly referred to as

kinetic Alfvén wave (KAW) turbulence, follows the idea of
Goldreich and Sridhar and assumes critical balance between
the nonlinear and linear (KAW) time. A large body of
observational and numerical evidence in support of the
KAW turbulence phenomenology has been presented in
recent years (see Sec. IB), although concerns have been
raised as well (see, e.g., Refs. [72,73]), and the subject
remains open. In terms of wavelike interpretations, the main
alternative to KAW turbulence is the whistler turbulence
model [74-79]. Complementary to wavelike models of
kinetic turbulence, several authors emphasized the role of
intermittency and the nonlinear generation of turbulent
structures, such as current sheets [26,32,80-82], Alfvén
vortices [19,23,34,83], or magnetic holes [84-86]. Indeed,
in situ solar wind measurements [23,26,32,34,81,87] and
numerical simulations [25,33,80,84,88-91] support the idea
that kinetic-scale coherent structures emerge naturally as a
result of the turbulent cascade.

The discussion on waves versus structures became more
pronounced in the kinetic plasma turbulence context, since
the two viewpoints lead to fundamentally different inter-
pretations of how turbulent dissipation works. In a wave-
mediated type of turbulence, there is hope that at least a
significant fraction of heating can be estimated from linear
(collisionless) wave damping rates [60,62,91-94], whereas
a structure-mediated regime might first require an under-
standing of how structures form and dissipate energy
during their evolution [25,28,32,33,80,81]. It is important
to note that the two viewpoints are not a priori incompat-
ible, if the kinetic-scale structures themselves were to
preserve certain wavelike features. The latter possibility
is explored in the present paper.

B. Our approach and relation to previous works

We employ the KAW turbulence phenomenology
[56,57,95] as the main basis for making contact with linear
wave predictions. It is not a priori obvious that the subion-
scale fluctuations are of the KAW type. Other possibilities,
such as whistler waves [75,77,78], kinetic slow waves [96],
or ion Bernstein modes [97], have been considered as well.
Our choice is, however, favored by the presently available
empirical evidence (see Podesta [98] for a detailed review).
A significant portion of evidence is based on the measured
statistical polarization properties of the turbulent fields
[29,31,36,69,70,99-104], which have been compared
against linear KAW predictions. This includes, for instance,
the measured spectral ratio between the parallel and
perpendicular magnetic field component (see, e.g.,
Refs. [29,101,102]) and the spectral ratio between the
electron density and the magnetic field [31]. Some works
considered as well the magnetic helicity and related its
observed spectral signatures to the right-hand elliptical
polarization of the KAW [99,100,103]. Apart from the
above, a number of computational and observational
studies suggest that the subion-scale fluctuations are
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predominantly low frequency [91,105] and strongly aniso-
tropic [36,106-108], as qualitatively expected for KAW
turbulence [56,57,88,95].

Previous works supporting wavelike interpretations of
kinetic-scale plasma turbulence were often focused on
turbulence spectral features, while paying relatively little
attention to the characteristic structure of the fluctuations in
real space and their intermittent statistics [21,23,28,33,
80,89,109,110]. In order to account for turbulent structure
formation, it is necessary to go beyond a standard spectral
analysis. To this end, we introduce here appropriate
generalizations of the frequently employed spectral field
ratios. Unlike the standard field ratios, the generalized
definitions are specifically designed to probe the statistical
field polarizations within the large-amplitude turbulent
structures. This is accomplished with the aid of a wavelet
scale decomposition [23,34,102,111,112], which can be
used to analyze a signal simultaneously in real space and
spectral space.

Our newly defined diagnostic measures are applied
jointly to high-resolution observational and kinetic simu-
lation data. Observational results are based on in situ
measurements from the Cluster and Magnetospheric
Multiscale (MMS) spacecraft, whereas the numerical
results are obtained from an externally driven, three-
dimensional fully kinetic particle simulation. The majority
of previous kinetic simulations were carried out either in a
two-dimensional geometry and/or with a reduced-kinetic
model. The validity of both types of approximations has
been questioned [72,89,95,113-115]. Specifically for
KAW turbulence, pioneering 3D kinetic simulations were
carried out using the gyrokinetic formalism [30,60,92,116].
These works obtained results consistent with theoretical
expectations. However, gyrokinetics assumes low-
frequency (compared to the ion cyclotron motion), strongly
anisotropic (with respect to the mean field), and small-
amplitude fluctuations [57,117], which naturally favors a
KAW-type of turbulent cascade. Only recently, various
aspects of KAW turbulence were studied in terms of 3D
hybrid-kinetic (i.e., with fully kinetic ions and fluid
electrons) and fully kinetic simulations [36,104,118-120].

The rest of this paper is organized as follows. In Sec. II,
we provide a short theoretical background. The methods
employed are described in Sec. III. This includes a brief
overview of our 3D fully kinetic simulation, a description
of observational data, a summary of wavelet scale decom-
positions, and finally, the generalized field ratio definitions.
Our main results are presented in Sec. IV. We conclude the
paper with a discussion (Sec. V) and summary (Sec. VI) of
our results.

II. THEORETICAL BACKGROUND

The essential plasma dynamics underlying Kkinetic
Alfvén turbulence may be approximately described with
a set of ideal (i.e., dissipation-free [121]) fluid equations

[57,95,122] for the electron density 7, and flux function v,
defined via b, =2 x V,y, where V|, = (0,,0,) and b
is the part of the perturbed magnetic field perpendicular to
the mean field By = ByZ. It is convenient to first normalize
the density and magnetic field according to [31,95,122]

m [ (1 BB e

2 2 Un
b,
b ==+ 2
1 BO’ ( )
2 . 1/2p
b = (A2) R ®)
ﬂi+ﬂe BO

where b = b”i is the parallel perturbed magnetic field, n,
is the mean density, ; = 8zn,T;/B} and p, = 8zn,T,/B}
are the ion and electron betas, and 7; and T, are the ion and
electron temperatures (measured in energy units), respec-
tively. From here on, we drop the prime signs, but it is
to be understood that all fields are normalized according
to Egs. (1)—(3) unless noted otherwise. In appropriately
chosen time and length units (see Ref. [95]), the fluidlike
equations read

