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We study the electronic structures and topological properties of (M þ N)-layer twisted graphene
systems. We consider the generic situation that N-layer graphene is placed on top of the other M-layer
graphene and is twisted with respect to each other by an angle θ. In such twisted multilayer graphene
systems, we find that there exist two low-energy flat bands for each valley emerging from the interface
between the M layers and the N layers. These two low-energy bands in the twisted multilayer graphene
system possess valley Chern numbers that are dependent on both the number of layers and the stacking
chiralities. In particular, when the stacking chiralities of the M layers and N layers are opposite, the total
Chern number of the two low-energy bands for each valley equals�ðM þ N − 2Þ (per spin). If the stacking
chiralities of theM layers and the N layers are the same, then the total Chern number of the two low-energy
bands for each valley is �ðM − NÞ (per spin). The valley Chern numbers of the low-energy bands are
associated with large, valley-contrasting orbital magnetizations, suggesting the possible existence of orbital
ferromagnetism and anomalous Hall effect once the valley degeneracy is lifted either externally by a weak
magnetic field or internally by Coulomb interaction through spontaneous symmetry breaking. Such an
orbital ferromagnetic state is characterized by chiral current loops circulating around the AA region of the
moiré pattern, which can be experimentally detected.
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I. INTRODUCTION

Twisted bilayer graphene (TBG) has drawn significant
attention recently due to the observations of the correlated
insulating phases [1–5] and unconventional superconduc-
tivity [5–7]. At small twist angles, the low-energy states
of TBG are characterized by four low-energy bands
contributed by the two nearly decoupled monolayer valleys
[8,9]. Around the “magic angles,” the bandwidths of the
four low-energy bands become vanishingly small, and these
nearly flat bands are believed to be responsible for most
of those exotic properties observed in TBG. Numerous
theories have been proposed to understand the electronic
structures [10–20], the correlated insulating phase
[10,21–31], and the mechanism of superconductivity
[10,22,24,25,27,32–38].
On the other hand, interesting topological features have

already emerged in the electronic structure of TBG. It has
been shown that the four low-energy bands are topologi-
cally nontrivial in the sense that they are characterized by

odd windings of Wilson loops [14,18,39], which is an
example of the fragile topology [15]. The four flat bands
have been further proposed to be equivalent to the zeroth
pseudo-Landau levels (LLs) with opposite Chern numbers
and sublattice polarizations [18], which is the origin of the
nontrivial band topology in the TBG system.
Recently, unconventional ferromagnetic superconductiv-

ity and the correlated insulating phase have been observed
in twisted double bilayer graphene [40–42] and trilayer
graphene moiré systems [43–45]. It implies that the low-
energy flat bands, which are believed to be responsible for
the correlated physics in TBG, may also exist in the twisted
double bilayer graphene system. A recent theoretical
study indeed revealed the presence of flat bands in twisted
double bilayer graphene [46]. Motivated by these works, in
this paper we study the electronic structures and topological
properties of twisted multilayer graphene (TMG). In
particular, we consider the most generic situation, that
the N-layer chirally stacked graphene is placed on top of
the other M-layer chirally stacked graphene and they are
twisted with respect to each other by a nonvanishing angle
θ, as schematically shown in Fig. 1(a) (for the case of
M ¼ 2, N ¼ 2). In such an (M þ N)-layer TMG system,
we propose that there always exist two low-energy bands
(for each valley), and that the bandwidths of the two low-
energy bands become vanishingly small at the magic angles
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of twisted bilayer graphene for arbitrary numbers of layers
M and N. The flat bands in the TMG system can be
interpreted from the pseudo-LL representation of TBG
[18], and are protected by an approximate chiral symmetry
in chiral graphene multilayers.
Moreover, we also find that there is a Chern-number

hierarchy in the (M þ N)-layer TMG system. In particular,
when the stacking chiralities of the M layers and N layers
are the same, the total Chern number of the two low-energy
flat bands for each monolayer valley equals �ðM − NÞ for
each spin species [47]. On the other hand, if the stacking
chiralities of the M layers and the N layers are opposite,
then the total Chern number of the two low-energy bands
for each valley is �ðM þ N − 2Þ. Taking the twisted
double bilayer graphene (M ¼ 2, N ¼ 2) as an example,
when the bottom bilayer and the top bilayer are both AB
or BA stacked (same stacking chirality), the total Chern
number of the two low-energy flat bands would be zero;
on the other hand, if the bottom bilayer is AB (BA)
stacked and the top bilayer is BA (AB) stacked (opposite
stacking chiralities), then the total Chern number of the
two low-energy flat bands for each valley equals �2. The
valley Chern numbers can be further tuned by an external
electric field, leading to the gate-tunable quantum valley
Hall effect.
The nonzero valley Chern numbers of the low-energy flat

bands are characterized by large and valley-contrasting
orbital magnetizations. With the presence of an external
magnetic field or the spontaneous symmetry breaking
induced by the Coulomb interactions, the valley degeneracy
is expected to be broken, and a valley-polarized (quantum)

anomalous Hall state may be realized. The valley polarized
state is associated with chiral current loops, which generate
local magnetic fields peaked at the AA region. The local
magnetic fields generated by the chiral current loops may be
a robust experimental signature for the nonzero valley Chern
number and the valley-polarized state in the TMG system.
The flat bands at the universal magic angles, together with
the Chern-number hierarchy and orbital magnetism, make
the TMG systems a unique platform to study strongly
correlated physics with nontrivial band topology, and may
have significant implications on the observed ferromagnetic
superconductivity and correlated insulating phase in twisted
double bilayer graphene [41,42].

II. ELECTRONIC STRUCTURES OF THE
TWISTED MULTILAYER GRAPHENE

SYSTEMS

A. Lattice structures

We consider the most generic case of chirally stacked
twisted multilayer graphene; i.e., we place N chiral
graphene multilayers on top of M chiral graphene multi-
layers and twist them with respect to each other by an angle
θ. This is schematically shown in Fig. 1(a) for the case of
M ¼ 2, N ¼ 2. Similar to the case of TBG, commensurate
moiré supercells are formed when the twist angle θðmÞ
obeys the condition cosθðmÞ¼ð3m2þ3mþ1=2Þ=ð3m2þ
3mþ1Þ [48], where m is a positive integer. The lattice
vectors of the moiré superlattice are expressed as t1 ¼
ð− ffiffiffi

3
p

Ls=2; Ls=2Þ and t2 ¼ ð0; LsÞ, where Ls ¼ jt1j ¼
a=½2 sin ðθ=2Þ� is the size of the moiré supercell and
a ¼ 2.46 Å is the lattice constant of graphene. In TBG
it is well known that there are atomic corrugations, i.e., the
variation of interlayer distances on the moiré length scale.
In particular, in the AB (BA) region of TBG, the interlayer
distance dAB ≈ 3.35 Å, while in the AA-stacked region
the interlayer distance dAA ≈ 3.6 Å [49]. Such atomic
corrugations may be modeled as [12]

dzðrÞ ¼ d0 þ 2d1
X3
j¼1

cos ðgj · rÞ; ð1Þ

where g1, g2, and g3 ¼ g1 þ g2 are the three reciprocal
lattice vectors of the moirè supercell. We take d0¼3.433Å
and d1 ¼ 0.0278 Å in order to reproduce the interlayer
distances in AA- and AB-stacked bilayer graphene. In this
paper, the atomic corrugations of the two twisted layers
at the interface (between the M layers and the N layers) is
also modeled by Eq. (1). On the other hand, the interlayer
distances within the untwisted M layers and the untwisted
N layers are set to the interlayer distance of Bernal bilayer
graphene dAB ¼ 3.35 Å. At a small twist angle θ, the
Brillouin zone (BZ) of the moiré supercell has been
significantly reduced compared with those of the untwisted
multilayers, as shown in Fig. 1(b).

