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The propagation of information in nonrelativistic quantum systems obeys a speed limit known as a Lieb-
Robinson bound. We derive a new Lieb-Robinson bound for systems with interactions that decay with
distance r as a power law, 1=rα. The bound implies an effective light cone tighter than all previous bounds.
Our approach is based on a technique for approximating the time evolution of a system, which was first
introduced as part of a quantum simulation algorithm by Haah et al., FOCS'18. To bound the error of the
approximation, we use a known Lieb-Robinson bound that is weaker than the bound we establish. This
result brings the analysis full circle, suggesting a deep connection between Lieb-Robinson bounds and
digital quantum simulation. In addition to the new Lieb-Robinson bound, our analysis also gives an error
bound for the Haah et al. quantum simulation algorithm when used to simulate power-law decaying
interactions. In particular, we show that the gate count of the algorithm scales with the system size better
than existing algorithms when α > 3D (where D is the number of dimensions).
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I. INTRODUCTION

Lieb-Robinson bounds limit the rate at which informa-
tion can propagate in systems that obey the laws of
nonrelativistic quantum mechanics [1–10]. These bounds
have found a plethora of applications [11–22], including
recent results on entanglement area laws [23–25], the
classical complexity of sampling bosons [26], and even
a quantum algorithm for digital quantum simulation [27].
Lieb and Robinson’s original proof applies only to short-

range interactions, i.e., those that act over a finite range or
decay at least exponentially in space. However, interactions
in many physical systems, such as trapped ions [28,29],
Rydberg atoms [30], ultracold atoms and molecules
[31,32], nitrogen-vacancy centers [33], and superconduct-
ing circuits [34], can decay with distance r as a power
law (1=rα) and, hence, lie outside the scope of the original

Lieb-Robinson bound. Thus, understanding the fundamen-
tal limit on the speed of information propagation in these
systems holds serious physical implications, including for
the applications mentioned above. Despite many efforts in
recent years [4–7], a tight Lieb-Robinson bound for such
long-range interactions remains elusive.
In this paper, we derive a new Lieb-Robinson bound for

systems with power-law decaying interactions in D dimen-
sions. While our bound is not known to be tight, it has four
main benefits compared to the best previous bound for such
systems [6]. (i) It is tighter, resulting in the best effective
light cone to date [Eq. (17)]. (ii) The bound applies at
all times, and not just asymptotically in the large-time
limit. (iii) The framework behind the proof is conceptually
simpler, with an easy-to-understand interpretation based on
physical intuition. (iv) Our approach is potentially appli-
cable to studying a wider variety of quantities, including
connected correlators [35,36] and higher-order correlators
(for instance, the out-of-time-ordered correlator [37,38] and
the full measurement statistics of boson sampling [26,39]),
as we discuss in Sec. VI.
In contrast to the previous long-range Lieb-Robinson

bounds [4–7], which all relied on the so-called Hastings-
Koma series [4], our approach is based on a generalization
of the framework Haah et al. (HHKL) [27] introduced as a
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building block for their quantum simulation algorithm. The
essence of their framework is a technique for decomposing
the time evolution of a system into evolutions of sub-
systems, with an error bounded by the Lieb-Robinson
bound for short-range interactions [1]. We extend the
HHKL framework to long-range interactions and to a more
general choice of subsystems. Remarkably, these modifi-
cations enable us to derive a tighter Lieb-Robinson bound
for long-range interactions than the one we use in the
analysis of the decomposition [5].
Additionally, we return to the original motivation of

the framework of Haah et al.: the digital simulation of
lattice-based quantum systems. We generalize the HHKL
algorithm to simulate systems with power-law decaying
interactions. The algorithm scales better as a function of
system size than previous algorithms when α > 3D, and
the speed-up becomes more dramatic as α is increased.
The structure of the paper is as follows. In Sec. II, we

state our main results and summarize the proof of the
new Lieb-Robinson bound. In Sec. III, we lay out the
precise mathematical framework for the proof and gen-
eralize the technique for decomposing time-evolution
unitaries [27] to power-law decaying interactions and to
more general choices of subsystems. After that, we present
two applications of the unitary decomposition in Secs. IV
and V, which can be read independently of each other.
Specifically, in Sec. IV, we use the unitary decomposition
to derive the improved Lieb-Robinson bound for long-
range interactions. In Sec. V, we analyze the performance
of the HHKL algorithm from Ref. [27] when applied to
simulating long-range interacting systems. We conclude in
Sec. VI with an outlook for the future.

II. SUMMARY OF RESULTS

In this section, we summarize our main results for the
case of a one-dimensional lattice. Without loss of general-
ity, we assume that the distance between neighboring sites
is one. The unitary decomposition technique in Sec. III is
generalized from a similar result for short-range inter-
actions in Ref. [27]. We use it to approximate the evolution
of a long-range interacting system ABC by three sequential
evolutions of its subsystems AB, B, and BC (see Fig. 1). We
assume that the interaction strength between any two sites
in the system is bounded by 1=rα, with r being the distance
between the sites and α a non-negative constant. This
restriction on the Hamiltonian norm also sets the time unit
for the evolution of the system.
There are two sources of error in the approximation: one

due to the truncation of the Hamiltonian of the system ABC
(we ignore the interactions that connect A and C), and the
other due to the Hamiltonians of the subsystems AB;B, and
BC not commuting with each other. For a fixed value of α,
if the distance l between the two regions A and C [see
Fig. 1(a)] is large enough, namely l ≫ α, the two error
sources have the same scaling with l. To estimate the error,

for example, from the truncation, we sum over interactions
connecting sites in A and C, and obtain a total error of
Oð1=lα−2Þ (in one dimension) for the approximation in the
unitary decomposition (as shown in the Appendix A 1).
In Sec. IV, we use the unitary decomposition to prove a

Lieb-Robinson bound for long-range interactions that is
stronger than previous bounds, including the one we use
in the proof of the unitary decomposition. The subject of
such a bound is usually the norm of the commutator
k½OXðTÞ; OY �k between an operator OXðTÞ ¼ U†

TOXUT
evolved under a long-range Hamiltonian for time T and
another operator OY supported on a set Y that is at least a
distance R away from the support X ofOX. Here, we briefly
explain the essence of the proof using a one-dimensional
system with fixed α and large enough R; T ≫ α as an
example. The strategy is to use the aforementioned unitary
decomposition to construct another unitary Ũ such that
(i) Ũ†OXŨ approximates U†

TOXUT and (ii) Ũ†OXŨ com-
mutes with OY , so the commutator norm k½OXðTÞ; OY �k
will be approximately zero, up to the error of our approxi-
mation. For fixed α, we consider M ∝ T equal time slices
and use the unitary decomposition to extract the relevant
parts from the evolution UT in each time slice. Each time
we decompose a unitary, we choose the subsystems A, B, C
so that only A overlaps with the supports of the unitaries
from the previous time slices (see Fig. 2), and therefore the
evolutions of B and BC can be commuted through OX to
cancel their counterparts from U†

T [Figs. 2(b) and 2(d)]:

ðUABCÞ†OXUABC

≈ ðUABÞ†UBðUBCÞ†OXUBCðUBÞ†UAB

¼ ðUABÞ†OXUAB: ð1Þ

FIG. 1. A demonstration of the unitary decomposition in
Lemma 1. (a) The three disjoint regions A, B, C in D ¼ 1 and
D ¼ 2 dimensions with A convex and compact. (b) Lemma 1
allows the evolution of the whole system to be approximated by a
series of three evolutions of subsystems. The horizontal axis lists
the sites in each of the three sets A, B, C (not necessarily
according to their geometrical arrangement, particularly in higher
dimensions). Each box is an evolution for time t of a Hamiltonian
supported on the sites the box covers. These evolutions can be
forward (white fill) or backward (orange fill, with dagger) in time.
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The remaining evolutions that contribute to the construc-
tion of Ũ are supported entirely on a ball of radius ∼Ml
around X, where l is the size of B and is chosen to be the
same in all time slices. By choosing l ∼ R=M andMl < R
so that Y lies outside this ball, the commutator norm
k½OXðTÞ; OY �k is at most the number of time slices

multiplied byOð1=lα−2Þ, which is the decomposition error
per time slice. Therefore, we obtain a Lieb-Robinson bound
for long-range interactions in one dimension:

k½OXðTÞ; OY �k ≤ clr;α
T

lα−2 ¼ clr;α
Tα−1

Rα−2 ; ð2Þ

where clr;α is a constant that may depend on α, but not on
T, R. Setting the commutator norm to a small constant
yields the causal region inside the effective light cone:
T ≳ Rðα−2Þ=ðα−1Þ. For comparison, the previous best Lieb-
Robinson bound produces a light cone T ≳ Rðα−2Þ=α [6].
Our bound is therefore tighter in the asymptotic limit of
large R and large T, while its proof is substantially more
intuitive than in Ref. [6]. A more careful analysis (Sec. IV)
shows that our light cone also becomes linear in the limit
α → ∞, where the power-law decaying interactions are
effectively short-range. Moreover, our bound works for
arbitrary time T, while the bound in Ref. [6] applies only in
the long-time limit. We provide a more rigorous treatment
as well as a bound for D-dimensional systems in Sec. IV.
Section V then discusses the original motivation for the

unitary decomposition—digital quantum simulation—
in the case of long-range interactions that decay as a
power law. For α > 2D, our analysis shows that the
HHKL algorithm [27] requires only O(TnðTn=εÞ2D=α−D ×
logðTn=εÞ) two-qubit gates to simulate the evolution of a
system of n sites arranged in aD-dimensional lattice for time
T with an error at most ε. For large α, the gate count of the
algorithm scales with n significantly better than other
algorithms.

III. FRAMEWORK

In this section, we present the technique for approxi-
mating the time evolution of a system by evolutions of
subsystems. We later use this technique to derive a stronger
Lieb-Robinson bound (Sec. IV) and an improved quantum
simulation algorithm (Sec. V) for systems with long-range
interactions.
We consider n sites arranged in a D-dimensional lattice

Λ ⊂ ND of size L ¼ Oðn1=DÞ and D ≥ 1. Recall that,
without loss of generality, we assume the spacing between
neighboring lattice sites is one. This assumption sets the
unit for distances between sites in the lattice. We shall
embed the lattice Λ into the real space RD. The intersection
X ∩ Λ therefore contains every lattice site in a subset
X ⊂ RD. The system evolves under a (possibly) time-
dependent Hamiltonian HΛðtÞ ¼

P⃗
{;|⃗h⃗{;|⃗ðtÞ, with h⃗{;|⃗ðtÞ

being the interaction between two sites ⃗{; |⃗ ∈ Λ. Without
ambiguity, we may suppress the time dependence in the
Hamiltonians. We say a system has power-law decaying
interactions if kh⃗{;|⃗k ≤ 1=k⃗{ − |⃗kα, where k · k denotes
both the matrix and the vector 2-norms, for some non-
negative constant α and for all ⃗{ ≠ |⃗. [Note that h⃗{;⃗{

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 2. A step-by-step construction of the unitary Ũ such that
Ũ†OXŨ ≈U†

TOXUT . Each box represents an evolution of the
subsystem covered by the width of the box for a fixed time. The
colors of the boxes follow the same convention as in Fig. 1. In
panel (a), the unitary UT is written as a product of evolutions of
the same system in M ¼ 5 consecutive time slices. (b) The
evolution in the last (bottom) time slice is decomposed using the
method in Fig. 1, with the choice of subsystems A, B, C such that
X is contained in A. The evolutions of the subsystems B and BC
(hatched boxes) therefore commute with OX and cancel out with
their counterparts from U†

T , resulting in (c). In panel (d), we
repeat the procedure for the second-from-bottom time slice, but
note the different choice of A, B, C from (b). This difference is
necessary to ensure that the evolutions of B and BC commute
with the evolution(s) from the previously decomposed time
slice(s). We then commute them through OX again and remove
them from the construction of Ũ in (e). Repeatedly applying the
unitary decomposition for the other time slices, we obtain
the unitary Ũ in (f), which is supported on a smaller region
than the original unitary UT. With a proper choice of the size l of
B, we can make sure that Y lies outside this region, and, therefore,
Ũ commutes with OY .