O =—0.n,—2-(ViyxVyn,), (4)

Om, =0V y+2- (ViyxV,V2y).  (5)

Parallel magnetic fluctuations are not evolved explicitly but
are instead determined by a linearized pressure balance
condition:

n,—ny—= —b”, (6)

where n, is now the mean electron density in the normal-
ized units. Note that Egs. (4)—(6) are obtained for a f ~ 1
plasma in the asymptotic limit:
1/pi<k, <1/p,, ky < ky, (7)
where k| is the parallel wave number, k ; is the perpendicular
wave number, p; is the ion thermal gyroradius, and p, is the
electron thermal gyroradius.
The above model is essentially nonlinear. By dropping
the second term on the right-hand side of Egs. (4) and (5), a
linear wave system is obtained, the nonstationary solutions

of which may be written as linear combinations of plane
KAWSs with polarizations [57,95]:

ne = Lk yy, (8)

Ine* = [bik* = byl = Exawx /2. )

031037-3



DANIEL GROSELIJ et al.

PHYS. REV. X 9, 031037 (2019)

for each mode with a wave vector k, where Exawyi =
|b i |> + |n.|* is the KAW energy density. Adopting the
convention k| >0, the frequency of the waves is
wy = *kjk . Similarly to inertial waves in rotating fluids
[10,12,123], KAWs are dispersive and their group velocity
is preferentially oriented along the mean field (assuming
kj < k). Besides KAWs, solutions of the linear system
are also static structures with kj = 0.

Following previous works [29,31,36,101], we use rela-
tion (9) as the basis for identifying kinetic Alfvén wave
features in a nonlinear, strongly turbulent regime [124].
Note that while Egs. (8) and (9) relate the Fourier
coefficients of a single KAW, they do not strictly guarantee
an analogous relation in real space for a linear combination
of such waves. An exception to the latter is the relation
between n, and b, which is given at any point in space by
Eq. (6). The (linearized) pressure balance is, however, a
quite general signature of low-frequency dynamics not
exclusively limited to KAWSs. For instance, it may include
mirror structures [23,126—128] or kinetic slow modes [96].
A less ambiguous method to identify KAW properties is to
compare the relative spectral amplitudes between |n,y |*
and |b |*> to the corresponding theoretical prediction,
which is more exclusive to KAWSs [31], and it is derived
from the nonlinear equations by specifically assuming a
(monochromatic) wave solution. If pressure balance is
taken for granted, the latter is equivalent to measuring
the relative amplitudes between [byy|* and |b ,[*. While
pressure balance alone does not necessarily imply
wave activity, it is still a fairly stringent condition at
kinetic scales since it rules out high-frequency fluctuations
such as whistler waves [75,77,78,108], which cannot be
a priori neglected. Moreover, the KAW and whistler wave
predictions of [by|?/|b|* may become degenerate for
p: 2 11011,

It is straightforward to show [57] that a single mono-
chromatic KAW is an exact solution of the fully nonlinear
system (4) and (5). But that is not all. In analogy with shear
Alfvén waves in MHD [55] and inertial waves in rotating
fluids [12,129], a few special linear combinations of plane
KAWs are as well exact solutions. The exact
wave solutions are generally found by requiring that the
nonlinear terms vanish, which is satisfied whenever the
contours of n,, w, and Viy are aligned in every
perpendicular plane. Unless all waves share the same
k., the alignment between the contours of y and V3 y
restricts the geometry of the solutions. It then follows that
the corresponding perpendicular profiles of n, and y are
either (i) circularly symmetric or (ii) one-dimensional
(i.e., with a spatial variation along a single perpendicular
direction). In an unbounded domain, class (i) may be
formally constructed as a Fourier integral of plane KAWs
with cylindrically symmetric coefficients (with respect to
the z axis), whereas (ii) corresponds to any combination of

KAWs with a fixed direction of the perpendicular wave
vector k. The exact wave solutions of type (i) and
(ii) differ from the special class of waves with a fixed
magnitude of k; found in Ref. [57] in that they may be
composed of counterpropagating plane KAWs. Moreover,
the absence of a fixed k; constraint permits wave packets
with a spatially localized envelope. Strictly speaking, even
if the perpendicular envelope of a KAW is spatially
localized at a given time, it will not remain well localized
at later times. However, since KAWs disperse primarily
in the parallel direction, the perpendicular spreading of
localized wave packets is relatively slow. In conclusion, the
above aspects suggest that KAWSs are deeply rooted in the
magnetized plasma dynamics, beyond the standard limits of
a linear approximation.

The vanishing of nonlinear terms for solutions with
either circularly symmetric or 1D perpendicular profiles is
in fact a quite generic feature of turbulent wave systems that
possess a strong mean field, together with perpendicular
nonlinearities in the form of a Poisson bracket: {f, g} =
72-(V, fxV, g). This includes the strongly anisotropic
(k| < k) limits of the MHD and rotating Navier-Stokes
equations (see, e,g., Ref. [12]). For these two systems, the
same types of exact linear wave solutions [namely (i) and
(i1))] may be found in the ideal (i.e., dissipation-free)
regime. For rotating flows, the analogue of type (ii) sol-
utions is derived explicitly in Ref. [129], even without
assuming k| << k. Moreover, class (i) relates to the
monopole (force-free) Alfvén vortex solution in MHD
[130,131]. Because of these similarities, some of our results
might be directly relevant to structure formation in strongly
anisotropic MHD and rotating turbulence.

III. METHODS

Below, we describe the numerical simulation and obser-
vational data and the data analysis techniques and introduce
the generalized field ratios. These aspects are essential for
a complete understanding of this work. However, those
interested only in the main outcome of the study may skip
over to the results in Sec. IV.

