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We establish the general framework of quantum fluctuation theorems by finding the symmetry between
the forward and backward transitions of any given quantum channel. The Petz recovery map is adopted as
the reverse quantum channel, and the notion of entropy production in thermodynamics is extended to the
quantum regime. Our result shows that the fluctuation theorems, which are normally considered for
thermodynamic processes, can be a powerful tool to study the detailed statistics of quantum systems as well
as the effect of coherence transfer in an arbitrary nonequilibrium quantum process. We introduce a
complex-valued entropy production to fully understand the relation between the forward and backward
processes through the quantum channel. We find the physical meaning of the imaginary part of entropy
production to witness the broken symmetry of the quantum channel. We also show that the imaginary part
plays a crucial role in deriving the second law from the quantum fluctuation theorem. The dissipation and
fluctuation of various quantum resources including quantum free energy, asymmetry, and entanglement can
be coherently understood in our unified framework. Our fluctuation theorem can be applied to a wide range
of physical systems and dynamics to query the reversibility of a quantum state for the given quantum
processing channel involving coherence and entanglement.
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I. INTRODUCTION

Since Shannon’s adaptation of “entropy” as the measure
of information [1], we have witnessed surprising usefulness
of the mathematical descriptions of thermodynamics in
developing information theory [2]. The interplay between
information theory and thermodynamics has gone further
than the development of common mathematical tools as the
information [3,4] and its feedback control [5] were, indeed,
found to be physical and a source of work.
Any physical processes can involve inevitable loss, and

this gives rise to the irreversibility of macroscopic states,
which is known as the second law of thermodynamics. The
principle of macroscopic irreversibility is not only valid in
thermodynamics, but also in information theory. A resem-
bling theorem called the data processing inequality, which
says that information content never increases through a
noisy channel, presides in information theory. These laws
and theorems are, however, based only on the average

behavior of a large system in equilibrium, while the full
picture of statistical properties of a physical process can be
found through the dynamics of probabilities of microstates.
Macroscopic physical states consist of the ensemble
of possible microstates, and physical processes can be
understood as a collection of transitions between micro-
scopic states. As the physical system gets smaller and more
complex, there has been a demand to describe such
transitions in nonequilibrium. For this purpose, fluctuation
theorems (FTs) [6–9] have emerged. In particular, the
Crooks FT [7] can be summarized by the following equality
between the probabilities P→ and P← of forward and
backward transitions,

P→ðσÞ
P←ð−σÞ

¼ eσ; ð1Þ

where the parameter involved is the entropy production σ.
This symmetry shows that the probability of the reverse
process happening depends on the entropy production
during the forward process, which can be understood as
a general result from the microreversibility of Hamiltonian
dynamics [10]. The Jarzynski equality [8] and the second
law of thermodynamics can be derived from the Crooks FT.
The classical FTs are well established with experimental
verifications in microscopic systems [11–14], in which the
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transition probability of a microscopic state gives critical
effects on the system.
As the theory of thermodynamics extends its realm to the

quantum regime, one of the important questions is whether
and how the FTs can be generalized to quantum systems.
In other words, the question is, can we establish a single-
parameter valued symmetry between forward and back-
ward probabilities for an open quantum process? In this
paper, we answer this question by establishing such a
symmetry, which can be applied not only to quantum
thermodynamic channels but also to any noisy quantum
information processing channels.
Despite the efforts to extend the FTs to the quantum

regime [9,15,16], a quantum FT (QFT), which can fully
incorporate quantum features in the system and the chan-
nel, is still to emerge. For instance, in the presence of
quantum coherences, thermodynamic free energy [17–19]
can be larger than its classical counterpart, which is
concerned with classical energetic values. The role of
quantum coherences and correlations is acknowledged as
a resource that can be utilized for work extraction [20–22]
or time referencing tasks [23,24]. These nonclassical
features stemming from quantum coherences not only
affect thermodynamic quantities on average but also make
the outcome probability distributions differ from classical
theory. Quantum coherences are present in nonequilibrium
quantum processes [25–53].
In order to establish a QFT, we have to define (1) the

reverse process and (2) the quantum version of entropy
production. These are not straightforward tasks, and efforts
so far have been mainly to use the classical definition of
work for quantum systems [54,55] or to adopt quantum
measurements [32], namely, positive-operator valued mea-
surements (POVMs), in order to consider work based on
the two-point measurement (TPM) [25]. The entropy in
classical theory does not reflect quantum coherences; thus
the quantum parameter equivalent to the entropy production
will be based on the quantum measure of fluctuations.
Some progress to take into account coherences in QFT has
been made by adopting the techniques of quantum infor-
mation theory [26,29,33,47,50,51] and quantum field theory
[53], as well as the quantum jump approach [27] and the
master equation approach [39]. However, some of them
[27,29,39,47,50] are limited to specific quantum channels,
and their measurement-based approaches [26,27,39,51]
suffer from the loss of coherences after measurements.
In this paper, we establish the fluctuation relation for a

linear quantum channel that reproduces the FTs in the
classical thermodynamic limit. This can be done by adopting
the reverse quantum process, known as the Petz recovery
map [56], and generalizing the concept of entropy produc-
tion to take into account coherences in a quantum system.
We investigate the effect of coherences in a quantum state
that makes the fluctuation relation, given by the ratio
between the forward and backward transition probabilities,
different from the conventional FTs. When the quantum

channel induces coherence transfers, the transition between
diagonal and off-diagonal elements in the densitymatrix of a
quantum state can be understood via complex-valued
quantum entropy production. The emergence of imaginary
entropy production is related to the symmetry-breaking
property of the quantum channel, and we study concrete
examples of a two-level atom interacting with coherent and
incoherent bath states. More importantly, the imaginary part
of entropy production plays an essential role in deriving the
generalized second law for a quantum channel from our
QFT. Our result verifies that not only the loss of thermo-
dynamic free energy but also the loss of coherences or
entanglement can be qualified as a dissipated resource
responsible for the irreversibility of a quantum process.
The rest of the paper is organized as follows. In Sec. II, we

reformulate the FT for a classical channel and discuss how to
identify the reverse process for a given quantum channel via
the Petz recovery map. In Sec. III, we demonstrate how
coherences in a quantum state affect the fluctuation relation
deviating from conventional FTs and construct the QFT of
entropy production based on it. In Sec. IV, we introduce the
complex-valued quantum entropy production in order to
fully describe the transition between off-diagonal elements
through the quantum channel and discuss how the QFT
should be modified accordingly. In Sec. V, we show that the
generalized second law of thermodynamics can be derived
from the QFT, which can be applied to analyze the loss in
quantum thermodynamics, aswell as in the resource theories
of asymmetry and entanglement. The paper is concluded
with final remarks in Sec. VI.

II. PRELIMINARIES

A. Entropy production fluctuation relation
for a classical channel

We reformulate the Crooks FT [7] in Eq. (1), which will
help us to establish a QFT in close analogy to this
formulation. For this purpose, we focus on the transition
between two physical states from A to B by a general
physical processN , which can be a thermodynamic process
or information encoding through a noisy channel. The
physical states A ¼ fpðxÞg and B ¼ fp0ðy0Þg are assumed
to be macroscopic states described by probability distribu-
tions pðxÞ and p0ðy0Þ of their microscopic entities x and y0.
Wemay consider the reverse processR corresponding toN ,
which can be achieved by another physical process, for
example, time reversal, information decoding, or a recovery
channel.
The transition probability from a microscopic state x to

another microscopic state y0 for the forward process x!N y0
is denoted by Tðx → y0Þ. Similarly, the transition proba-

bility for the backward (or reverse) process x R y0 is denoted
by T̃ðx ← y0Þ. The ratio between the forward and backward
transition probabilities shows the tendency of the micro-
scopic state transitions. Based on this observation, we
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denote this ratio after taking the logarithm as “information
exchange”:

δqx→y0 ≔ − log

�
Tðx → y0Þ
T̃ðx ← y0Þ

�
: ð2Þ

Note that the information exchange does not depend on the
distribution of microstates in the macrostate A or B, but on
the forward and backward physical processes. Here, we
find the concrete physical meaning of information
exchange in thermodynamics when a system is in contact
with a thermal bath in equilibrium. By assuming the
microscopic reversibility with the energy conservation
law, the transition probability between two phase space
points x and y0 is given by Tðx → y0Þ ¼ T̄ðx̄ ← ȳ0Þe−βΔE
[7,57,58], where T̄ represents the time-reversed trajectory
of the time-reversed states x̄ and ȳ0, ΔE is the energy
difference between the two phase space points, and β is the
inverse temperature, β ¼ 1=ðkBTÞ with kB the Boltzmann
constant. When the system and bath are isolated from
the external environment, the energy difference ΔE of
the system comes from the heat Q: ΔE ¼ Q. Thus, the
information exchange δqx→y0 corresponds to βQ. However,
correlations between the system and memory, which trans-
fers information to a different time [59], can be an
additional parameter involved in δq which leads to the
modification of the FTs [5,60] for nonequilibrium thermo-
dynamics of measurements and feedback controls. In this
paper, we show that the information exchange can have
various physical forms—energy, coherence, or entangle-
ment—depending on the physical process and how its
reverse process is constructed.
Next, we discuss how the distribution of microstates can

be changed as a result of the physical process. For this, we
define the difference between the information contents of
the macrostates, using the single-shot entropy difference,

δsx→y0 ≔ − logp0ðy0Þ þ logpðxÞ;

provided that we observe the statistics of the microstates x
and y0 at the initial and final points. In contrast to the
information exchange, this entropy difference depends only
on the initial and final probability distributions pðxÞ
and p0ðy0Þ.
Finally, we describe how two different entropic

quantities—the information exchange and the entropy
difference—can be connected. Analogous to the thermo-
dynamic entropy production, we define the single-shot
entropy production for the transition x → y0 as

σx→y0 ≔ δsx→y0 − δqx→y0 : ð3Þ

When the system is in equilibrium, the entropy flow δqx→y0

will lead to the entropy difference δsx→y0 ; i.e., the entropy
production becomes zero: σx→y0 ¼ 0. On the other hand, in

the general case of nonequilibrium processes, the entropy
production will not vanish. To describe this case, we
introduce the TPM approach, which is widely studied
for FTs in thermodynamics (see Fig. 1). The TPM
distribution P→ðx; y0Þ describes every possible event to
observe ðx; y0Þ at the initial and final measurements, where
each marginal distribution reduces to the initial or final
statistics pðxÞ or p0ðy0Þ. Assuming that the physical process
depends only on its current state, the TPM joint measure-
ment probability can be written as

P→ðx; y0Þ ¼ pðxÞTðx → y0Þ:

Similarly, the backward TPM distribution P←ðx; y0Þ ¼
p0ðy0ÞT̃ðx ← y0Þ can be defined for the backward process.
By using the TPM probability distribution, the probability
to get σ amount of entropy production during the forward
process can be written as

P→ðσÞ ¼
X
x;y0

P→ðx; y0Þδðσ − σx→y0 Þ;

then we obtain the FT in Eq. (1). It can be derived from
Eq. (1) that the average entropy production hσi is always
positive; i.e., “information loss” during the physical proc-
essN results in the extra increase of entropy of the system.

B. Quantum operation time reversal
and the Petz recovery map

In order to generalize the concept of the entropy pro-
duction FT to a quantum channel, the first task is to identify
the reverse map for the given quantum channel, which
generalizes the time-reversed trajectory in thermodynam-
ics. We require that both the forward ðN Þ and backward
ðRÞ quantum processes should be completely positive
trace-preserving (CPTP) maps, which can be expressed
as N ðρÞ ¼Pm KmρK

†
m and RðρÞ ¼Pm K̃mρK̃

†
m satisfy-

ing
P

m K†
mKm ¼ 1 and

P
mK̃

†
mK̃m ¼ 1 in their Kraus

representations. A form of R has been introduced by
Crooks [61] in the notion of “quantum operation time
reversal” inspired by the time reversal of the Markov

FIG. 1. Schematic for the standard TPM scheme for the forward

A!N B and backward Ã R B processes. The distributions
P→ðx; y0Þ and P←ðx; y0Þ are defined in the TPM between two
different times 0 and τ.
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chain [62]. When the channel has a fixed point π satis-
fying N ðπÞ ¼ π, we can define the Kraus operator for the
reverse dynamics as K̃m ¼ π1=2K†

mπ−1=2, which leads to
Tr½Km0KmπK

†
mK

†
m0 � ¼ Tr½K̃mK̃m0πK̃

†
m0K̃

†
m�, or equivalently

P→ðm;m0Þ ¼ P←ðm;m0Þ, preserving the dynamic history
of the process for the state π. Consequently, the reverse map
can be defined as RπðρÞ ¼

P
m K̃mρK̃

†
m, where the fixed

point π remains unchanged by Rπ, i.e., RπðπÞ ¼ π.
Crooks’s original approach [61] requires a fixed equi-

librium state which is invariant under the quantum channel.
This condition is relaxed to construct a general form of the
reversed quantum operation, the so-called Petz recovery
map [56]. Provided the structure of the quantum channel,

i.e., γ!N N ðγÞ, is known, the Petz recovery map can be
constructed as follows.
Definition 1 (Petz recovery map).—For a given reference

state γ and CPTP map N , the Petz recovery map Rγ is
defined as

RγðρÞ ≔ ðJ 1=2
γ ∘N †∘J −1=2

N ðγÞÞðρÞ;

where N †ð·Þ ¼PmK
†
mð·ÞKm is the adjoint map, and

J α
Að·Þ ≔ Aαð·ÞAα† is defined as a rescaling map. The

Petz recovery map is a CPTP map and fully recovers the
reference state, i.e., Rγ(N ðγÞ) ¼ γ.
In the Kraus representation, the reverse quantum channel

