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We establish a lower bound on the asymptotic secret key rate of continuous-variable quantum key
distribution with a discrete modulation of coherent states. The bound is valid against collective attacks and
is obtained by formulating the problem as a semidefinite program. We illustrate our general approach with
the quadrature-phase-shift-keying modulation scheme and show that distances over 100 km are achievable
for realistic values of noise. We also discuss the application to more complex quadrature-amplitude-
modulation schemes. This result opens the way to establishing the full security of continuous-variable
protocols with a discrete modulation, and thereby to the large-scale deployment of these protocols for
quantum key distribution.
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I. INTRODUCTION

Quantum key distribution (QKD) is the task of establish-
ing a secret key between two distant parties, Alice and Bob,
who can access an untrusted quantum channel and an
authenticated classical channel [1]. Remarkably, very
simple protocols based on the exchange of quantum states
exist and have been proven secure against any eavesdropper
only limited by the laws of quantum mechanics. The first
QKD protocol, BB84, was invented by Bennett and
Brassard and simply requires Alice to send qubit states
from the set fj0i; j1i; jþi ¼ ð1= ffiffiffi

2
p Þðj0i þ j1iÞ; j−i ¼

ð1= ffiffiffi
2

p Þðj0i − j1iÞg through the quantum channel, and
Bob to perform a measurement in one of the two bases
fj0i; j1ig or fjþi; j−ig. This provides them with some
correlated data, which can then be distilled into a secret key,
provided that the correlations are large enough [2].
The main drawback of BB84-like protocols based on the

exchange of qubit states lies in the detection part, which
necessitates single-photon detectors. An interesting solu-
tion to avoid this costly and specific equipment is to replace
it by coherent detection, which is the current industry
standard in coherent optical telecommunication [3,4]. This
is the idea behind continuous-variable (CV) QKD [5–7].
In CVQKD protocols, information is encoded on the
quadratures of the quantized electromagnetic field: Alice

prepares coherent states, i.e., displaced vacuum states,
while Bob performs homodyne or heterodyne (also called
double-homodyne) detection to establish some correlations
with Alice [8]. These correlations can then be turned into a
secret key by a classical postprocessing procedure similar
to that of BB84.
Continuous variables enjoy a number of advantages for

QKD: The hardware implementation is simpler since it
corresponds to techniques already deployed in classical
telecommunication, and the secret key rate (i.e., the ratio
between the final key size and the number of states
exchanged on the quantum channel) is higher than for
qubit-based protocols [9]. In fact, the main difficulty arising
with CVQKD concerns security proofs: Because the
description of the protocol explicitly involves an infinite-
dimensional Fock space, many of the proof techniques
developed for qubit-based protocols become unavailable,
and new approaches are needed.
The Graal in the context of security proofs is to establish

a composable security proof in the finite-size regime, valid
against general attacks. For BB84, it took about 20 years to
reach that level, most notably with the work of Renner [10],
and better analyses continue to improve the key rates
[11–15]. The situation is less advanced for CVQKD since
only a few CV protocols are currently known to enjoy such
security: protocols based on the exchange of coherent states
and heterodyne detection [16–18], and protocols with
squeezed states and homodyne detection [19,20], but
crucially only protocols where the states are modulated
according to a Gaussian distribution. This state of affairs is
not quite satisfactory because a Gaussian modulation can
never be perfectly achieved in practice, and real protocols
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necessarily approximate such a Gaussian by some finite
constellation of finite energy [21,22]. Beyond this theo-
retical argument, a discrete modulation would present
important advantages both on the hardware side, since it
would simplify the state preparation procedure [5,23–25],
and on the software side, since the crucial step of error
correction is dramatically simplified with a small constel-
lation of states [26]. More generally, if quantum key
distribution is to be deployed at the large scale, it is crucial
that it conforms as much as possible to telecom standards,
which currently involve discrete modulations of coherent
states and coherent detection.
For these reasons, an outstanding and pressing open