LOCALITY AND DIGITAL QUANTUM SIMULATION … PHYS. REV. X 9, 031006 (2019)

031006-3



may have arbitrarily large norm.] For readability, we
denote by HX ¼ P⃗

{;|⃗∈X h⃗{;|⃗ the terms of HΛ that are
supported entirely on a subset X ∩ Λ, and by UX

t1;t2 ≡
T expð−i R t2

t1 HXdtÞ the evolution unitary under HX from
time t1 to t2, where T is the time-ordering operator. We also
denote by distðX; YÞ the minimum distance between any
two sites in X and Y, by Xc ¼ RDnX the complement of X
in real space, by ∂X the boundary of a compact subset X,
by ΦðXÞ the area of ∂X, and by XY the union X ∪ Y. In
the following, we keep track of how errors scale with
time, distance, and α, while treating the dimension D as a
constant.
We now describe how to approximate the evolution of

the system to arbitrary precision by a series of evolutions of
subsystems using a technique we generalize from Ref. [27].
Lemma 1.—Let A;B;C ⊂ RD be three distinct regions

with nonempty interiors such that A ∪ B ∪ C ¼ RD. Let A
be both compact (closed and bounded) and convex. We
have

kUABC
0;t −UAB

0;t ðUB
0;tÞ†UBC

0;t k ≤ c0ðevt − 1ÞΦðAÞξαðlÞ;

with

ξαðlÞ ¼
�

16

1 − γ

�
α 1

lα−D−1 þ e−γl; ð3Þ

for all α > Dþ 1. Here, v; c0 ∈ Rþ are positive constants,
γ is a constant that can be chosen arbitrarily in the range
(0,1), and l ¼ distðA;CÞ is the distance between sets A
and C.
We emphasize that this lemma applies to arbitrary sets A

that are both convex and compact. The sets we focus on
include D balls and hyperrectangles in RD. The former
geometry is relevant in the proof of our new Lieb-Robinson
bound, the latter in the analysis of the HHKL algorithm for
long-range interactions.
Lemma 1 allows us to approximate the evolution of a

long-range interacting system ABC by that of subsystems
AB;B; BC (Fig. 1). The features of the function ξαðlÞ are
better understood by considering two limiting cases of
physical interest. First, when α is finite and l (the distance
between A and C) is large compared to α, the function
ξαðlÞ behaves like

O
�

1

lα−D−1

�
; ð4Þ

which decays only polynomially with l. In the second
limit, as α → ∞ for a large but finite l, we recover from
ξαðlÞ the exponentially decaying error bound e−γl—a
trademark of finite-range interactions [1,27].
The proof of Lemma 1, while more general, bears close

resemblance to the corresponding analysis for short-range
interactions in Ref. [27]. However, there are two key

differences. First, in order to make the approximation in
Lemma 1, some interactions between sites separated by a
distance greater than l are truncated from the Hamiltonian.
While such terms vanish in a system with short-range
interactions, here they contribute O(ΦðAÞ=lα−D−1) to the
error of the approximation. In addition, instead of the
original Lieb-Robinson bound [1] which applies only to
systems with short-range interactions, we use the gener-
alization of the bound for long-range interactions by Gong
et al. [5]. The result is an approximation error that decays
with l polynomially as O(ΦðAÞ=lα−D−1), in addition to
the exponentially decaying error that exists already for
short-range interactions. Nevertheless, the error can always
be made arbitrarily small by choosing l to be large enough.
In Sec. III A, we present the proof of Lemma 1. After

that, we demonstrate the significance of Lemma 1 with two
applications: a stronger Lieb-Robinson bound for long-
range interacting systems (Sec. IV) and an improved error
bound for simulating these systems (Sec. V). Both sections
are self-contained, and readers may elect to focus on either
of them.

A. Error bound on the unitary decomposition

Here, we outline the proof of Lemma 1. Similar to
Ref. [27], we begin with an identity:

UABC
0;t ¼ UAB

0;t U
C
0;tðUC

0;tÞ†ðUAB
0;t Þ†UABC

0;t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Wt

: ð5Þ

Our aim is to approximate Wt by ðUC
0;tÞ†ðUB

0;tÞ†UBC
0;t , from

which Lemma 1 will follow. For that, we look at the
generator of Wt [27], i.e., a Hamiltonian Gt, such that

dWt

dt
¼ −iGtWt; ð6Þ

for all time. Exact differentiation of Wt yields [40,41]

Gt ¼ ðUC
0;tÞ†ðUAB

0;t Þ†ðHABC −HAB −HC|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼HA∶CþHB∶C

ÞUAB
0;t U

C
0;t ð7Þ

¼ ðUC
0;tÞ†ðUAB

0;t Þ†HB∶CUAB
0;t U

C
0;t þ δtrunc ð8Þ

¼ ðUC
0;tÞ†ðUB

0;tÞ†HB∶CUB
0;tU

C
0;t þ δoverlap þ δtrunc; ð9Þ

where HX∶Y ¼ P
i∈X;j∈Y hijðtÞ denotes the sum of terms

supported across disjoint sets X and Y, and δtrunc, δoverlap are
error terms we now define and evaluate. Note that the first
term in Eq. (9) is the generator of ðUC

0;tÞ†ðUB
0;tÞ†UBC

0;t —the
unitary with which we aim to approximate Wt.
In contrast to the approximation for short-range interact-

ing systems in Ref. [27], there are two sources of error in
Eq. (9). The first error term δtrunc arises after we discard
HA∶C from Eq. (7). For the short-range interactions in
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Ref. [27], this error vanishes when the distance l between
A andC is larger than the interaction range. However, in our
case, there is a nontrivial truncation error associated with
ignoring long-range interactions between A and C:

kδtrunck ¼ kHA∶Ck ¼ ctr2α
ΦðAÞ
lα−D−1 ; ð10Þ

for α > Dþ 1, where ctr is a constant [Eq. (A5)], l ¼
distðA;CÞ is the distance between A and C. The factor of
1=lα in the bound comes from the requirement that the two-
body interactions decay as a power law 1=rα, while the term
lD is due to the sum over all sites in the D-dimensional set
C. Another factor of lΦðAÞ arises after summing over the
volume of A, which we assume to be a compact and convex
set. The detailed evaluation of the norm is presented in
Appendix A 1.
The other error, which we define to be δoverlap, is the

result of the approximation used between Eqs. (8) and (9).
In the former equation, the operator evolves under
HAB þHC, whereas in the latter, it evolves under the
reduced Hamiltonian HB þHC, thus incurring the error

kδoverlapk ¼ kðUAB
0;t Þ†HB∶CUAB

0;t − ðUB
0;tÞ†HB∶CUB

0;tk: ð11Þ

To understand why kδoverlapk is small, recall that HB∶C is

the sum of terms hb⃗;c⃗ that are supported on two sites b⃗ ∈ B
and c⃗ ∈ C. Since the strengths of such terms decay as 1=rα

(with r the distance between the sites b⃗ and c⃗), the main
contribution toHB∶C—and thus to δoverlap—comes from the

terms where b⃗ and c⃗ are spatially close to each other. But
since the sets A, C are separated by a large distance l, if the
site b⃗ is close to C, then it must be far from A. Thus,
the evolution of hb⃗;c⃗ for a short time under HAB can be
well approximated by evolution under HB alone. In
Appendix A 2, we make this intuition rigorous using
the generalization of the Lieb-Robinson bound by
Gong et al. [5] to systems with long-range interactions.
In the end, we obtain the following bound on δoverlap:

kδoverlapk ≤ covðevt − 1ÞΦðAÞ
� ð 16

1−γÞα
lα−D−1 þ

1

eγl

�
; ð12Þ

where cov is a constant [Eq. (A24)] and γ ∈ ð0; 1Þ is a free
parameter. The bound has contributions from two compet-
ing terms: one that decays polynomially with l and another
that decays exponentially. The polynomially decaying term
is dominant for fixed α and large l, whereas the exponen-
tially decaying term prevails as α → ∞ for fixed l. The
errors δtrunc and δoverlap in approximating the generator
combine to give an overall error in approximating Wt with
ðUC

0;tÞ†ðUB
0;tÞ†UBC

0;t (see Appendix B). From this, we obtain
the error bound in Lemma 1, with c0 ¼ maxfctr; covg=v.

Before discussing applications of Lemma 1, we
pause here to note that the Lieb-Robinson bound in
Gong et al. [5] used in the above analysis is not the
tightest-known bound for long-range interactions [6]. Our
use of this bound, however, does not lead to a suboptimal
error bound in Lemma 1. For finite α, the error bound is
dominated by the polynomially decaying term 1=lα−D−1,
which arises from the truncation error δtrunc rather than
δoverlap. Therefore, this error term would not benefit from a
tighter Lieb-Robinson bound. In the limit α → ∞, on the
other hand, we shall see later that the lemma already
reproduces the short-range Lieb-Robinson bound, which is
optimal up to a constant factor. Thus, we expect that using
stronger Lieb-Robinson bounds would produce no signifi-
cant improvement for the error bound in Lemma 1.

IV. STRONGER LIEB-ROBINSON BOUND

In this section, we use Lemma 1 to derive a stronger
Lieb-Robinson bound for long-range interactions. The first
generalization of the Lieb-Robinson bound to power-law
decaying interactions was given by Hastings and Koma [4].
However, their bound diverges in the limit α → ∞, where
the power-law decaying interactions are effectively short-
range. Later, Gong et al. [5] derived a different bound that,
in this limit, does indeed converge to the Lieb-Robinson
bound for short-range interactions. While we use this
bound in Sec. III to prove Lemma 1, we will also show
that by using this lemma we can in turn derive a Lieb-
Robinson bound for long-range interactions that is stronger
than the one in Gong et al. In fact, our bound produces
a tighter effective light cone than even the strongest
Lieb-Robinson bound for long-range interactions known
previously [6].
Recall that the subject of a Lieb-Robinson bound is the

commutator norm

CðT; RÞ≡ k½ðUΛ
0;TÞ†OXUΛ

0;T ; OY �k; ð13Þ

whereOX,OY are two operators supported, respectively, on
two sets X, Y geometrically separated by a distance R, and
UΛ

0;T is the time-evolution unitary of the full lattice Λ under
a power-law decaying Hamiltonian, as defined above.
To compare different bounds, we analyze their effective

light cones, which, up to constant prefactors, predict the
minimum time it takes for the correlator CðT; RÞ to reach a
certain value. For example, the original Lieb-Robinson
bound [1] produces a linear light cone T ≳ R for short-
range interactions. For long-range interactions, Hastings
and Koma [4] first showed that CðT; RÞ ≤ cevT=Rα for
some (α-dependent) constants c, v. By setting CðT; RÞ
equal to a constant, the bound gives an effective light cone
T ≳ logR in the limit of large T and R. Gong et al. [5] later
achieved a tighter light cone that is linear for short distances
and becomes logarithmic only for large R. Shortly after,
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Foss-Feig et al. [6] derived a bound with a polynomial light
cone:

T ≳ Rðα−2DÞ=ðα−Dþ1Þ: ð14Þ
Equation (14) was the tightest light cone known previously.
In the remainder of this section, we use Lemma 1 to

derive a Lieb-Robinson bound for long-range interactions
that produces an effective light cone tighter than the one in
Ref. [6], while also using a much more intuitive approach.
In addition, our bound works for all times, unlike the bound
in Ref. [6], which applies only in the long-time limit.
Theorem 1 (Lieb-Robinson bound for long-range inter-

actions).—Suppose OX is supported on a fixed subset X.
For α > 2D, we have

CðT; RÞ ≤
�
clreαTRD−1ξαðRαvTÞ if vT ≥ α

c̃lrðevT − 1ÞξαðRÞ if vT < α:
ð15Þ

Here R ¼ distðX; YÞ is the distance between the supports of
OX andOY , clr; c̃lr; v are constants that may depend only on
D (defined in Appendix C), and ξα is given by Eq. (3).
Before we prove Theorem 1, let us analyze the features

of the bound. Although the general bound in Eq. (15) looks
complicated, it can be greatly simplified in some limits
of interest. For example, for finite α, in the limit of large
vT > α and large R such that R=ðvTÞ ≫ α, the term
algebraically decaying with R=ðvTÞ in ξα½Rα=ðvTÞ� domi-
nates the exponentially decaying one [see also Eqs. (3) and
(C16)]. Therefore, the Lieb-Robinson bound in this limit
takes the form

CðT; RÞ ≤ clr;α
Tα−D

Rα−2D ; ð16Þ

where clr;α is finite and may depend on α [Eq. (C18)]. We
can immediately deduce the effective light cone given by
our bound for a finite α:

T ≳ Rðα−2DÞ=ðα−DÞ; ð17Þ

which is tighter than Eq. (14) (as given by Ref. [6]). In
particular, for α close to 2D, the exponent in Eq. (17) can be
almost twice that of Ref. [6] (the larger the exponent, the
tighter the light cone).
On the other hand, in the limit α → ∞, vT is finite and

therefore always less than α. Hence our bound converges to
the short-range bound CðT; RÞ ≤ 2c̃lrevT−γR. We note that
in this limit, the exponent of the light cone in Eq. (17) also
converges to one, which corresponds to a linear light cone,
at a linear convergence rate [see Eq. (C20) for details].
These behaviors are naturally expected since a power-law
decaying interaction with very large α is essentially a short-
range interaction.
As mentioned earlier, we derive Theorem 1 by con-

structing a unitary Ũ such that (i) Ũ†OXŨ approximates

ðUΛ
0;TÞ†OXUΛ

0;T and (ii) Ũ commutes withOY . We note that
Ũ does not necessarily approximate UΛ

0;T . It then follows
from the two requirements that the commutator norm
CðT; RÞ, defined in Eq. (13), is upper bounded by the
error of the approximation in (i).
We also note that the assumption on the norms of

the interactions being bounded excludes several physical
systems whose local dimensions are unbounded, e.g.,
bosons (see Refs. [42,43] for discussions of information
propagation and Lieb-Robinson bounds in these systems).