Rγ is given by the set of Kraus operators fK̃mg with

K̃m ¼ γ1=2K†
mN ðγÞ−1=2. Compared with Crooks’s quantum

operation time reversal [61], it is always possible to
construct the Petz recovery mapRγ for any given reference
state γ, while Rγ reduces to the quantum operation time
reversal when taking the fixed reference state π satisfying
N ðπÞ ¼ π. The recovery map Rγ is specific to the choice
of the reference state and it is not possible to choose a map
which can recover any initial state ρ unless the channel is
represented by a unitary operation for the system. We also
note that there exists a duality between N and Rγ that N
becomes the recovery map ofRγ by choosing the reference
stateN ðγÞ. The reference state can be chosen depending on
the fluctuation of which physical properties we are inter-
ested in. The recovery maps, following the reference states,
can vary even for the same forward quantum channel. As an
example, we investigate in Sec. V how the different choices
of reference states lead to the different fluctuation theorems
of free energy, coherence, or entanglement.
While there have been some discussions of using the

Petz recovery map to the QFT [47,50,51,63], they mainly
focus on thermodynamic channels [47,50], or their meas-
urement-based approaches [51,63] cause the inevitable loss
of coherences after measurements. Here we formulate a
very general QFT based on the Petz recovery map. For this,
we choose a reference state and its recovery map then write
the backward transition probability through this map. In our

formulation, both quantum and classical information quan-
tities as well as thermodynamic quantities can be coher-
ently combined into a unified framework. It is worth noting
that the dynamics of the system may not be linear, for
example, when the system and bath are initially correlated
[64], a case we do not consider in this work. Throughout
the paper, we assume that the reference state is full rank,
and we denote the reference state by γ ¼Pi rijiihij and the
evolved state by N ðγÞ ¼Pk0 r

0
k0 jk0ihk0j, using their eigen-

value decompositions.

III. FLUCTUATION THEOREMS FOR A
QUANTUM STATE WITH COHERENCE

A. Pure state fluctuation relation

Let us start with how the fluctuation relation for the
transition probability is modified when quantum states
contain coherences. Consider the transition probability

between two pure quantum states jψi!N jϕ0i, which can
be compared to the transition between the microscopic
entities x and y0 in Eq. (2). Throughout the paper, a primed
parameter ð·Þ0 denotes the final state after passing the
channel. The forward transition probability is defined as
Tðjψi→ jϕ0iÞ ≔ hϕ0jN ðjψihψ jÞjϕ0i. However, it is impor-
tant to note that the reference states are not, in general,
equally distributed in their eigenstates. Consequently, the
maximally mixed state 1=d in a d-dimensional Hilbert
space is not a passive state as N ð1Þ ≠ 1 and Rγð1Þ ≠ 1.
This raise the difficulty of a fair comparison between the
forward and backward transitions in the same scale. In
order to handle this, the coefficients of a density matrix can
be weighted differently based on the distribution of the
reference states, which we call the reference rescaling
[52,65,66]. In particular, we can choose the rescaling
operations (denoted as ∼) for the reverse process to satisfy

the relation ð1=dÞ!∼ N ðγÞ!Rγ
γ!∼ ð1=dÞ, so that the maxi-

mally mixed states is now mapped to itself in the rescaled
statistics. By imposing this condition, the reverse process
is applied to the rescaled states jψ̃i and jϕ̃0i, where the
transition probability is given by T̃ðjψ̃i ← jϕ̃0iÞ ≔
hψ̃ jRγðjϕ̃0ihϕ̃0jÞjψ̃i. We then obtain the following fluc-
tuation relation for the transition between the two pure
quantum states.
Theorem 1 (Detailed balance condition for pure

states).—The transition probabilities from jψi to jϕ0i under
a quantum channel N and its backward process Rγ obey
the following relation:

Tðjψi → jϕ0iÞ
T̃ðjψ̃i ← jϕ̃0iÞ ¼ hψ jγ

−1jψihϕ0jN ðγÞjϕ0i; ð4Þ

where jψ̃i ¼ hψ jγ−1jψi−1=2γ−1=2jψi and jϕ̃0i ¼
hϕ0jN ðγÞjϕ0i−1=2N ðγÞ1=2jϕ0i are the reference-rescaled
states.
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Detailed proofs of all the theorems can be found in the
Appendixes. We note that the detailed balance condition
given by Eq. (4) does not depend on how the quantum
channel N is applied (for instance, suddenly or adiabati-
cally), which is also the case in classical thermodynamics.
We point out that the eigenstates of the reference states are
not affected by the rescaling, i.e., jĩi ¼ jii and jk̃0i ¼ jk0i.
By taking the fixed equilibrium state γ ¼Pi e

−βEi=Zjiihij,
with the partition function Z ¼Pi e

−βEi , we obtain
Tðjii → jk0iÞ ¼ T̃ðjii ← jk0iÞe−βΔE, with ΔE ¼ Ek0 − Ei,
which shows that Eq. (4) reduces to the classical detailed
balance condition. On the other hand, when the final state is
given by the maximally coherent state jϕi ∝Pk0 jk0i, its
rescaled state becomes jϕ̃i ∝Pk0 e

−βEk0 jk0i, the so-called
coherent Gibbs state. Conversely, the initial coherent Gibbs
state jψi ∝Pi e

−βEi jii is rescaled into the maximally
coherent state jψ̃i ∝Pi jii for the reverse quantum process
Rγ. Theorem 1 also shows that recently studied Gibbs-
rescaling approaches toward the quantum fluctuation rela-
tion [52,66] can be applied to a wider range of quantum
channels beyond thermodynamic processes.
In order to illustrate the effect of coherence in the

detailed balance, let us consider a single two-level atom
as our system of interest. This interacts with a simple bath
of a single-mode field. The system-bath interaction follows
the Jaynes-Cummings (JC) model [67] whose Hamiltonian
is given by

HJC ¼ Ha þHf þ gðσþaþ σ−a†Þ; ð5Þ

where the atomic Hamiltonian Ha ¼ ℏωaσz=2 with the
Pauli σz operator, the field HamiltonianHf ¼ ℏωfa†a with
bosonic operators a and a†, and the last term represents the
interaction Hamiltonian with σ� the raising and lowering
operators for the atom, and g the atom-field coupling
strength. For the resonant interaction, the atomic transition
frequency ωa and the field frequency ωf are the same:
ωa ¼ ωf ¼ ω0. We assume that the field state is initially in
thermal equilibrium at temperature T; its density matrix is
given by the field density operator γf ¼ expð−βHfÞ=Zf.
After their interaction for some time τ, the atomic state is
found by tracing out the field mode:

N 0→τðρ0Þ ¼ Trf½U0→τðρ0 ⊗ γfÞU†
0→τ�; ð6Þ

where the evolution operator U0→τ ¼ e−iHJCτ=ℏ. As a refer-
ence state of the system of interest, let us consider the atomic
state in thermal equilibrium, γa ¼ expð−βHaÞ=Za, which is
unchanged during the time evolution, i.e., N 0→τðγaÞ ¼ γa
for any time period τ. This resembles the thermodynamic
processes studied in Ref. [50] as the unitary evolution
obeys the energy conservation relation ½U0→τ; Ha þHf� ¼
0. The corresponding Petz recovery map is written

in the form of the time-reversed evolution [50] of the
atomic state,

R0←τðρτÞ ¼ Trf½U0←τðρτ ⊗ γfÞU†
0←τ�; ð7Þ

where U0←τ ¼ eiHJCτ=ℏ ¼ U†
0→τ, which is equivalent to

changing the Hamiltonian HJC → −HJC.
Using Theorem 1, we find the symmetry of the forward

and backward transition probabilities between two pure
atomic states jψi→ jϕ0i with the energy difference
ΔE ¼ Eϕ0 − Eψ ¼ hϕ0jHajϕ0i − hψ jHajψi:

Tðjψi→ jϕ0iÞ
T̃ðjψ̃i← jϕ̃0iÞ ¼ ϒe−βΔE; ð8Þ

which resembles the detailed balance condition in classical
thermodynamics, with the extra factor ϒ ¼ exp½βΔEþ
loghψ jeβHa jψihϕ0je−βHa jϕ0i�. We note that the extra factor
ϒ contains the higher-order terms of the system
Hamiltonians, and ϒ ≥ 1. This captures the effect of
coherences on the quantum detailed balance as ϒ > 1 if
and only if either the initial or final state contains energy
coherences. It can be understood in the sense that fluctua-
tions in coherences make it more difficult to achieve the
reverse quantum process of the rescaled states.
Figure 2 compares the detailed balances regarding inco-

herent and coherent state-transition probabilities. The param-
eters for HJC are given by β ¼ 1, ℏω0 ¼ 1, and g ¼ 0.1.
When the initial and final states do not contain coherences in
the energy-eigenstate basis (e.g., jei → jgi or jgi → jgi,
where jgi and jei are the ground and excited atomic states),
ϒ becomes 1. On the other hand, the transition from
jψi ¼ ffiffiffi

r
p jgi þ ffiffiffiffiffiffiffiffiffiffi

1 − r
p jei to jϕ0i ¼ ffiffiffiffiffiffiffiffiffiffi

1 − r
p jgi − ffiffiffi

r
p jei for

0 < r < 1 leads to ϒ > 1 reflecting the role of coherence in
the detailed balance condition. For example, by choosing
r ¼ 1=2 to set ΔE ¼ 0, the quantum correction is given by
ϒ ≈ 1.27.
We point out that this can be generalized to anymultilevel

systems with the appropriate Hamiltonian H. The effect of
coherence becomes significant when the temperature is
low and the state has coherence between a large energy
difference. In contrast, for the high-temperature limit we
recover the conventional fluctuation theorem. Up to the
second order of β, the quantum correction is given by
ϒ≈1þ1

2
fβ2½VarjψiðHÞþVarjϕ0iðHÞ�g, where VarjψiðHÞ ¼

hψ jH2jψi − hψ jHjψi2.

B. Master equation approach

Our approach can be applied to quantum Markov
processes. Suppose that the dynamics of a quantum state
is given by the Lindblad equation,

dρ
dt
¼ LðρÞ ¼ −

i
ℏ
½Ht; ρ� þ

X
n

�
LnρL

†
n −

1

2
fL†

nLn; ρg
�
;
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where ½A;B� ¼ AB − BA is the commutator and fA; Bg ¼
ABþ BA is the anticommutator. When we know the full
trajectory of the reference state γt, which evolves by the
dynamics dγt=dt ¼ LðγtÞ for 0 ≤ t ≤ τ, we can construct
the reverse dynamics based on the Petz recovery map. This
can be done by considering a channel N t→tþdt at time t for
an infinitesimal time interval dt, which can be written as

N t→tþdt ¼ 1þ Ldt:

According to the definition of the Petz recovery map,
the reverse process for this infinitesimal time interval is
given by

Rt←tþdt ¼ J 1=2
γt ∘N †

t→tþdt∘J −1=2
γtþdt :

We note that this reverse dynamics can be expressed in
another Lindblad superoperator such that Rt←tþdt ¼ 1þ
L̃dt, where

L̃ðρÞ ¼ −
i
ℏ
½H̃t; ρ� þ

X
n

�
L̃nρL̃

†
n −

1

2
fL̃†

nL̃n; ρg
�
: ð9Þ

Here, the Hamiltonian and jump operators for the
reverse dynamics are defined as H̃t ¼ −ð1=2Þγ1=2t ½Htþ
iℏγ−1=2t ðdγ1=2t =dtÞ þ ðiℏ=2ÞPn L

†
nLn�γ−1=2t þH:c: and

L̃n ¼ γ1=2t L†
nγ

−1=2
t , respectively. This reverse dynamics

fully recovers the trajectory of the reference state, i.e.,

dγτ−t̃=dt̃ ¼ L̃ðγτ−t̃Þ, where t̃ represents the evolution time
in the reverse trajectory.
This result can be compared with the reverse dynamics of

a Lindblad master equation studied in Ref. [51]. First, our
result provides the closed form of the reverse dynamics in
terms of the valid Hamiltonian H̃t and L̃n jump operators
in its master equation, while the approach inRef. [51] results
in the non-Hermitian effective Hamiltonian to describe the
reverse dynamics. Second, our approach does not require
any condition on the forward dynamics, thus it can be
applied to an arbitrary quantum Markov channel, while
specific channels have been considered in Refs. [39,51].
We discuss an application of the reverse Markov dy-

namics to FTs when noise is included. Let us consider
the previous examples of the JC Hamiltonian, subject to
the thermal environment. The Lindbladian responsible for the
noise is given byLnoiseðρÞ ¼ Γ½σþρσ− þ ð1=2Þfσ−σþ; ρg�þ
Γeβℏω0 ½σ−ρσþ þ ð1=2Þfσþσ−; ρg�, where Γ is the coupling
constant with thermal environment. The dynamics of the total
atom-field state is given by

dρ
dt
¼ LðρÞ ¼ −

i
ℏ
½HJC; ρ� þ LnoiseðρÞ: ð10Þ

We note that the Gibbs state γ ¼ γa ⊗ γf of both atom and
field modes is stationary under the dynamics, i.e., LðγÞ ¼ 0,
which can thus conveniently serve as the fixed-point reference

(a)

(d) (e) (f)

(b) (c)

FIG. 2. Detailed balance of pure states for the JC Hamiltonian described in Eq. (5) with the parameters β ¼ 1, ℏω0 ¼ 1, and g ¼ 0.1.
Panels (a)–(c) represent the results without noise, and panels (d)–(f) represent the results with noise Lnoise given by Eq. (10) with
Γ ¼ 0.1. Panels (a) and (d) refer to the forward (blue solid lines) and backward (red dashed lines) transition probabilities of jgi → jei
versus the evolution time τ. Panels (b) and (e) refer to the state transition jgi þ jei → jgi − jei. Panales (c) and (f) show the ratio
Tðjψi → jϕ0iÞ=T̃ðjψ̃i ← jϕ̃0iÞ between the forward and backward transition probabilities from jψi ¼ ffiffiffi

r
p jgi þ ffiffiffiffiffiffiffiffiffiffi

1 − r
p jei to jϕ0i ¼ffiffiffiffiffiffiffiffiffiffi

1 − r
p jgi − ffiffiffi

r
p jei versus energy difference ΔE ¼ Eϕ0 − Eψ (blue solid lines). Dashed lines refer to the classical thermodynamic

detailed balance e−βΔE. The green and red dots are obtained for the transition with ΔE ¼ 0 for the coherent and incoherent initial fields,
respectively. The additional factor ϒ ≈ 1.27 can be observed for the case with coherence. This ratio depends only on the values of β and
ω0 but not on g, Γ, or τ.
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state, as in the case without noise. The reverse dynamics is
then given by the inversion of theHamiltonian, H̃JC ¼ −HJC,
analogously toEq. (7), while the noise term remains the same,
L̃noise ¼ Lnoise. If we trace out the field mode, we obtain the
reverse trajectory of the atomic state. Figure 2 shows how
the forward andbackward transition probabilities between the
twopure states changewhen the noise is added to the system’s
dynamics. We highlight that the detailed balance condition
Eq. (8) is unchanged as the atomic state γa remains the same
for the cases with and without the noise term.