question of the field is to establish the security of CVQKD
with a discrete modulation. Current security proofs restrict
the possible attacks performed by the eavesdropper to emu-
late a linear quantum channel between Alice and Bob [26]
(see also Refs. [27] and [28]). We also note that Ref. [29]
analyzed the security of a two-state protocol and Ref. [30]
the security of a three-state protocol; however, the corre-
sponding bounds are very pessimistic in term of resistance
to loss, and the proof techniques in these papers are
unlikely to easily generalize to more useful modulation
schemes. An alternative approach to simplify the error-
correction procedure is to rely on postselection [25,31,32],
but security proofs for such protocols are currently
restricted to Gaussian attacks, which are not believed to
be optimal [27,33]. Gaussian postselection has also been
investigated in the literature mainly because security proofs
are easier to obtain [34,35], but the performance of these
variants is still not well understood.
In this paper, we present a major step towards the full

security of CVQKD with a discrete modulation, by
introducing a new proof technique that establishes a lower
bound valid against arbitrary collective attacks, in the
asymptotic limit of infinitely long keys. For concreteness,
we first illustrate it for the quadrature-phase-shift-keying
(QPSK) protocol and then discuss its extension to larger
quadrature amplitude modulations (QAM). Our result is
significant since the secret key rate against collective
attacks, where the quantum channel is assumed to be
identical for all uses, usually coincides with the secret
key rate valid against arbitrary attacks in the asymptotic
limit [17,36,37]. Obtaining a composable security proof as
well as computing the secret key rate in the finite-size
regime would require us to fully address the parameter
estimation procedure, which is left for future work.
The outline of the paper is as follows. In Sec. II, we recall

the description of the QPSK protocol of Ref. [26]. In
Sec. III, we discuss the specific challenges raised by the
security analysis of CVQKD protocols with a discrete
modulation. We present our security proof for the QPSK
protocol and some numerical results in Sec. IV and then
explain how to extend the approach to more general QAM
in Sec. V. We finally discuss some limitations and outline
future work in Sec. VI.

II. THE QPSK PROTOCOL

The QPSK constellation that we consider consists of
four coherent states fjαkigk¼0…3 with jαki ≔ jikαi ¼
e−α

2=2
P

n≥0 e
iknðπ=2Þðαn= ffiffiffiffiffi

n!
p Þjni, where α > 0 is a param-

eter to be optimized later. The prepare-and-measure (PM)
version protocol is as follows. Alice picks a random bit
string x ¼ ðx0;…; x2L−1Þ of length 2L (for some large L),
and successive pairs of bits are encoded as coherent states
of the form jαkli with kl ¼ 2x2l þ x2lþ1, as depicted in
Fig. 1. She sends these coherent states through the channel,
and Bob measures each output mode with heterodyne
detection to obtain a 2L string z ¼ ðz0;…; z2L−1Þ ∈ R2L.
This string is then converted into a raw key of 2L bits
y ¼ ðy0;…; y2L−1Þ given by

ðy2l; y2lþ1Þ ¼

8>>><
>>>:

ð0; 0Þ if z2lþ1 < z2l; z2lþ1 ≥ −z2l
ð0; 1Þ if z2lþ1 ≥ z2l; z2lþ1 > −z2l
ð1; 0Þ if z2lþ1 > z2l; z2lþ1 ≤ −z2l
ð1; 1Þ if z2lþ1 ≤ z2l; z2lþ1 < −z2l:

Bob further reveals the values of jz2l � z2lþ1j publicly.
This information allows Alice and Bob to turn the infor-
mation reconciliation problem into a well-studied channel
coding problem for the binary-input additive white-noise
Gaussian channel (see Sec. 5.2 of Ref. [38] for further
details about this procedure). The remaining steps of
the protocol are standard, namely, parameter estimation
(discussed below), information reconciliation (Bob sends
additional information on the classical channel to help
Alice guess the string y), and privacy amplification (so that
Eve has no information about the final key).