A. Driven 3D fully kinetic simulation

We perform the simulation using the particle-in-cell
code OSIRIS 3.0 [132,133]. The periodic domain size is
(Ly,L,.L,) = (189,18.9,48.3)d;, where d; = p;/\/P; is
the ion inertial length. The global mean field B, points in
the z direction. The spatial resolution is (N,,N,,N,) =
(928,928, 1920) with 150 particles per cell per species.
Quadratic spline interpolation is used for the charge-
conserving electric current deposit. A reduced ion-electron
mass ratio of m;/m, =100 is used and the electron
plasma to cyclotron frequency ratio is @p./Qc. = 2.86.
To reduce particle noise, the output fields used for the
analysis are short-time averaged over a window of duration
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A1Q. = 2.0, where Q. is the electron cyclotron fre-
quency. Following Ref. [134], the forcing is an adaptation
of the Langevin antenna [135] and introduces a time-
dependent external electric current J.,.. We apply J..
at wave numbers (1,0,+1), (0,1,£1), (-1,0,=£1),
and (0,—1,=£1) in units of (27z/L,,2x/L,,2n/L,). The
antenna current is divergence-free and drives low-
frequency Alfvénic fluctuations. To avoid a rapid transient
response, we initialize the fluctuating field at + =0 to
match the external current via V x b, = (47/c¢)J.. We
choose an antenna frequency wy = 0.9(2zv,/L,), where
vy = By//Arngm; is the Alfvén speed, and the decorre-
lation rate [135] is yy = 0.6w,. The ion and electron
velocity distributions at ¢+ = 0 are isotropic Maxwellians
with f; = f, ~ 0.5.

The approach towards a statistically steady state is
depicted in Fig. 1. The simulation is run for about 2.24
Alfvén transit times, t4, = L,/v,, until the kinetic-scale
spectra appear to be converged. Towards the end of the
simulation, the mean ion and electron betas (based on their
space-averaged local values) are f#; = 0.56 and S, = 0.51,
while the mean temperature anisotropy is 7, ;/T); ~ 1.2 for
the ions and 7'y, /T, =~ 0.9 for electrons. The turbulence is
strongly driven such that 5™ ~ L, /L, ~ 0.4 towards the
end of the simulation [Fig. 1(a)], where b™* is the root-
mean-square fluctuating field in units of Bj. This corre-
sponds to the critical balance (b™ ~ k/k,) at the forced
wave numbers.

@

b rms

* .
.
‘.
.

Ppky1)

(b)
- :

10!

ki d

FIG. 1. Time trace of the root-mean-square fluctuating mag-
netic field (a) and the 1D k; magnetic spectra (b) at times ¢/t4, =
{0.66,0.92,1.18,1.45,1.71,1.97,2.24} in the simulation (light
green to dark blue). A —2.8 slope is shown for reference (dotted
line). The inset shows the k, spectrum. Particle noise dominated
modes with k d; > 12 (vertical dashed line) are filtered out in the
subsequent analysis. The k, filtered k; spectrum at 1/t, = 2.24
is shown with a red dashed line in (b). All components of the
magnetic field are normalized here to By,.

The obtained 1D magnetic energy spectrum as a function
of k; = (k2 +k2)/2 [Fig. 1(b)] exhibits an approximate
power law with a steepening of the spectral exponent close
to electron scales. The spectrum is consistent with solar
wind measurements, which typically show spectral expo-
nents around —2.8 at subion scales, while steeper exponents
are measured close to electron scales and beyond [71,105].
In the inset of Fig. 1(b) we show for reference the 1D &k,
spectrum. To further reduce contributions from particle
noise in the subsequent analysis, we filter out the noise-
dominated modes with k.d; > 12 [119]. Employing the
method of Cho and Lazarian [122], we consider in Fig. 2
the anisotropy relative to the local mean field. The subion
range anisotropy k| (k_ ) is scale dependent and has a slope
of approximately 1/3 on the logarithmic graph [136], in
agreement with a recent fully kinetic simulation of
decaying turbulence [36]. According to the asymptotic
KAW theory for a f ~ 1 plasma [95], KAWs are expected
to exist for wave numbers with k| /k; < 1 and k|d; < 1.
While these values are not asymptotically small in our
simulation, the estimated anisotropy is within the range
kj/k, < 1and kjd; < 1 at subion scales. We also estimate
the ratio of linear (KAW) to nonlinear timescales [Fig. 2(b)],
given by y = 7 /tn, ~ 6b i ki [k, where 7 ~ 1/ (kjky)
and 7y, &~ 1/ (k% 6b, ;) in dimensionless units [56,57,107].
To obtain the scale-dependent fluctuation 6b | ; , we apply a
bandpass filter between &k, /2 and 2k, on b, and compute
its root-mean-square value [36]. Note that 71 and 7y are
based here on Egs. (4) and (5), but their ratio y takes the
same form as the nonlinearity parameter in MHD if dynamic
alignment is neglected [47,50,55]. The ratio of linear to
nonlinear timescales is close to unity for k;p; <1 and
exhibits a slight decline throughout the subion range. This
simple yet direct estimate of y contrasts some previous

— .
[ (a) :
10° |
= :
ey
10-!
— 100.—
z :
Ny
-
S
2}1 [ b : Lo
-1 - I |
10 5(.)...... i dh p N T
10° 10!
ki d;

FIG. 2. Local anisotropy of the externally driven turbulence (a)
and the ratio of linear to nonlinear timescales (b). A 1/3 slope in
(a) is shown for reference. All components of the magnetic field
were normalized to B, in the calculation.

031037-5



DANIEL GROSELIJ et al.

PHYS. REV. X 9, 031037 (2019)

works [14] and implies that the kinetic-scale nonlinear
effects are not any more significant than linear wave physics,
despite the fact that the turbulence fluctuation amplitudes are
not small [Fig. 1(a)]. These circumstances provide additional
motivation for comparison with linear KAW predictions.

In order to facilitate a direct comparison with observa-
tional data (see Sec. III B), we construct a set of 1D traces
from the simulation by mimicking a spacecraft fly-through
with several passings over the periodic box [137]. A set of
100 virtual spacecraft trajectories are analyzed to improve
statistics. In particular, we choose the direction h =
(0.949,0.292,0.122) and extract the fluctuations along this
given direction using cubic spline interpolation. Thus, the
direction of extraction is quasiperpendicular to B,. The
starting points of all linear trajectories are distributed
uniformly in the z = 0 plane. All trajectories end once they
reach z = L. To avoid spurious edge effects, we skip the
wavelet coefficients that are within a distance (along the 1D
trace) of 19d; from the edges of the trace when calculating
the generalized field ratios (see Sec. III C).