C. Quantum Crooks FT

Let us move on to derive the QFT for a mixed
state transformation through the quantum channel.
Suppose that ρ ¼Pμ pμjψμihψμj is transformed into
N ðρÞ ¼Pν0 p

0
ν0 jϕ0ν0 ihϕ0ν0 j by the quantum channel N .

Here fpμ; jψμig and fp0ν0 ; jϕ0ν0 ig are the eigenvalue decom-
positions of ρ and N ðρÞ, respectively, and jψμi and jϕ0ν0 i
are not necessarily orthogonal to each other. The single-
shot entropy change is calculated similarly to the classical
channel as

δsμ→ν0 ≔ − logp0ν0 þ logpμ;

based on the von Neumann entropy SðρÞ ¼ −Tr½ρ log ρ� ¼
−
P

μ pμ logpμ.
The information exchange of the quantum channel is

characterized with respect to the reference bases fjiig and
fjk0ig. The classical and quantum channels are different,
as the latter could include coherences; thus, transitions

between off-diagonal elements jiihjj!N jk0ihl0j should be
considered as well. We define the quantum information
exchange to contain all these transitions by

δqij→k0l0 ≔ − log

�
Tij→k0l0

T̃�ij←k0l0

�
¼ −

1

2
log½r0k0r0l0 � þ

1

2
log½rirj�;

ð11Þ

where Tij→k0l0 ≔ hk0jN ðjiihjjÞjl0i and T̃ij←k0l0 ≔
hijRγðjk0ihl0jÞjji. Even though the transition matrices are
complex valued, the ratio between the forward process
ðTij→k0l0 Þ and the backward process after taking the com-
plex conjugate ðT̃�ij←k0l0 Þ is always positive. If we consider
the transition between the diagonal elements Tii→k0k0 , the
quantum information exchange reduces to the classical
case Eq. (2).
We note that taking the complex conjugate is necessary

to establish the symmetry between the forward and back-
ward transitions of off-diagonal elements and to consider
the equivalence of the transpose operation, T̃�ij←k0l0 ¼
T̃ji←l0k0 . This implies that the reverse process should be
redefined as R�γ ≔ Θ∘Rγ∘Θ0 to include the transpose

operations ΘðjiihjjÞ ¼ jjihij and Θ0ðjk0ihl0jÞ ¼ jl0ihk0j,
which are related to the time-reversal operation in quantum
mechanics. For example, in a harmonic oscillator system
with the Hamiltonian H ¼ p2=ð2mÞ þmω2

0x
2=2, with

½x; p� ¼ iℏ, the transpose operation Θ with respect to the
energy eigenstates is identical to the reflection in phase

space, p!Θ − p and x!Θ x, which is equivalent to the time-
reversal operation. However,R�γ is no more a CPTP map as
the transpose operation does not preserve the complete-
positivity condition [68]. This problem can be bypassed by
noting that the quantum states should also be time reversed
in the reverse trajectory. Time reversing the quantum states
cancels out the effect of the transpose operations as
ΘðR�γ(Θ0ðρ0Þ)Þ ¼ Rγðρ0Þ. Throughout this paper we will
keep using the Petz recovery map and the reversed state
without the time-reversal operations to preserve the CPTP
property of the reverse quantum channel, as Rγ and
Θ∘R�γ∘Θ0 give the same picture for a physical state
described by a density matrix.
In a similar way to the classical channel given by Eq. (3),

the entropy production for the transition ðμ; i; jÞ →
ðν0; k0; l0Þ is defined as

σμ→ν0
ij→k0l0 ≔ δsμ→ν0 − δqij→k0l0 : ð12Þ

For the reference state, the entropy production becomes
zero for any transitions, which corresponds to a reversible
process in thermodynamics (see Fig. 3).
The final step to establish the QFT is constructing

the TPM distribution while keeping all the marginal

FIG. 3. Quantum information exchange (δq) is equal to the

entropy difference (δs) for the reference state γ!N N ðγÞ (top).
When the recovery map Rγ does not fully recover the quantum
state ρ, there is entropy production, σ ¼ δs − δq ≠ 0 (bottom).
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distributions of μ; i; j; ν0; k0; l0 unchanged. Although it is
impossible to find a positive TPM quasiprobability dis-
tribution satisfying such a condition [45,46], we can define
a complex-valued distribution for the forward process as

Pμ;ν0
ij;k0l0 ≔ pμhϕ0ν0 jΠk0N ðΠijψμihψμjΠjÞΠl0 jϕ0ν0 i; ð13Þ

where Πi ¼ jiihij and Πk0 ¼ jk0ihk0j. We can prove that

Pμ;ν0
ij;k0l0 satisfies the marginality:

X
ν0 or μ

�X
i;j;k0;l0

Pμ;ν0
ij;k0l0

�
¼ pμ or p0ν0 ;

X
k0 or i

� X
μ;ν0;j;l0

Pμ;ν0
ij;k0l0

�
¼ Tr½Πiρ� or Tr½Πk0N ðρÞ�: ð14Þ

We are now ready to derive the entropy production QFT.
Using the TPM quasiprobability, the distribution of entropy
production is given by

P→ðσÞ ¼
X
μ;i;j

X
ν0;k0;l0

Pμ;ν0
ij;k0l0δðσ − σμ→ν0

ij→k0l0 Þ; ð15Þ

and P←ðσÞ can be similarly defined using the recovery map
Rγ. We note that P→ðσÞ is a real-valued function, and only
the real parts of the TPM quasiprobability Re½Pμ;ν0

ij;k0l0 �
contribute to P→ðσÞ as Pμ;ν0

ij;k0l0 ¼ ðPμ;ν0
ji;l0k0 Þ� and σμ→ν0

ij→k0l0 ¼
σμ→ν0
ji→l0k0 . Analogous to the classical Crooks FT, we establish

the symmetry between the forward and backward quantum
transitions.
Theorem 2.—The distribution of quantum entropy pro-

duction for the CPTP map N is related to its reverse
process Rγ as

P→ðσÞ
P←ð−σÞ

¼ eσ: ð16Þ

D. Reconstructing the TPM quasiprobability
distribution from a two-point POVM protocol

We schematically describe how to experimentally show
QFT. The first task is to study whether the complex-valued

TPM quasiprobability distribution Pμ;ν0
ij;k0l0 can be obtained

from observable quantities. Let us consider the TPM
probability

P→ðm;m0Þ ¼ Tr½M0m0N ðMmρM
†
mÞM0†m0 �;

where Mm and M0m0 are measurement operators for the
initial and final points with the measurement outcomes m
and m0, respectively. Note that P→ðm;m0Þ is a proper
probability distribution. Such a protocol has recently been

experimentally realized to test fluctuation theorems in the
quantum regime [54,55,69,70].
We point out that the projection measurement Πi and Πk0

cannot directly be adopted for Mm and M0m0 as all the
coherence terms vanish after the measurements are per-
formed. In order to keep coherences, we perform POVMs at
the initial and final points, where POVM elements can
overlap each other. We provide a two-point POVM protocol
such that the TPM quasiprobability can be obtained from
the statistics of the measurement outcomes.
For our example of the JC Hamiltonian Eq. (5), where

the reference states have the eigenstates fjgi; jeig, the
POVMs for the first and second measurements can be
given by

Mðμ;1Þ ¼
1ffiffiffi
2
p jgihgjΠψμ

;

Mðμ;2Þ ¼
1ffiffiffi
2
p jeihejΠψμ

;

Mðμ;3Þ ¼
1

2
ðjgihgj þ jeihejÞΠψμ

;

Mðμ;4Þ ¼
1

2
ðjgihgj þ ijeihejÞΠψμ

;

and

M0ðν0;10Þ ¼
1ffiffiffi
2
p Πϕν0 jgihgj;

M0ðν0;20Þ ¼
1ffiffiffi
2
p Πϕν0 jeihej;

M0ðν0;30Þ ¼
1

2
Πϕν0 ðjgihgj þ jeihejÞ;

M0ðν0;40Þ ¼
1

2
Πϕν0 ðjgihgj þ ijeihejÞ:

Here, Πψμ
¼ jψμihψμj and Πϕν0 ¼ jϕν0 ihϕν0 j, and the meas-

urement outcomes can be represented as m ¼ ðμ; aÞ and
m0 ¼ ðν0; b0Þ for all possible ðμ; aÞ and ðν0; b0Þ. In experi-
ments, Πψμ

, Πϕν0 , jgihgj, and jeihej can be realized by
projection measurements combined with single-qubit gates.
The other POVM elements, ð1= ffiffiffi

2
p Þðjgihgj þ jeihejÞ ¼

ð1= ffiffiffi
2
p Þ and ð1= ffiffiffi

2
p Þðjgihgj þ ijeihejÞ ¼ ð1= ffiffiffi

2
p Þeiðπ=2Þσz ,

can be obtained by performing the controlled-phase gate
of ϕ ¼ π=2 along with an initial ancillary state j0ic þ j1ic
followed by the projections onto j0ich0j and j1ich1j. These
quantum operations can be implemented in various
physical systems [71–81] including atoms [71], photons
[72–74], trapped ions [75,76], and superconducting circuits
[77–79].
We note that both real and complex components

of the TPM quasiprobability Pμ;ν0
ij;k0l0 can be fully recon-

structed as a linear combination of the two-point
POVM distribution P→ðm;m0Þ. Detailed expression can
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be found in Appendix D. The TPM quasiprobability
for the reverse process can be obtained in a similar way
by the following two-point POVMs: P←ðm;m0Þ ¼
Tr½M†

mRγ(M0
†
m0N ðρÞM0m0)Mm�.

This protocol can be generalized for the initial and final
quantum states in a d-dimensional Hilbert space. In this
case, a set of POVMs to obtain the TPM quasiprobability
can be constructed as follows: fMmg ¼ fð1=

ffiffiffi
d
p ÞΠiΠψμ

;

ð1= ffiffiffiffiffiffi
2d
p ÞðΠi þ ΠjÞΠψμ

; ð1= ffiffiffiffiffiffi
2d
p ÞðΠi þ iΠjÞΠψμ

g and

fM0m0 g ¼ fð1= ffiffiffi
d
p ÞΠϕν0Πk0 ; ð1=

ffiffiffiffiffiffi
2d
p ÞΠϕν0 ðΠk0 þ Πl0 Þ;

ð1= ffiffiffiffiffiffi
2d
p ÞΠϕν0 ðΠk0 þ iΠl0 Þg for every possible μ, i, j and

ν0, k0, l0 satisfying i < j and k0 < l0. When the initial and
final quantum states commute with their reference states,
i.e., ½ρ; γ� ¼ 0 and ½N ðρÞ;N ðγÞ� ¼ 0, the two-point POVM
reduces to the conventional TPM protocol using the
projectors fΠig and fΠk0 g.
Once we obtain the TPM quasiprobability Pμ;ν0

ij;k0l0, the
quasiprobability of the entropy production P→ðσÞ can be
reconstructed by Eq. (15).