FIG. 1. Description of the QPSK protocol with a constellation
of four coherent states and the partition of phase space in four
quadrants.
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The goal of parameter estimation is to decide whether the
raw key can be turned into a secret key via classical
postprocessing. More precisely, the idea is to check that
the correlations between Alice and Bob’s strings x and z are
strong enough to guarantee that Eve only has limited
knowledge about the raw key. For BB84-like protocols,
parameter estimation consists in evaluating the quantum bit
error rate between Alice and Bob’s data. For CVQKD, the
parameter of interest is the covariance matrix. In particular,
for the four-state protocol considered here, the quality of
the correlations depends on two parameters: the “covari-
ance” c and the variance v of Bob’s states. To define these
numbers in the case of a collective attack, we write the
classical-quantum (cq) state shared by Alice and Bob in
the PM version of the protocol as ρcq ¼ 1

4

P
3
k¼0 Πk ⊗

EðjαkihαkjÞ, where fΠkgk¼0…3 are four orthogonal projec-
tors and E denotes the quantum channel from Alice to Bob.
Let us further define the quadrature operators on Bob’s
phase space as q̂ ¼ bþ b†, p̂ ¼ iðb† − bÞ, with b and b†

the annihilation and creation operators so that ½q̂; p̂� ¼ 2i.
With these notations, we define

c ¼ tr½(ðΠ0 − Π2Þ ⊗ q̂þ ðΠ1 − Π3Þ ⊗ p̂)ρcq�;

v ¼ 1

2
tr½(14 ⊗ ðq̂2 þ p̂2Þ)ρcq�: ð1Þ

As an example, we can compute these two parameters if
the quantum channel between Alice and Bob is a bosonic
phase-invariant Gaussian channel of transmittance T and
excess noise ξ, meaning that a coherent state jβi is mapped
to a thermal state centered on

ffiffiffiffi
T

p
β with variance 1þ Tξ.

In this case, we obtain cðT; ξÞ ¼ 2
ffiffiffiffi
T

p
α and vðT; ξÞ ¼

1þ 2Tα2 þ Tξ. In particular, under the assumption that
the channel is Gaussian, one can recover the values of T and
ξ from the parameters c and v observed in the protocol.
As already mentioned, the QPSK protocol presents a

number of advantages against protocols with a Gaussian
modulation of coherent states such as in Refs. [6,39]. First,
Alice simply needs to generate random bits and not Gaussian
random variables that would then need to be discretized
with sufficient precision. Second, the state preparation only
requires a phase modulator, instead of both phase and
amplitude modulators. Another strong argument in favor
of this protocol is relative to the complexity of classical error
correction. It is indeed well known that the reconciliation of
Gaussian variables (as required for the protocols of Refs. [6]
and [39]) is quite costly and requires one to decode classical
error-correcting codes of length 2L [40–42]. In contrast, the
binary nature of the raw key in the QPSK protocol allows
Alice and Bob to aggregate the symbols in large blocks of
size m and to only decode classical codes of length 2L=m,
thus reducing the postprocessing complexity by a factor m
(which typically scales like 1=T).
Of course, the QPSK protocol also has some limitations.

In particular, for our security proof to provide a meaningful

bound on the secret key rate, the mixture of four coherent
states should approximate a thermal state, which limits the
possible value of α to low numbers. A natural solution to
this problem is to increase the size of the constellation and
rely on more general QAM, as discussed in Sec. V.