FIG. 3. A construction of the unitary Ũ which results in an
improved Lieb-Robinson bound for long-range interactions in
Theorem 1. The horizontal axes list the sites in each subset. Here
Br denotes a D ball of radius r centered on X, and Sr ¼ BrþlnBr
aD-dimensional shell of inner radius r and outer radius rþ l, for
some parameter l to be chosen later. (See Fig. 7 in Appendix C
for an illustration of the sets.) The evolution unitaries are
represented by boxes with the same color convention as in Fig. 1.
We first divide the interval ½0; T� into M ¼ 5 equal time slices
(upper panel). Note that because we consider OXðTÞ in the
Heisenberg picture, the vertical axis is therefore backward in time
so that the bottom time slice will correspond to the first unitary
applied on OX. The evolution during each time slice is approxi-
mated by three evolutions of subsystems using Lemma 1 (lower
panel). The bottom two unitaries have their supports outside X
and therefore commute with OX. They cancel with their Hermi-
tian conjugates from Ũ† in Ũ†OXŨ. Repeating the argument for
higher time slices, we can eliminate some unitaries (hatched
boxes) from the construction of Ũ. Finally, we are left with Ũ
consisting only of unitaries (white boxes) that are supported
entirely on the D ball Br0þ5l of radius r0 þ 5l. Therefore, Ũ
commutes withOY , whose support lies in the complement Bc

r0þ5l

of Br0þ5l.
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However, our Lieb-Robinson bound may still apply if the
dynamics of the systems can be restricted to local Hilbert
subspaces which are finite dimensional. Examples of such
situations include trapped ions in the perturbative regime
[29] and noninteracting bosons [26].
To construct Ũ, we use Lemma 1 to decompose the

unitary UΛ
0;T into unitaries supported on subsystems, each

of which either contains X or is disjoint from X. The
unitaries of the latter type can be commuted through OX to
cancel out with their Hermitian conjugates from ðUΛ

0;TÞ†.
The remaining unitaries form Ũ, which is supported on a
smaller subset than UΛ

0;T . In particular, with a suitable
decomposition, the support of Ũ can be made to not contain
Y, and, therefore, Ũ commutes with OY . The step-by-step
construction of the unitary Ũ has also been briefly
described earlier in Sec. II and in Fig. 2, using the specific
case of a one-dimensional system with a finite α. This
construction immediately generalizes to higher dimensions
and to arbitrary α, including the α → ∞ limit. The con-
struction of Ũ for arbitrary D is summarized in Fig. 3.
We note that there is more than one way to decompose

the unitary UΛ
0;T in the construction of Ũ. Different

constructions of Ũ result in different approximation errors,
each of which provides a valid bound on the commutator
norm CðT; RÞ. Therefore, the goal is to find a construction
of Ũ with the least approximation error. In Appendix C, we
present the construction that results in the bound in
Theorem 1. Although we have evidence suggesting that
the construction is optimal, we do not rule out the existence
of a better construction.

V. BETTER PERFORMANCE OF
DIGITAL SIMULATION

In this section, we generalize the algorithm in Ref. [27]
to simulating long-range interactions. In general, the aim of
quantum simulation algorithms is to approximate the time
evolution unitary UΛ

0;T using the fewest number of primi-
tive, e.g., two-qubit, quantum gates. Here, we show that in
addition to the stronger Lieb-Robinson bound presented in
the previous section, Lemma 1 can also be used to perform
error analysis for the HHKL algorithm (Ref. [27]) in the
case of interactions that decay as a power law, therefore
improving the theoretical gate count of digital quantum
simulation for such interactions.
Using the best-known rigorous error bounds, simulations

based on the first-order Suzuki-Trotter product formula
[44] use OðT2n6=εÞ gates to simulate the evolution UΛ

0;T of
a time-dependent Hamiltonian on n sites up to a fixed
error ε. (In this section, the bigO is with respect to n, T, and
1=ε.) The generalized (2k)th-order product formula uses
O(n2ðTn2Þ1þ1=ð2kÞ=ε1=2k) quantum gates. While this scal-
ing asymptotically approachesOðTn4Þ as k → ∞, it suffers
from an exponential prefactor of 52k [45]. More advanced

algorithms, e.g., those using quantum signal processing
(QSP) [46] or linear combinations of unitaries (LCU) [47],
can reduce the gate complexity to O(Tn3 logðTn=εÞ). Our
error analysis below (Lemma 2) reveals that, when α is
large, the number of quantum gates required by the HHKL
algorithm to simulate long-range interactions scales better
as a function of the system size than previous algorithms.
The HHKL algorithm itself uses either the QSP algorithm

or the LCU algorithm as a subroutine to simulate the
dynamics of a subset of the sites for one time step.
Although the QSP algorithm does not handle time-
dependent Hamiltonians, LCU can be applied to time-
dependent Hamiltonians. Our results assume that (i) the
local terms h⃗{;⃗{ðtÞ have bounded norms for all ⃗{ ∈ Λ, and
(ii) the Hamiltonian HΛðtÞ varies slowly and smoothly with
time so that h0jXj ≡maxtk∂HX

t =∂tk exists and scales at most
polynomially with jXj for all subsets X ⊂ Λ. These restric-
tions allow portions of the system to be faithfully simulated
using LCU (or QSP, for a time-independent Hamiltonian).

A. HHKL-type algorithm for simulating
long-range interactions

Although Ref. [27] focused on simulating short-range
interactions, their (HHKL) algorithm can also be used to
simulate long-range interactions. Here, we analyze the
performance of their algorithm in simulating such systems.
In the HHKL algorithm [27], the evolution of the whole
system is decomposed, using Lemma 1, into elementary
unitaries, each evolving a subsystem of at most ð2lÞD sites,
where l is again a length scale to be chosen later. For a
fixed time t, the algorithm simply simulates each of these
elementary unitaries using one of the existing quantum
simulation algorithms. In particular, we shall use LCU or
(for a time-independent Hamiltonian) QSP due to their
logarithmic dependence on the accuracy.
In this section, we assume α is finite and analyze the gate

count in the limit of large system size n ≫ α. As a
consequence, the block size l can also be taken to be
much larger than α. For simplicity, we will not keep track of
constants that may depend on α. Recall that in this limit, the
error bound in Lemma 1 is at most

O
�

ΦðAÞ
lα−D−1

�
; ð18Þ

where we have assumed t ¼ Oð1Þ. Using Lemma 1, we
obtain the error bound for the first step of the HHKL
algorithm, which can be summarized by the following
lemma.
Lemma 2 (HHKL decomposition).—There exists a circuit

that approximatesUΛ
0;T up to errorOðTn=lα−DÞ, where l ≤

n1=D=2 is a free parameter. The circuit has depth at most
3DT and consists of OðTn=lDÞ elementary unitaries, each
of which evolves a subsystem supported on at most ð2lÞD
sites for time t ¼ Oð1Þ.
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Proof.—We now demonstrate the proof by constructing
the circuit for a one-dimensional lattice (Fig. 4). A genera-
lization of the proof to arbitrary dimension follows the
same lines and is presented in Appendix D.
First, we consider M ∝ T equal time intervals 0 ¼ t0 <

t1 < … < tM ¼ T, such that tjþ1 − tj ¼ t ¼ T=M is a
constant for all j ¼ 0;…;M − 1. The simulation of UΛ

0;T

then naturally decomposes into M consecutive simulations
of UΛ

tj;tjþ1
. We then divide the system into m consecutive

disjoint blocks, each of size l ¼ n=m (Fig. 4). Denote by
Lkðk ¼ 1;…; mÞ the set of sites in the kth block. Using
Lemma 1, we can approximate

UΛ
0;t ≈ UL1∪L2

0;t ðUL2

0;tÞ†UL2∪L3∪���∪Lm
0;t : ð19Þ

This approximation can be visualized using the top two
panels of Fig. 4. Repeated application of Lemma 1 yields
the desired circuit (bottom panel of Fig. 4), with each
elementary unitary evolving at most 2l sites for time t.

To obtain the error estimate in Lemma 2, we count the
number of times Lemma 1 is used in our approximation.
In each of the M time slices, we use the lemma OðmÞ ¼
Oðn=lÞ times, each of which contributes an error of
Oð1=lα−2Þ [see Eq. (18) with Φ ¼ Oð1Þ in one dimen-
sion]. Therefore, with M ∝ T, the error of using the
constructed circuit to simulate UΛ

0;T is

O
�
M

n
l

1

lα−2

�
¼ O

�
Tn
lα−1

�
; ð20Þ

as given in Lemma 2. ▪
The error bound for the approximation in Lemma 2 leads

to an upper bound on the gate complexity of digital
quantum simulation, as stated in the following theorem.
Theorem 2.—For α > 2D, there exists a quantum algo-

rithm for simulating UΛ
0;T up to error at most ε with gate

complexity

GD ¼ O
�
Tn

�
Tn
ε

�
2D=ðα−DÞ

log
Tn
ε

�
: ð21Þ

This gate complexity can be achieved by applying the
HHKL algorithm [27] for long-range interactions, as
described above. First, the evolution of the whole system
UΛ

0;T is approximated byOðTn=lDÞ elementary unitaries as
provided in Lemma 2. Each of these elementary unitaries is
then simulated using one of the existing algorithms, e.g.,
LCU, with error that we require to be at most εlD=Tn. If
the Hamiltonian is time independent, one can also use the
QSP algorithm to simulate the elementary unitaries.
In the decomposition of the evolution, the accuracy of

the approximation can be improved by increasing the block
size l. By Lemma 2, to achieve an overall error at most ε,
we need

l ∝
�
Tn
ε

�
1=ðα−DÞ

: ð22Þ

When simulating the elementary unitaries, since each is
an evolution of at most ð2lÞD sites for time t ¼ Oð1Þ,
the LCU algorithm with error at most εlD=Tn uses
O(l3D logðTn=ε h0lDÞ) two-qubit gates [45]. Recall that
we assume h0lD scales at most polynomially with lD.
With the block size l from Eq. (22), we find the total
gate complexity of simulating the OðTn=lDÞ elementary
unitaries is

GD ¼ O
�
Tn
lD l3D log

�
Tn
ε
h0lD

��
ð23Þ

¼ O
�
Tn

�
Tn
ε

�
2D=ðα−DÞ

log
Tn
ε

�
: ð24Þ

The scaling of GD as a function of the system size n is
significantly better than existing algorithms for large α.
In particular, at T ¼ n, this HHKL algorithm for long-

(a)

(b)

(c)

(d)