IV. FLUCTUATION THEOREMS
FOR A QUANTUM CHANNEL INDUCING

COHERENCE TRANSFER

A. Coherence transfer and negative
quasiprobability distributions

Even though Theorem 2 looks remarkably similar to its
classical counterpart Eq. (1), there is a crucial difference
that P→ðσÞ can have negative values (see Fig. 4 and
Sec. IV C for a detailed discussion). This stems from the
fact that the real part of the TPM quasiprobability Re½Pμ;ν0

ij;k0l0 �
can be negative. The negativity in the TPM quasiprobability
distribution can be understood in line with the fact that the
work quasiprobability distributions [31,45,46] should allow
negativity to preserve the marginal distribution of work
without disturbing the mean energy difference in the TPM
setting. The negativity in the work distribution occurs when
the quantum state and measurement operators do not
commute [31], and its relation to contextuality [46] has
been recently studied. More generally, we can find a
connection between the TPM and Wigner quasiprobability
distributions [82] by noting that both preserve the marginal
probabilities of noncommuting observables. In this manner,
their negativities can been studied as a signature of non-
classicality [83]. Also, the deeper physical meaning of the
negativity might be found based on its relationship to
contextuality [84], which we leave to future analysis.
Let us discuss the necessary conditions to obtain the

negativity in P→ðσÞ in two different aspects: (1) coherence
contained in the system and (2) coherence transfer induced
by the channel. We study the condition for coherence in
the quantum states first. We note that the TPM distribution
is always positive when both initial and final states are

diagonal with respect to the reference states, i.e., ρ ¼P
i pijiihij and N ðρÞ ¼Pk0p

0
k0 jk0ihk0j. In this case, the

TPM distribution is given by piTðjii → jk0iÞ ≥ 0 and the
FTs for classical channels can be retrieved. This result
implies that coherence in the quantum states is a necessary
condition for the negativity in P→ðσÞ.
However, it is important to note that the initial or final

quantum state containing coherence is not enough to
observe the negativity in P→ðσÞ. We can have a quantum
channel N which leads to positive P→ðσÞ regardless of
coherences in the initial or final state. Suppose the quantum
channel N described by a set of Kraus operators fKmg
satisfying hk0jKmjii ¼ KijðωmÞδðωm þ log r0k0 − log riÞ,
where KijðωmÞ is some complex-valued function.

Through this channel, the transition jiihjj!N jk0ihl0j occurs
between the same mode of coherence [85] satisfying
ωij ¼ ω0k0l0 , where ωij ≔ − log ri þ log rj and ω0k0l0 ≔
− log r0k0 þ log r0l0 . When frig and fr0k0 g are nondegenerate,

FIG. 4. (Top) Distribution of the forward P→ðσÞ (blue) and
backward P←ð−σÞ (red) entropy productions in the JC Hamil-
tonian. The same parameters for HJC are chosen as in Fig. 2
with τ ¼ 18.66. The initial atomic state is given by ρ ¼
ð1=2Þjψihψ j þ 1=4, with jψi ¼ ðjgi þ jeiÞ= ffiffiffi

2
p

. When the field
is initially in the incoherent thermal state γf, P→ðσÞ and P←ð−σÞ
are always positive (inset). When the initial field is in the coherent
Gibbs state jγfi, P→ðσÞ and P←ð−σÞ can be negative (main).
(Bottom) For both coherent (green) and incoherent (blue) cases,
the entropy production satisfies the fluctuation theorem
log ½P→ðσÞ=P←ð−σÞ� ¼ σ in Eq. (16).
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the channel does not generate off-diagonal terms jk0ihl0j
from any diagonal terms jiihij. We note that this type
of quantum channel has a positive distribution P→ðσÞ ≥ 0
for any initial states. Therefore, the quantum channel
should induce a coherence transfer between off-diagonal
elements to have the negativity in P→ðσÞ. In the following
sections, we see how the coherence transfers by the
quantum channel lead to a qualitatively different nature
of QFTs—the imaginary entropy production.

B. Rotated Petz recovery maps and imaginary
quantum information exchange

In order to understand the coherence transfer, it is
important to note that there is an additional degree of
freedom to choose in the Petz map for the full recover-
ability of the reference state γ [86]. This additional
parameter leads to a family of recovery maps called the
rotated Petz recovery map (see Fig. 5).
Definition 2 (Rotated Petz recovery map).—For a given

reference state γ and CPTP map N , the Petz recovery map
can be generalized to the following form of the rotated
recovery map [86]:

Rθ
γðχÞ ≔ ðJ 1=2þiθ

γ ∘N †∘J −ð1=2Þ−iθ
N ðγÞ ÞðχÞ: ð17Þ

Every rotated Petz recovery map fully recovers the refer-
ence state, i.e., Rθ

γ(N ðγÞ) ¼ γ for every θ.

The ordinary Petz recovery map Rγ is the special case
of the rotated Petz map with θ ¼ 0. Now, we calculate
the ratio between P→ and P← as in Eq. (11) with
the generalized Petz map, where the reverse transition is
given by T̃θ

ij←k0l0 ¼ hijRθ
γðjk0ihl0jÞjji. In this case, the ratio

between the forward and backward transition acquires an
additional phase factor as

Tij→k0l0

ðT̃θ
ij←k0l0 Þ�

¼ e−δqij→k0 l0þiθðωij−ω0k0 l0 Þ: ð18Þ

The involvement of the phase is purely due to coherences as
it vanishes for the transition between diagonal elements.
The rotation in the Petz recovery map modifies the quantum
information exchange by adding the imaginary term:

ðδqIÞij→k0l0 ≔
ω0k0l0 − ωij

2
¼ −

1

2
log

�
r0k0
r0l0

�
þ 1

2
log

�
ri
rj

�
;

while keeping the real part as in Eq. (11). We choose the
factor ð1=2Þ in δqI to be consistent with the real part of δq.
The single-shot entropy production then becomes complex
valued as

σμ→ν0
ij→k0l0 ¼ δsμ→ν0 − ½ðδqRÞij→k0l0 þ iðδqIÞij→k0l0 �: ð19Þ

The quasiprobability distribution of entropy production for
the forward process P→ðσÞ ¼ P→ðσR þ iσIÞ can be defined
in a similar way to Eq. (15), as well as for the backward
process Pθ

←ðσÞ by using the reverse processRθ
γ . Analogous

to the case of real-valued entropy production, P→ðσÞ and
Pθ
←ðσÞ can be reconstructed from the two-point POVM

introduced in Sec. III D.
Now we present the main result of the paper, which fully

reflects the involvement of quantum coherences in the
channel or in the system.
Theorem 3 (Generalized QFT).—The quasiprobability

distribution of quantum entropy production P→ðσÞ for a
CPTP map N is related to its reverse process Rθ

γ by

FIG. 5. Rotated Petz recovery maps (top). The reference
state γ is fully recovered by the Petz recovery map, i.e.,
ðRθ

γ∘N ÞðγÞ ¼ γ. For a covariant quantum channel N satisfying
J −iθ

N ðγÞ∘N ∘J iθ
γ ¼ N , all the rotated Petz recovery maps are the

same, i.e., Rθ
γ ¼ Rγ (bottom).

FIG. 6. Quantum information exchange for the two-level atom
with the fixed reference state γa ¼ e−βHa=Za. All possible
transitions are described by the arrows, and some transformations
are selected to show the values of quantum information exchange.
This can be generalized to a higher-dimensional system.
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P→ðσÞ
Pθ
←ð−σ�Þ

¼ eσR−2iθσI : ð20Þ

Note that Theorem 2 can be deduced from the gener-
alized QFT in Eq. (20) by taking θ ¼ 0 and summing over
all the imaginary entropy productions σI. The imaginary
part of Eq. (20) only comes from the coherence transfer
between off-diagonal elements, and it arises when coher-
ences are involved in both system and channel. In the
following sections, relationships between the imaginary
entropy production and the covariance property of the
quantum channel are discussed. We also see that the
imaginary parts play an important role in recovering other
fluctuation theorems and the second law of thermodynam-
ics for a quantum channel.

C. Two-level atom interacting with the coherent and
incoherent heat baths

As a specific case study, we recall the previous example
of the JC Hamiltonian in Eq. (5). We first show a simple
case of the QFT for an incoherent thermal channel, which
does not show negativities. From the definition of the
entropy production Eq. (19), we find σμ→ν0

ij→k0l0 ¼−logp0ν0þ
logpμ−βðEk0−EiþEl0−EjÞ=2−iβðEk0−El0−EiþEjÞ=2,
where Ei are the energy eigenstates of the atomic
Hamiltonian Ha. Note that Ek0 − El0 ¼ Ei − Ej should

hold when the two-level atom is interacting with the
thermal field. Using this condition, the quantum entropy
production for the transition ðμ; i; jÞ → ðν0; k0; l0Þ is sim-

plified as σμ→ν0
ij→k0l0 ¼−logp0ν0 þlogpμ−βðEk0−EiÞ, where

Ek0 − Eið¼ El0 − EjÞ is the energy exchange, or heat
flow, from the field to the atomic system. Note that
there is no imaginary part that appears in the entropy
production, and the entropy production probability
is always positive (see Fig. 4). When the channel induces
a coherence transfer between off-diagonal elements, the
situation can be different. As an example, we assume that
the field is initially in a coherent Gibbs state, jγfi ∝P∞

n¼0 exp½−nβℏω0=2�jni, before normalization. Then the
channel in Eq. (6) becomes

N coh
0→τðρ0Þ ¼ Trf½U0→τðρ0 ⊗ jγfihγfjÞU†

0→τ�: ð21Þ

We choose the interaction time τ ≠ 0, where the thermal
equilibrium state of the atom γa returns to the initial thermal
equilibrium, i.e.,N coh

0→τðγaÞ ¼ γa. This allows us to keep γa
as the fixed reference state as for the thermal channel.
Although the reference state γa is unchanged by

the channel, coherence transfers occur from the coherent
bath to the system as the condition Ek0 − El0 ¼ Ei − Ej

no longer holds. We characterize the transitions between
off-diagonal elements by using the complex-valued

(a)

(d) (e) (f)

(b) (c)

p p

FIG. 7. (a) Real and (b) imaginary parts of P→ðσR þ iσIÞ for the JC model interacting with the coherent Gibbs state jγfi. The initial
state and the parameters are the same as in Fig. 4. The red points indicate the negativities. (d) The transition probability between the
rotated eigenstates Tðe−iβHaθ=2jψμi → e−iβHaθ=2jϕ0ν0 iÞ versus θ and (e) its Fourier transform with normalization. The peaks indicate
the points where the imaginary entropy productions occur (i.e., σI ¼ 0;�βℏω0=2;�βℏω0). (f) When the initial field is in the Gibbs
state, the transition probability does not depend on the rotation, and (c) no imaginary entropy production occurs.
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quantum information exchange (see Fig. 6). For example, a

transition jgihgj !N
coh
0→τjeihgj gives the complex quantum

information exchange of δqgg→eg ¼ ð1þ iÞβℏω0=2, while

another transition jgihej !N
coh
0→τjeihgj gives δqge→eg ¼ iβℏω0.

Consequently, the quantum entropy production should be
complex valued for the cases inducing coherence transfers.
Figure 7 shows the points of nonvanishing imaginary
entropy production when the two-level atom is interacting
with the coherent bath.

D. Covariant quantum channel and symmetry breaking

We discuss the physical meaning of the rotation in the
Petz recovery map in relation to the covariance property of
the quantum channel. We note that the rotation part in
Eq. (17) can be written as J iθ

γ ðρÞ ¼ UðθÞρU†ðθÞ, with
UðθÞ ¼ eiθ log γ , which is the form of the unitary group
transformation given by the generator log γ. Such trans-
formation can be regarded as translation in time, space,
or rotation, when the group generator is given by a
Hamiltonian, momentum operator, or angular momentum
operator, respectively. For example, when the fixed refer-
ence state is given in the form of γ ∝ e−βH for a
Hamiltonian H, the rotation J iθ

γ ðρÞ ¼ e−iβHθρeiβHθ corre-
sponds to the time-translation operation.
The physical symmetry of the quantum channel can be

studied by comparing the effects of the group transforma-
tions before and after passing the channel. When the
quantum channel N satisfies the following symmetry
condition with respect to the two group transformations
UðθÞ and VðθÞ,

N (UðθÞρU†ðθÞ) ¼ VðθÞN ðρÞV†ðθÞ ð22Þ

for all θ, the channel is called covariant. In the previous
example of time translation, if the quantum channel N
satisfies N ðe−iβHθρeiβHθÞ ¼ e−iβHθN ðρÞeiβHθ, we say the
channel is covariant with respect to the group transforma-
tions UðθÞ and VðθÞ, where UðθÞ ¼ e−iβHθ ¼ VðθÞ. We
also note that the covariance properties of quantum
channels have been studied in the context of the resource
theory of asymmetry [87–89], quantum thermodynamics
[23,24,90,91], and quantum error correction [92,93].
We demonstrate that the imaginary quantum information

exchange is directly related to the covariance property of
the channel with respect to the group transformations
UðθÞ ¼ eiθ log γ and VðθÞ ¼ eiθ logN ðγÞ. We find that the
imaginary part of the information exchange vanishes when
the quantum channel is covariant with respect to UðθÞ and
VðθÞ. This condition can be equivalently expressed as

J −iθ
N ðγÞ∘N ∘J iθ

γ ¼ N :

Conversely, the nonvanishing imaginary quantum entropy
production implies that the quantum channel does not have

the covariance property. We summarize the relationship
between imaginary entropy production and covariance of
the quantum channel as the following theorem.
Theorem 4 (QFT for a covariant quantum channel).—

For a covariant quantum channel N with respect to the
reference state γ, every rotated Petz recovery map reduces
into the ordinary Petz map ðRθ

γ ¼ RγÞ, and the quantum
entropy production does not have imaginary values.
Figure 5 provides an illustrative description of the

covariant quantum channel and how every rotated Petz
recovery map is reduced into the ordinary Petz recovery
map. A trivial example of covariant processes is a fully
decohered quantum channel given by

N incoh ¼ DN ðγÞ∘M∘Dγ;

where M can be any CPTP map, and DγðρÞ ¼
limΔθ→∞½1=ðΔθÞ�

RΔθ=2
−Δθ=2 dθJ

iθ
γ ðρÞ is a decohering opera-

tion with respect to the eigenstates of γ. Nontrivial
covariant operations include thermal operations obeying
energy-conservation law, which we have discussed pre-
viously using the JC Hamiltonian interacting with the
incoherent bath.
On the other hand, time-translational symmetry breaking

occurs for the channel N coh
0→τ when the atom is interacting

with the coherent Gibbs state in the JC Hamiltonian, which
can be inferred from the imaginary entropy production (see
Fig. 7). The imaginary entropy production not only
indicates the broken symmetry of the quantum channel
but also provides additional information about how it reacts
by the group transformations UðθÞ ¼ eiθ log γ and VðθÞ ¼
eiθ logN ðγÞ in the frequency domain. We note that the value
of imaginary entropy production σI having nonvanishing
P→ðσR þ iσIÞ should match the peaks in the Fourier
transform of the transition probability between the rotated
eigenstates T(Uðθ=2Þjψμi → Vðθ=2Þjϕ0ν0 i) (see Fig. 7). If
the channel is covariant, the transition probability does not
depend on θ, which is consistent with the fact that there is
no imaginary entropy production.
In the following section, we demonstrate that the

imaginary part of quantum entropy production also plays
a crucial role in the derivation of the second law inequality
from the general form of the integral QFT.