B. Spacecraft data

The solar wind data analysis is based on a 7-h interval
from the Cluster spacecraft [138] and on a 159-s interval
from the Magnetospheric Multiscale mission [139]. These
intervals were previously studied by Chen et al. [140] and
Gershman et al. [141], respectively. At the time of the
measurement, the Cluster spacecraft were in the free solar
wind far from Earth’s foreshock, whereas the MMS spaca-
craft were in Earth’s magnetosheath but well separated
from the bow shock and the magnetopause. The mean
plasma betas are f; ~ 0.26 and S, ~ 0.62 for Cluster and
p;~0.27 and f,~0.03 for the MMS interval. MMS
spacecraft can also measure the mean temperature
anisotropy, which was T,;/T;~1.5 for ions and
T,./T|.~0.8 for electrons during the interval. The ana-
lyzed data include magnetic measurements from Cluster
[140] and the electron density, electron fluid velocity,
and magnetic measurements from MMS [141]. We convert
the spacecraft frame frequencies f. to field-perpendicular
wave numbers using Taylor’s hypothesis [142]: k=
2rf./vy, Where vy is a characteristic velocity. We take
vy to be the magnitude of the mean solar wind speed Vg
for the Cluster interval. Given the relatively small angle
between B and Vgyw during the MMS interval, we take
vy & |Vsw| cos(0) for the MMS data, where 0 ~ 76° is the
mean angle between Vgw and the wave vector k, deter-
mined in Ref. [141] using the k-filtering technique. This
angle was found to be relatively constant throughout the
entire kinetic range. The inferred mean angle between k
and B, on the other hand, was very close to 90 deg [141].
To avoid edge effects, we skip a certain amount of points at
the edges of the analyzed intervals when computing the
wavelet-based diagnostics (see Sec. III C). In particular, we

skip about 5 s on each side of the Cluster interval and about
7 s on each side of the MMS interval.

The MMS interval covers around 80 ion inertial lengths
in the field-perpendicular direction. This is too short to
allow for a statistically reliable analysis of intermittency,
and the results are included here for reference.
Nevertheless, we still use the MMS data in order to be
able to analyze simultaneous magnetic field and density
measurements, which is crucial for making direct contact
with the KAW predictions, where density fluctuations play
a major role [31,95]. Much longer suitable intervals from
MMS are presently not available [141]. While the MMS
interval is shorter than the typical large-scale turbulence
correlation time (see, e.g., Ref. [32]), the Cluster interval
features a relatively long continuous stream of measure-
ments, covering several correlation times. It is thus more
appropriate for studying intermittency, albeit with the
limitation that only the magnetic measurements are avail-
able in this case.

C. Local scale extraction and generalized field ratios

The turbulent fields are decomposed locally among
scales using the complex-valued, continuous Morlet wave-
let transform [111,143]. The 1D Morlet wavelet basis
functions y!P can be represented explicitly in spectral
space as bandpass filters. Up to a normalization constant,
the spectral representation is given by

(I — 2
i) = ewenn (S k). (0

where @(k) = 1 for k > 0 and O otherwise, k, = 6 is a
dimensionless parameter [143], and k, is a characteristic
wave number scale. The variable k; is related to the wavelet
scale s via k, = k,/s. For some field f(x), the Morlet

wavelet coefficients f, (x) at scale s are obtained from the

inverse Fourier transform of JACI/A/S, where f‘ is the Fourier
transform of f. The set of wave number scales {k,} is
logarithmically spaced. We define a local, scale-dependent
fluctuation as 8f,(x) = c;Re{f,}, where Re{---} is the
real part. Similarly, we define a local power spectral density
as Pr(ky, x) = ¢|f,|?/k,. The normalization constants c,
and ¢, may be determined based on the exact parameters of
the wavelet transform [111,143]. We set ¢; = ¢, = 1 since
our results do not depend on such constant prefactors. In
the following, we drop the scale subscript s, but it is to be
understood that all quantities are scale dependent.

When comparing the simulation results with spacecraft
measurements, the 1D Morlet wavelet transform is applied
to a set of virtual spacecraft trajectories extracted from
the simulation (see Sec. III A). In Fig. 4, we also employ a
2D generalization of the Morlet transform [143,144]. The
corresponding basis functions are represented in spectral
space as
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~ B kx - ks 2
#tkek) == )

X exp <—_(k;(;s];j§;¢)2>, (11)

where ¢ determines the direction of extraction, k, = 6,
and k, is defined the same as above. We also impose

#75(0,0) = 0. Twelve directions for ¢ in the range from 0

to = are used and the final results are angle-averaged.
The angular averaging of the local spectrum is performed
after taking the squared modulus of the wavelet
coefficient [144].

We use the wavelet decomposition to define a new set of
statistical measures. In particular, we consider the spectral
field ratios, frequently used to study wave properties (see,
e.g., Refs. [29,31,36,77,104]), and generalize their defi-
nitions to investigate the impact of large-amplitude, turbu-
lent structures on these ratios. Two sets of generalized ratios
are defined. The first set is based on the scale-dependent
moments [112] of the fluctuations:

R &R @

(12)

where m is the order of the moment and (- - -) represents a
space average. In the simulation, we additionally average
over a set of 100 virtual spacecraft trajectories (see
Sec. III A). The parallel and perpendicular components
are defined here relative to the local mean field By,
as EH =b- f)loc and b, =b- E“Bloc, where ﬁloc =
Bioo/|Bioc| [101,102]. The local mean field is obtained
from a Gaussian low-pass filter with a standard deviation
o, = k,/k, in spectral space. Once the parallel and
perpendicular components are determined, we normalize
the fluctuations according to Egs. (1)-(3). For m = 2, the
moment ratios yield the standard spectral ratios, defined in
terms of the 1D k| spectra. On the other hand, for m > 2,
the averaging becomes progressively more sensitive to the
fluctuations at the tails of the probability distribution
function, thus giving insight into the dependence of the
ratios on high-amplitude events. We consider moments up
to m = 6.