(a)

(b)

FIG. 1. (a) Left: Structure of the twisted multilayer graphene
with M ¼ 2 and N ¼ 2 (see text). Right: Moiré pattern of the
twisted multilayer graphene, seen from the top. t1 and t2 denote
the lattice vectors of the moiré supercell. (b) The Brillouin zones
of the top N multiplayers, bottom M multilayers, and the moiré
supercell are plotted in red, blue, and black lines, respectively.
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B. Effective Hamiltonian

The low-energy effective Hamiltonian of the twisted
(M þ N)-layer TMG of the K valley is expressed as

HK
α;α0 ðM þ NÞ ¼

�
HK

α ðMÞ U

U† HK
α0 ðNÞ

�
; ð2Þ

where HK
α ðMÞ and Hþ

α0 ðNÞ are the effective Hamiltonians
for the M-layer and N-layer graphene with stacking
chiralities α; α0 ¼ þ=−. In particular,

HK
α ðMÞ ¼

0
BBBBB@

h0ðkÞ hα 0 0 � � �
h†α h0ðkÞ hα 0 � � �
0 h†α h0ðkÞ hα � � �

� � �

1
CCCCCA
; ð3Þ

where h0ðkÞ ¼ −ℏvFðk −KMÞ · σ stands for the low-
energy effective Hamiltonian for monolayer graphene near
the Dirac point KM, and hα is the interlayer hopping, with

hþ ¼
�

0 0

t⊥ 0

�
; ð4Þ

and h− ¼ h†þ.
The off-diagonal term U represents the coupling between

the twisted M layers and N layers. Here we assume that
there is only the nearest-neighbor interlayer coupling; i.e.,
the topmost layer of the M-layer graphene is only coupled
with the bottom-most layer of the N-layer graphene. Thus,

U ¼

0
BB@

0 � � � 0

..

. � � � 0

UðrÞe−iΔK·r � � � 0

1
CCA; ð5Þ

where the 2 × 2 matrix U describes the tunneling between
the Dirac states of the twisted bilayers [9,12],

UðrÞ ¼
�

u0gðrÞ u00gðr − rABÞ
u00gðrþ rABÞ u0gðrÞ

�
; ð6Þ

where rAB ¼ ð ffiffiffi
3

p
Ls=3; 0Þ, u00 and u0 denote the intersu-

blattice and intrasublattice interlayer tunneling amplitudes,
with u00 ≈ 0.098 eV, and u0 ≈ 0.078 eV [12]. u0 is smaller
than u00 due to the effects of atomic corrugations [12,18].
ΔK ¼ KN −KM ¼ ð0; 4π=3LsÞ is the shift between
the Dirac points of the N layers and the M layers. The
phase factor gðrÞ is defined as gðrÞ ¼ P

3
j¼1 e

iqj·r, with

q1 ¼ ð0; 4π=3LsÞ, q2 ¼ ð−2π= ffiffiffi
3

p
Ls;−2π=3LsÞ, and q3 ¼

ð2π= ffiffiffi
3

p
Ls;−2π=3LsÞ. It is worth noting that Eq. (2) is

the effective Hamiltonian for theK valley. The Hamiltonian

for the K0 valley is readily obtained by applying a time-
reversal operation to HK

α;α0 ðM þ NÞ.

C. Emergence of two flat bands and
the universal magic angles

We continue to study the electronic structures of the
(M þ N)-layer TMG systems using the effective
Hamiltonian given by Eq. (2). The band structures for
(M ¼ 2, N ¼ 2), (M ¼ 2, N ¼ 4), ðM ¼ 3; N ¼ 3Þ, and
ðM ¼ 3; N ¼ 4Þ at the first magic angle of TBG θ ¼ 1.05°
with the same stacking chiralities (α ¼ α0 ¼ þ) are shown
in Figs. 2(a)–2(d), respectively [50]. Clearly there are two
low-energy flat bands marked by the red lines that are
separated from the other bands. The two low-energy bands
are almost exactly flat at θ ¼ 1.05° for all these TMG
systems with different layers, indicating that the magic
angle of TBG is universal for the TMG systems regardless
of the number of layers. It turns out that the two flat bands
in TMG originate from the twisted bilayer at the interface,
and they remain flat even after being coupled with the other
graphene layers due to an (approximate) chiral symmetry
of Eq. (2). More details about the origin of the flat bands
in the TMG systems can be found in Appendix A.
In realistic situations there are also further neighbor

interlayer hoppings in graphene multilayers, which would
break the chiral symmetry of the effective Hamiltonian
in Eq. (2), and the flat bands shown in Fig. 2 would
become more dispersive. In order to test the robustness
of the flat bands, we have included all the second-neighbor
and third-neighbor interlayer hoppings with intersite dis-
tances equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=3þ d2AB

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ d2AB

p
, respectively

(dAB ≈ 3.35 Å is the interlayer distance), and their ampli-
tudes are denoted by t2 and t3. After including these

FIG. 2. The band structures of (M þ N)-layer twisted multi-
layer graphene at the first magic angle θ ¼ 1.05°. (a)M ¼ 2,
N ¼ 2, (b)M ¼ 2, N ¼ 4, (c) M ¼ 3, N ¼ 3, and (d) M ¼ 3,
N ¼ 4.
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terms, the interlayer hopping term withþ stacking chirality
becomes

hþ ¼
�

t2fðkÞ t2f�ðkÞ
t⊥ − 3t3 t2fðkÞ

�
; ð7Þ

where in t2 ¼ 0.21 eV, t3 ≈ 0.05 eV are extracted from
the Slater-Koster hopping parameters [see Eq. (9)]. In order
to be consistent with the choice of t2 and t3, we set
t⊥ ¼ 0.48 eV, which is also from the Slater-Koster
formula [Eq. (9)]. The phase factor fðkÞ ¼ ðe−i

ffiffi
3

p
aky=3þ

eiðkxa=2þ
ffiffi
3

p
aky=6Þ þ eið−kxa=2þ

ffiffi
3

p
aky=6Þ. The interlayer hop-

ping with − stacking chirality h− ¼ h†þ. The band struc-
tures of (2þ 2)-layer TMG at θ ¼ 1.05° with the new
interlayer hopping term Eq. (7) are shown in Fig. 3, where
panels (a) and (b) denote the cases with the same and
opposite stacking chiralities, respectively. Clearly, the two
low-energy bands marked by the red lines become more
dispersive due to the presence of the further-neighbor
interlayer hoppings, but the bandwidths are still small
∼10–15 meV, and the two low-energy bands are still
separated from the high-energy bands.