III. CHALLENGES RAISED BY A
DISCRETE MODULATION

Establishing the security of CVQKD against general
attacks turns out to be much more challenging that for
BB84-like protocols. Currently, there exist two main
approaches to do so. The first approach relies on an
entropic uncertainty principle and has been successfully
applied to the protocol of Ref. [43], which requires Alice
to prepare squeezed states [19]. For the moment, it is
unclear whether a tighter version of the entropic uncertainty
principle could also work for protocols with coherent states
(see Ref. [44] for a review). The second approach follows a
general strategy for establishing the security of a protocol
against general attacks: One first appeals to a de Finetti-
type theorem to reduce the problem to the case of collective
attacks, and security against collective attacks is analyzed
thanks to some version of the asymptotic equipartition
property [45], stating essentially that the asymptotic
secret key rate is given by the so-called Devetak-Winter
rate KDW [46]:

KDW ¼ IðX;YÞ − sup χðY;EÞ; ð2Þ

where IðX;YÞ stands for the mutual information between
Alice’s variable X and Bob’s variable Y, and χðY;EÞ stands
for the Holevo information between Y and Eve’s quantum
system E, with the supremum computed over all quantum
channels E compatible with the correlations c and v
observed during parameter estimation. Before providing
more details about KDW, let us mention that de Finetti-
type theorems exist for continuous-variable systems:
Reference [37] provides a (rather loose) version valid for
permutation-invariant protocols (which is the case of
essentially all CVQKD protocols), and Ref. [17] gives a
tighter version but only for protocols displaying a stronger
invariance in phase space, such as the protocols of
Refs. [39,47]. Studying collective attacks, i.e., computing
KDW, is rather straightforward for BB84-like protocols
since it only involves an optimization over some finite-
dimensional space. However, this is not the case for CV
protocols, and bounding the quantity sup χðY;EÞ is non-
trivial since one must optimize over states in the full Fock
space. In fact, there are two different issues here: (i) how to
obtain a robust estimate of c and v defined in Eq. (1) and
(ii) how to compute the supremum of χðY;EÞ over all states
compatible with c and v.
Let us examine the first issue. For the moment, the only

protocols for which we are able to analyze parameter
estimation (of a covariance matrix), with the proper error
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bounds, are those with the invariance in phase space, using
the ideas of Ref. [16]. The difficulty is that the parameters
to be estimated are not bounded (contrary to the case of
BB84 where the error rate is between 0 and 1), and
computing a confidence region for them requires that the
protocol is invariant under unitary transformations in phase
space or some additional assumptions (for instance, that the
state is Gaussian or that some moments of the variables are
upper bounded by some explicit value). In the present
paper, we do not address this question, and we leave it for
future work.
In order to discuss the second question, we need to be

more precise about the term χðY;EÞ. This Holevo infor-
mation is computed for a tripartite quantum state ρAYE,
which is a quantum-classical-quantum state obtained when
Bob measures system B of another state ρABE with
heterodyne detection. These states appear in the entangle-
ment-based (EB) version of the QPSK protocol. In this
version, Alice initially prepares L copies of the bipartite
pure state jΦi ¼ 1

2

P
3
k¼0 jψkiAjαkiA0 [where fjψkigk¼0…3

forms an orthonormal basis of the space spanned by the
four coherent states (the precise definition of jψki does not
matter at this stage)], keeps register A, and sends register A0
to Bob through the quantum channel. Note that if Alice
measures register A in the basis fjψkigk¼0…3, then she
projects the state in A0 onto one of the four coherent states,
with uniform probability. Hence, the EB and PM versions
of the protocol are undistinguishable from the outside of
Alice’s labs, which implies that both protocols have
the same security. In the context of a collective attack, it
makes sense to describe the quantum channel between
Alice and Bob by a completely positive trace-preserving
(CPTP) map E∶A0 → B or, equivalently, by an isometry
UA0→BE. The tripartite state shared by Alice, Bob, and Eve
then reads

ρABE ¼ ðidA ⊗ UA0→BEÞðjΦihΦjÞ;

where idA is the identity map on register A. Register B
is then measured with heterodyne detection, which is
modeled by another CPTP map MB→Y , corresponding
to the resolution of the identity by coherent states:
1 ¼ 1