V. GENERALIZED SECOND LAW
FOR A QUANTUM CHANNEL

A. Integral QFT and quantum data
processing inequality

When the initial state ρ has the same rank as the
reference state γ, the following equality holds for every θ:

he−σRþiθσIi ¼ 1; ð23Þ
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where h·i denotes averaging over the TPM distribution. By
taking θ ¼ 0, we obtain he−σRi ¼PσR

P→ðσRÞe−σR ¼ 1,
which resembles the classical integral FT [94]. Despite the
negativities in P→ðσÞ, we verify that the examples dis-
cussed in the JC Hamiltonian in Fig. 7 satisfy the integral
QFT given by Eq. (23) for both cases of coherent and
incoherent baths.
However, due to the complex-valued nature of both the

transition amplitude and the quantum entropy production,
it is impossible to apply Jensen’s inequality to obtain the
inequality for the first-order moment of Eq. (23). This gives
rise to the highly nontrivial question of whether the QFT
involving complex values implies the physically mean-
ingful second law of thermodynamics. Nevertheless, we
show that the generalized second law can be obtained by
taking into account both real and imaginary parts of
quantum entropy production as follows.
Theorem 5 (The second law for a quantum channel).—

The integral QFT for a quantum channelN is equivalent to
the following equality:

Tr½ðJ ð1−iθÞ=2N ðρÞ ∘J −ð1−iθÞ=2
N ðγÞ ∘N ∘J ð1−iθÞ=2γ ∘J −ð1−iθÞ=2

ρ ÞðρÞ� ¼ κθ;

ð24Þ

for any real value of θ. Here, κθ ¼ Tr½ΠρðRθ=2
γ ∘N ÞðρÞ� is

given by the projection Πρ onto the support of ρ. κθ ¼ 1

when the initial state ρ has the same rank with γ. From this
equality condition, we can obtain a generalized second law:

hσi ¼ SðρjjγÞ − S(N ðρÞjjN ðγÞ) ≥ 0 ð25Þ
for the quantum channel N .
It is important to note that the expectation value of the

real part of entropy production is equal to the quantum
relative entropy difference, and Eq. (25) is known as the
quantum data processing inequality [86]. The expectation
value of the imaginary part of entropy production vanishes,
i.e., hσIi ¼ 0. Nondecreasing of the first-order moment of
entropy production can be understood as the second law for
a quantum channel from the generalized QFT similar to the
relationship between the second law of thermodynamics
and the classical FT. The mean entropy production hσi has
the physical meaning of average information loss through
the noisy quantum channel as hσi ¼ hδsi − hδqi ≥ 0
implies that the system gains an additional amount of
uncertainty (i.e., entropy) compared with the prediction
from the reference state. The expectation values of higher-
order momenta should obey

X∞
k¼1

hð−σR þ iθσIÞki
k!

¼ 0

for any value of θ from Eq. (25), so that the fluctuations of
the higher-order moments can be inferred from the expect-
ation values of lower-order moments.

By recalling the relationship between the second law and
reversibility of thermodynamic processes, it is natural to
ask whether hσi ¼ 0 implies the perfect reversibility of the
quantum state using the recovery map. In fact, this has been
proven to be true by the stronger version of the quantum
data processing inequality [86],

SðρjjγÞ − S(N ðρÞjjN ðγÞ)

≥ −
Z∞
−∞

dθg0ðθÞ log½F(ρ; ðRθ=2
γ ∘N ÞðρÞ)�

≥ − log½F(ρ; ðR̄γ∘N ÞðρÞ)�; ð26Þ

where F ðρ; τÞ ¼ jj ffiffiffiρp ffiffiffi
τ
p jj21 is the quantum fidelity, and

R̄γðρÞ ≔
R∞
−∞ dθg0ðθÞRθ=2

γ ðρÞ with g0ðθÞ ¼ ðπ=2Þ=
½coshðπθÞ þ 1�. We prove this inequality in an alternative
way in the Appendix H. Using Eq. (26), we see that if
hσi ¼ 0, F(ρ; ðRθ=2

γ ∘N ÞðρÞ) should be 1 for every θ,
which implies that ρ is fully recovered by every rotated Petz
recovery map. Conversely, by applying the quantum data
processing inequality to the channel Rθ

γ starting from
N ðρÞ, we can see that hσi ¼ 0 if ðRθ

γ∘N ÞðρÞ ¼ ρ. We
summarize the necessary and sufficient conditions for the
reversibility of the quantum channel as follows.
Theorem 6 (Reversibility condition for a quantum

channel [86]).—For a quantum channel N with respect

to the reference state γ, a transformation ρ!N N ðρÞ is fully
reversible by every Petz recovery mapRθ

γ , if and only if the
mean entropy production is zero, i.e., hσi ¼ 0. Also, there
exists a convex sum of the rotated Petz recovery maps R̄γ

satisfying

hσi ≥ − logF(ρ; ðR̄γ∘N ÞðρÞ):
In order to relate hσi to the second law of thermo-

dynamics, we consider a thermodynamic process including
the Hamiltonian change of the system and bath. Suppose
that the Hamiltonians of the system and bath are given by
HS and HB initially, and change into H0S and H0B,
respectively. The thermodynamic channel for the system
interacting with the thermal bath γB can have the following
form:

N thðρSÞ ¼ TrB½UðρS ⊗ γBÞU†�:

Here, U is a unitary interaction between the system and
bath satisfying UðHS þHBÞU† ¼ H0S þH0B to obey the
energy conservation law hHSþHBiρSB¼hH0SþH0BiUρSBU†

for any system-bath state ρSB. The two-level atom interact-
ing with the incoherent bath by the JC Hamiltonian is the
specific example of such thermodynamic channel, in which
the Hamiltonians of the system and bath do not change.
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In quantum thermodynamics, it has been studied that the
free energy can be generalized into the form of FðρÞ ¼
Tr½ρH� − kBTSðρÞ to describe the second law regarding
thermodynamic processes in the quantum regime [17–19].
This stems from an approach [95] to define nonequilibrium
free energy by including information theoretic quantities.
By applying the QFT to the channelN th, we can find the FT
of the free-energy loss through quantum thermodynamic
processes. If we take the reference state to be the Gibbs state
γS for the initial Hamiltonian of the system HS, the
thermodynamic channelN th maps this state intoN thðγSÞ ¼
γ0S, which is another Gibbs state for the final Hamiltonian
H0S. We note that the single-shot free-energy difference can

bewritten in terms of the entropy production as ðδFÞμ→ν0
ij→k0l0 ¼

E0k0−Ei−kBTδsμ→ν0 ¼−kBTσ
μ→ν0
ij→k0l0 þΔFeq, where ΔFeq ¼

kBT logðZS=Z0SÞ is the equilibrium free-energy difference.
The imaginary entropy production vanishes due to the
condition E0k0 − E0l0 ¼ Ei − Ej [91]. Then the integral
QFT leads to the balanced equality relation for the quantum
free-energy difference for any nonequilibrium initial state
with full rank as

heβδFi ¼ eβΔFeq :

The second law of quantum thermodynamics can be
obtained from Theorem 5 as

ΔF ≔ hδFi ≤ ΔFeq:

The physical meaning of the above inequality is that the
mean dissipated free energy of nonequilibrium states
ΔFeq − ΔF should always be greater than or equal to zero,
which can be deduced from its fluctuation theorem
he−βðΔFeq−δFÞi ¼ 1. Furthermore, the following reversibility
condition can be obtained from Theorem 6.
Corollary 6.1 (Recovery of thermodynamic channels).—

For the thermodynamic channelN thðρÞ¼TrB½Uðρ⊗γBÞU†�,
the reverse thermodynamic channel given by the Petz
recovery map Rγðρ0Þ ¼ TrB½U†ðρ0 ⊗ γ0BÞU� fully recovers
the initial quantum state if and only if ΔF ¼ ΔFeq. More
precisely, the recovery fidelity of the reverse process is lower
bounded by the free-energy difference as

F(ρ; ðRγ∘N thÞðρÞ) ≥ eβðΔF−ΔFeqÞ:

In generalized QFT, however, the fluctuating quantity is
not necessarily energetic values, but can be characterized
in various physical contexts depending on the choice of
reference states. In the following sections, we see how the
fluctuations of quantum information quantities in the
resource theory of asymmetry [88,89] and entanglement
can be understood under the framework of the QFT.

B. Asymmetry fluctuation in covariant channels

Let us consider a covariant channel N cov with respect to
the generator L satisfying

N covðe−iLtρeiLtÞ ¼ e−iLtN covðρÞeiLt; ð27Þ

as we discussed in Sec. IV B by taking the group trans-
formations UðtÞ ¼ e−iLt ¼ VðtÞ. In the viewpoint of quan-
tum resource theory [96], asymmetry contained in a
quantum state serves as a resource for the reference frame
alignment [87] and quantum clocks [23,24,97]. The degree
of asymmetry can be quantified by the relative entropy [85]

CðρÞ ≔ S(ρjjDðρÞ);

where DðρÞ ¼ limΔt→∞½1=ðΔtÞ�
RΔt=2
−Δt=2 dte

−iLtρeiLt ¼
Dexp½L�ðρÞ. When L ¼ λijiihij does not have degenerate
eigenvalues, DðρÞ ¼Pihijρjiijiihij becomes the diagon-
alized state of ρ. CðρÞ does not increase by any covariant
operations satisfying Eq. (27), i.e., CðρÞ ≥ C(N covðρÞ),
known as the monotonicity of the relative entropy of
asymmetry.
The decreased amount of asymmetry through the covar-

iant channel is due to the dissipation of asymmetry, or the
asymmetry loss, which is quantified by

ΔC ≔ C(N covðρÞ) − CðρÞ ≤ 0:

In order to investigate the fluctuation of dissipated asym-
metry based on the QFT, we choose the reference
state DðρÞ ¼Pi rijiihij. Then by using the property of
the covariant channel, we see that N cov(DðρÞ) ¼
D(N covðρÞ) ¼

P
k0r
0
k0 jk0ihk0j, where both jii and jk0i are

the eigenstates of L. When L is nondegenerate, ri ¼ hijρjii
and r0k0 ¼ hk0jN ðρÞjk0i. We note that by using these ref-
erence states, the single-shot coherence loss δC for the

transition ðμ;i;jÞ→ðν0;k0;l0Þ can be written as δCμ→ν0
ij→k0l0 ¼

−σμ→ν0
ij→k0l0 by noting that ΔC¼Pμ;ν0

P
i;j;k0;l0P

μ;ν0
ij;klδC

μ→ν0
ij→k0l0 ¼

−hσi based on the TPM distribution and the single-shot
quantum entropy production. The asymmetry loss then
obeys the following fluctuation relation:

heδCR−iθδCIi ¼ κθ

for any θ, from the integral QFT. Note that κθ ¼ 1 when the
initial state ρ is full rank. This fluctuation relation provides
information on the statistics of the dissipated asymmetry in
more detail compared to the mean asymmetry loss given
by the monotonicity of the asymmetry measure ΔC ¼
hδCi ≤ 0. The inequality condition for the mean asymmetry
loss is the consequence of the former equality condition as
seen in Theorem 5.We also highlight that every rotated Petz
recovery map Rθ

DðρÞ is a covariant quantum channel with
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respect to L and recovers all diagonal elements of the initial
state as ðRθ

DðρÞ∘N covÞ(DðρÞ) ¼ DðρÞ. By combining these

observations with Theorem 6, we establish the relationship
between the asymmetry loss and the reversibility via a
covariant recovery channel. This has been studied in the
context of the catalytic transformation of quantum
states [97].
Corollary 6.2 (Recovery of covariant channels [97]).—

A quantum state is fully recoverable if and only if there is
no asymmetry loss ΔC ¼ 0 through the covariant quantum
channel N cov. Also, there exists a covariant recovery map
that gives the recovery fidelity satisfying

F(ρ; ðR̄DðρÞ∘N covÞðρÞ) ≥ eΔC:

We introduce another application of the QFT in the
resource theory of asymmetry. We note that although the
average amount of asymmetry cannot be increased under a
covariant quantum channel, some off-diagonal components
ρij can be merged [18,91] to get a larger off-diagonal
coefficient jρk0l0 j in the output state. We can prove the upper
bound for the value of the off-diagonal element using the
QFT, which provides more information than the mean value
of the asymmetry loss.
Theorem 7 (Coherence merging bound for a covariant

process).—Suppose that the quantum channel N cov is
covariant with respect to the generator L. After passing
through the channel, the value of the off-diagonal elements
is upper bounded by

jN covðρÞk0l0 j ≤
X
Ωþ

k0 l0

jρijje−ðδqRÞij→k0 l0 þ
X
Ω−

k0 l0

jρijj;

where Ωþk0l0 and Ω−
k0l0 are the subsets of Ωk0l0 ¼ fði; jÞjλi −

λj ¼ λk0 − λl0 g with ðδqRÞij→k0l0 ≥ 0 and ðδqRÞij→k0l0 < 0

for an arbitrary reference state γ commuting with L.
The coherence merging inequality in Theorem 7 is a

generalization of the coherence merging inequalities in
quantum thermodynamics [18,91], as the theorem can be
applied to not only a thermal channel but also any covariant
quantum channels.
Let us discuss how the different choices of reference

states lead to different interpretations of loss albeit through
the same quantum channel. For this purpose, we adopt the
previously discussed JC Hamiltonian with the parameters
β ¼ 1, ℏω0 ¼ 1, and g ¼ 0.1, and the thermal noise term
Lnoise with Γ ¼ 0.1. We set the initial atomic state ρ ¼
ð1=2Þjψihψ j þ 1=4 with jψi ¼ ðjgi þ jeiÞ= ffiffiffi

2
p

. We note
that the dynamics of the system can be interpreted as a
thermodynamic channel discussed in the last part of
Sec. VA, as well as a covariant channel with respect to
the system Hamiltonian Ha studied in Sec. V B. By rega-
rding this channel as a thermodynamic process, we can
choose the Gibbs state γa as the reference state. In this case,

the mean entropy production indicates the loss in the free
energy ΔF ¼ hδFi ¼ −0.233, and the reverse channel has
the meaning of time-reversal operation in thermodynamics.
For the same channel and initial state, another choice of the
reference state would be taking the diagonal state DðρÞ to
focus on the covariant property of the channel. In this case,
the corresponding reverse channel would be a covariant
recovery channel, and the mean entropy production ΔC ¼
hδCRi ¼ −0.115 can be regarded as the dissipated asym-
metry in the quantum state through the quantum channel.
While the average values of free energy and coherence
loss are different, both satisfy the integral QFT, heβδFi ¼
eβΔFeq ¼ 1 and heδCRi ¼ 1, by taking θ ¼ 0 and noting that
ΔFeq ¼ 0 as the Hamiltonian remains the same. Figure 8
shows the distributions P→ðσRÞ for the free energy and
coherence loss. This approach can be utilized to characterize
and quantify the loss of resources through a quantum
channel in various physical contexts.

C. Fluctuation of entanglement and coherent
information

We apply the QFT to study a stochastic entanglement
generation by a local operation and classical communica-
tion (LOCC). We consider a LOCC protocol on a pure
bipartite state jΨiAB, which is similar to the construction
introduced in Ref. [98], to study the fluctuation of entan-
glement. The initial amount of entanglement between A
and B is quantified by the entanglement entropy as

ESðjΨiABÞ ¼ SðρAÞ ¼ SðρBÞ;

where ρA and ρB are the marginal states of the local parties
A and B, respectively. Now let us perform a local POVM on
Bwith a set of measurement operators fKmg, followed by a
local unitary operation Vm on A based on the measurement

FIG. 8. Free-energy loss (blue) versus asymmetry loss (brown)
in the JC Hamiltonian with thermal noise. The initial state and the
parameters are the same as in Fig. 4, and P→ðσRÞ for each case is
given by the summation over σI. Both the free-energy and
coherence loss satisfy the integral QFT: heβδFi ¼ eβΔFeq ¼ 1

and heδCRi ¼ 1.
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outcome m. The resulting state would be another bipartite
pure state,

jΦmiAB ¼ ðVm ⊗ KmÞjΨiAB=
ffiffiffiffiffiffi
Pm

p
;

with the probability Pm ¼ hΨjK†
mKmjΨi for the outcome

m. Since the local unitary operation Vm does not change
the entanglement entropy of a pure bipartite state, the
entanglement difference between the initial and final
states is given by ΔEm

S ¼ ESðjΦmiABÞ − ESðjΨiABÞ. The
monotonicity of entanglement [99] tells us that the amount
of entanglement does not increase under LOCC on
average; i.e.,

ΔES ≔
X
m

PmΔEm
S ≤ 0:

The QFT in Theorem 5 shows that the fluctuation of
the entanglement loss obeys the balanced equality relation.
By introducing the memory state jmiMhmj, the quantum
channel N LOCC of the LOCC protocol can be described as
follows:

jΨiABhΨj !
N LOCC

X
m

PmjΦmiABhΦmj ⊗ jmiMhmj;

where jmiM are orthogonal to each other. We also take the
reference state to be 1A ⊗ ρB, then its evolution is given by
N LOCCð1A ⊗ ρBÞ ¼ 1A ⊗

P
m Pmρ

m
B ⊗ jmiMhmj. Here,

ρmB ¼ TrAjΦmiABhΦmj is the local state of B for the
measurement outcome m. We note that ρB ¼

P
i rijiiAhij

and ρmB ¼
P

k0 r
m
k0 jm; k0iBhm; k0j by using the Schmidt

decompositions jΨiAB ¼
P

i
ffiffiffiffi
ri
p jiiAjiiB and jΦmiAB ¼P

k0
ffiffiffiffiffi
rmk0

p jm; k0iAjm; k0iB. Based on the reference state
for the LOCC channel and regarding the initial memory
state as j0iMh0j, the single-shot entropy production for the
transition ð0; i; jÞ → ðm; k0; l0Þ is given by σ0→m

0ij→mk0l0 ¼
log

ffiffiffiffiffiffiffiffiffiffi
rmk0r

m
l0

p
−log ffiffiffiffiffiffiffiffirirj

p þiðlog ffiffiffiffiffiffiffiffiffiffiffiffiffi
rml0 =r

m
k0

p
−log

ffiffiffiffiffiffiffiffiffiffi
ri=rj

p Þ, whereffiffiffiffi
ri
p

and
ffiffiffiffiffi
rmk0

p
are the Schmidt coefficients of jΨiAB and

jΦmiAB. The QFT provides the balanced equality condition
for the difference between the Schmidt coefficients by
defining ðδESÞ0ij→mk0l0 ¼ −σ0→m

0ij→mk0l0 . The integral QFT for
the entanglement loss is then obtained from Theorem 5:

heðδESÞR−iθðδESÞIi ¼ F θ;

where F θ ¼ F(ρAB; ðRθ=2
1A⊗ρB

∘N LOCCÞðρABÞ) is the recov-
ery fidelity of ρAB ¼ jΨiABhΨj by the recovery channel
Rθ=2

1A⊗ρB
. Theorem 5 leads to the monotonicity of entangle-

ment [99]: ΔES ¼ −hσi ≤ 0.
It is important to note that the Petz recovery map

corresponding to the LOCC channel N LOCC also belongs
to LOCC, and this channel fully recovers the marginal

states of the local parties. This observation, combined with
Theorem 6, directly connects the entanglement loss through
the LOCC channel N LOCC to the recoverability of the
entangled state as follows.
Corollary 6.3 (Recovery of LOCC channels).—A pure

bipartite state jΨiAB can be fully recovered by the
LOCC channel if and only if there is no entanglement
loss by N LOCC, i.e., ΔES ¼ 0. Also, the entanglement
loss is bounded by the average recovery fidelity F̄ ≔R∞
−∞ dθg0ðθÞF θ as

ΔES ≤ log F̄ :

This result can also be generalized to a bipartite mixed
state ρAB. The LOCC protocolN LOCC transforms the initial
state ρAB into ρmAB ¼ ðVm ⊗ KmÞρABðV†

m ⊗ K†
mÞ=Pm when

the measurement outcome is m. We choose the reference
state γ ¼ 1A ⊗ ρB, where ρB is the marginal state of ρAB,
similar to the case of the pure state. The first-order moment
of the entropy production then becomes

ΔIðAiBÞ ≔
X
m

PmIðAiBÞρmAB − IðAiBÞρAB ¼ −hσi ≤ 0;

where IðAiBÞρAB ¼ SðρBÞ − SðρABÞ is the coherent infor-
mation [100,101]. When ρAB is pure, the coherent infor-
mation IðAiBÞ is reduced to the entanglement entropy ES.
As the coherent information quantifies the amount of
quantum correlation between the two parties, the QFT in
Eq. (24) captures the fluctuation of correlation loss through
the LOCC protocol. In particular, this result can be utilized
to investigate the fluctuation relation of quantum informa-
tion quantities under feedback control [5,102]. It would
also be interesting to explore the case when the system and
bath are initially correlated [64]. Although the dynamics of
the system may not be a linear channel [64], the dynamics
of the entire system including the bath can be described by
a CPTP map so that the information exchange between the
system and bath can be studied in our QFT framework. In
this way, thermodynamic quantities such as quantum heat
and work can be coherently combined to both quantum and
classical information quantities involved in the Maxwell
demon or Laundauer’s erasure in a unified framework.

VI. REMARKS

We have established a general framework of QFT by
showing that it is always possible for any linear quantum
channel to find the symmetry between the forward and
backward probabilities. In our formulation, the Petz recov-
ery map can be understood as a family of reverse quantum
channels, and entropy production in conventional FTs can
be generalized into the quantum regime. The effect of
coherences has been taken into account in two different
aspects: coherences in the quantum system and coherent
transitions by the channel. Coherences in the quantum
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system lead to the modification of the FT as quantum
corrections are required in the conventional fluctuation
relations. We have seen that the significant differences arise
when the quantum channel induces off-diagonal transi-
tions. By introducing a complex-valued quantum entropy
production, the transitions between both diagonal and off-
diagonal elements of the system density matrix can be
understood by a single formula. The imaginary part of the
quantum entropy production emerges at the point where
nontrivial coherence transfer occurs, which may imply the
broken symmetry. We also provide concrete examples of a
two-level atom to explore the coherence transfers induced
by the dynamics and the emergence of imaginary entropy
productions. We highlight that our approach can be applied
to any physical systems and dynamics described by a CPTP
channel, ranging from a single unitary operation to com-
plicated Lindblad equations.
Another important progress in this work is finding a

direct connection between the QFT and the quantum data
processing inequality. While both real and imaginary
entropy productions are essential to derive the second
law for a quantum channel from the QFT, only the real
entropy production contributes to the mean entropy pro-
duction represented by the quantum relative entropy differ-
ence. Our results provide a toolkit to analyze the dissipation
of quantum resources through a quantum channel. As the
reference state to the Petz recovery map can be chosen in
various ways, our QFT allows investigating a given
quantum channel from various angles, e.g., energy, coher-
ence, entanglement, by providing a refined statistics of the
dissipated resources. The relationship between the QFT
of dissipated quantum resources and the monotonicity of
the resource measure can be compared to that between the
classical FTs and the second law of thermodynamics.

Yet there are possible applications and open problems
which can be studied in future research. In quantum
thermodynamics, our approach can be useful to generalize
the FTs with feedback control [5] into the quantum regime
by fully understanding the fluctuation relation including
quantum information exchange between the system and
quantum memory [60]. Finding the deeper physical mean-
ing of the imaginary information exchange or entropy
production would be another interesting question, and it
may be useful to distinguish a quantum channel by
coherent and incoherent components. Quantum error cor-
rection protocols could benefit from this; the loss caused
by a noisy quantum channel can be analyzed with greater
details, and the resource-efficient quantum error correction
protocols can be developed in a covariant way [92,93].
Another interesting direction of future research would be
developing a generalized measurement protocol [30,32] to
directly measure both real and imaginary entropy produc-
tions in a noninvasive way.
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APPENDIX A: PROOF OF THEOREM 1

Recall that the reverse channel is expressed as
Rγ ¼ J 1=2

γ ∘N †∘J −1=2
N ðγÞ. Then we have

Tðjψi → jϕ0iÞ ¼ hϕ0jN ðjψihψ jÞjϕ0i
¼ hϕ0jN ðγÞ1=2ðJ −1=2

N ðγÞ∘N ∘J 1=2
γ Þðγ−1=2jψihψ jγ−1=2ÞN ðγÞ1=2jϕ0i

¼ hϕ̃0jðJ −1=2
N ðγÞ∘N ∘J 1=2

γ Þðjψ̃ihψ̃ jÞjϕ̃0ihψ jγ−1jψihϕ0jN ðγÞjϕ0i
¼ hψ̃ jðJ 1=2

γ ∘N †∘J −1=2
N ðγÞÞðjϕ̃0ihϕ̃0jÞjψ̃ihψ jγ−1jψihϕ0jN ðγÞjϕ0i

¼ T̃ðjψ̃i ← jϕ̃0iÞhψ jγ−1jψihϕ0jN ðγÞjϕ0i;

which completes the proof. ▪

APPENDIX B: RECOVERY MAP FOR A
LINDBLAD EQUATION

We show that the reverse process of the forward
Lindblad equation,

LðρÞ ¼ −
i
ℏ
½Ht; ρ� þ

X
n

�
LnρL

†
n −

1

2
fL†

nLn; ρg
�
;

is given by the following backward Lindblad equation,

L̃ðρÞ ¼ −
i
ℏ
½H̃t; ρ� þ

X
n

�
L̃nρL̃

†
n −

1

2
fL̃†

nL̃n; ρg
�
;
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by applying the Petz recovery map for infinitesimal time
interval dt. For mathematical simplicity, we set ℏ ¼ 1. Note
that the reverse channel for infinitesimal time interval dt
is given by