III. CHERN-NUMBER HIERARCHY AND
QUANTUM VALLEY HALL EFFECT

A. Chern-number hierarchy

The flat bands at the universal magic angle make the
TMG systems a perfect platform to study the strongly
correlated physics. In addition to the flat bands and the
universal magic angles, the low-energy bands in the TMG
systems also exhibit unusual topological properties with
nonvanishing valley Chern numbers. To be specific, when
the stacking chiralities of the M layers and the N layers are
the same, the total Chern number of the two low-energy
bands for each monolayer valley equals �ðM − NÞ. On the
other hand, if the stacking chiralities of the M layers and
the N layers are opposite, then the total Chern number of
the two flat bands for each valley equals �ðM þ N − 2Þ.
Such a Chern-number hierarchy is more concisely sum-
marized in the following equation:

CK
α;α0 ¼ þ½αðM − 1Þ − α0ðN − 1Þ�;

CK0
α;α0 ¼ −½αðM − 1Þ − α0ðN − 1Þ�; ð8Þ

where CK
α;α0 (C

K0
α;α0) denotes the total Chern number of the

two low-energy flat bands for the K (K0) valley, and the
subscripts α; α0 ¼ � represent the stacking chiralities of
theM layers and N layers. We would like to emphasize that
the total Chern number of the two flat bands (per valley per
spin) is a more robust quantity than the Chern number of
each individual flat band. This is because the former is
protected by the energy gaps between the two flat bands
and the other high-energy bands, while the latter is crucially
dependent on how the gap between the two flat bands is
opened up.
In order to understand the Chern-number hierarchy of

Eq. (8), we first divide the (M þ N)-layer TMG system into
three mutually decoupled subsystems: the TBG at the
interface, the (M − 1) graphene monolayers below the
interface TBG, and the (N − 1) graphene monolayers
above the interface TBG, which are schematically shown
in Fig. 5(a). We introduce a scaling parameter 0 ≤ λ ≤ 1,
and let the coupling strength between the three subsystems
t⊥ → λt⊥. We adiabatically turn on the coupling between
the three subsystems by increasing λ from 0 to 1, then
inspect the evolution of the band structures of the TMG
system.
In Fig. 5(b), we show the band structure of (3þ 2)-layer

TMG (of the K valley) at θ ¼ 1.05° with the scaling
parameter λ ¼ 0. When λ ¼ 0, the magic-angle TBG at
the interface would give rise to two flat bands with total
Chern number 0, as marked by the red lines in Fig. 5(a).
The (M − 1) graphene monolayers below the TBG inter-
face would contribute two low-energy bands with disper-
sions ∼� jkjM−1 around Ks [51]. Similarly, the (N − 1)
layers above the TBG interface would contribute two low-
energy bands with dispersions ∼� jkjN−1 around K0

s.
Since we have considered the case M ¼ 3 and N ¼ 2,
there are quadratic band touching at Ks and linear band
touching at K0

s in Fig. 5(b). More importantly, the bands
with quadratic and linear dispersions are degenerate with
the flat bands at Ks and K0

s points for λ ¼ 0, which are
classified as “singular flat bands” according to Ref. [52].
Such singular flat bands may acquire nonvanishing Chern
numbers once the degeneracy at the band-crossing point is
lifted.
If λ becomes nonzero, gaps would be opened up at Ks

and K0
s for the bands with �jkjM−1 and �jkjN−1 disper-

sions, as shown in Fig. 5(c) for λ ¼ 0.05. As a result, the
loop integral for the Berry connection of the conduction
and valance bands around a loop enclosing the Ks point
would acquire the same Berry phase of −αðM − 1Þπ [α is
the stacking chirality of the (M − 1) layers] and contribute
−αðM − 1Þ=2 to the total Chern number, respectively,
which adds up to −αðM − 1Þ (see Appendix B). On the

(a) (b)

FIG. 3. The band structures of (2þ 2)-layer twisted multilayer
graphene at the first magic angle θ ¼ 1.05° with the more realistic
interlayer hopping Eq. (7). (a) The two bilayers have the same
stacking chirality, and (b) the two bilayers have opposite stacking
chiralities.
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other hand, the conduction and valence bands around
the K0

s point contributed by the (N − 1) layers above the
interface would acquire the same Berry phase of
α0ðN − 1Þπ [α0 is the stacking chirality of the (N − 1)
layers], with the total Chern number of α0ðN − 1Þ (see
Appendix B). It is well known that the total Chern number
of the bands from the (M − 1) and (N − 1) layers must
cancel that of the two flat bands from the interface
TBG; it follows that the total Chern number of the two
flat bands for the K valley equals αðM − 1Þ − α0ðN − 1Þ.
As λ is further increased, the conduction and valence
bands from the (M − 1) and (N − 1) layers are further
pushed to high energies, as shown in Fig. 5(d), for λ ¼ 0.5,
and the Chern number of the two flat bands would remain
unchanged. Thus, Eq. (8) has been proved. See Appendix B
for more details.
Equation (8) has been numerically verified using the

effective Hamiltonian of TMG shown in Eq. (2). In
particular, in Fig. 4(a) we plot the Wilson-loop eigenvalues
[denoted as wðkÞ] of the (2þ 2) TMG (M ¼ 2, N ¼ 2)
at the first magic angle with the same stacking chirality
(α ¼ α0 ¼ þ). The red diamonds and blue circles represent
the Wilson loops of the K and K0 valleys, respectively.
As clearly shown in the figure, for each valley the total
Chern number of the two flat bands vanishes. In Fig. 4(b)
we plot the Wilson loops of the (2þ 2) TMG at the first
magic angle, but with opposite stacking chiralities (α ¼ þ;
α0 ¼ −). It is clearly seen that for the K valley (blue circles)
the two Wilson loops carry the same Chern number þ1,
giving rise to a total Chern number of þ2 for the K valley
(−2 for the K0 valley), which is consistent with Eq. (8). In
Figs. 4(c) and 4(d) we plot the Wilson-loop eigenvalues for

the (2þ 4) TMG (M ¼ 2, N ¼ 4) at the first magic angle.
When the stacking chiralities are the same, the total Chern
number of the two flat bands for the K (K0) valley equals
−2 (þ2); while if the stacking chiralities are opposite,
then the total Chern number of the two flat bands equals
þ4 (−4) for the K (K0) valley. Again, this is in perfect
agreement with Eq. (8). We have also numerically tested
the other (M þ N)-layer TMG with M, N extending from
1 to 5, and they are all consistent with Eq. (8).
We have also considered the more realistic situation in

which the interlayer hopping is given by Eq. (7) instead of
Eq. (4). Since the chiral symmetry is broken in Eq. (7), the
Chern-number hierachy given by Eq. (8) is no longer exact.
However, since the Chern number of concern is the total
Chern number of the two low-energy flat bands, it should
remain unchanged as long as the two low-energy flat bands
remain separated from the other high-energy bands. We
have numerically calculated the total valley Chern numbers
of the two low-energy bands in (M þ N)-layer TMG
systems (M, N varies from 1 to 5) at θ ¼ 1.05° using
the more realistic interlayer hopping term Eq. (7), and
find that the Chern-number hierarchy of Eq. (8) remains
correct for the cases of ðM ¼ 1; N ¼ 2Þ, ðM ¼ 1; N ¼ 3Þ,
ðM ¼ 1; N ¼ 4Þ, ðM ¼ 1; N ¼ 5Þ, ðM ¼ 2; N ¼ 2Þ,
ðM ¼ 2; N ¼ 3Þ, and is partially correct (for one stacking
configuration) for ðM ¼ 3; N ¼ 3Þ, ðM ¼ 2; N ¼ 4Þ, and
ðM ¼ 3; N ¼ 5Þ.