π

R
C jαihαjdα. This method finally gives ρAYE ¼

ðidA ⊗ MB→Y ⊗ idEÞðρABEÞ. One can also apply the
isometry UA0→BE to the cq state ρ0cq ¼ 1

4

P
3
k¼0 Πk ⊗

jαkihαkj and recover ρcq ¼ trE(UA0→BEðρ0cqÞ). We are
now ready to define the term sup χðY;EÞ appearing in
the Devetak-Winter rate: This term is the supremum of the
Holevo information between Y and E computed for ρAYE,
optimized over all isometries UA0→BE yielding parameters c
and v when applied to ρ0cq. In other words, Alice and Bob
observe correlations in the PM protocol (corresponding to
the version that they indeed implement in practice) and
must infer a bound on χðY;EÞ computed on the tripartite
state that they would share with Eve if they had instead

implemented the EB version of the protocol. This bound
should hold for any quantum channel compatible with the
parameters they observe.
The optimization appearing in the Devetak-Winter rate

is thus highly nontrivial for CV protocols since the
isometry A0 → BE is an arbitrary isometry between
infinite-dimensional Fock spaces. Quite remarkably, it
is possible to compute the supremum of χðY;EÞ over
states ρAYE with a fixed covariance matrix for ρAB. This is
known as the optimality of Gaussian states [48]. A
second remarkable fact is that when the modulation of
coherent states is Gaussian in the PM version, then one
can directly compute the covariance matrix of ρAB from
the correlations observed in the PM version [49], and we
provide a short proof of this fact in Sec. V. By combining
both properties, one can then compute the Devetak-
Winter rate for protocols involving a Gaussian modula-
tion of coherent states [50] (see also Ref. [51] for an
alternative proof).
In the case of CV protocols with a discrete modulation,

the optimality of Gaussian states still works and provides a
bound on χðY;EÞ for a given covariance matrix of the state
ρAB appearing in the EB version of the protocol. What is
missing, however, is a direct way to compute this covari-
ance matrix from the parameters c and v accessible in an
experiment (in the PM protocol). Solutions to this problem
are to restrict the possible quantum channels to linear
bosonic channels, as done in Ref. [26], or to add decoy
states as in Ref. [52]. Neither solution is satisfactory since
the first does not yield a general security proof, and the
second basically renders moot all the advantages of the
discrete modulation (since Alice must still implement a
Gaussian modulation, and the error-correction procedure
remains quite heavy). We now present a much better
solution to this problem.

IV. A LOWER BOUND IN THE
ASYMPTOTIC LIMIT

As we already pointed out, we do not consider compos-
ability issues in this work; in particular, we restrict our
attention to the asymptotic scenario, assuming that the
parameters c and v of Eq. (1) are known. Our goal is then to
compute the Devetak-Winter rate KDW of Eq. (2). As
explained in the previous section, thanks to the optimality
of Gaussian states [48], our task is simply to perform an
optimization over the possible covariance matrices of ρAB
compatible with the values of c and v.
We first discuss the special case of the pure-loss (noise-

less) channel, before moving to the general case of arbitrary
channels and providing some numerical results.

A. The pure-loss channel

Dealing with a pure-loss channel is much easier than
dealing with the general case because the pure-loss channel

GHORAI, GRANGIER, DIAMANTI, and LEVERRIER PHYS. REV. X 9, 021059 (2019)

021059-4



is essentially the only channel yielding parameters of the
form c ¼ 2

ffiffiffiffi
T

p
α and v ¼ 1þ 2Tα2 for some T ∈ ½0; 1�.