FIG. 4. A demonstration of the HHKL decomposition [27] of
the evolution of a fixed time interval for a system with m ¼ 10
blocks, each consisting of l sites. As before, each box represents
a unitary (white) or its Hermitian conjugate (orange) supported on
the covered sites. Using Lemma 1, the HHKL decomposition
approximates the evolution of the whole system (a) by three
unitaries supported on subsystems (b). By applying Lemma 1
repeatedly [(c),(d)], the evolution of the whole system is
decomposed into a series of evolutions of subsystems, each of
size at most 2l.
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range interactions requires onlyOðn2þ4D=ðα−DÞ lognÞ gates,
while algorithms such as QSP or LCU use Oðn4 log nÞ
gates or more. Therefore, the algorithm provides an
improvement for α > 3D. However, the gate complexity
of the algorithm depends polynomially on 1=ε, in contrast
to the logarithmic dependence achieved by QSP and LCU,
and by the HHKL algorithm for systems with short-range
interactions. While this polyð1=εÞ scaling is undesirable, in
practice, the total error of the simulation is often set to a
fixed constant (for example, see Ref. [48]) and effectively
the dependence of ε only contributes a prefactor to the gate
complexity of the algorithm.
As an example, in Fig. 5, we estimate the actual gate

count of the HHKL algorithm in simulating a Heisenberg
chain [Eq. (25)] and compare it with the gate count of the
QSP algorithm (up to the same error tolerance). Because of
the polyð1=εÞ overhead, the HHKL algorithm based on
Lieb-Robinson bounds uses more quantum gates for
simulating small systems, but eventually outperforms the
QSP algorithm when the system size n is large.
It is also worth noting that, in the limit α → ∞, the gate

complexity becomes O(Tn log ðTn=εÞ), which coincides
(up to a polylogarithmic factor) with the result for short-
range interactions in Ref. [27]. This behavior is expected,
given that a power-law decaying interaction with α → ∞ is
essentially a nearest-neighbor interaction. However, we
caution readers that at the beginning of this section, we
have assumed that α is finite so that n ≫ α. Hence, the gate
count in Eq. (24) is technically not valid in the limit
α → ∞. Nevertheless, the error bound in Lemma 1

reproduces the estimate for short-range interactions in
Ref. [27], and therefore, repeating the argument of this
section in the limit α → ∞ should also reproduce the gate
count for simulating short-range interactions in Ref. [27].

B. Numerical evidence of potential improvement

Up to now, we have seen that Lieb-Robinson bounds can
improve the error bounds of quantum simulation algo-
rithms, as demonstrated by the HHKL algorithm. We now
provide numerical evidence hinting at the possibility of
further improving the error bounds.
Although the HHKL algorithm outperforms previous

ones when α > 3D, it remains an open question whether
there is a faster algorithm for simulating long-range
interactions. We also note that the gate complexities are
only theoretical upper bounds, and these algorithms may
actually perform better in practice [49].
As an example, we compute the empirical gate count

of a Suzuki-Trotter product formula simulation of a one-
dimensional long-range interacting Heisenberg model,

H ¼
Xn−1
i¼1

Xn
j¼iþ1

1

ji − jj4 σ⃗i · σ⃗j þ
Xn
i¼1

Biσ
z
i ; ð25Þ

where Bj ∈ ½−1; 1� are chosen uniformly at random and
σ⃗j ¼ ðσxj ; σyj ; σzjÞ denotes the vector of Pauli matrices on the
qubit j. Specifically, we consider a simulation using the
fourth-order product formula (PF4). We use a classical
simulation to determine the algorithm’s performance for
systems of size n ¼ 4 to n ¼ 12 for time T ¼ n, and
extrapolate to larger systems. For each n, we search for the
minimum number of gates for which the simulation error is
at most ε ¼ 10−3. We plot in Appendix F this empirical
gate count, which appears to scale only asOðn3.64Þwith the
system size n. We list in Table I the gate counts of several
popular algorithms for comparison. The theoretical gate
complexity of PF4 is Oðn5.75Þ [44], while the QSP and

FIG. 5. The gate count for simulating the dynamics of a one-
dimensional Heisenberg chain [Eq. (25)] of length n, with α ¼ 4,
T ¼ n, and ε ¼ 10−3. We compare the gate count of the HHKL
algorithm (orange square) to the QSP algorithm (blue circle).
Note that the HHKL algorithm based on Lieb-Robinson bounds
also uses the QSP algorithm as a subroutine. We obtain the
scatter points using the approach described in Appendix E and fit
them to a power-law model (solid lines). The asymptotic scalings
of the gate count obtained from the power-law fits (n3.29 for
HHKL, n4.00 for QSP) agree well with our theoretical predictions
(see Table I).

TABLE I. A comparison between the gate complexity of several
quantum simulation algorithms for simulating one-dimensional
power-law systems at T ¼ n and α ¼ 4. Our analysis shows that
the HHKL algorithm performs at least as well as the empirical gate
count of PF4, while having a similar polyð1=εÞ scaling with the
error ε. It is not known whether the empirical gate count of PF4
can scale with ε better than suggested by the best proven bound
(third row).

Algorithm Scaling with n ¼ T Scaling with ε

Empirical PF4 Oðn3.64Þ � � �
Our HHKL bound Oðn3.33 log nÞ Oðlogð1=εÞ=ε0.67)
PF4 bound [45] Oðn5.75Þ Oð1=ε0.25Þ
QSP bound [46] Oðn4 log nÞ O(logð1=εÞ)
LCU bound [47] Oðn4 log nÞ O(logð1=εÞ)
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LCU algorithms both have complexity Oðn4 log nÞ. These
numerics show that the PF4 algorithm for simulating long-
range interacting systems performs better in practice than
theoretically estimated; in fact, it even performs almost as
well as the HHKL algorithm based on Lieb-Robinson
bounds [which scales as Oðn3.33 log nÞ by our earlier
analysis]. Whether other quantum simulation algorithms,
including the HHKL algorithm, can perform better than
suggested by the existing bounds remains an important
open question.

VI. CONCLUSION AND OUTLOOK

To conclude, we derived an improved bound on how
quickly quantum information propagates in systems evolv-
ing under long-range interactions. The bound applies to
power-law interactions with α > 2D, such as dipole-dipole
interactions in 1D (often realizable with nitrogen-vacancy
centers [33] or polar molecules [32]), trapped ions in 1D
[28,29], and van der Waals-type interactions between
Rydberg atoms [30] in either 1D or 2D. For finite
α > 2D, our Lieb-Robinson bound gives a tighter light
cone than previously known bounds—including the one
used in the proof of Lemma 1. As of yet, we are not aware
of any physical systems that saturate the Lieb-Robinson
bounds for power-law interactions, including the new
bound. In the limit α → ∞, our bound asymptotically
approaches the exponentially decaying bound for short-
range interactions. Our bound gives a linear light cone only
in this limit, however, and it remains an open question
whether there exists a stronger bound with a critical αc such
that the light cone is exactly linear for α ≥ αc [50].
Currently, there are no known methods for quantum
information transfer that are faster than linear for
α ≥ Dþ 1. It is possible, therefore, that a stronger bound
exists with a finite αc ≥ Dþ 1. It is our hope that the
present work, as well as the techniques that we use, will
help motivate the search for such stronger bounds.
Our technique immediately extends the HHKL algorithm

in Ref. [27] to the digital quantum simulation of the
above systems. Our error bounds indicate that the gate
complexity of the algorithm is better than that of other
state-of-the-art simulation algorithms when α is sufficiently
large (α > 3D), and matches that of the short-range
algorithm when α → ∞.
However, the empirical scaling of other algorithms—

such as product formulas—indicates that this gate complex-
ity may only be a loose upper bound to the true quantum
complexity of the problem. While a matching lower bound
for the gate complexity of the HHKL algorithm is provided
in Ref. [27] for Hamiltonians with short-range interactions,
we do not know of any techniques that could provide a
corresponding bound for long-range interactions. In addi-
tion to improving the quantum gate complexity, our results
may also aid in the design of better classical algorithms for
simulating long-range interacting quantum systems. In

particular, while we still expect the classical gate complex-
ity to be exponential in the simulation time, there may be
room for a polynomial improvement.
While the use of Lieb-Robinson bounds to improve the

performance of quantum algorithms is a natural extension of
Haah et al., the opposite direction—using quantum algo-
rithms to improve Lieb-Robinson bounds—is new. The
connection from quantum simulation algorithms to Lieb-
Robinson bounds that we have established opens another
avenue for the condensed matter and atomic, molecular, and
optical physics communities to potentially benefit from
future advances in quantum algorithms. In addition to
proving a stronger Lieb-Robinson bound, the tools we
developed may help to answer other questions regarding
both short-range and long-range interacting systems.
Using the same unitary construction as Theorem 1, we
can generalize the bounds on connected correlators [35,36]
to long-range interacting systems. Our results can also
provide a framework for proving tighter bounds on
higher-order commutators, such as out-of-time-order corre-
lators [37,38]. Previous methods used to derive Lieb-
Robinson bounds—due to their use of the triangle inequality
early in their proofs—have not been able to capture the
nuances in the growth of such correlators. In addition to the
more intuitive proof of the Lieb-Robinson bounds, our
framework can be used to provide an alternative, simpler
proof of the classical complexity of the boson-sampling
problem [39], which generalizes the result in Ref. [26] to
long-range interactions and also to more general
Hamiltonians with arbitrary local interactions [51]. By
taking advantage of the unitary decomposition in Lemma
1, we obtain a longer time interval within which the sampler
in Ref. [26] is efficient [51].Moreover, by generalizing from
two-body to many-body interactions, our technique may
find applications in systems whose Hamiltonians include
interaction terms between three or more sites, e.g., many-
body localized systems in the l-bit basis [52].
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Note added.—Recently, Else et al. [53] posted their
work on a different Lieb-Robinson bound for power-law
decaying interactions. For Hamiltonians consisting of at
most two-body interactions, the bound in Ref. [53] and our
bound both apply in the same regime, α > 2D [54]. Within
this regime, our bound results in a strictly tighter light cone
than Ref. [53]. However, the bound in Ref. [53] also applies
to Hamiltonians consisting of k-body interactions, for any
integer k. Generalizing our framework to cover such k-body
interactions would be an interesting future direction.

APPENDIX A: EVALUATIONS OF THE
SUM IN LEMMA 1

In this Appendix, we show how we bound δtrunc from
Eq. (10) (Appendix A 1) and δoverlap from Eq. (11)
(Appendix A 2) in the proof of Lemma 1.

1. Evaluation of δtrunc
Here, we provide explicit calculations of δtrunc in

Eq. (10). Recall that l ¼ distðA;CÞ is the shortest distance
between any two points in A and C. Therefore, ka⃗ − c⃗k is
always greater than l. For each a⃗ ∈ A, let la⃗ ¼ distða⃗; CÞ
be the minimum distance from a⃗ to the set C and
Ca⃗ ¼ f⃗{ ∈ Λ∶distða⃗; ⃗{Þ ≥ la⃗g. Clearly, C is a subset of
Ca⃗. Therefore,

kδtrunck ¼ kHA∶Ck ≤
X
a⃗∈A

X
c⃗∈C

1

ka⃗ − c⃗kα ðA1Þ

≤
X
a⃗∈A

X
c⃗∈Ca⃗

1

ka⃗ − c⃗kα ¼
X
a⃗∈A

X
r⃗

kr⃗k≥la⃗

1

kr⃗kα ðA2Þ

≤ λ1
X
a⃗∈A

1

ðla⃗ −
ffiffiffiffi
D

p Þα−D ; ðA3Þ

where λ1 is a constant independent of a⃗ and the sum over r⃗
is bounded using Lemma 5 in Appendix G.
Next, to evaluate the sum over a⃗, we parametrize

the sites in the set A by their distance to its boundary
∂A. Note that by assumption the interior of A is nonempty,
so that A ≠ ∂A. Roughly speaking, there will be at most
O(ΦðAÞ) sites whose distances to the boundary ∂A are
between l and lþ μ, for each μ ¼ 0; 1;…, where ΦðAÞ is
the boundary area of A. Therefore, we have (see Lemma 9
in Appendix G 2 for a rigorous proof)

kδtrunck ≤ 2ηλ1ΦðAÞ
X∞
μ¼0

1

ðlþ μ −
ffiffiffiffi
D

p Þα−D ðA4Þ

≤ 2ηλ1λ22
α−D ΦðAÞ

lα−D−1 ¼ ctr2α
ΦðAÞ
lα−D−1 ; ðA5Þ

for l > 2
ffiffiffiffi
D

p
, where λ2 is a constant that arises after using

Lemma 5 to bound the sum, and the factor 2α−D is because
we lower bound l −

ffiffiffiffi
D

p
≥ l=2 to simplify the expression.