B. Gate-tunable quantum valley Hall effect

The valley Chern numbers given by Eq. (8) can be
further tuned by applying a vertical electric potential V⊥.
Taking the case of (2þ 2)-layer TMG and (2þ 1)-layer
TMG as an example, we study the dependence of the valley
Chern numbers of each of the two low-energy bands on the
vertical electric potential V⊥ at θ ¼ 1.05°. The valley Chern
number of each band is denoted by CK

nαα0, with the band
index n ¼ 1, 2, the stacking chirality α; α0 ¼ �, and the
valley index K.
In Table I we show the dependence of CK

1αα0 , C
K
2αα0 on the

vertical electric potential V⊥ (in units of meV) for (2þ 2)-
layer TMG. The valley Chern numbers are calculated using
the effective Hamiltonian Eq. (2) with the more realistic
interlayer hopping Eq. (7). When the stacking chiralities
are the same (bothþ), the Chern number of each of the two
low-energy bands becomes �3 once a small V⊥ ∼ 12 meV
is applied, whereas the total Chern number of the two
bands still sums to zero. As jV⊥j increases, the valley
Chern numbers of the two flat bands are changed to
�2 at jV⊥j ¼ 24 meV, then become 0 and �1, respec-
tively, at jV⊥j¼36meV, and both become �1 when
jV⊥j ⪆ 48 meV. On the other hand, when the stacking
chiralities are opposite (α ¼ þ and α0 ¼ −), the total valley
Chern number of the two bands equals to −2 at jV⊥j ¼ 0,
and remains unchanged for jV⊥j ⪅ 40 meV. Then the total
valley Chern number of the two bands becomes þ1 for

FIG. 4. The Wilson loops of (M þ N)-layer twisted multilayer
graphene at the first magic angle θ ¼ 1.05°. (a) M ¼ 2, N ¼ 2
with the same stacking chiralities, (b) M ¼ 2, N ¼ 2, with
opposite stacking chiralities, (c) M ¼ 2, N ¼ 4, with the same
stacking chiralities, and (d) M ¼ 2, N ¼ 4, with opposite stack-
ing chiralities.
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jV⊥j ⪆ 48 meV. Table I indicates that the topological
phase of (2þ 2)-layer TMG is highly tunable by gate
voltage, which is qualitatively in agreement with the results
reported in Refs. [53,54]. Moreover, here we have also
shown that it is sensitive to the stacking configurations.
In Table II we show CK

nþ (n ¼ 1, 2) versus V⊥ for
(2þ 1)-layer TMG at θ ¼ 1.05°, where the subscript “þ”
means that the bottom bilayer has þ stacking chirality, and
n ¼ 1, 2 is the band index. When the vertical potential
V⊥ ¼ 0, CK

1þ ¼ þ1 and CK
2þ ¼ 0, which is consistent with

Eq. (8). Once a small positive or negative V⊥ ∼ 10 meV is
applied, CK

1þ is changed to þ2 and CK
2þ becomes −1.

However, when jV⊥j ⪆ 20 meV, the valley Chern numbers
become highly dependent on the sign of V⊥ due to the
asymmetric stacking configuration of (2þ 1)-layer TMG.
Thus, distinct topological phases could be realized by
reversing the gate potentials.

IV. VERIFICATIONS USING AN EMPIRICAL
TIGHT-BINDING (TB) MODEL

The flat bands at the first magic angle (Fig. 2) and the
Chern-number hierarchy [Eq. (8)] in TMG have been
verified using a realistic microscopic tight-binding (TB)
model. To be specific, the hopping parameter between two
pz orbitals at different carbon sites i and j in the multilayer
system is expressed in the Slater-Koster form,

tðdÞ ¼ Vσ

�
d · ẑ
d

�
2

þ Vπ

�
1 −

�
d · ẑ
d

�
2
�
; ð9Þ

where Vσ ¼ V0
σe−ðr−dcÞ=δ0 and Vπ ¼ V0

πe−ðr−a0Þ=δ0 . d ¼
ðdx; dy; dzÞ is the displacement vector between the two
carbon sites. a0 ¼ a=

ffiffiffi
3

p ¼ 1.42 Å, dc ¼ 3.35 Å is the
interlayer distance in AB-stacked bilayer graphene, and
δ0 ¼ 0.184a. V0

σ ¼ 0.48 eV, and V0
π ¼ −2.7 eV. The

atomic corrugations at the interface between the M layers

and the N layers in (M þ N) TMG are modeled by Eq. (1),
and their effects can be taken into account by plugging
Eq. (1) into the hopping parameter shown in Eq. (9).
The band structures calculated using the Slater-Koster

TB model at θ ≈ 1.08° for the (2þ 2) TMG are shown in
Fig. 6. To be specific, the band structures of (2þ 2) TMG
with opposite and the same stacking chiralities are shown in
Figs. 6(a) and 6(c), respectively. It is evident that there are
four low-energy bands (contributed by the two valleys)
which are separated from the other high-energy bands,
and the bandwidths are on the order of 10–15 meV, which
are greater than those from the continuum model [see
Fig. 2(a)]. This is because in the continuum model only the
nearest-neighbor interlayer hopping is kept [see Eq. (A3)],
which imposes a chiral symmetry to the Hamiltonian of
Eq. (2). As argued in Appendix A, the chiral symmetry of
Eq. (2) would pin the zeroth pseudo-LLs emerging from the
twisted bilayer at the interface to zero energy, leading to
almost vanishing bandwidth, as shown in Fig. 2. However,
such a chiral symmetry is broken in the realistic Slater-
Koster TB model, and the bandwidth of the flat bands is
expected to be enhanced due to the presence of further
neighbor interlayer hoppings.
In Figs. 6(b) and 6(d) we show the Wilson loops of the

four low-energy bands of (2þ 2) TMG at θ ≈ 1.08°
calculated using the Slater-Koster TB model. Figure 6(b)
[Fig. 6(d)] denotes the case with opposite (the same)
stacking chiralities with the valley Chern number being
�2 (0). The topological equivalence between the band
structures obtained by the more accurate tight-binding
model as shown in Fig. 6 and by the continuum model
as shown in Figs. 4(a) and 4(b) provides a strong supporting
fact for the Chern number hierarchy given by Eq. (8).

TABLE I. The dependence of the Chern numbers on vertical
electric potential for (2þ 2)-layer TMG.