Here, α is the amplitude of the coherent states prepared by
Alice. From such parameters, one immediately infers that
a coherent state jαki is mapped to another coherent state
j ffiffiffiffi

T
p

αki. Without loss of generality, the isometry U is of the
form UjαkiA0 ¼ j ffiffiffiffi

T
p

αkiBjμkiE for some states fjμkigk¼0…3.
The output states have to be product states; otherwise, the
output in register B would not be pure, and the channel
would add some noise. Recall that the Gram matrix of a
vector of states ðjv1i;…; jvniÞ is the n × n matrix G with
entries Gk;l ¼ hvk; vli. We can see that the Gram matrices
of fj ffiffiffiffiffiffiffiffiffiffiffi

1 − T
p

αkig and fjμkig coincide since hαkjαli ¼
htαkjtαlihμkjμli ¼ htαkjtαlih

ffiffiffiffiffiffiffiffiffiffiffi
1 − T

p
αkj

ffiffiffiffiffiffiffiffiffiffiffi
1 − T

p
αli, with

t ¼ ffiffiffiffi
T

p
. The first equality follows from the fact that U

is an isometry, and the second is obtained by applying
a beam-splitter transformation of transmittance T. Using
the polar decomposition, if two Gram matrices of the
form M1M

†
1 and M2M

†
2 coincide, then there exists some

isometry V such that M1 ¼ M2V. In particular, this means
that there is a local isometry mapping jμki to jrαki, with
r ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − T
p

. This mapping proves that the channel can also
be modeled as

U 0jαkiA0 ¼ j
ffiffiffiffi
T

p
αkiBj

ffiffiffiffiffiffiffiffiffiffiffi
1 − T

p
αkiE ð3Þ

and therefore that the channel behaves like the pure-loss
channel restricted to our set of states. In particular, since we
know the value of c and therefore of T, it is easy to compute
the covariance matrix of ρAB in the EB version of the
protocol.

B. General lower bound via
semidefinite programming

We now turn to the general case of dealing with noisy
channels. Let us recast our problem by considering the EB
version of the protocol. Alice prepares the initial state

jΦi ≔ ð1 ⊗
ffiffiffiffiffiffiffiffi
ρPM

p ÞjEPRi;

where ρPM ≔ 1
4

P
3
k¼0 jαkihαkj is the mixture of the four

coherent states prepared in the PM protocol and jEPRi ≔P∞
n¼0 jn; ni is the maximally entangled (unnormalized)

state between two modes. This state is a purification of ρPM,
and this specific choice is made because it maximizes the
correlation between its two modes. More explicitly, we
obtain

jΦi ¼ 1

2

X3
k¼0

jψkijαki;

with jψki ¼ 1
2

P
3
m¼0 e

−ikmðπ=2Þjϕmi and

jϕmi ¼
1ffiffiffiffiffiffi
νm

p
X∞
n¼0

α4nþmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4nþmÞ!p j4nþmi;

where ν0;2 ¼ 1
2
( coshðα2Þ � cosðα2Þ), ν1;3 ¼ 1

2
( sinhðα2Þ �

sinðα2Þ), and j4nþmi denotes the Fock state with 4nþm
photons.
The quantum channel between Alice and Bob can be

described via its Kraus operators fEig, which satisfyP
i E

†
i Ei ¼ 1A0 . The quantum state ρAB ¼ ðidA ⊗

EÞðjΦihΦjÞ is therefore

ρAB ¼ 1

4

X3
k;l¼0

jψkihψlj ⊗ σk;l; ð4Þ

where we defined σk;l ¼ P
i EijαkihαljE†

i .
Our goal is to bound the covariance matrix of ρAB for any

possible quantum channel E yielding some fixed values for
c and v. By symmetry of the protocol, we are in fact only
interested in three parameters, corresponding to the vari-
ance of ρA, the variance of ρB, and the covariance. Without
loss of generality, we can assume that the covariance matrix

takes the form
h VA12 ZσZ

ZσZ VB12

i
, where σZ ¼

h
1 0

0 −1
i
,

and VA ¼ 1þ 2α2 only depends on jΦi, VB ¼ v. In
particular, there is a single unknown, Z, that we need to
bound. Since χðY;EÞ is a decreasing function of Z when
the other parameters are fixed, we only need to get a lower
bound on Z as a function of c and v. The parameter Z is
defined as the expectation of 1