The constants are later absorbed into the definition of ctr.

2. Evaluation of δoverlap
In this section, we show how we bound δoverlap from

Eq. (11) in the proof of Lemma 1. To estimate δoverlap, we use
the following lemma, which generalizes a similar lemma in
Ref. [27] to arbitrary, time-dependent Hamiltonians.
Lemma 3.—Let Ω ⊂ Λ be a subset of sites. Let HΩðtÞ ¼P
i;j∈Ω hijðtÞ be the terms of HΛðtÞ supported entirely on

Ω. Let OXðτÞ be an observable supported on a subset X at a
fixed time τ. We have

kðUΛ
0;tÞ†OXðτÞUΛ

0;t − ðUΩ
0;tÞ†OXðτÞUΩ

0;tk

≤
Z

t

0

dsk½ðUΩ
s;tÞ†OXðτÞUΩ

s;t; HΛðsÞ −HΩðsÞ�k; ðA6Þ

where UΛ
0;t ¼ T exp½−i R t

0 HΛðsÞds�.
Proof.—To prove the lemma, we shall move into the

interaction picture of HΩðtÞ and treat VðtÞ≡HΛðtÞ −
HΩðtÞ as a perturbation. Let VIðtÞ ¼ ðUΩ

0;tÞ†VðtÞUΩ
0;t

and UIðtÞ ¼ T expð−i R t
0 VIðsÞdsÞ be, respectively, the

Hamiltonian and the evolution operator in the interaction
picture. We have

kðUΛ
0;tÞ†OXðτÞUΛ

0;t − ðUΩ
0;tÞ†OXðτÞUΩ

0;tk

¼
				
Z

t

0

ds
d
ds

½U†
I ðsÞðUΩ

0;tÞ†OXðτÞUΩ
0;tUIðsÞ�

				 ðA7Þ

¼
				
Z

t

0

dsU†
I ðsÞ½ðUΩ

0;tÞ†OXðτÞUΩ
0;t; VIðsÞ�UIðsÞ

				 ðA8Þ

≤
Z

t

0

dsk½ðUΩ
0;tÞ†OXðτÞUΩ

0;t; VIðsÞ�k ðA9Þ

≤
Z

t

0

dsk½ðUΩ
s;tÞ†OXðτÞUΩ

s;t; VðsÞ�k: ðA10Þ

Thus, Lemma 3 follows. ▪
By substituting Λ → AB, Ω → B, OX → HB∶C, τ → t,

and noting that operators supported on disjoint subsets
commute, we can show using Lemma 3 that
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kδoverlapk ¼ kðUAB
0;t Þ†HB∶CðtÞUAB

0;t − ðUB
0;tÞ†HB∶CðtÞUB

0;tk

≤
Z

t

0

dsk½ðUB
s;tÞ†HB∶CðtÞUB

s;t; HA∶BðsÞ�k

≤
X
a⃗∈A

X
b⃗;b⃗0∈B

X
c⃗∈C

Z
t

0

dsk½ðUB
s;tÞ†hb⃗;c⃗ðtÞ

×UB
s;t; ha⃗;b⃗0 ðsÞ�k; ðA11Þ

where the observables are, in general, evaluated at different
times s ≤ t. We note that while it is necessary to keep track
of s, t for completeness, one should pay more attention to
the supports of the operators, as they carry useful infor-
mation about the locality of the system.
In fact, let us pause for a moment to discuss why the

right-hand side of Eq. (A11) should be small when l,
the distance between A and C, is large. Whenever the
supports of ha⃗;b⃗0 ðsÞ and hb⃗;c⃗ðtÞ are far from each other, we
can bound their commutator norm using a Lieb-Robinson
bound for long-range interactions. We use the bound by
Gong et al. [5]:

k½ðUB
s;tÞ†hb⃗;c⃗ðtÞUB

s;t; ha⃗;b⃗0 ðsÞ�k

≤ cevðt−sÞkhb⃗;c⃗ðtÞkkha⃗;b⃗0 ðsÞk
�

1

ð1 − γÞα
1

rα
þ 1

eγr

�
; ðA12Þ

where r ¼ distðfa⃗; b⃗0g; fb⃗; c⃗gÞ is the distance between the
supports, γ ∈ ð0; 1Þ is a constant that can be made
arbitrarily close to 1, and c, v are constants that depend
only on D.
However, in contrast to short-range interacting systems,

here b⃗; b⃗0 run over all possible sites in B, so in principle the
distance between the supports of ha⃗;b⃗0 ðsÞ and hb⃗;c⃗ðtÞ can be
small (Fig. 6). Fortunately, if that is indeed the case, then

although the Lieb-Robinson bound is trivial, the assump-
tion that kha⃗;b⃗0k and khb⃗;c⃗k fall off as kb⃗0 − a⃗k−α and

kc⃗ − b⃗k−α, respectively, makes the summand in Eq. (A11)
small.
Let us now evaluate the sum in Eq. (A11). In the

following, we shall consider b⃗ ≠ b⃗0, since the estimation
for the case b⃗ ¼ b⃗0 follows a similar but less complicated
argument. Using the Lieb-Robinson bound for long-range
interactions of Gong et al. [5],Z

t

0

dsk½ðUB
s;tÞ†hb⃗;c⃗ðtÞUB

s;t; ha⃗;b⃗0 ðsÞ�k

≤ c
Z

t

0

dskhb⃗;c⃗ðtÞkkha⃗;b⃗0 ðsÞk
�

evðt−sÞ

ðð1 − γÞrÞα þ
evðt−sÞ

eγr

�

≤
c
v

ðevt − 1Þ
kb⃗ − c⃗kαka⃗ − b⃗0kα

�
1

ð1 − γÞα
1

rα
þ 1

eγr

�
; ðA13Þ

where γ ∈ ð0; 1Þ is a constant that can be chosen arbitrarily
close to 1, while c, v are finite and bounded constants for all
α, and

r ¼ distðfa⃗; b⃗0g; fb⃗; c⃗gÞ
¼ min fkb⃗0 − b⃗k; kb⃗0 − c⃗k; ka⃗ − b⃗k; ka⃗ − c⃗kg ðA14Þ

is the distance between the supports of hb⃗;c⃗ðtÞ and ha⃗;b⃗0 ðsÞ
(see Fig. 6). Since each term of δoverlap contributes a sum of
an algebraically decaying as 1=rα and an exponential
decaying as e−γr terms, it is convenient to evaluate their
contributions separately.
First, let us find the contribution from the algebraically

decaying part. It is straightforward to find out their con-
tributions to δoverlap when r takes one of the four allowed
values. Depending on which value r takes, we use either
Lemma 5 or Lemma 7 in Appendix G to evaluate the sums
over b⃗ and b⃗0. For example, the contribution from the terms
where r ¼ kb⃗0 − b⃗k is at most

X
a⃗∈A

X
b⃗≠b⃗0∈B

X
c⃗∈C

cðevt − 1Þð 1
1−γÞα

vkb⃗ − c⃗kαka⃗ − b⃗0kαkb⃗0 − b⃗kα

≤
c
v
λ3
X
a⃗∈A

X
b⃗∈B

X
c⃗∈C

ðevt − 1Þð 2
1−γÞα

kb⃗ − c⃗kαka⃗ − b⃗kα
ðA15Þ

≤
c
v
λ3λ4

X
a⃗∈A

X
c⃗∈C

ðevt − 1Þð 4
1−γÞα

ka⃗ − c⃗kα ðA16Þ

≤ λ5ðevt − 1Þ
�

8

1 − γ

�
α ΦðAÞ
lα−D−1 ; ðA17Þ

where λ3, λ4 are constants that arise after we use Lemma 7
in Appendix G twice to evaluate the sums over b⃗0 and b⃗

FIG. 6. An illustration of hab0 and hbc in a one-dimensional
lattice. For short-range interactions, the sets fa; b0g and fb; cg are
separated by a distance of the same order as the size of B (upper
panel). The contributions from these terms to δoverlap are bounded
using a Lieb-Robinson bound. However, for long-range inter-
actions, fa; b0g and fb; cg can be geometrically close to each
other (lower panel). In such cases, the norms of hab0 and hbc
decay as jb0 − aj−α and jc − bj−α and, therefore, their contribu-
tions to δoverlap are small.
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consecutively, and the sums over a⃗, c⃗ have been bounded in
the previous section [see Eq. (A2)]. The constant λ5 absorbs
both λ3, λ4 and the constants from the sums over a⃗, c⃗.
On the other hand, if r ¼ kb⃗0 − c⃗k, we use Lemma 7 to

evaluate the sum over b⃗0 and Lemma 5 for the sum over b⃗:

X
a⃗∈A

X
b⃗≠b⃗0∈B

X
c⃗∈C

1

kb⃗ − c⃗kα
1

ka⃗ − b⃗0kα
cðevt − 1Þð 1

1−γÞα
vkb⃗0 − c⃗kα

≤
c
v
λ6
X
a⃗∈A

X
b⃗∈B

X
c⃗∈C

1

kb⃗ − c⃗kα
ðevt − 1Þð 2

1−γÞα
ka⃗ − c⃗kα ðA18Þ

≤
c
v
λ6λ7

X
a⃗∈A

X
c⃗∈C

ðevt − 1Þð 2
1−γÞα

ka⃗ − c⃗kα ðA19Þ

≤ λ8ðevt − 1Þ
�

4

1 − γ

�
α ΦðAÞ
lα−D−1 ; ðA20Þ

where λ6, λ7 come from the uses of Lemma 7 and Lemma 5,
respectively. The constant λ8 absorbs both λ6, λ7 and the
constants from the sums over a⃗, c⃗. Repeating for the other
values of r, we find that the contribution from the
algebraically decaying terms in Eq. (A13) to δoverlap is at
most

λ9ðevt − 1Þ
�

8

1 − γ

�
α ΦðAÞ
lα−D−1 ; ðA21Þ

for some constant λ9.
Next, let us find the contribution from the exponentially

decaying term in Eq. (A13). If r ¼ kb⃗0 − b⃗k, we have

X
a⃗∈A

X
b⃗≠b⃗0∈B

X
c⃗∈C

cðevt − 1Þ
vkb⃗ − c⃗kαka⃗ − b⃗0kαeγkb⃗0−b⃗k

≤
c
v
λ10

X
a⃗∈A

X
b⃗∈B

X
c⃗∈C

ðevt − 1Þ
kb⃗ − c⃗kα

� ð 4
1−γÞα

ka⃗ − b⃗kα
þ ka⃗ − b⃗kD−1

eγka⃗−b⃗k

�

≤
c
v
λ10λ11

X
a⃗∈A

X
c⃗∈C

ðevt − 1Þ
� ð 8

1−γÞα
ka⃗ − c⃗kα þ

ka⃗ − c⃗k2D−2

eγka⃗−c⃗k

�

≤ λ12ðevt − 1ÞΦðAÞ
� ð 16

1−γÞα
lα−D−1 þ

l3D−3

eγl

�
; ðA22Þ

where we have applied Lemma 8 in Appendix G to obtain
the first inequality, Lemma 8 twice again and Lemma 7 to
get the second inequality, and then Lemma 5 and Lemma 6
for the sums over a⃗, c⃗ similarly to Appendix A 1. The
constants λ10, λ11 arise from the applications of the lemmas
and are absorbed into a constant λ12. We note that the
constant γ in the last three lines are different from the one in
the first line (see Lemma 8 for details). However, they both
are constants that can be chosen arbitrarily between 0 and 1.