Caution is needed when computing high-order statistics
from finite datasets, since the tails of the probability
distribution function may not be sufficiently sampled
[145,146]. For example, an estimate of the maximal
moment m,,, that can be determined accurately, based
on the method presented in Ref. [145], yields typical values
of m,,, between 3 and 4 for the Cluster interval with N =~
6.3 x 10° samples [147]. To obtain more reliable estimates,
we employ the scheme of Kiyani et al. [146] (see also
Ref. [110]) and remove a small fraction of the largest

fluctuations at each scale until the moments appear rea-
sonably converged. For Cluster, we find that removing
0.005% (i.e., about 30 samples) of largest fluctuations
seems to be adequate. For consistency, we clip the same
small fraction in the simulation when calculating the
moments. Within the statistical uncertainties, the clipping
does not significantly affect the results and only makes it
easier to recognize true statistical trends. Because of the
short duration of the MMS interval, the 0.005% clipping
threshold has no effect and relatively large fractions would
have to be removed to make the moments well behaved.
Thus, no attempt is made to recover more reliable estimates
via clipping for the MMS interval.

The ratios introduced in Eq. (12) are global measures in
a sense that the average is taken over the entire ensemble.
A more local measure can be obtained via conditional
averaging of the local power spectral densities:

(I [F[LIM>§) ¢
(6, PLIM>¢)" |

(b P|ILIM > £)
(b, PILIM>¢)
(13)

o[?ILIM>¢)

’

]
b

where LIM is the local intermittency measure [143,148]
and £ is the threshold for the conditional average. We scan a
range of different thresholds and study how the results
depend on this choice. The LIM is defined as the local
wavelet spectrum normalized to its mean at a given scale.
Thus, LIM > 1 at the locations where the power spectral
density exceeds its mean value. The LIM may be based on
different quantities. We use everywhere the same type
of LIM so that all conditional averages are constrained
to the same spatial locations. In particular, we choose the
LIM based on the KAW energy density (see Sec. II):
LIM = (|6, |* + |i,)?)/{|b . |* + |i,|?). This appears to be
a reasonable choice given that the kinetic-scale structures
carry both significant magnetic field and density fluctua-
tions, as shown in what follows. For Cluster measurements,
|by|? is used as a proxy for |7, | to obtain the LIM under the
assumption of pressure balance [Eq. (6)]. The conditional
averages may eventually become energetically insignifi-
cant, since the averaging volume shrinks with the threshold
. To focus on the conditional ratios which are still of some
energetic relevance, we require for any averaging subdo-
main to contain at least 1% of the total KAW energy at that
scale. Estimates not satisfying the condition are omitted
from the results. The typical volume fractions correspond-
ing to the 1% energy fraction are naturally much smaller
than 1%.

The generalized ratios [Egs. (12) and (13)] are evaluated
from turbulence data and compared against the linear
predictions (9). In the normalized, beta-dependent units
[see Egs. (1)—(3)], linear KAW theory predicts a numerical
value of unity for all ratios considered above in the
asymptotic limit [Eq. (7)]. Since the asymptotic range is
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vanishingly small in the simulation, we also compare our
results against the linear wave predictions obtained from a
fully kinetic numerical dispersion solver [149]. Note that
the KAW predictions are formally obtained for a single
plane wave. An ensemble of KAW packets with different
propagation directions may exhibit slight statistical devia-
tions from the expected values for those ratios in Egs. (12)
and (13) that depend on b (i.e., for the ratios that are not
based on the pair of fields n, and b, which are directly
related via pressure balance; see Sec. II).

IV. RESULTS

We now turn to the main results of this work. First, we
characterize the statistical nature of fluctuations separately
for each field in terms of the scale-dependent flatness [112]:
F(ki) = (l6f1*)/{|6f*)*, where &f € {n,,8b.8b,}
represents a wavelet decomposed field (sec Sec. 11 C).
For a field with a Gaussian probability distribution, we
have F = 3. Thus, high values of the flatness above 3
characterize the degree of non-Gaussianity, while a scale
dependence of F points towards intermittency in the
classical sense of the term as a departure from self-
similarity [150]. The scale-dependent flatness results
obtained from solar wind measurements and from the
3D fully kinetic simulation are compared in Fig. 3. To
illustrate the statistical uncertainties, we add error bars to
the flatness measurements. To obtain the error bars, we
calculate the moments separately on a number of non-
overlapping subsets and then use these as input for a
jackknife error estimate of the flatness [151].

— (Sb})N(8bF)? w—v (ond)/(on2)> =—e (50} )/(5b3 )
N
10! : Do -

Flky)

100 f————
10|

F(ky)

10°
10' |

F(ky)

10°

kid;

FIG. 3. Scale-dependent flatness results obtained from the
simulation (a), MMS interval (b), and the Cluster interval (c).
Vertical dotted lines mark the plasma kinetic scales and the
horizontal dashed lines mark the Gaussian value of 3.

As evident from the results presented in Fig. 3, the
kinetic-scale fluctuations exhibit signatures of non-
Gaussian statistics with flatness values above 3. The
departure from Gaussian statistics is altogether largest
for the Cluster interval. In agreement with previous works
[102,152], the Cluster statistics are nearly scale indepen-
dent at kinetic scales. This is in contrast with the simulation
where the flatness is scale dependent and only gradually
increases above the Gaussian value with decreasing scale,
presumably due to the finite simulation domain size. All
three analyzed fields in the simulation exhibit similar
statistical properties, in agreement with the Cluster mea-
surements of 6b, and 5b| below the p; scale. It is worth
pointing out that a previous analysis of density intermit-
tency in the free solar wind [110] found én, flatness values
comparable to our Cluster results, which do not include
the electron density. As already mentioned (Sec. III B), the
MMS interval is too short to allow for a statistically reliable
analysis of intermittency. Nevertheless, within the rela-
tively large uncertainties, the turbulence statistics appear to
be mildly intermittent for the MMS interval.