V⊥ −60 −48 −36 −24 −12 0 12 24 36 48 60
CK
1þþ þ1 þ1 0 −2 −3 þ3 þ2 0 −1 −1

CK
2þþ þ1 þ1 þ1 þ2 þ3 −3 −2 −1 −1 −1

CK
1þ− 0 0 þ1 þ1 0 0 0 þ1 þ1 0 0

CK
2þ− þ1 þ1 þ1 þ1 þ2 þ2 þ2 þ1 þ1 þ1 þ1

TABLE II. The dependence of the Chern numbers on vertical
electric potential for (2þ 1)-layer TMG.

V⊥ −40 −32 −24 −16 −8 0 8 16 24 32 40
CK
1þ 0 −1 −1 −1 þ2 þ1 þ2 þ2 þ2 þ2 þ2

CK
2þ þ2 þ2 þ2 þ2 −1 0 −1 −1 −1 −1 −1

(c) (d)

(b)(a)

FIG. 5. (a) A schematic illustration of the TMG system.
(b)–(d) The band structures of (2þ 3)-layer TMG at
θ ¼ 1.05°. The coupling parameter between the interface
and the top (bottom) multilayers has been rescaled by λ:
(b) λ ¼ 0, (c) λ ¼ 0.05, and (d) λ ¼ 0.5.
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V. VALLEY-CONTRASTING ORBITAL
MAGNETIZATIONS AND

VALLEY-POLARIZED STATES

The valley Chern numbers given by Eq. (8) imply
opposite orbital magnetizations for the two monolayer
valleys K and K0. In particular, according to the “modern
theory” of orbital magnetizations [55–58], the orbital
magnetization of the (M þ N)-layer TMG for either the
K or K0 valley can be expressed as

Mz ¼
e

2ℏð2πÞ2
X
n

Z
ϵnk≤μ

dkImfh∂kunkj

× ðHk þ ϵnk − 2μÞj∂kunkig; ð10Þ

where ϵnk and junki are the eigenenergies and (the periodic
part of) Bloch eigenstates of a (M þ N)-layer TMG
Hamiltonian (denoted by H) for either the K or K0 valley,
μ is the chemical potential, and Hk ¼ e−ik·rHeik·r. Since
the K and K0 valleys are transformed to each other by a
time-reversal operation, it is naturally expected that the
valley-contrasting Chern numbers shown in Eq. (8) would
lead to opposite orbital magnetization for the two valleys.
The valley-contrasting orbital magnetizations further sug-
gest that when the valley degeneracy is lifted by external
magnetic fields or by Coulomb interactions, a valley-
polarized state with nonvanishing or even quantized
anomalous Hall conductivity will be generated due to
the nonzero valley Chern numbers.
We have exploited this idea using the continuum model

given by Eq. (2) with the interlayer hopping modeled by
Eq. (7). To be explicit, we consider the case of (2þ 2)-layer

TMG at the first magic angle θ ¼ 1.05°. We have calculated
the orbital magnetizations (Mz) of the two low-energy
bands for the K valley using the Hamiltonian Eq. (2) with
the interlayer hopping modeled by Eq. (7). The dependence
ofMz on the chemical potential μ is plotted in Fig. 7(a). The
red diamonds in Fig. 7(a) represent the situation that the
bottom bilayer and the top bilayer have opposite stacking
chiralities with the valley Chern number �2 [see Eq. (8)].
In this case the magnitude of Mz is large, which is on the
order of 10μB per moiré supercell when the two flat bands
are completely filled. The large orbital magnetization is a
manifestation of the band topology on the moiré pattern. In
particular, the nonvanishing Chern number of the K or K0
valley implies that the ground state at a given filling would
possess chiral current loops. The characteristic radius of the
current loop is on the order of the moiré length scale Ls,
which is associated with large orbital angular momentum
Lz ∼ r × p, with jpj ∼ ℏK and jrj ∼ Ls ≫ a. Therefore, the
orbital magnetization generated by the current loops on
the moiré scale is expected to be much greater than that on
the microscopic lattice scale. We also note that Mz
increases almost linearly with μ when μ is in the gap
above the two flat bands, which is a signature of the
nonvanishing Chern number [57]. On the other hand, the
blue circles in Fig. 7(a) denote the case that the bottom
bilayer and the top bilayer have the same stacking chirality

FIG. 7. (a) The orbital magnetization Mz of the two flat bands
of the K valley for (2þ 2)-layer twisted graphene at the first
magic angle. The red diamonds (blue circles) represent the
situation that the stacking chiralities are opposite (the same),
with the Chern number þ2 (0). The horizontal axis is the
chemical potential μ. The vertical dashed lines mark the bulk
band edges of the two low-energy flat bands. (b) The real-space
distributions of the current density (black arrows) and the current-
induced magnetic field (color coding) within the moiré supercell.
The AA region is centered at the origin. (c) Current densities
plotted along the real-space path Mr − Γr − Kr, where the Mr,
Γr, and Kr points are marked in (b). (d) The local magnetic field
plotted along Mr − Γr − Kr.

FIG. 6. The band structures of (2þ 2) TMG at θ ≈ 1.08°
(a) with opposite stacking chiralities and (c) with the same
stacking chirality. The Wilson loops of (2þ 2) TMG at θ ≈ 1.08°
(b) with opposite stacking chiralities and (d) with the same
stacking chirality. The blue circles and red diamonds denote the
Wilson loops of the K and K0 valleys.
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with vanishing valley Chern number. In this case, the
orbital magnetization vanishes identically for any chemical
potential due to the C2x symmetry of the system. It is
worth noting again that the orbital magnetization plotted in
Fig. 7(a) is for the K valley. The orbital magnetization for
the K0 valley is just opposite to that of the K valley.
The large orbital magnetizations imply that the valley

degeneracy of the system can be easily lifted by a weak
external magnetic field or by spontaneous valley symmetry
breaking from Coulomb interactions, leading to a valley-
polarized (quantum) anomalous Hall state. A rough estimate
reveals that a magnetic field of 2 T would give rise to an
orbital (or valley) Zeeman splitting ∼2 meV (15% of the
bandwidth), which would lead to a state with considerable
valley polarization and anomalous Hall effect. Such a valley-
polarized anomalous Hall state is expected to possess chiral
current loops, which are responsible for the large orbital
magnetization shown in Fig. 7(a). Here we assume that theK
valley is 100% polarized either due to the presence of an
external magnetic field or due to spontaneous valley sym-
metry breaking from Coulomb interactions, and we calculate
the local current density JðrÞ and the current-induced local
magnetic field BðrÞ with the two flat bands of the K valley
being completely filled. In Fig. 7(b) we show the real-space
distributions of JðrÞ and BðrÞ within the moiré Wigner-Seitz
cell for the (2þ 2)-layer TMG with opposite stacking
chiralities, and with 100% valley polarization. The small
filled circles in Fig. 7(b) represent the discretized real-space
positions, with the color coding denoting the strength of the
local magnetic field in units of Tesla. The black arrows
represent the local current densities whose amplitudes are
proportional to the lengths of the arrows. Clearly the valley-
polarized ground state possesses chiral current loops circu-
lating around the AA region. These circulating current loops
further generate magnetic fields in the AA region with the
magnitude ∼10−5 T, which may be a strong experimental
evidence for the nonvanishing valley Chern number in
(2þ 2)-layer TMG with opposite stacking chiralties.
In Fig. 7(c) we plot the current densities Jx (blue

circles) and Jy (red diamonds) along the real-space path
Mr − Γr − Kr in units of μA=Å

2, where theMr, Γr, and Kr
points are marked in Fig. 7(b). It is interesting to note that
Jy almost vanishes identically along the Mr − Γr path due
to the winding pattern of the current. The maximal
magnitude of the current density ∼6 × 10−4 μA=Å2. In
Fig. 7(d) we show the local magnetic field plotted along the
Mr − Γr − Kr path. Clearly the magnetic field has a peak
centered at Γr (the AA point) with the magnitude ∼10−5 T.
The details of the computation of the current densities and
local magnetic fields are presented in Appendix C.