Therefore, we denote them by the same constant γ for
convenience.
Repeating the argument for other choices of r in

Eq. (A14), we find that the contribution from the exponen-
tially decaying terms to δoverlap is still at most the right-hand
side of Eq. (A22).
Combining Eqs. (A21) and (A22), we have

kδoverlapk ≤ λ13ðevt − 1ÞΦðAÞ
� ð 16

1−γÞα
lα−D−1 þ

l3D−3

eγl

�
; ðA23Þ

for a constant λ13. Since lD−1 ≤ ½ðD − 1Þ!=εD−1�eεl for any
arbitrary small positive constant ε, we can upper bound

kδoverlapk ≤ covðevt − 1ÞΦðAÞ
� ð 16

1−γÞα
lα−D−1 þ

1

eγl

�
; ðA24Þ

where we have absorbed ε into the definition of γ and cov.
This completes the estimation of δoverlap.

APPENDIX B: ERROR PROPAGATION FROM
GENERATING FUNCTION

In this Appendix, we reproduce a lemma in Ref. [27]
which shows how the error in approximating the generating
function GW propagates to an error of the unitary Wt in
Eq. (6). Suppose we approximate GW by G0

W such that

kGW − G0
Wk ≤ fðtÞδ; ðB1Þ

for some function of time fðtÞ, and δ is time independent.
We shall prove that the unitary W0

t generated by G0
W

approximates Wt with error

kW0
t −Wtk ≤ δ

Z
t

0

dsfðsÞ: ðB2Þ

Proof.—By simple differentiation, we have

kW†
t W0

t − Ik ¼
				
Z

t

0

ds
d
ds

ðW†
sW0

sÞ
				 ðB3Þ

¼
				
Z

t

0

dsW†
sðGW − G0

WÞW0
s

				 ðB4Þ

≤
Z

t

0

dskW†
sðGW −G0

WÞW0
sk ðB5Þ

¼
Z

t

0

dskGW −G0
Wk ðB6Þ

≤ δ

Z
t

0

dsfðsÞ: ðB7Þ

▪
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APPENDIX C: PROOF OF THE LIEB-ROBINSON
BOUND FOR LONG-RANGE INTERACTIONS

We present a more detailed proof of Theorem 1 in this
Appendix. The key ingredient in the proof of Theorem 1 is
the following lemma.
Lemma 4.—Denote by Br ¼ f⃗{ ∈ Λ∶k⃗{k ≤ rg a D ball

of radius r centered around the origin. Let OX be an
observable supported on X ¼ Br0 with r0 being finite. For
each UΛ

0;T and a positive integerM, there exists a unitary Ũ
supported on a D ball Br with r ¼ r0 þMl, such that

kðUΛ
0;TÞ†OXUΛ

0;T − Ũ†OXŨk ≤ b1Mevtðr − lÞD−1ξαðlÞ;
ðC1Þ

where b1 is a constant, t ¼ T=M, and l ∈ ð0; RÞ is a free
parameter.
Proof.—We shall prove the lemma by constructing the

unitary Ũ. In addition to Br above, we define

Sr ¼ BrþlnBr ðC2Þ

to be a shell consisting of sites between r and rþ l away
from the origin (Fig. 7).
We divide ½0; T� into M equal time intervals, namely,

½ðM − k − 1Þt; ðM − kÞt� for k ¼ 0;…;M − 1, where
t ¼ T=M. The unitary UΛ

0;T then naturally decomposes
into a product of unitaries UΛ

k ≡UΛ
ðM−k−1Þt;ðM−kÞt:

UΛ
0;T ¼ UΛ

0U
Λ
1…UΛ

M−1: ðC3Þ

We now use Lemma 1 to further decompose each UΛ
k into

evolutions of subsystems. We start with k ¼ 0 and use

Lemma 1 with A → X ¼ Br0 ; B → Sr0 , and C → Bc
r0þl

(Fig. 3) to decompose ðUΛ
0 Þ† (instead of UΛ

0 ):

kðUΛ
0 Þ† − ðUBr0þl

0 Þ†USr0
0 ðUBc

r0
0 Þ†k

≤ c0evtΦðBr0ÞξαðlÞ; ðC4Þ
where again Bc

r0 denotes the complement subset RDnBr0 ,
and ΦðBr0Þ is the boundary area of Br0 . This choice of
decomposition allows us to eliminate the contribution to the
evolution from the terms of the Hamiltonian that commute
with X, i.e., those supported entirely on Bc

r0 . Explicitly, we
have

ðUΛ
0 Þ†OXUΛ

0

≈


U

Br0þl

0

�†
U

Sr0
0



U

Bc
r0

0

�†
OXU

Bc
r0

0



U

Sr0
0

�†
U

Br0þl

0 ðC5Þ

¼


U

Br0þl

0

�†
OXU

Br0þl

0 ¼ Ũ†
0OXŨ0; ðC6Þ

where Ũ0 ≡U
Br0þl

0 is supported entirely on Br0þl.
If we repeat the above argument for UΛ

1 but with OX

replaced by Ũ†
0OXŨ0, we can approximate

ðUΛ
1 Þ†Ũ†

0OXŨ0UΛ
1 ≈ Ũ†

1Ũ
†
0OXŨ0Ũ1; ðC7Þ

for some Ũ1 supported entirely on Br0þ2l. The error of this
approximation is at most c0evtΦðBr0þlÞξαðlÞ.
By induction to all k ¼ 2;…;M − 1, we can construct

Ũ ¼ Ũ0Ũ1…ŨT−1 such that

ðUΛ
0;TÞ†OXUΛ

0;T ≈ Ũ†OXŨ; ðC8Þ

where the overall error is at most

XM−1

k¼0

c0evtΦðBr0þklÞξαðlÞ

≤ Mc0evtΦðBr0þðM−1ÞlÞξαðlÞ ðC9Þ

≤ c0
2πD=2

ΓðD
2
Þ|fflfflfflffl{zfflfflfflffl}

≡b1

Mevt½r0 þ ðM − 1Þl�D−1ξαðlÞ; ðC10Þ

and where we have replaced the surface area ΦðBrÞ of a D
ball Br by f2πD=2=½ΓðD=2Þ�grD−1 and M by T=t. Also by
induction, the unitary Ũ is supported entirely on Br0þMl.
Therefore, the lemma follows. ▪
We are now ready to prove our Lieb-Robinson bound in

Theorem 1. Without loss of generality, we assume the
origin is in X. Since kXk ¼ Oð1Þ, there exists r0 ¼ Oð1Þ
such that X is a subset of Br0 . By Lemma 4, there exists
a unitary Ũ supported entirely on a D ball Br with
r ¼ r0 þMl such that

FIG. 7. An example of the subset X ¼ Br0 and five shells Sr for
r ¼ r0; r0 þ l;…; r0 þ 4l. The operator OY is supported on Y,
which lies on Bc

r0þ5l, the complement of the ball Br0þ5l.
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ε ¼ kðUΛ
0;TÞ†OXUΛ

0;T − Ũ†OXŨk
≤ b1Mevtðr − lÞD−1ξαðlÞ: ðC11Þ

If we choose the number of time slices (M) and the block
size (l) such that r ≤ Rþ r0, the set Y will lie outside the
support Br of Ũ†OXŨ, and therefore Ũ†OXŨ will commute
with OY . Note that for a fixed value of M, the error should
decrease with a larger value of l. Therefore, to prove the
strongest bound, we should choose l as large as possible,
i.e., l ¼ R=M, and henceM ¼ R=l. Substituting the value
of M and t ¼ T=M into Eq. (C11), we obtain the error
bound in terms of l alone:

ε ≤ b2
R
l
ðevTl=R − 1Þð1þ R − lÞD−1ξαðlÞ; ðC12Þ

where b2 ¼ b1rD−1
0 is a finite constant. We note that the

above bound is valid for all values of l ≤ R. The tightest
bound can therefore be obtained by choosing a value for l
that minimizes the above expression. Our intuition and
numerical evidence suggest that this happens when
l ∼ Rα=ðvTÞ, so in the below analysis, we aim to choose
l as close to this value as possible.
To proceed, we consider two regimes of time T, when

vT ≥ α and when vT < α. In the former regime, we choose
l ¼ Rα=ðvTÞ ≤ R and substitute into Eq. (C12) to get

ε ≤ b2
vT
α

ðeα − 1Þ
�
1þ R

�
1 −

α

vT

��
D−1

ξα

�
Rα
vT

�

≤ b2v2D−1|fflfflfflffl{zfflfflfflffl}
≡clr

TRD−1ξα

�
Rα
vT

�
; ðC13Þ

where we have used eα − 1=α ≤ 1 for all α ≥ 1,
1 − α=ðvTÞ ≤ 1, and 1þ R ≤ 2R. In particular, if
Rα=ðvTÞ > x0, where x0 is the larger solution of
xα−D−1 ¼ eγx, the algebraically decaying term in ξα domi-
nates the exponentially decaying one, and therefore

ξα

�
Rα
vT

�
¼

�
16

1 − γ

�
α 1

ðRαvTÞα−D−1 þ e−γðRα=vTÞ ðC14Þ

≤ 2

�
16

1 − γ

�
α 1

ðRαvTÞα−D−1 ðC15Þ

¼ 2

�
16

1 − γ

�
α
�
v
α

�
α−D−1

�
T
R

�
α−D−1

: ðC16Þ

Combining Eq. (C13) and (C16), we obtain a bound on the
commutator norm:

CðT; RÞ ≤ ε ≤ clr;α
Tα−D

Rα−2D ; ðC17Þ

where

clr;α ≔ 2clr

�
16

1 − γ

�
α
�
v
α

�
α−D−1

: ðC18Þ

The light cone implied by the bound is

T ≳ Rðα−2DÞ=ðα−DÞ: ðC19Þ

In the limit α → ∞, the exponent of the light cone
converges to one at a rate given by

μ ¼ lim
α→∞

j αþ1−2D
αþ1−D − 1j
j α−2Dα−D − 1j ¼ 1: ðC20Þ

On the other hand, if vT < α, we simply choose l ¼ R.
Equation (C12) then becomes

CðT; RÞ ≤ ε ≤ b2ðevT − 1ÞξαðRÞ: ðC21Þ

Therefore, we arrive at the Lieb-Robinson bound in
Theorem 1 with c̃lr ¼ b2.

APPENDIX D: PROOF OF LEMMA 2 IN
HIGHER DIMENSIONS

In this Appendix, we discuss the construction of the
circuit in Lemma 2 that generalizes the lemma to higher
dimensions. Similar to the D ¼ 1 case, we first break the
unitary into OðTÞ unitaries expð−iHtÞ for some t ¼ Oð1Þ.
We then use an algorithm consisting ofD steps to break the
simulation of expð−iHtÞ into simulations of Hamiltonians
on smaller hypercubes of size at most 2l. In the first of the
D steps, we cut the D-dimensional lattice into L=l layers,
each with the same thickness l, a parameter to be chosen
later. In this step, the cross section of the cut is LD−1.
Therefore, by Lemma 1, each time a new layer is generated,
we accumulate an error of

O
�

LD−1

lα−D−1

�
:

For TL=l layers of the first step, the accumulated error will
be εð1Þ ¼ OðTLD=lα−DÞ.
Next, for each of the OðTL=lÞ layers of D − 1 dimen-

sions, we break them again into L=l layers of D − 2

dimensions. Using Lemma 1 with a cross section LD−2, we
find the error of the second step,

εð2Þ ¼ TL
l

L
l
O
�

LD−2

lα−ðD−1Þ−1

�
¼ O

�
TLD

lα−Dþ2

�
; ðD1Þ

which decreases with l faster than the error of the first step.
More explicitly, in the kth of the D steps, the error is

εðkÞ ¼ OðLD=lα−D−2kÞ, which is dominated by the error in
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the first step for all k > 1. Therefore, the error of cutting the
D-dimensional lattice of size L into LD=lD subsystems is
stillOðTLD=lα−DÞ. To meet a fixed total error ε, we need to
choose l ∝ ðTLD=εÞ1=ðα−DÞ. The geometrical constraint
l < L requires α > 2D. Finally, simulating each of the
OðTLD=lDÞ subsystems using the LCU algorithm up
to εlD=ðTLDÞ accuracy requires O(l3D logðTLD=εlDÞ)
quantum gates. Therefore, the overall gate complexity of
the algorithm is

GD ¼ O
�ðTnÞ1þ2D=ðα−DÞ

ε2D=ðα−DÞ log
Tn
ε

�
: ðD2Þ

APPENDIX E: ESTIMATION OF THE
ACTUAL GATE COUNT

In this Appendix, we describe how we estimate the actual
gate count of the HHKL algorithm and the QSP algorithm
in simulating one-dimensional power-law systems.
The direct implementation of the QSP algorithm

requires computing a sequence of rotation angles on a
classical computer, which is prohibitive for large-size
Hamiltonian simulation. Instead, we use a suboptimal
approach described in Ref. [49]. To simulate H ¼P

L
j¼1 βjHj for time t and accuracy ε, where L is the

number of terms in the Hamiltonian, βj≥0 and Hj are
both unitary and Hermitian, we divide the entire evolu-
tion into r segments. We choose r sufficiently large so
that each segment is short enough for the classical
preprocessing. Specifically, we choose

r ¼
�P

jβjt

τmax



ðE1Þ

and τmax ¼ 1000 [55]. Within each segment, we choose q
to be the smallest positive integer satisfying

4ðPjβjt=rÞq
2qq!