Next, we inspect the spatial structure of fluctuations in
the simulation. The fluctuations in a given x-y plane are
visualized in Fig. 4. In Figs. 4(a)-4(c) we plot the fields in
the range k,d; =[5,10] by summing up the wavelet
decomposed fluctuations in that range [23,87,100,143]
using 8 logarithmically spaced scales. Note that k, d; =
10 already corresponds to the electron inertial scale d, =
0.1d; due to the reduced ion-electron mass ratio employed
here. A distinct feature seen in Fig. 4 is the excellent
matching of the on, and 6b fluctuation profiles. Although
not obvious considering the full range of kinetic effects
retained in the simulation, the latter directly implies that the
structures are pressure balanced according to Eq. (6).
In Figs. 4(d)-4(i) we consider the local 2D wavelet
spectra at k,;d; =5 [Figs. 4(d)—4(f)] and at k,d; = 10
[Figs. 4(g)—4(i)]. The spatial distribution of the spectral
energy density is nonuniform and the peaks in the spectra
at different scales tend to be concentrated around the
same spatial locations. This local coupling across different
scales is a characteristic feature of coherent structures
[34,143,148]. It is also seen that the nonuniformity
increases at smaller scales, consistent with the growth of
the flatness with k, (Fig. 3). Finally, while the n, and b,
wavelet spectra match very well, the local b | spectra match
the former only in a rather loose sense. This is as well
consistent with theoretical expectations, since no general
linear relation exists between b, and n, in real space
according to the KAW turbulence theory (see Sec. II). The
fact that an apparent weak coupling is seen at all points
towards the importance of nonlinear effects in shaping the
local fluctuations.

Since aggressively scale-filtered results can be a some-
what misleading, we show in Fig. 5 the perpendicular
magnetic and density fluctuations over the entire subion
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FIG. 4. Scale-filtered fluctuations in a given x-y plane in the
range k, d; = [5, 10] (a)—(c), and the (normalized) local wavelet
spectra at scale k, d; = 5 (d)—(f) and at scale k| d; = 10 (g)—().
A logarithmic scale is used to better show also the fluctuations of
moderate intensity. Very weak fluctuations with amplitudes
below 0.5 in the normalized units are clipped to the lower
boundary of the color map.

range and beyond, together with their corresponding (non-
filtered) perpendicular gradients. The perpendicular cross
sections of the various subion-scale structures broadly
resemble either sheets or circular shapes. A 3D inspection
of the fluctuations (not shown) confirms that the structures
are indeed elongated in the field-parallel direction, con-
sistent with the anisotropy estimate presented in Fig. 2. It is
also interesting to note that the small-scale perpendicular
gradients of b, and n, tend to form structures that are
aligned with respect to each other (see also Sec. V).

To further investigate the perpendicular pressure balance
[Eq. (6)], we compute the wavelet cross-coherence [34,108,
153] between n, and b| in the simulation and for the MMS
interval, using the 1D Morlet wavelet transform [111].
High values of cross-coherence close to unity indicate a
strong local phase synchronization between two signals.
The results are compared in Fig. 6. Arrows are used to show
the phase between the two fields. A strong phase synchro-
nization is seen at subion scales of the simulation and of the
MMS interval. With most arrows pointing to the left in
Fig. 6, the results strongly suggest that the density and
parallel magnetic field fluctuations tend to be anticorrelated
and thus fulfill the pressure balance [Eq. (6)] to a good

16D, 1/16b 1™

16n,1/16m, 1™
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FIG.5. Turbulent structures in a perpendicular simulation plane
as seen from the perpendicular magnetic (a) and density fluctua-
tions (b), and from their corresponding perpendicular gradients
(c), (d). Large-scale modes with k; < 1/p;, dominated by
external forcing, have been filtered out in (a) and (b) to highlight
the subion-scale structure.

approximation [154]. This conclusion is in agreement
with previous works based on MMS data [108,141].
Qualitatively similar results were also obtained by studies
of pressure balance in the MHD-scale range (see, e.g.,
Refs. [155,156]). As noted in Sec. II, pressure balance is a
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FIG. 6. Magnitude squared cross-coherence and phase between
n, and b in the simulation (a) and in the MMS interval (b). The
orientation of the arrows (relative to the positive horizontal axis)
denotes the phase. Dashed lines show the cone of influence [111].
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rather generic feature of low-frequency dynamics and as
such it rules out the high-frequency whistler waves. We
mention that we also checked the wavelet coherence
between n, and (different components of) b | . As expected
(see Sec. 1), n, and b, generally do not exhibit a strong
cross-coherence (not shown). However, at rare times of
high coherence we often observe a relative phase close to
90 deg, consistent with the elliptical polarization of the
KAW [57,100].

Finally, we turn to the central subject of the present paper
and present the generalized field ratios results. The gen-
eralized ratios obtained from the 3D fully kinetic simu-
lation and from spacecraft measurements are plotted in
Fig. 7. In Figs. 7(a)-7(f) we show the moment ratios
[Eq. (12)], and in Figs. 7(g)-7(1) we display the conditional
ratios [Eq. (13)], conditioned on the local KAW energy
density (see Secs. II and III C). Dashed horizontal lines
denote the linear asymptotic KAW predictions [Eq. (9)],
while red lines show the more accurate linear predictions
obtained from a fully kinetic plasma dispersion relation
solver [149]. A wave propagation angle of 89.9 deg (with
respect to By) was used for solving the numerical
dispersion relations [157]. Dotted vertical lines indicate
the characteristic ion and electron scales. The choice m = 2
or £ =0 for the moment ratios and conditional ratios,
respectively, yields the standard spectral ratios. We mention
that the maximal meaningful threshold & (see Sec. III C)
grows with k, for the simulation and for MMS data since
the fluctuations become more intermittent at smaller scales.
The Cluster interval exhibits highly non-Gaussian statistics
for all k; (Fig. 3) and thus allows for the use of high
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thresholds over the whole range. The higher the moment m
or threshold &, the more sensitive the ratios are to the large-
amplitude events. Note that the term “large amplitude”
refers here to the locally enhanced fluctuations and power
spectral densities, compared to their scale-dependent
mean square values. Spatially, these intense bursts of local
activity are not distributed incoherently but instead form
distinct patterns (Figs. 4 and 5), typically associated with
turbulent coherent structures. The locally enhanced, non-
Gaussian fluctuations go hand in hand with the nonuniform
power spectral densities, since it can be shown that the
spatial variability of the energy spectrum and the scale-
dependent flatness are directly related [159]. Higher
moments assign smaller statistical weights to the lower-
amplitude background fluctuations in favor of the
large-amplitude events. Similarly, the conditional averages
discard the locations with a spectral energy density below
the threshold & and therefore measure the field ratios within
the most energetic structures only.