Rt←tþdt ¼ J 1=2
γt ∘ð1þ L†dtÞ∘J −1=2

γtþdt ;

where L†ðAÞ¼i½Ht;A�þ
P

n(L
†
nALn−ð1=2ÞfL†

nLn;Ag).
By taking the first order of dt, we get

Rt←tþdtðρÞ ¼ ρ − ð _GG−1ρþ ρG−1 _GÞdt
þ GL†ðG−1ρG−1ÞGdt;

where we denote G ¼ γ1=2t and its time derivative _G for
mathematical simplicity. We note that GG−1 ¼ 1, which
leads to ð _G−1Þ ¼ −G−1 _GG−1. The last term ofRt←tþdt can
be expanded as

GL†ðG−1ρG−1ÞG ¼ iðGHtG−1ρ − ρG−1HtGÞ þ
X
n

�
GL†

nG−1ρG−1LnG −
1

2
GL†

nLnG−1ρþ ρG−1L†
nLnG

�
:

By defining L̃n ¼ GL†
nG−1, we can rewrite the above equation as

GL†ðG−1ρG−1ÞG ¼
X
n

�
L̃nρL̃

†
n −

1

2
fL̃†

nL̃n; ρg
�
þ iðGHtG−1ρ − ρG−1HtGÞ þ

1

2

X
n

fL̃†
nL̃n; ρg

þ
X
n

�
GL†

nG−1ρG−1LnG −
1

2
GL†

nLnG−1ρþ ρG−1L†
nLnG

�
:

Meanwhile, we also note that G ¼ γ1=2t , then

X
n

LnGGL
†
n ¼ LðγtÞ þ i½Ht; γt� þ

1

2

X
n

fL†
nLn; γg;

where LðγtÞ ¼ _γt ¼ G _Gþ _GG. This leads to

X
n

L̃†
nL̃n ¼ G−1

�
G _Gþ _GGþ i½Ht;GG� þ

1

2

X
n

fL†
nLn; GGg

�
G−1

¼ _GG−1 þ G−1 _Gþ iG−1HtG − iGHtG−1 þ 1

2

X
n

ðG−1L†
nLnGþ GL†

nLnG−1Þ:

By combining these altogether, we finally get

Rt←tþdtðρÞ ¼
i
2

�
GHtG−1 þ i _GG−1 þ i

2

X
n

GL†
nLnG−1; ρ

�
þ i
2

�
G−1HtG − iG−1 _G −

i
2

X
n

G−1L†
nLnG; ρ

�

þ
X
n

�
L̃nρL̃

†
n −

1

2
fL̃†

nL̃n; ρg
�

¼ −i½H̃t; ρ� þ
X
n

�
L̃nρL̃

†
n −

1

2
fL̃†

nL̃n; ρg
�
;

where the Hamiltonian for the reverse process H̃t is defined as

H̃t ¼ −
1

2

�
GHtG−1 þ i _GG−1 þ i

2

X
n

GL†
nLnG−1

�
þ H:c:

After recovering ℏ, we obtain the expression in Eq. (9). This result can also be generalized for the rotated Petz recovery map
by taking G ¼ γ1=2þiθt and taking into account for G† ¼ γ1=2−iθt as its Hermitian conjugate.
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APPENDIX C: PROOF OF THEOREMS 2 AND 3

We prove Theorem 3 as follows:

P→ðσÞe−σRþ2iθσI ¼
X
μ;i;j

X
ν0;k0;l0

Pμ;ν0
ij;k0l0δðσ − σμ→ν0

ij→k0l0 Þe−σRþ2iθσI

¼
X
μ;i;j

X
ν0;k0;l0

pμTij→k0l0e−σRþ2iθσIδðσ − σμ→ν0
ij→k0l0 Þ

¼
X
μ;i;j

X
ν0;k0;l0

p0ν0 T̃
�
ij←k0l0e

iθ log ðrjr0k0=rir
0
l0 Þδðσ − σμ→ν0

ij→k0l0 Þ

¼
X
μ;i;j

X
ν0;k0;l0

p0ν0 T̃ij←k0l0e
iθ log ðrir0l0=rjr

0
k0 Þδðσ − σμ→ν0

ji→l0k0 Þ

¼
X
μ;i;j

X
ν0;k0;l0

p0ν0 T̃ij←k0l0e
iθ log ðrir0l0=rjr

0
k0 Þδðσ� þ σμ←ν0

ij←k0l0 Þ

¼ Pθ
←ð−σ�Þ;

by using the fact that T̃�ij←k0l0 ¼ Tji←l0k0 and σ
μ→ν0
ji→l0k0 ¼ −½σμ←ν0

ij←k0l0 ��. Note that Theorem 2 is the special case of Theorem 3 with
θ ¼ 0 as P→ðσR þ iσIÞe−σR ¼ P←ð−σR þ iσIÞ. By summing over all σI, we achieve Theorem 2. ▪

APPENDIX D: OBTAINING THE QUASIPROBABILITY DISTRIBUTION
FROM A TWO-POINT POVM

We demonstrate that the TPM quasiprobability Pμ;ν0
ij;k0l0 can be obtained from the distribution of a two-point POVM,

P→ðm;m0Þ ¼ Tr½M0m0N ðMmρM
†
mÞM0†m0 �;

where fMmg¼fð1=
ffiffiffi
d
p ÞΠiΠψμ

;ð1= ffiffiffiffiffiffi
2d
p ÞðΠiþΠjÞΠψμ

;ð1= ffiffiffiffiffiffi
2d
p ÞðΠiþiΠjÞΠψμ

g and fM0m0g¼fð1=
ffiffiffi
d
p ÞΠϕν0Πk0 ;

ð1= ffiffiffiffiffiffi
2d
p ÞΠϕν0 ðΠk0 þΠl0 Þ;ð1=

ffiffiffiffiffiffi
2d
p ÞΠϕν0 ðΠk0 þiΠl0 Þg for every possible μ, i, j and ν0, k0, l0 satisfying i < j and k0 < l0.

To do this, we show that Pμ;ν0
ij;k0l0 can be expressed in terms of P→ðm;m0Þ for given pairs of ðμ; i; jÞ and ðν0; k0; l0Þ. Without

loss of generality, we assume that i; j ∈ f0; 1g and k0, l0 ∈ f00; 10g. For mathematical simplicity, we define

Pða; b0Þ ≔ Tr½M0ðν0;b0ÞN ðMðμ;aÞρM†
ðμ;aÞÞM0†ðν0;b0Þ�

for fixed values of μ and ν0, where

Mðμ;0Þ ≔
1ffiffiffi
d
p Π0Πψμ

;

Mðμ;1Þ ≔
1ffiffiffi
d
p Π1Πψμ

;

Mðμ;þÞ ≔
1ffiffiffiffiffiffi
2d
p ðΠ0 þ Π1ÞΠψμ

;

Mðμ;×Þ ≔
1ffiffiffiffiffiffi
2d
p ðΠ0 þ iΠ1ÞΠψμ

;

and

M0ðν0;00Þ ≔
1ffiffiffi
d
p Πϕν0Π00 ;

M0ðν0;10Þ ≔
1ffiffiffi
d
p Πϕν0Π10 ;

M0ðν0;þ0Þ ≔
1ffiffiffiffiffiffi
2d
p Πϕν0 ðΠ00 þ Π10 Þ;

M0ðν0;×0Þ ≔
1ffiffiffiffiffiffi
2d
p Πϕν0 ðΠ00 þ iΠ10 Þ:

First, we note that

Pμ;ν0
ii;k0k0 ¼ d2Pði; k0Þ;
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with i ¼ 0, 1 and k0 ¼ 00; 10. For i ¼ j and k0 ≠ l0, we
define

Qða; b0Þ ≔ Pða; b0Þ − 1

2

X
k0¼00;10

Pða; k0Þ;

for a ∈ f0; 1g and b0 ∈ fþ0;×0g. We then obtain

Pμ;ν0
ii;0010 ¼ d2½Qði;þ0Þ þ iQði;×0Þ�;

Pμ;ν0
ii;1000 ¼ d2½Qði;þ0Þ − iQði;×0Þ�:

Similarly, for i ≠ j and k0 ¼ l0, we obtain

Pμ;ν0
01;k0k0 ¼ d2½Qðþ; k0Þ þ iQð×; k0Þ�;

Pμ;ν0
10;k0k0 ¼ d2½Qðþ; k0Þ − iQð×; k0Þ�;

where

Qða; b0Þ ≔ Pða; b0Þ − 1

2

X
i¼0;1

Pði; b0Þ;

for a ∈ fþ;×g and b0 ∈ f00; 10g. In order to obtain the
TPM quasiprobability for i ≠ j and k0 ≠ l0, we additionally
define

Qða; b0Þ ≔ Pða; b0Þ

−
1

2

�X
i¼0;1

Qði; b0Þ −
X

k0¼00;10
Qða; k0Þ

�
−
1

4
P̄;

for a ∈ fþ;×g and b ∈ fþ0;×0g, where P̄ ¼P
i¼0;1

P
k0¼00;10 Pði; k0Þ. Finally, we obtain0

BBBBBB@

Pμ;ν0
010010

Pμ;ν0
011000

Pμ;ν0
100010

Pμ;ν0
101000

1
CCCCCCA
¼ d2

0
BBB@

1 i i −1
1 −i i 1

1 i −i 1

1 −i −i −1

1
CCCA
0
BBB@

Qðþ;þ0Þ
Qðþ;×0Þ
Qð×;þ0Þ
Qð×;×0Þ

1
CCCA;

thus we conclude that every element of Pμ;ν0
ij;k0l0 is expressed

in terms of Pðm;m0Þ. Then, P→ðσÞ for both real and
imaginary σ can be obtained from the TPM quasiprob-
ability distribution Pμ;ν0

ij;k0l0 .

APPENDIX E: PROOF Of THEOREM 4

We first show that if a quantum channel N is covariant
with respect to the reference state, i.e.,

J −iθ
N ðγÞ∘N ∘J iθ

γ ¼ N ;

all of its rotated Petz recovery maps Rθ
γ are the same with

Rγ. Note that J iθ
γ and J −iθ

N ðγÞ are unitary processes; there-

fore, the adjoint map N † satisfies

N † ¼ ðJ −iθ
N ðγÞ∘N ∘J iθ

γ Þ† ¼ J −iθ
γ ∘N †∘J iθ

N ðγÞ:

Therefore, the rotated Petz recovery map is given by

Rθ
γðρÞ ¼ ðJ 1=2þiθ

γ ∘N †∘J −ð1=2Þ−iθ
N ðγÞ ÞðρÞ

¼ ðJ 1=2
γ ∘J iθ

γ ∘N †∘J −iθ
N ðγÞ∘J −1=2

N ðγÞÞðρÞ
¼ ðJ 1=2

γ ∘N †∘J −1=2
N ðγÞÞðρÞ

¼ RγðρÞ:

Now we prove the remaining part of Theorem 4. In terms
of the elements in the transition matrix, every covariant
quantum process obeys

Tij→k0l0e
iθ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rjr0k0=rir

0
l0

p
¼ Tij→k0l0 :

Multiplying both sides by e−iθσI followed by the integration
over θ leads to

Tij→k0l0δ

 
σI − log

ffiffiffiffiffiffiffiffiffi
rir0l0
rjr0k0

s !
¼ Tij→k0l0δðσIÞ: ðE1Þ

Therefore, the probability distribution of entropy produc-
tion is given by

P→ðσR þ iσIÞ ¼ P→ðσRÞδðσIÞ;
and the QFT with real values of σ is given by

P→ðσÞ
P←ð−σÞ

¼ eσ;

where the parameter θ is omitted since every rotated
recovery map is identical to the Petz recovery map Rγ. ▪

APPENDIX F: IMAGINARY ENTROPY
PRODUCTION AND SYMMETRY BREAKING

We note that the nonvanishing point of the entropy
production distribution can be written as

P→ðσR þ iσIÞ
¼
X
μ;ν0

X
ΔqR

δðσR − δsμ→ν0 þ ΔqRÞ

×
X
i;j;k0;l0

Pμ;ν0
ij;klδ(ΔqR − ðδqRÞij→k0l0)δ(σI þ ðδqIÞij→k0l0)

¼
X
μ;ν0

X
ΔqR

pμδðσR − δsμ→ν0 þ ΔqRÞ

×
1

ð2πÞ2
Z

d2ξeiξRΔqRe−iξIσIχμν0 ðξR; ξIÞ;

where
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χμν0 ðξR; ξIÞ
≔ hϕ0ν0 jN ðγÞiðξR−ξIÞ=2N ðγ−iðξR−ξIÞ=2jψμihψμjγ−iðξRþξIÞ=2Þ

N ðγÞiðξRþξIÞ=2jϕ0ν0 i:

Then the contribution from the transition between the
rotated eigenstates comes from ξR ¼ 0 and ξI ¼ θ as

R
∞
−∞ dθe−iθσIχμν0 ð0; θÞ is the Fourier transform

of T(Uðθ=2Þjψμi → Vðθ=2Þjϕ0ν0 i).