VI. DISCUSSION

The results presented above are based on the simplified
effective Hamiltonian Eq. (2), which assumes that the two

valleys are decoupled from each other. This is an excellent
approximation for the low-energy states at small twist
angles, which has been widely adopted in the literature.
However, even though the intervalley coupling becomes
exponentially small at small twist angles, it is still present.
Physically the intervalley coupling tends to mix the states of
the two valleys, which may suppress the topological
character of each valley. On the other hand, in reality the
electrons’ Coulomb interactions also need to be taken into
account. In particular, the exchange part of the Coulomb
interactions tends to split the two otherwise degenerate
valleys, leading to a valley-polarized state. Thus the
exchange splitting between the two valleys competes with
the intervalley coupling. Given that the intervalley coupling
is vanishingly small for small twist angles, we expect that the
valley exchange interactions would dominate. In addition to
the exchange interactions, the Hartree part of the Coulomb
interactions may also be significant in modifying the
band structures of the TMG system. This is because the
Coulomb interactions may acquire valley-dependent form
factors while being projected onto the low-energy bands
[54]. Certainly a more thorough study is required in order to
fully understand the effects of Coulomb interactions in the
TMG system, and we leave it for future work.
Before concluding, we also would like to comment on

the effects of impurities on the topological valley states. We
consider impurity potentials which decay exponentially in
real space, with a characteristic length scale r0. The Fourier
transform of the impurity potential would have a natural
cutoff qc ∼ π=r0 in the momentum space; i.e., the Fourier
components for q ⪆ qc can be neglected. If r0 is on the
order of the moiré length scale, then qc is comparable to the
size of the moireé BZ, and the impurity potential would
only couple the low-energy states of TMG within the same
valley. In this case, the topological features associated with
each valley would remain robust. On the other hand, if r0 is
much smaller than the moiré length scale, say, on the order
of microscopic lattice constant, then the impurity potential
may lead to significant intervalley scatterings, which may
locally destroy the current density and impede the topo-
logical properties associated with each valley. However,
such an impurity effect should be perturbative in terms of
the impurity concentration and impurity potential strength.

VII. SUMMARY

To summarize,we have studied the electronic structures
and topological properties of the (M þ N)-layer TMG
system. We have proposed that, with the chiral approxi-
mation, there always exist two low-energy bands whose
bandwidths become minimally small at the magic angle of
TBG. We have further shown that the two flat bands in the
TMG system are topologically nontrivial and exhibit a
Chern-number hierarchy. In particular, when the stacking
chiralities of theM layers and the N layers are opposite, the
total Chern number of the two low-energy bands for each
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valley equals �ðM þ N − 2Þ (per spin). On the other hand,
if the stacking chiralities of the M layers and the N layers
are the same, then the total Chern number of the two low-
energy bands for each valley is �ðM − NÞ (per spin). The
nonvanishing valley Chern numbers are associated with
large and valley-contrasting orbital magnetizations along
the z direction, which implies that the valley degeneracy
can be lifted by weak external magnetic fields or by
Coulomb interactions, leading to a valley-polarized anoma-
lous Hall state. Such a valley-polarized state is associated
with chiral current loops circulating around the AA region,
which generates local magnetic fields peaked at the AA
region. The local magnetic fields induced by the chiral
current loops may be a robust experimental signature of the
valley-polarized state with nonvanishing Chern number.
Our work is a crucial step forward in understanding the
electronic properties of twisted multilayer graphene. The
universal magic angles and the Chern-number hierarchy
proposed in this work make the TMG system a perfect
platform to study the interplay between electrons’ Coulomb
correlations and nontrivial band topology.
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Note added.—Recently, we became aware of Refs. [54,
59,60]. In the first work, the electronic structures, super-
conductivity, and the correlated insulating phase are dis-
cussed for twisted double bilayer graphene with the same
stacking chirality (AB-AB stacking). In the second one, the
band structures and valley Chern numbers of twisted
double bilayer graphene with different stacking chiralities
are discussed. In the last one, the effect of twists on the
electronic structure of infinite stacks of graphene layers
were studied.

APPENDIX A: FLAT BANDS AND MAGIC
ANGLES IN THE TMG SYSTEM

In this appendix, we explain the origin of the flat bands
and universal magic angles in the (M þ N)-layer TMG
system. After some gauge transformations, the constant
wave vectors KM, KN in Eq. (3) can be removed. Taking
the case of the (2þ 2)-layer TMG with the same stacking
chiralities as an example, the effective Hamiltonian is
explicitly written as (after the gauge transformation)

HKþ;þð2þ2Þ¼

0
BBBBB@

h0ðk̂Þ hþ 0 0

h†þ h0ðk̂Þ UðrÞ 0

0 U†ðrÞ h0ðk̂Þ hþ
0 0 h†þ h0ðk̂Þ

1
CCCCCA
; ðA1Þ

where h0ðk̂Þ ¼ −ℏvFk̂ · σ, and hα and U are defined in
Eqs. (4) and (5) of the main text. Then we make the
following unitary transformation to the basis functions of
Eq. (A1) [and more generally, to those of Eq. (2) of the
main text]:

jψ̃Msi ¼
1

2
ðjψMsi þ ijψ ðMþ1ÞsiÞ;

jψ̃ ðMþ1Þsi ¼
1

2
ðjψMsi − ijψ ðMþ1ÞsiÞ;

jψ̃ lsi ¼ jψ lsi; if l ≠ M;M þ 1; ðA2Þ

where jψ lsi denotes the Bloch state at the K point from the
lth layer and the s sublattice. Applying the unitary trans-
formation Eq. (A2) to Eq. (A1) (letting M ¼ 2), then
expanding the interlayer coupling term UðrÞ to the linear
order of r=Ls, Eq. (A1) becomes

H̃Kþ;þð2þ 2Þ ¼

0
BBBBBBBB@

h0ðk̂Þ hþffiffi
2

p hþffiffi
2

p 0

h†þffiffi
2

p h0
�
k̂ − e

ℏA
�

−3iu0 −i hþffiffi
2

p

h†þffiffi
2

p 3iu0 h0
�
k̂þ e

ℏA
�

i hþffiffi
2

p

0 −i h
†
þffiffi
2

p i h
†
þffiffi
2

p h0ðk̂Þ

1
CCCCCCCCA
; ðA3Þ

where the pseudovector potential A ¼ ð2πu00Þ=ðLsevFÞ
ðy;−xÞ [18].Note that the diagonal blocksh0½k̂�ðe=ℏÞA�¼
−ℏvFðk̂�eA=ℏÞ are equivalent to the Dirac fermions
coupled with opposite pseudomagnetic fields, which would
generate pseudo-LLs of opposite Chern numbers �1 [18].