As seen in Fig. 7, the generalized ratios either follow the
linear wave predictions (red lines) throughout the transition
region (k; ~ 1/p;), where shear Alfvén waves convert into
KAWs, or converge toward the KAW predictions below
the p; scale. This is consistent with KAW theory, where p;
is the relevant transition scale [57,95,160]. A notable
deviation from linear wave predictions is seen at subelec-
tron scales of the simulation. A similar trend was pre-
viously seen in gyrokinetic simulations [101,161], which
possibly implies that the wavelike activity is terminated
below the p, scale via collisionless damping [60]. The
moment ratios depend only weakly on the order m, which
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FIG.7. Generalized spectral field ratios obtained from Cluster and MMS measurements and from the 3D fully kinetic simulation (see
text for further details). Panels (a)—(f) show the moment ratios [Eq. (12)] and panels (g)—(1) show the conditional ratios [Eq. (13)].
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shows that the wave predictions are reasonably satisfied not
only in terms of low-order statistics but also in the sense of
higher-order moments related to intermittency. The condi-
tional ratios between |fi,|> and |by|* [Figs. 7(g)-7(h)]
appear to be somewhat less scattered compared to the
other two conditional ratios [Figs. 7(1)-7(1)], which exhibit
a slight tendency to deviate further from linear predictions
with increasing LIM threshold £. On the other hand, the
subion-scale deviations attributed to large-amplitude events
are altogether only moderate, such that the generalized
ratios remain in reasonable agreement with the KAW
polarization properties. Thus, the wavelike features are
not exclusively limited to low-amplitude fluctuations
but also carry over to the high-amplitude structures.
Qualitatively similar results are obtained in the simulation
as well as from spacecraft measurements, which suggests
that the observed properties are a common feature of the
kinetic turbulence. While some of the measured ratios
might allow for alternative interpretations (see Sec. II), the
fact that an agreement is seen for all generalized ratios and
for different values of the ambient ion and electron plasma
beta [recall that the normalizations (1)—(3) are beta depen-
dent] implies that the fluctuations are indeed of the KAW
type. Moreover, the hypothetical possibility that the field
polarizations are not related to wavelike activity is contra-
dicted by our estimate of the nonlinearity parameter
(Fig. 2), and we are unaware of any other concrete
theoretical prediction that could consistently explain all
of our measurements. The observed order unity preserva-
tion of linear wavelike properties in kinetic-scale turbulent
structures constitutes the main result of this work, together
with the supplemental evidence presented in Figs. 2-6.

V. DISCUSSION

The general idea that intermittent turbulent structures
may go hand in hand with wave physics was implied in a
number of recent works. In a numerical study of MHD
turbulence [50], a scale-independent probability distribu-
tion with an order unity mean was found for the local (in
space) ratio between the linear wave timescale and non-
linear timescale, whereas all other quantities of interest
exhibited scale-dependent, intermittent statistics. The
former property was later successfully exploited to design
a statistical model of intermittency in MHD turbulence
[162]. Moreover, Howes [163] recently developed a
dynamical model for current sheet formation via nonlinear
Alfvén wave collisions. Subsequent numerical studies
showed that current sheets emerge also in a more realistic
configuration with two counterpropagating, initially sep-
arated wave packets [164], and that the modes produced
during nonlinear wave interaction can be themselves
characterized as Alfvén waves [165]. The above-described
developments in astrophysical plasma physics are not a
unicum in turbulence research. For instance, similar ideas

have been put forward in the context of rotating, inertial
wave turbulence [11].

In KAW turbulence, wave packet interactions are rela-
tively complex due to the dispersive nature of the KAW,
which allows for the nonlinear coupling between copro-
pagating waves [57,166]. This prevents a direct application
of the model by Howes [163], which is based on incom-
pressible MHD equations, to subion-scale dynamics. On
the other hand, our results shown in Fig. 7 imply that the
subion-scale turbulent structures may as well be viewed as
nonlinearly interacting wave packets. This quantitative
evidence encourages the design of new models of turbulent
heating in low-collisionality plasmas that incorporate
intermittency by exploiting the wavelike character of
coherent structures [167]. Additional evidence is also
provided by a recent observational study [94] and by
gyrokinetic turbulence simulations [30,35], which find
the energy transfer between fields and particles to be
dominated by particles satisfying the resonance condition
for Landau damping of (kinetic) Alfvén waves, even
though the transfer tends to be spatially concentrated in
the vicinity of intense current sheets [28,32,33,93].

Since the nonlinear time of a turbulent eddy is inversely
proportional to its fluctuation amplitude [14], one might be
tempted to conclude that the large-amplitude nonlinear
structures evolve on a timescale faster than the wave
dynamics. A number of aspects may be pointed out here.
Unlike the nonlinear time, the linear wave time is propor-
tional to 1/k [56,57]. For a realistic turbulent setup, the
latter may be interpreted as a parallel correlation length
£ ~1/kj of an eddy [57,107]. In magnetized plasma
turbulence, information is transmitted along the field lines
by waves. It then follows from a causality principle that the
maximal parallel correlation is set by the distance a wave
packet can cover within the lifetime of an eddy [12,57,168].
This implies that the wave timescale is approximately
limited from above by the nonlinear time, which is indeed
consistent with our measurement of the anisotropy in
Fig. 2. An analogous causality argument can be given
for rotating turbulence in the strongly anisotropic (k <
k) regime [12]. It was also recently argued, based on a
set of 3D gyrokinetic simulations [165], that the non-
propagating k; = 0 modes do not play a notable role in
the mediation of energy transfer in MHD, provided that
appropriate measures are taken to avoid periodic boundary
artifacts. Secondly, it is worth considering the empirical
fact that turbulence does not self-organize into structures of
arbitrary geometry. Instead, a number of studies of kinetic
range turbulence find that the structures tend to acquire
relatively simple shapes, resembling either elongated sheets
or tubes [23,30,33,83,88,91,169]. For k| # 0, the idealized
geometric versions of these two (i.e., sheets with a 1D
perpendicular profile and circularly symmetric, field-
aligned tubes) correspond to exact wave solutions of the
nonlinear Eqgs. (4) and (5), as explained in Sec. II. The
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wandering of magnetic field lines in turbulent flows
precludes such  highly symmetric configurations
[55,170,171]. However, even if a structure only resembles
an idealized sheet or circular tube, the nonlinearity is
locally weakened. Some of these circumstances were also
appreciated by Terry and Smith [169,172], who argued that
the magnetic shear at the edges of large-amplitude circular
filaments and sheets prevents the structures from mixing
with the background incoherent KAW fluctuations.
Moreover, local depletions of the nonlinearity have been
associated with the emergence of coherent structures in a
variety of turbulent systems [173—-177].