2
ðq̂Aq̂B − p̂Ap̂BÞ for the state

ρAB, which corresponds to

Z ¼ tr½ðabþ a†b†ÞρAB�;

where a and a† are the annihilation and creation operators
on the Fock space of register A.
Let us define Π ¼ P

3
k¼0 jψkihψkj to be the orthogonal

projector onto the space spanned by the four coherent states
and C ¼ ΠaΠ ⊗ bþ Πa†Π ⊗ b†. With these notations,
we have Z ¼ trðCXÞ, where X is the (unknown) state ρAB.
This matrix X, which is positive semidefinite with trace 1,
must satisfy some linear constraints, namely, trðB0XÞ ¼ v
and trðB1XÞ ¼ c for

B0 ¼ Π ⊗ ð1þ 2b†bÞ;
B1 ¼ (ðjψ0ihψ0j − jψ2ihψ2jÞ ⊗ q̂

þðjψ1ihψ1j − jψ3ihψ3jÞ ⊗ p̂):

The final constraint is trBX ¼ trBjΦihΦj, which isP
3
k;l¼0hαljαkijψkihψlj. In other words, we are interested

in the following problem:
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min trðCXÞ

such that

8>>><
>>>:

trðB0XÞ ¼ v

trðB1XÞ ¼ c

trðBk;lXÞ ¼ 1
4
hαljαki

X ≽ 0;

ð5Þ

where the last constraint means that X is positive semi-
definite and where we have defined Bk;l ¼ jψlihψkj. This
semidefinite program can be solved numerically. Denoting
by Z� the optimum of this program, we are able to com-
pute an explicit lower bound on sup χðY;EÞ by taking the
value of the Holevo information for a Gaussian state ρ�AB

with covariance matrix Γ� ¼
h ð1þ 2α2Þ12 Z�σZ

Z�σZ v12

i
. This

quantity is then computed with standard techniques [53]
and is given by

χðY;EÞρ�AB ¼ g

�
ν1 − 1

2

�
þ g

�
ν2 − 1

2

�
− g

�
ν3 − 1

2

�
;

where gðxÞ ≔ ðxþ 1Þ log2ðxþ 1Þ − x log2ðxÞ, ν1 and ν2
are the symplectic eigenvalues of Γ�, and ν3 ¼ 1þ 2α2 −
½Z�2=ð1þ vÞ�. It satisfies χðY;EÞρ�AB ≥ supUA0→BE

χðY;EÞ,
where the optimization is over isometries compatible with
parameters c and v. We present numerical results in the next
subsection.
One might wonder whether all the solutions of this

program correspond to valid quantum states for some
quantum channel E. This is the case since the only
constraint that must be satisfied by any channel is that
trBX ¼ trBjΦihΦj. In other words, because the initial state
is pure, and because all purifications of ρA are equivalent up
to an isometry on the purifying system BE, there always
exists an isometry from A0 to BE mapping jΦi to any valid
solution X of the SDP.

C. Numerical results

In this section, we compute the key rate for Gaussian
channels characterized by a transmittance T and excess
noise ξ. It is important to note that the proof presented
above does not make any assumption about the quantum
channel E between Alice and Bob since the mutual
information between their data, as well as the values of
c and v, can be estimated during the protocol. In order to
display numerical results without sampled data, we use the
expressions of IðX;YÞ, c and v as functions of T and ξ, as
given for Gaussian channels that provide a realistic model
for quantum channels that typically occur in experiments.
The values computed from the SDP will thus give lower
bounds for the key rates, which are easy to compare to the
ones assuming a Gaussian or linear channel [26]. To take
into account the imperfect error-correction procedure
between Alice and Bob, as in realistic implementations,

we plot a modified version of the Devetak-Winter rate given
by βIðX;YÞ − sup χðY;EÞ, with a reconciliation efficiency
parameter β ≤ 1. The mutual information IðX;YÞ should be
computed for a binary-input additive white Gaussian noise
(AWGN) channel [54], but in the relevant regime of
parameters for us, it is very well approximated by the
capacity of an AWGN channel and given by