APPENDIX G: PROOF OF THEOREM 5

We first show the equivalent expression of the integral
QFT in terms of the rescaling maps:

he−σRþiσIθi ¼
X
μ;i;j

X
ν0;k0;l0

Pμ;ν0
ij;k0l0e

−ðσRÞμ→ν0
ij→k0 l0þiθðσIÞ

μ→ν0
ij→k0 l0

¼
X
μ;i;j

X
ν0;k0;l0

pμTij→k0l0

�
p0ν0
pμ

� ffiffiffiffiffiffiffiffiffiffi
rirj
r0k0r

0
l0

r
eiθ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rjr0k0=rir

0
l0

p

¼ Tr½N ðρÞN ðγÞ−ð1−iθÞ=2N ðγð1−iθÞ=2ρ−1=2ρρ−1=2γð1þiθÞ=2ÞN ðγÞ−ð1þiθÞ=2�
¼ Tr½ðJ 1−iθÞ=2

N ðρÞ ∘J −ð1−iθÞ=2
N ðγÞ ∘N ∘J ð1−iθÞ=2γ ∘J −ð1−iθÞ=2

ρ ÞðρÞ�;
for every θ. Then we can rewrite the last expression as

Tr½ðJ ð1−iθÞ=2N ðρÞ ∘J −ð1−iθÞ=2
N ðγÞ ∘N ∘J ð1−iθÞ=2γ ∘J −ð1−iθÞ=2

ρ ÞðρÞ�
¼ Tr½J −1=2

ρ ðρÞðJ ð1þiθÞ=2γ ∘N †∘J −ð1þθÞ=2
N ðγÞ Þ(N ðρÞ)�

¼ Tr½ΠρðRθ=2
γ (N ðρÞ)Þ�

¼ κθ;

where Πρð·Þ is the projection operator onto the support of ρ. This is due to the fact that J −1=2
ρ ðρÞ can be defined only in the

Hilbert space spanned by the eigenvectors of ρ having nonzero eigenvalues.
Meanwhile, the expectation values of the first-order moment are

hσRi ¼
X
μ;i;j

X
ν0;k0;l0

Pμ;ν0
ij;k0l0 ðσRÞμ→ν0

ij→k0l0

¼
X
μ;i;j

X
ν0;k0;l0

Pμ;ν0
ij;k0l0

�
log

�
pμ

p0ν0

�
þ log

ffiffiffiffiffiffiffiffiffiffi
r0k0r

0
l0

rirj

s �

¼
X
μ

pμ logpμ −
X
i

ΠiρΠi log ri −
X
ν0
p0ν0 logp

0
ν0 þ

X
k0

Πk0N ðρÞΠk0 log r0k0

¼ SðρjjγÞ − S(N ðρÞjjN ðγÞ)
and

hσIi ¼
X
μ;i;j

X
ν0;k0;l0

Pμ;ν0
ij;k0l0 ðδqIÞij→k0l0

¼
X
μ;i;j

X
ν0;k0;l0

Pμ;ν0
ij;k0l0 log

ffiffiffiffiffiffiffiffiffi
rir0l0
rjr0k0

s

¼ 1

2

�X
i

ΠiρΠi log ri −
X
j

ΠjρΠj log rj
X
k0

Π0kN ðρÞΠk0 log r0k0 −
X
l0
Πl0N ðρÞΠl0 log r0l0

�

¼ 0;

by using the marginal distribution of the TPM quasiprobability distribution as shown in Eq. (14). Therefore, the first-order
moment is given by the difference between the quantum relative entropy hσi ¼ hσRi − iθhσIi ¼ SðρjjγÞ − S(N ðρÞjjN ðγÞ)
for every θ.
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In order to obtain the generalized second law, we utilize
the following multivariate trace inequality recently proven
by Sutter et al. [103], which generalizes the Golden-
Thompson and Araki-Lieb-Thirring inequalities for multi-
ple Hermitian matrices Hk:

log

���� exp
�XN

k¼1
Hk

�����
p

≤
Z∞
−∞

dθg0ðθÞ log
����YN

k¼1
eð1−iθÞHk

����
p

:

ðG1Þ

Here, kAkp ≔ ½Trð
ffiffiffiffiffiffiffiffiffi
A†A
p

Þp�1=p is the Schatten p-norm
with p ≥ 1, and g0ðθÞ ¼ ðπ=2Þ=½coshðπθÞ þ 1�. We
choose p ¼ 2 with H1 ¼ 1

2
U†½logN ðρÞ ⊗ 1E�U, H2 ¼

− 1
2
U†½logN ðγÞ ⊗ 1E�U, H3 ¼ 1

2
log γ, H4 ¼ − 1

2
log ρ,

and H5 ¼ 1
2
log ρ, where U is the isometry which leads

to the Stinespring dilation of the quantum channel N as
TrEUρU† ¼ N ðρÞ. The right-hand side becomes negative
by observing that kQ5

k¼1 e
ð1−iθÞHkk22 ≤ 1 from the integral

QFT he−σRþiσIθi ¼ κθ ≤ 1. Therefore, we have

ðrhsÞ ¼
Z∞
−∞

dθg0ðθÞ log κθ ≤ 0:

Meanwhile, the left-hand side can be calculated as

log

���� exp
�X5

k¼1
Hk

�����
2

¼ 1

2
log Tr( expfU†½logN ðρÞ ⊗ 1E�U

−U†½logN ðγÞ ⊗ 1E�U þ log γ − log ρþ log ρg):

The Peierls-Bogoliubov inequality,

Tr½eFeG� ≥ Tr½eFþG� ≥ exp fTr½FeG�g;

which holds for Hermitian matrices F and G and
Tr½eG� ¼ 1, leads to

ðlhsÞ ≥ 1

2
Tr(ρfU†½logN ðρÞ ⊗ 1E�U

− U†½logN ðγÞ ⊗ 1E�U þ log γ − log ρg)

≥
1

2
Tr½N ðρÞflogN ðρÞ − logN ðγÞg
þ ρflog γ − log ρg�

¼ 1

2
½S(N ðρÞjjN ðγÞ) − SðρjjγÞ�;

by taking G ¼ log ρ. Combining these results altogether,
we finally get the monotonicity of quantum relative entropy

SðρjjγÞ − S(N ðρÞjjN ðγÞ) ≥ 0 as a consequence of the
integral QFT. ▪

APPENDIX H: PROOF OF THEOREM 6

The reversibility condition for the QFT can be proven
by using the following relationship between the relative
entropy and reversibility of a quantum channel [86]:

hσi ≥ −
Z∞
−∞

dtg0ðθÞ log½F(ρ; ðRθ=2
γ ∘N ÞðρÞ)�; ðH1Þ

where hσi ¼ SðρjjγÞ − S(N ðρÞjjN ðγÞ). We note that
the Sutter-Berta-Tomamichel inequality in Eq. (G1) also
leads to an alternative proof of the inequality given by
Eq. (H1). In order to see this, we take p ¼ 1 and H01 ¼
1
2
U†½logN ðρÞ ⊗ 1E�U, H02 ¼ − 1

2
U†½logN ðγÞ ⊗ 1E�U,

H03 ¼ 1
2
log γ, H04 ¼ − 1

2
log ρ, and H05 ¼ log ρ. By using a

similar logic to the proof of Theorem 5, we have ðrhsÞ ¼
ð1=2Þ R∞−∞ dθg0ðθÞ log½F(ρ; ðRθ=2

γ ∘N ÞðρÞ)� and ðlhsÞ ≥
ð1=2Þ½S(N ðρÞjjN ðγÞ) − SðρjjγÞ� ¼ −hσi=2, which com-
pletes the proof.
Now we prove the theorem. When hσi ¼ 0, every

F(ρ; ðRθ=2
γ ∘N ÞðρÞ) should be 1, which is the perfect

reversibility condition. Conversely, if one of ðRθ=2
γ ∘N Þ

ðρÞ¼ρ, hσi¼S(N ðρÞkN ðγÞ)−SðρkγÞ¼S(N ðρÞkN ðγÞ)−
S(ðRθ=2

γ ∘N ÞðρÞkðRθ=2
γ ∘N ÞðγÞ)≤0 by the monotonicity

of quantum relative entropy. This condition implies that

hσi ¼ 0. Therefore, hσi ¼ 0 if and only if F(ρ; ðRθ=2
γ ∘N Þ

ðρÞ) ¼ ρ for every θ.
The bound for the recovery fidelity,

hσi ≥ − logF(ρ; ðR̄γ∘N ÞðρÞ);
is then obtained by the joint concavity of the fidelity
function and the concavity of the logarithm function, ▪
The corollaries can be proved as follows. For thermo-

dynamic processes N th, we note that N thðγÞ ¼ γ0,
where γ ¼ e−βHS=ZS and γ0 ¼ e−βH

0
S=Z0S. Then the explicit

form of this Petz recovery map is given by Rγðρ0Þ ¼
TrB½U†ðρ0 ⊗ γ0BÞU�, which is a reverse thermodynamic
process satisfying U†ðH0S þH0BÞU ¼ HS þHB. We note
that the thermodynamic process Rγ is covariant with
respect to the reference state γ; thus, every rotated Petz
recovery mapRθ

γ reduces into the single formRγ. Then we
have R̄γ ¼ Rγ and hσi ¼ βðΔFeq − ΔFÞ, and Theorem 6
leads to the reversibility condition.
For covariant processes, the only thing we need to

show is that RDðρÞ is a covariant quantum channel and
apply Theorem 6. This condition can be proven as both
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DðρÞ and D(N covðρÞ) commute with the generator L.
The rotated Petz recovery map is written as Rθ

DðρÞ ¼
J 1=2þiθ

DðρÞ ∘N †
cov∘J −1=2−iθ

D(N covðρÞ), then the covariance condition

is achieved by

Rθ
DðρÞðe−iLtχeiLtÞ
¼ ðJ 1=2þiθ

DðρÞ ∘N †
cov∘J −1=2−iθ

D(N covðρÞ)∘J −it
exp½L�Þχ

¼ ðJ −it
exp½L�∘J 1=2þiθ

DðρÞ ∘N †
cov∘J −1=2−iθ

D(N covðρÞ)ÞðχÞ
¼ e−iLt(Rθ

DðρÞðχÞ)eiLt;

as all the operations J 1=2þiθ
DðρÞ , N †

cov, and J −1=2−iθ
D(N covðρÞ)

commute with J −it
exp½L�. Therefore, R̄DðρÞ is covariant with

respect to L, as it is a convex sum of the covariant
operations Rθ

DðρÞ. We also note that the recovery map

R̄DðρÞ fully recovers the diagonal elements:

ðD∘R̄DðρÞÞ(N covðρÞ) ¼ ðR̄DðρÞ∘DÞ(N covðρÞ)
¼ R̄DðρÞðD(N covðρÞ)Þ
¼ DðρÞ;

as R̄DðρÞ fully recovers D(N covðρÞ) into DðρÞ.
In a similar way to the covariant process, the recovery

condition for the LOCC protocol can be proven by
noting that the reverse process is another LOCC protocol,
as the reference state 1A ⊗ ρB and its evolution
N LOCCð1A ⊗ ρBÞ ¼ 1A ⊗

P
mPmρ

m
B ⊗ jmiMhmj act only

on the side of B. Furthermore, we note that the pro-
jection onto the initial state is given by jΨiABhΨj, so
that κθ¼Tr½jΨiABhΨjðRθ=2

1A⊗ρB
∘N LOCCÞðjΨiABhΨjÞ�¼F θ,

which is the recovery fidelity. ▪

APPENDIX I: PROOF OF THEOREM 7

By using the property of the covariant quantum channel
N cov with respect to the generator L ¼Pi λijiihij, the
transition matrix Tij→k0l0 has a nonvanishing value only if
λi − λj ¼ λk0 − λl0 . If the reference state γ is taken to
commute with the generator L, γ and N covðγÞ have the
same set of the eigenstates fjiig as the generator L. When
an initial quantum state ρ ¼Pi;jρijjiihjj evolves into
N covðρÞ ¼

P
k0;l0N covðρÞk0l0 jk0ihl0j, the value of the off-

diagonal element can be written as

jN covðρÞk0l0 j ¼
����X
i;j

ρijTij→k0l0

����
≤
����X
Ωþ

k0 l0

ρijTij→k0l0

����þ
����X
Ω−

k0 l0

ρijTij→k0l0

����;

by using the triangle inequality. Here, Ωk0l0 ¼ fði; jÞjλi −
λj ¼ λk0 − λl0 g denotes the set of ði; jÞ having the
nonvanishing transition matrix Tij→k0l0 for a given ðk0; l0Þ,
and Ωþk0l0 and Ω−

k0l0 are the subsets of Ωk0l0 with the real
part of information exchange being ðδqRÞij→k0l0 ≥ 0

and ðδqRÞij→k0l0 < 0. From the fluctuation relation

Tij→k0l0 ¼ e−δqij→k0 l0þiθðωij−ω0k0 l0 ÞðT̃θ
ij←k0l0 Þ�, we then obtain

jN covðρÞk0l0 j

≤
����X
Ωþ

k0 l0

ρije
−δqij→k0 l0þiθðωij−ω0k0 l0 ÞðT̃θ

ij←k0l0 Þ�
����

þ
����X
Ω−

k0 l0

ρijTij→k0l0

����
≤
X
Ωþ

k0 l0

jρijje−ðδqRÞij→k0 l0 jT̃θ
ij←k0l0 j þ

X
Ω−

k0 l0

jρijjjTij→k0l0 j

≤
X
Ωþ

k0 l0

jρijje−ðδqRÞij→k0 l0 þ
X
Ω−

k0 l0

jρijj;

by noting that both jTij→k0l0 j and jT̃θ
ij←k0l0 j are less than 1. ▪
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