Is it possible to provide evidence for the above sugges-
tion? To this end, we make use of the fact that in the first
approximation, V n, xZxu;, and V,w xZx b, at
subion scales [178], where u,, is the perpendicular
electron fluid velocity. If u,, xb; =0, the nonlinear
coupling in Eq. (4) vanishes. We then consider the
scale-dependent sine of the alignment angle, sinf=
|bu,, x &b, |/|6u ,||6b |, conditionally averaged on a
given LIM threshold for the MMS and simulation data.
The same as in the rest of this paper, the scale decom-
position is implemented using the Morlet wavelet transform
and the perpendicular components are defined with respect
to the local mean field. Our results are shown in Fig. 8.
According to the above discussion, the alignment angle
should be preferentially reduced within the energetic
structures (corresponding to high LIM values). The results
in Fig. 8 are indeed consistent with our expectation,
although the preferential alignment within energetic struc-
tures is less pronounced for the MMS interval. The latter
may be related to the fact that the fluctuations in the MMS
interval are only mildly intermittent (see Fig. 3). We also
add that an intermittent field alignment, analogous to the
one studied here over the kinetic range of scales, was
previously reported in the context of MHD turbulence (see,
e.g., Refs. [179,180]). Here, we suggest that such inter-
mittent, kinetic-scale alignment helps to preserve the linear
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FIG. 8. Sine of the scale-dependent alignment angle between
the perpendicular electron fluid velocity and magnetic field,
conditionally averaged on a given LIM threshold & (see text for
details). Dashed horizontal lines indicate the expected value for a
randomly distributed angle.

KAW properties in large-amplitude structures via local
nonlinearity depletions.

Finally, there exist numerous other examples of the
importance of waves in complex nonlinear plasma phe-
nomena. Classic examples include the nonlinear steepening
of MHD waves into shocks [181-185] and solitary waves
in magnetized plasmas [130,186—-189]. More recently,
there has been a growing interest to relate soliton solutions
with kinetic-scale structures in turbulent space plasmas
[19,23,34,83]. Indeed, it cannot be ruled out that at least
some turbulent structures are better described as solitons
than dynamically evolving wave packets. Similar to the
exact linear wave solutions discussed in Sec. II, soliton
solutions typically require a rather idealized, highly sym-
metric and/or low-dimensional geometry. Thus, for the
same reason as the turbulent structures cannot be exactly
linear waves (namely, stochastic field line wandering), they
are probably not precisely solitons either, unless perhaps if
the system is far from a state of homogeneous, fully
developed strong turbulence.

VI. CONCLUSIONS

In the present paper, we employ high-resolution obser-
vational and kinetic simulation data to study the relation-
ship between wavelike physics and structure formation
in astrophysical kinetic plasma turbulence. Observational
data are based on in situ solar wind measurements from the
Cluster and MMS spacecraft, and the simulation results
are obtained from an externally driven, 3D fully kinetic
simulation. We introduce appropriate generalizations of the
frequently employed spectral field ratios to probe the
statistical field polarizations within the large-amplitude
energetic structures. We find that both the lower-amplitude
background fluctuations as well as the intense structures
satisfy linear KAW predictions to order unity. This implies
that the turbulent structures themselves approximately
preserve a linear wave footprint. In other words, our novel
analysis highlights the possibility that wavelike features
and turbulent structure formation are essentially insepa-
rable from each other. As such, our results challenge one of
the presently common views of the “coexistence” of waves
and structures. Furthermore, it is suggested that a linear
wave character in kinetic-scale structures is preserved with
the aid of local nonlinearity depletions.

The only known framework capable of providing a
reasonable theoretical basis for the interpretation of our
results appears to be the KAW turbulence phenomenology
[56,57,95]. Known alternatives, such as whistler turbulence
[75,77-79], cannot explain our results. In contrast to our
results, the high-frequency whistlers are not pressure bal-
anced and they carry only minor density fluctuations
[31,108]. In a fp~1 plasma, whistler waves are also
expected to be rather strongly damped for kd; <1 [95],
which contradicts our anisotropy estimate in Fig. 2. In the
KAW turbulence context, an interpretation similar to recent
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developments in MHD turbulence emerges (see, e.g.,
Refs. [162-165]). Namely, the kinetic-scale structures
could perhaps be described as nonlinearly evolving, local-
ized KAW packets. The possibility that at least a fraction of
the subion-scale structures are sheetlike, as implied by our
simulation results (see also Refs. [88,91]), lends credence
to recent works emphasizing the role of reconnection in
subion-scale turbulence [82,190-193]. In our present
understanding, the results of this work do not preclude
the reconnection scenario, although the mere presence of
sheetlike structures alone is not a sufficient condition for a
reconnection-mediated type of turbulence.

Finally, we mention that the general approach employed
here is not exclusively limited to kinetic range turbulence in
astrophysical plasmas and we hope it might find exciting
applications in a broad range of turbulent systems where
waves and structures have been observed [2,7,11,17,18,
20,22]. An immediate extension of the method lends itself
in the context of MHD range plasma turbulence, where it
could be used to study the interplay between structures
and waves based on a generalized Alfvén ratio [9,27].
Another potential application includes rotating turbulence
[7,11,12,22], where the generalized spectral field ratios
could be employed to test the presence of inertial-wave
polarization locally within the energetic columnar
structures.
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