≤
ε

8r
; ðE2Þ

so that the overall error is at most ε. This gives
M ¼ 2ðq − 1Þ phased iterates within each segment [49].
The number of elementary operations of each

phased iterate is logðLÞ þ 4Lþ 8L. Here, the first term
corresponds to the reflection along an L-dimensional
state j0i, the second term costs the preparation or
unpreparation of an L-dimensional state, and the third
term is the cost of selecting L two-body operators. We
thus estimate the gate complexity of the QSP algorithm
as ½logðLÞ þ 12L�rM.
Next, in order to determine the gate count of the HHKL

algorithm, we need an estimate for the error of the unitary
decomposition in Lemma 1. Recall that forD ¼ 1, the error
given by our analysis is b=lα−2, where b is a constant that

can be estimated numerically by computing the actual error
for small values of l and extrapolating for larger l.
Since simulating the evolution of a generic system is

classically intractable even for a moderate system size, we
study only the one-dimensional Heisenberg model given
in Eq. (25) and restrict our calculation to the single-
excitation subspace. In Fig. 8, we plot the error of the
unitary decomposition in Lemma 1 at several different
values of l (for system size n ¼ 300 and evolution time
t ¼ 0.01). The scaling of the error agrees well with our
prediction. By fitting the data to b=lα−2, we obtain an
estimate b ¼ 1.62 × 10−3.
Recall that there are T=t time slices in the HHKL

algorithm. In each time slice, there are n=l blocks of size
l and 2n=ð2lÞ blocks of size 2l. To meet the total error at
most ε, we need to choose [see also Eq. (20)]

l ¼
�
T
t
2nb
ε

�
1=ðα−1Þ

: ðE3Þ

By multiplying the number of blocks by the gate count for
using QSP to simulate a single block, we arrive at the total
gate count presented in Fig. 5.

APPENDIX F: NUMERICAL PERFORMANCE
OF THE PRODUCT FORMULA

This Appendix includes the numerical performance of
the fourth-order product formula (PF4) used to simulate the
evolution of the system given in Eq. (25) for time T ¼ n.
We plot this numerical performance as well as the theo-
retical estimates for the gate counts of the PF4, QSP, LCU,
and HHKL algorithms in Fig. 9.

FIG. 8. The empirical error of the unitary decomposition in
Lemma 1, computed for the single-excitation one-dimensional
Heisenberg chain (α ¼ 4) in Eq. (25) at different values of l. The
system size is fixed at n ¼ 300 and the evolution time at t ¼ 0.01.
We fit the data (blue square) to the theoretical model b=lα−2 and
obtain b ¼ 1.62 × 10−3.
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APPENDIX G: MATHEMATICAL TOOLS

This Appendix contains a collection of mathema-
tical results omitted from the previous sections. In
Appendix G 1, we present the upper bounds on standard
sums we use in the proof of Lemma 1 in Appendix A. In
Appendix G 2, we show how we estimate the sum over the
convex set A in Eq. (A3) by parametrizing the elements of
the set by their distance to the boundary of A. We also note
that we use the same notation “λ” for constants that appear
in different lemmas.

1. Standard sums

Here, we present upper bounds on a a few standard
sums used in the previous sections. Specifically, we use
Lemma 5 to bound Eq. (A2), Eq. (A18), Lemma 6 to bound
Eq. (A15), Eq. (A22), Lemma 7 to bound Eq. (18),
Eq. (A22), and Lemma 8 to bound Eq. (A22).
Lemma 5.—LetΛ be aD-dimensional lattice and r⃗ be the

coordinates of sites in Λ. For α > Dþ 1 and R >
ffiffiffiffi
D

p
,

there exists a constant λ that may depend onD but not on R,
α such that

X
r⃗∈Λ
kr⃗k≥R

1

kr⃗kα ≤
λ

ðR −
ffiffiffiffi
D

p Þα−D : ðG1Þ

In particular, it implies that the sum
P

r⃗∈Λ converges for
all α > D.
Proof.—The proof of this bound is straightforward.

For simplicity, we first assume none of the coordinates
of r⃗ is zero. Since 1=xα is a decreasing function of x for all

α > 0, we can always bound the sum over such r⃗ by an
integral

X
r⃗∈Λ
kr⃗k≥R

0 1

kr⃗kα ≤
Z
kr⃗k≥R− ffiffiffi

D
p

dDr⃗
kr⃗kα

¼ 2πD=2

ΓðD
2
Þ
Z

∞

R−
ffiffiffi
D

p
dr

rα−Dþ1
≤

gðDÞ
ðR −

ffiffiffiffi
D

p Þα−D ; ðG2Þ

where
P0 denotes the sum over r⃗ with no zero coordinate

and gðDÞ≡ 2πD=2=ΓðD=2Þ.
Next, consider r⃗ with exactly one zero coordinate. These

sites lie on D hyperplanes, each of dimension (D − 1).
Therefore, the contribution from them can be evaluated
using the above integral with D → D − 1:

DgðD − 1Þ
ðR −

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p Þα−Dþ1
<

DgðD − 1Þ
ðR −

ffiffiffiffi
D

p Þα−D : ðG3Þ

By repeating this argument for the sums over r⃗ with
different number of zero coordinates, we arrive at

X
r⃗∈Λ
kr⃗k≥R

1

kr⃗kα ≤
λ

ðR −
ffiffiffiffi
D

p Þα−D ; ðG4Þ

where λ ¼ P
D
d¼0ðDdÞgðD − dÞ is a constant independent

of R. ▪
Lemma 6.—Let Λ be a D-dimensional lattice and r⃗

be the coordinates of sites in Λ. For all R > 0, there
exists a constant λ that may depend on β, D but not on R
such that X

r⃗∈Λ
kr⃗k≥R

kr⃗kβ
ekr⃗k

≤
λRβþD−1

eR
; ðG5Þ

where β is a positive constant. In particular, it also implies
that the sum

P
r⃗∈Λ converges.

Proof.—The proof of this lemma follows the same idea
as of Lemma 5. However, note that the function xβe−x is a
decreasing function of x only when x ≥ x0 for some x0 that
depends only on β. Therefore, if R ≥ x0, we follow the
exact same lines as in the proof of Lemma 5. For example,
if none of the coordinates of r⃗ is zero, we can bound

X
r⃗∈Λ
kr⃗k≥R

0 kr⃗kβ
ekr⃗k

≤
Z
kr⃗k≥R− ffiffiffi

D
p

kr⃗kβ
ekr⃗k

dDr⃗

¼ 2πD=2

ΓðD
2
Þ
Z

∞

R−
ffiffiffi
D

p
rβþD−1dr

er
ðG6Þ

≤ λ1
ðR −

ffiffiffiffi
D

p ÞβþD−1

eR−
ffiffiffi
D

p ≤ λ2
RβþD−1

eR
; ðG7Þ

for some constants λ1, λ2 that depend only on β, D.

FIG. 9. The empirical gate count of PF4 (purple dots) from
n ¼ 4 to n ¼ 12, extrapolated to larger system sizes (solid,
purple), for simulating the dynamics of the Hamiltonian in
Eq. (25) for time T ¼ n at a fixed error tolerance. The error
bars are smaller than the size of the markers and hence not visible
in the plot. Also shown in dashed lines are the slopes of the gate
counts of several advanced algorithms for comparison. These
slopes represent the scaling of the gate counts as functions of n.
Their y-intercepts, which represent a constant multiplicative
factor, should be ignored.

LOCALITY AND DIGITAL QUANTUM SIMULATION … PHYS. REV. X 9, 031006 (2019)

031006-17



On the other hand, if R < x0, we consider

λ ¼ max

(
eR

RβþD−1 ;
X
r⃗∈Λ
kr⃗k≥R

kr⃗kβ
ekr⃗k

)
: ðG8Þ

The lemma should follow if we can argue that λ can be
chosen independently of R. Indeed, since 1 ≤ R < x0 and
from the previous calculation, we know that the sum over r⃗
converges to a constant that depends only on β, D. This
concludes the proof of Lemma 6. ▪
Lemma 7.—Let a⃗, b⃗, c⃗ be three distinct sites in a

D-dimensional lattice Λ. For all α > D,

X
b⃗∈Λ

1

ka⃗ − b⃗kα
1

kb⃗ − c⃗kα
≤

λ2α

ka⃗ − c⃗kα ; ðG9Þ

where λ is a constant independent of a⃗; c⃗; α.
Proof.—A proof of the lemma is presented in

Ref. [4]. ▪
Lemma 8.—Let a⃗, b⃗, c⃗ be three distinct sites in a

D-dimensional lattice Λ. For all α > D, γ ∈ ð0; 1Þ, and
positive integers β ∈ Zþ, there exists a constant γ0 ∈ ð0; 1Þ
such that

X
b⃗∈Λ

1

ka⃗ − b⃗kα
kb⃗ − c⃗kβ
eγkb⃗−c⃗k

≤
λð 4

1−γ0Þα
ka⃗ − c⃗kα þ

λ0ka⃗ − c⃗kβþD−1

eγ
0ka⃗−c⃗k ;

ðG10Þ

where λ; λ0 are constants that may depend on β, D, but not
on a⃗; c⃗; α.
Proof.—Without loss of generality, assume c⃗ ¼ 0. Let

l ¼ kc⃗ − a⃗k ¼ ka⃗k be the distance between c⃗ and a⃗. We
need to prove

X
b⃗∈Λ

1

ka⃗ − b⃗kα
kb⃗kβ
eγkb⃗k

≤
λð 4

1−γ0Þα
lα þ λ0lβþD−1

eγ
0l : ðG11Þ

Let Bμl be a D ball of radius μl centered around c⃗ for
some arbitrary constant μ ∈ ð0; 1Þ. We shall divide the sum
over b⃗ into two regimes, corresponding to b⃗ inside and
outside Bμl.
In the first regime where b⃗ is inside Bμl, we can show

using the triangle inequality that ka⃗ − b⃗k ≥ ð1 − μÞl.
Therefore, the sum over these b⃗ can be bounded by

1

½ð1 − μÞl�α
X
b⃗∈Bμl

kb⃗kβ
ekb⃗k

≤
λð 2

1−μÞα
lα ; ðG12Þ

where we have used the fact that
P

b⃗∈Bμl
½ðkb⃗kβÞ=ekb⃗k�

converges and is bounded by a constant λ which may
depend only on D, β.