In particular, the two zeroth pseudo-LLs have opposite
sublattice polarizations; thus the intrasublattice coupling term
�3iu0 in Eq. (A3) vanishes in the subspace of the zeroth
pseudo-LLs [18]. Therefore, if we rewrite Eq. (A3) in amixed
basis consisting of the Dirac states from the first and fourth
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layers, and the zeroth pseudo-LLs from the second and third
layers, then H̃Kþ;þð2þ 2Þ becomes

H̃Kþ;þð2þ 2Þ ≈
�
hb 0

0 ht

�
: ðA4Þ

Each element of Eq. (A4) is a 3 × 3 matrix. In particular,

hb ¼

0
BB@

0 ℏvFðk̂x þ ik̂yÞ 0

ℏvFðk̂x − ik̂yÞ 0 t⊥ηðkÞ
0 t⊥η�ðkÞ 0

1
CCA ðA5Þ

and

ht ¼

0
BB@

0 it⊥ηðkÞ 0

−it⊥η�ðkÞ 0 ℏvFðk̂x þ ik̂yÞ
0 ℏvFðk̂x − ik̂yÞ 0

1
CCA;

ðA6Þ

where ηðkÞ denotes the coupling between the zeroth pseudo-
LL and theDirac states of the first (fourth) layer, which can be
expressed as some integral over the eigenfunctions of the
zeroth pseudo-LLs and theBloch functions, and k is the index
labeling the degenerate states within the zeroth pseudo LL.
Note thatwe have dropped the higher pseudo-LLs in Eq. (A4).
The diagonalizations of Eqs. (A6) and (A5) would

always yield two decoupled zero modes at any k. These
two zero modes originate from the two zeroth pseudo-LLs
contributed by the Mth and (M þ 1)th twisted bilayer
[M ¼ 2 for Eq. (A4)], and they stay at zero energy even
after being coupled with the other layers due to the chiral
symmetry of the effective Hamiltonian of TMG: all the
matrix elements in Eqs. (2), (A1)–(A4) are intersublattice.
As a consequence, if we apply the gauge transformation
such that all the basis functions at the B sublattice change
sign, then the total Hamiltonian and eigenenergies would
change sign as well. However, the eigenenergies are
supposed to be invariant under such a gauge transforma-
tion, which thus enforces that both EðkÞ and−EðkÞ have to
be the eigenenergies of the Hamiltonian. Therefore, a zero
mode would stay at zero energy as long as the chiral
symmetry is preserved. A similar argument applies to any
(M þ N)-layer TMG systems with either opposite or the
same stacking chiralities. As long as the chiral symmetry is
preserved, the zeroth pseudo-LLs emerging from the inter-
face between theM layers and N layers would be pinned to
zero energy.
On the other hand, it is well known that at the magic

angles of TBG the bandwidth of the two low-energy bands
for each valley is minimal. From the perspective of the
pseudo-LLs [18], it means that at the magic angles, the
states within the zeroth pseudo-LLs are minimally coupled
with each other (and to the higher pseudo-LLs); thus they

are almost exactly flat. As discussed above, by virtue of the
chiral symmetry, these zeroth pseudo-LLs that are max-
imally flat at the magic angles would remain flat even after
being coupled with the other layers in the TMG systems. It
follows that the magic angles in TBG should be universal
in the TMG systems by virtue of the chiral symmetry in
Eq. (2).

APPENDIX B: DERIVATIONS OF THE
CHERN-NUMBER HIERARCHY

In this appendix, we mathematically prove the Chern-
number hierarchy given by Eq. (8). As discussed in
Sec. III A, the (M þ N)-layer TMG system can be decom-
posed into three subsystems: the TBG at the interface, the
(M − 1) layers below the interface, and the (N − 1) layers
above the interface. This is schematically shown in
Fig. 5(a). In graphene multilayers withþ stacking chirality,
the B sublattice of the nth layer is strongly coupled with the
A sublattice of the ðnþ 1Þth layer, forming pairs of
bounding and antibounding states, leaving the A sublattice
of the first layer and the B sublattice of the Nth layer (N is
the number of layers) as two low-energy degrees of
freedom. Similarly, in graphene multlayers with − stacking
chirality, the B sublattice of the first layer and the A
sublattice of the Nth layer would be the low-energy degrees
of freedom. The low-energy effective Hamiltonians of the
(M − 1)-layer graphene around the K valley with α
(α ¼ �1) stacking chirality can be obtained by straightfor-
ward (M − 1)th order perturbation theory [61], which is
expressed as

Hα
effðM−1Þ¼ ð−1ÞM−2

0
B@ 0

½ℏvFðkxþiαkyÞ�M−1

tM−2⊥
½ℏvFðkx−iαkyÞ�M−1

tM−2⊥
0

1
CA;

ðB1Þ

where t⊥ is the interlayer hopping within the (M − 1)
layers. Equation (B1) is in the basis of j1; Ai (j1; Bi) and
jM − 1; Bi (jM − 1; Ai) if the (M − 1) layers have þ (−)
stacking chirality. On the other hand, there are two nearly
flat bands at the magic angle contributed by the interface
TBG. Around the Ks and K0

s points these two flat bands are
equivalent to zeroth pseudo-LLs, and possess opposite
sublattice polarizations, as argued in Ref. [18]. Let us first
assume the coupling between the (M − 1) layers and the
interface TBG is small, then the low-energy effective
Hamiltonian around the Ks point can be expressed as

Hα
Ks
ðkÞ ¼

0
BBB@

0
ðkxþiαkyÞM−1

mM−1
0

ðkx−iαkyÞM−1

mM−1
0 teff

0 teff 0

1
CCCA; ðB2Þ

LIU, MA, GAO, and DAI PHYS. REV. X 9, 031021 (2019)

031021-10



where

mM−1 ¼
tM−2⊥

ð−1ÞM−2ðℏvFÞM−1 ; ðB3Þ

and teff is the low-energy effective coupling between the
states of the (M − 1) layers and the flat bands from the
interface TBG. In particular, if the stacking chirality is þ,
teff represents the coupling between the Bloch states from
the B sublattice of the (M − 1)th layer and one of the two
flat bands with A sublattice polarization contributed by the
interface TBG. If the stacking chirality is −, then teff
represents the coupling between the Bloch states from the A
sublattice of the (M − 1)th layer and one of the two flat
bands with B sublattice polarization contributed by the
interface TBG. Note that although k in Eq. (B1) denotes
the k point in the original primitive-cell BZ, k in Eq. (B2)
represents the k point in the moiré supercell BZ. This is
because the form of the low-energy effective Hamiltonian
[Eq. (B1)] is unchanged after the BZ folding.
Similarly, one can write down the low-energy effective

Hamiltonian around the K0
s point, which consists of the

two low-energy states from the (N − 1) layers above the
TBG interface and one of the two flat bands from the TBG
interface. More explicitly, it can be expressed as

Hα0
K0

s
ðkÞ ¼

0
BBB@

0
ðkxþiα0kyÞN−1

mN−1
t�eff

ðkx−iα0kyÞN−1

mN−1
0 0

teff 0 0

1
CCCA; ðB4Þ

where α0 ¼ � represents the stacking chirality of the N
layers and mN−1 is given by Eq. (B3).
Both Eqs. (B2) and (B4) can be solved analytically. The

eigenenergies of Eq. (B2) are expressed as

ϵ1kðM − 1Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M−1k
2M−2 þ jteff j2

q
;

ϵ2k ¼ 0;

ϵ3kðM − 1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M−1k
2M−2 þ jteff j2

q
: ðB5Þ

The eigenenergies of Eq. (B4) have exactly the same
analytic expression but with (M−1) replaced by (N−1).
The eigenstates of Hα

Ks
ðkÞ are expressed as

jψM−1
1k i ¼

�ðkx þ iαkyÞM−1ffiffiffi
2

p
gM−1ðjkjÞ

;−
1ffiffiffi
2

p ;
t̃effffiffiffi

2
p

gM−1ðjkjÞ

�
T
;

jψM−1
2k i ¼

�
−t̃effeiαθkðM−1Þ

gM−1ðkÞ
; 0;

jkjðM−1Þ

gM−1ðkÞ
�

T
;

jψM−1
3k i ¼

�ðkx þ iαkyÞM−1ffiffiffi
2

p
gM−1ðjkjÞ

;
1ffiffiffi
2

p ;
t̃effffiffiffi

2
p

gM−1ðjkjÞ

�
T
; ðB6Þ

where gM−1ðjkjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t̃2eff þ jkj2M−2

p
, t̃eff ¼ teff=mM−1, and

θk ¼ arctanðky=kxÞ. The eigenstates of Hα0
K0

s
ðkÞ are

expressed as

jψN−1
1k i ¼

�
−

1ffiffiffi
2

p ;
ðkx − iα0kyÞN−1ffiffiffi

2
p

gN−1ðjkjÞ
;

t̃effffiffiffi
2

p
gN−1ðjkjÞ

�
T
;

jψN−1
2k i ¼

�
0;−

t̃effe−iα
0θkðN−1Þ

gN−1ðkÞ
;
jkjðN−1Þ

gN−1ðkÞ
�

T
;

jψN−1
3k i ¼

�
1ffiffiffi
2

p ;
ðkx − iα0kyÞN−1ffiffiffi

2
p

gN−1ðjkjÞ
;

t̃effffiffiffi
2

p
gN−1ðjkjÞ

�
T
: ðB7Þ

Given that ðkx � αkyÞM−1 can be rewritten as
jkjM−1ei�αθkðM−1Þ, it is straightforward to calculate the
Berry connections of the valence states and the conduction
states. For the states around the Ks point [Eq. (B6)], it turns
out that

AM−1
1θk

¼ ihψM−1
1k j∂θkψ

M−1
1k i ¼ −

αðM − 1Þjkj2M−2

2t̃2eff þ 2jkj2M−2 ; ðB8Þ

and AM−1
3θk

¼ AM−1
1θk

. For the states around the K0
s point, we

have

AN−1
1θk

¼ ihψN−1
1k j∂θkψ

N−1
1k i ¼ α0ðN − 1Þjkj2N−2

2t̃2eff þ 2jkj2N−2 ; ðB9Þ

and AN−1
3θk

¼ AN−1
1θk

. It is interesting to note that the valence
and conduction states jψ1ki and jψ3ki have the same Berry
connections; therefore, they have the same Berry phase by
virtue of the chiral symmetry of Eqs. (B2) and (B4). Taking
the limit t̃eff → 0, from Eqs. (B8) and (B9) it follows
that AM−1

1θk
¼ AM−1

3θk
→ −αðM − 1Þ=2 and AN−1

1θk
¼ AN−1

3θk
→

α0ðN − 1Þ=2. Therefore, around the Ks (K0
s) point, the sum

of the Berry fluxes of the conduction and the valence bands
equals −αðM − 1Þ [α0ðN − 1Þ]. Then the total Chern
number of the conduction and the valence bands equal
−αðM − 1Þ þ α0ðN − 1Þ. The Chern number of the two flat
bands (jψ2ki) must cancel the total Chern number of the
valence and conduction bands (jψ1ki and jψ3ki); it follows
that the total Chern number of the two flat bands equals
αðM − 1Þ − α0ðN − 1Þ for the K valley. The total Chern
number of the two flat bands of the K0 valley is just
opposite to that of the K valley; thus Eq. (8) has been
proved.

APPENDIX C: CALCULATING THE LOCAL
CHARGE CURRENT USING THE

CONTINUUM MODEL

The current density operator at a position r is
expressed as
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ĴðrÞ ¼ eρ̂ðrÞv̂; ðC1Þ

where ρ̂ðrÞ is the local density operator at r, and the
velocity operator v̂ satisfies the Schördinger equation
−iℏv̂ ¼ ½HðrÞ; r�. The Hamiltonian at r is given by
Eq. (2), with k ¼ −i∂r. Then it is straightforward to
calculate the velocity operator by performing the commu-
tator of HðrÞ and r. The expectation value of ĴðrÞ then
equals

hĴðrÞi ¼ e
X
sGk

hsG;kjρ̂ ρ̂ðrÞv̂jsG;ki; ðC2Þ

where ρ̂ ¼ P
nk jψnkihψnkjθðμ − ϵnkÞ is the density matrix

at zero temperature with the chemical potential μ, with
jψnki and ϵnk being the nth eigenstate and eigenenergy of
the Hamiltonian Eq. (2) at the k point in the moiré BZ.
jsG;ki is the plane-wave function, where G represents a
reciprocal lattice vector of the moiré cell, and s is the index
for the layer and sublattice degrees of freedom. To be more
explicit, in the plane-wave basis, ρ̂, ρðrÞ, and v̂ are
expressed as

hsG;kjρ̂js0G0;ki ¼
X
nk

CsG;nðkÞC�
s0G0;nðkÞθðμ − ϵnkÞ;

ðC3Þ

hsG;kjρ̂ðrÞjs0G0;ki ¼ 1

V
δss0e−iG·reiG

0·r; ðC4Þ

hsG;kjv̂js0G0;ki ¼ hsG;kj ∂Hk

ℏ∂k js0G0;ki; ðC5Þ

where CsG;nðkÞ is the plane-wave coefficient of the
eigenstate jψnki; i.e., jψnki ¼

P
sG CsG;nðkÞjsG;ki. V

is the total volume of the system, and Hk¼e−ik·rHeik·r,
where the Hamiltonian H is given by Eq. (2). Given the
current density distribution JðrÞ, the magnetic field BðrÞ
can be solved using Ampère’s law, ∇ ×BðrÞ ¼ μ0JðrÞ,
where μ0 is the magnetic permeability of the vacuum.
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