In the second regime, we bound ka⃗ − b⃗k ≥ 1 to obtain

X
b⃗∉Bμl

1

ka⃗ − b⃗kα
kb⃗kβ
eγkb⃗k

≤
X
b⃗∉Bμl

kb⃗kβ
eγkb⃗k

≤ λ0
lβþD−1

2αeγμl
; ðG13Þ

where the last sum is bounded using Lemma 6 and noting
that μ < 1.
Combining Eqs. (G12) and (G13), we arrive at a bound

X
b⃗∈Λ

1

ka⃗ − b⃗kα
kb⃗kβ
eγkb⃗k

≤
λð 2

1−μÞα
lα þ λ0lβþD−1

eγμl
: ðG14Þ

Let γ0 ¼ γμ and take μ ≤ ½1=ð2 − γÞ�; it is straightforward
to show that ½2=ð1 − μÞ� ≤ ½4=ð1 − γ0Þ�, and therefore,

X
b⃗∈Λ

1

ka⃗ − b⃗kα
kb⃗kβ
eγkb⃗k

≤
λð 4

1−γ0Þα
lα þ λ0lβþD−1

eγ
0l : ðG15Þ

Note that if we choose μ¼½1=ð2−γÞ�, then γ0 ¼ ½γ=ð2 − γÞ�
takes on a value between 0 and 1, which can be arbitrarily
close to 1. ▪

2. Parametrizing a convex set

In this section, we show how we evaluate the sum over a⃗
in Eq. (A3). First, we parametrize a convex set by the
distance to its boundary. The following lemma simplifies a
sum over every site in a convex set to a sum over the above
distance, multiplied by the boundary area of the set.
Lemma 9.—Let A ⊂ RD be a compact and convex set in

RD with nonempty interior. Let C ⊂ RD be another subset
disjoint from A, and let l ¼ distðA;CÞ be the smallest
distance between elements of the two sets. Furthermore, we
denote by la⃗ ¼ distða⃗; CÞ the minimal distance from a
given lattice site a⃗ in A to C. For a decreasing function
f∶R → R, we shall have

X
a⃗∈A∩Λ

fðla⃗Þ ≤ 2ηΦðAÞ
X∞
μ¼0

fðlþ μÞ; ðG16Þ

where η is a constant that may depend only on D and ΦðAÞ
is the boundary area of A.
Proof.—Let us divide the set A ∈ RD into disjoint sub-

sets Sμ¼fa⃗∈A∶μ≤distða⃗;∂AÞ≤μþ1g for μ ¼ 0; 1;….
Note that the assumption that the interior of A is nonempty
implies that distða⃗; ∂AÞ is not uniformly zero. Roughly
speaking, Sμ contains the sites in A whose distances to the
boundary ∂A are between μ and μþ 1. Therefore, la⃗ ≥
lþ μ for all a⃗ ∈ Sμ. We then obtain
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X
a⃗∈A∩Λ

fðla⃗Þ ¼
X∞
μ¼0

X
a⃗∈Sμ∩Λ

fðla⃗Þ ðG17Þ

≤
X∞
μ¼0

fðlþ μÞjSμ ∩ Λj; ðG18Þ

where jSμ ∩ Λj is the number of lattice sites that lie
within Sμ.
Let Aμ ¼ fa⃗ ∈ A∶distða⃗; ∂AÞ ≥ μg be a subset of A

containing sites at least a distance μ from the boundary
of A. Clearly, Sμ ¼ ðAμnAμþ1Þ ∪ ∂Aμþ1 and ∂Sμ ¼ ∂Aμ ∪
∂Aμþ1. Roughly speaking, Sμ is a shell with the outer
surface Aμ, the inner surface Aμþ1, and a unity thickness.
The number of lattice sites in Sμ will be bounded by
ηΦðSμÞ ¼ η½ΦðAμÞ þΦðAμþ1Þ� (see Sec. G 2 a for the
definition of the constant η). Since A is compact and
convex, ΦðAμþ1Þ < ΦðAμÞ < ΦðAÞ (see Sec. G 2 b).
Therefore, we arrive at the lemma. ▪

a. Number of lattice sites in a compact region

In this section, we shall provide an upper bound on the
number of lattice sites inside a compact set A ⊂ RD. We use
this bound in Eq. (G18) to estimate the number of lattice
sites in the set jSμ ∩ Λj by its boundary area. Let A> ¼
fa⃗ ∈ A ∩ Λ∶distða; ∂AÞ > 1

3
g be the set of lattice sites that

are at least a distance 1
3
away from the boundary ∂A, and let

A≤ ¼ AnA> be the other lattice sites of A.
First, note that for every lattice site a⃗ in A>, there exists a

D ball B1=4ða⃗Þ of radius 1
4
that contains no other lattice site

and B1=4ða⃗Þ ⊂ A. Therefore, the number of lattice sites in
A> is at most VðAÞ=V½B1=4ða⃗Þ� ¼ η1VðAÞ, where VðAÞ is
the volume of A in RD and η1 ¼ V½B1=4ða⃗Þ�−1.
Next, to count the lattice sites in A≤, we note that for

every a⃗ ∈ A≤, we can select a point fða⃗Þ ∈ ∂A on the
boundary such that kfða⃗Þ − a⃗k ≤ 1

3
. We now argue that

kfða⃗Þ − fðb⃗Þk ≥ 1
3
for all distinct lattice sites a⃗ ≠ b⃗ in A≤.

Indeed, since a⃗, b⃗ are distinct lattice sites, the least distance
between them is 1; i.e., ka⃗ − b⃗k ≥ 1. Using a triangle
inequality, we can show that

kfða⃗Þ − fðb⃗Þk ≥ ka⃗ − b⃗k − kfða⃗Þ − a⃗k − kfðb⃗Þ − b⃗k

≥ 1 −
1

3
−
1

3
¼ 1

3
: ðG19Þ

Therefore, a D ball B1=6½fða⃗Þ� around fða⃗Þ ∈ ∂A shall

contain no fðb⃗Þ of any other lattice site b⃗ ∈ A≤. Therefore,
the number of lattice sites in A≤ is at most η2ΦðAÞ, where
ΦðAÞ ¼ j∂Aj is the boundary area of A and η2 is the area of
a (D − 1)-dimensional disk of radius 1=6.
In summary, the number of lattice sites in A is therefore

at most η1VðAÞ þ η2ΦðAÞ. In particular, for a shell Awhose

volume VðAÞ can be upper bounded by η3ΦðAÞ, the
number of lattice sites will be at most ηΦðAÞ, where
η ¼ η1η3 þ eη2.

b. Convex sets in RD are shrinkable

In the proof of Lemma 9 [see the discussion after
Eq. (G18)], we used the fact that ΦðAμÞ < ΦðAÞ. In this
section, we show that this property of A—which we term
shrinkability—holds if A belongs to the class of convex and
compact sets in RD. The formal definition is as follows.
Definition 1 (Shrinkable set).—A compact set A ⊂ RD

with boundary ∂A is shrinkable if, for all r > 0, Ar ¼
fa⃗ ∈ A∶distða⃗; ∂AÞ ≥ rg, we have that ΦðArÞ ¼ j∂Arj ≤
j∂Aj ¼ ΦðAÞ.
In other words, a set is shrinkable if the surface area

of the boundary of Ar ⊆ A is no larger than that A. In this
section, we will prove that convexity is a sufficient
condition for shrinkability. Recall that a set is compact if
it is both closed and bounded, whereas convexity is usually
defined as follows.
Definition 2.—A set A is convex if for any x; y ∈ A and

any θ such that 0 ≤ θ ≤ 1, we have θxþ ð1 − θÞy ∈ A.
Examples of convex sets include D balls and hyper-

rectangles, which are also shrinkable. To prove this holds in
general, we will first show that if A is convex, then Ar is
also convex (or empty) for all r > 0. To do this, we
formulate an equivalent definition of a convex set as an
intersection of half-spaces.
Definition 3.—A half-space H is given by the points

fx ∈ RDjaTx ≥ bg, where a ∈ RDnf0g.
From this definition, it follows that half-spaces are

convex sets. A folk lemma [56] states that a closed set
A is convex if and only if

A ¼ ⋂
k∈I

fHkjHk half-space; A ⊆ Hkg;

for some countable index set I. In other words, A is
equivalent to the intersection of all half-spaces that contain
it. Since convexity is preserved under arbitrary intersection,
this implies that A is convex. The converse follows from the
separating hyperplane theorem—see Ref. [56] for details.
With this equivalent definition of convexity in hand, we

will prove that Ar is also convex.
Lemma 10.—If a compact set A ⊂ RD is convex, then

Ar ¼ fa⃗ ∈ A∶distða⃗; ∂AÞ ≥ rg is convex (or empty) for
all r > 0.
Proof.—Write A as the intersection of half-spaces

Hk ¼ fx ∈ RDjaTk x ≥ bkg, for k ∈ I. Then Ar is the inter-
section of the half-spaces given by Hr

k ¼ fx ∈ RDjaTk x ≥
bk þ rg. By the converse of the above lemma, Ar is convex
(or empty). ▪
To show that A is shrinkable, we must show that

ΦðArÞ ¼ j∂Arj ≤ j∂Aj ¼ ΦðAÞ. Following a standard tech-
nique in the literature, we define the nearest-point projec-
tion of RD onto a convex set and then show that it is a
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contraction. The following lemma implies that such a
mapping is well defined.
Lemma 11.—Given a nonempty, compact and convex set

A ⊆ RD and a point x ∈ RD, there exists a unique point
pAðxÞ ∈ A such that

pAðxÞ ¼ argmin
y∈A

kx − yk:

Proof.—Since A is compact, the continuous function
dxðyÞ ¼ kx − yk must achieve its minimum value on A.
Now suppose that the minimum value of dx occurs at a

point y ∈ A. We will show that y is unique. Assume for the
sake of contradiction that there exists some point ỹ ∈ A
such that dxðyÞ ¼ dxðỹÞ, but y ≠ ỹ. Then the set of points x,
y, and ỹ form an isosceles triangle, with yỹ as the base.
Dropping an altitude from x intersects this line segment at
the midpoint m such that kx −mk < kx − yk ¼ kx − ỹk.
But m is a convex combination of y and ỹ, i.e.,
m ¼ 1

2
ðyþ ỹÞ ∈ A, so we have reached a contradiction.

Thus, y must be unique, and, therefore, pAðxÞ is well
defined. ▪
The projection function pAðxÞ can be interpreted as

generalizing the concept of the orthogonal projection into
an affine subspace. It is also well known that the nearest-
point projection pA is a contraction mapping.
Lemma 12.—Given a nearest-point projection pA∶RD →

A onto a convex set A, it holds for all x; y ∈ RD that

kpAðxÞ − pAðyÞk ≤ kx − yk:

Proof.—While the lemma can be proved for all
x; y ∈ RD, for our purposes, we only need to consider
x; y ∉ A. Assume that pAðxÞ ≠ pAðyÞ. Then consider the
hyperplanesHx andHy that pass through pAðxÞ and pAðyÞ,
respectively, and are perpendicular to the line segment
pAðxÞpAðyÞ. (See the geometric diagram in Fig. 10.)
We prove by contradiction that x (y) and pAðyÞ [pAðxÞ]

lie on opposite sides of Hx (Hy). Suppose without loss
of generality that x and pAðyÞ lie on the same side of Hx.

Then the point where the altitude from x intersects the line
segment pAðxÞpAðyÞ would lie in A, contradicting the fact
that pAðxÞ is the nearest point in A to x. Thus, x (y) must lie
on the opposite side of Hx (Hy) from pAðyÞ [pAðxÞ]. Then,
as shown in Fig. 10, the points x and y must fall outside the
rectangular strip between the two hyperplanes. From this
we conclude that kpAðxÞ − pAðyÞk ≤ kx − yk. ▪
The above result proves that the projection pAðxÞ is

indeed a contraction. Since contraction mappings do not
increase lengths, we can use this fact to demonstrate that
the boundary of Ar is less than that of A.
Theorem 3.—If the set A ⊂ RD is compact and convex,

then ΦðArÞ ¼ j∂Arj ≤ j∂Aj ¼ ΦðAÞ.
Proof.—Consider the projection pAr

∶A → Ar. Note that
for r > 0, we have that Ar ¼ fx ∈ Ajdðx; AcÞ ≥ rg is
entirely contained in the interior of A, which implies that
Ar ∩ ∂A ¼ ∅. Thus, our situation satisfies the assumption
we made in the proof of Lemma 12.
Under the action of pAr

, any point in RD outside of Ar
will get mapped to ∂Ar. In particular, since the map is onto,
∂A will get mapped to ∂Ar, i.e., pð∂AÞ ¼ ∂Ar. Using the
fact that pAr

is contractive, we have that

ΦðArÞ ¼ j∂Arj ¼ jpð∂AÞj ≤ j∂Aj ¼ ΦðAÞ;

from which we conclude that A is a shrinkable set. ▪
This provides the final step in our proof of Lemma 9.

Note that we do not require an explicit formula for the
surface area of the boundary of a D-dimensional convex
set. In general, one may use the Cauchy-Crofton formula to
calculate this quantity—for more details, see Theorem
5.5.2 of Ref. [57].
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