IðX;YÞ ≈ log2

�
1þ 2Tα2

2þ Tξ

�
:

For each channel, we compute the parameters cðT; ξÞ and
vðT; ξÞ that Alice and Bob would obtain during parameter
estimation (in the asymptotic limit), and we solve the SDP
of Eq. (5) to upper bound sup χðY;EÞ by some χðY;EÞρ�AB .
Since this SDP involves infinite-dimensional matrices, it is
necessary to truncate this space in order to get numerical
results. It is natural to truncate the Fock space of Bob by the
space spanned by the first N Fock states: j0i; j1i;…;
jN − 1i, thus obtaining a full Hilbert space of dimension
4N (since Alice’s local space can be taken to be the four-
dimensional space spanned by fjαkigk¼0…3). In practice,
we observe that the results do not depend on the specific
value of N provided that it is larger than 10. Note that the
fact that we need to truncate the Fock space is not
necessarily an important issue for security proofs: This
is because composable security proofs of CVQKD usually
require one to project the state onto a low-dimensional
subspace of the Fock space anyway, via some energy test
[37]. We use the solver SCS [55,56] and set the precision
below 10−5.

FIG. 2. Secret key rate versus distance, for a Gaussian channel
with transmittance T ¼ 10−0.02d and excess noise ξ ¼ 0.002.
Here, d is the distance between Alice and Bob in km. The value of
α is 0.35. The reconciliation efficiency β is set to 0.95. The top
curve corresponds to the performance of the protocol [39] with
a Gaussian modulation, the lower curve to the performance of
the four-state protocol while assuming a linear channel (as in
Ref. [26]), and the crosses correspond to the lower bound given
by our SDP.

GHORAI, GRANGIER, DIAMANTI, and LEVERRIER PHYS. REV. X 9, 021059 (2019)

021059-6



We plot our lower bound on the Devetak-Winter rate

β log2

�
1þ 2Tα2

2þ Tξ

�
− χðY;EÞρ�AB ≤ KDW

for three different values of excess noise: ξ ¼ 0.002 in
Fig. 2, ξ ¼ 0.005 in Fig. 3, and ξ ¼ 0.01 in Fig. 4. We
remark that distances much larger than 100 km are possible
provided that the excess noise is sufficiently small and that
such values have already been obtained in experimental
demonstrations [57,58]. Note that in realistic implementa-
tions, the detectors are inevitably noisy and display a
limited efficiency. In a scenario where these imperfections
are possibly controlled by the eavesdropper, the secret key
rate would be much lower than the ones displayed in
Figs. 2–4. It is, however, legitimate to consider a more
optimistic scenario where the imperfections of the detectors

are not assumed to be controlled by the eavesdropper [1].
In this case, the secret key rate can be computed following
the method of Ref. [53]. Because the effect of imperfections
in the trusted-detector-noise scenario is typically quite
mild [59], we choose to ignore it here and assume ideal
detectors for Bob.
As we noted earlier, the main limitation of the QPSK

protocol probably concerns the small value of α. Indeed,
our approach relies on the closeness between a thermal
state (corresponding to the Gaussian modulation, and for
which we know the exact secret key rate) and a mixture of
four coherent states. These two mixtures are only approx-
imately undistinguishable in the regime where α ≪ 1, and
indeed the performance of the QPSK protocol degrades
rapidly for α ≥ 0.5, corresponding to about α2 ≈ 0.25
photon per pulse. This behavior is illustrated in Fig. 5.
To overcome this limitation, it is possible to exploit more
complicated QAMs that will better approximate thermal
states with a large variance, as discussed below. This case is
notably explored in Refs. [21,22] in the context of quantum
key distribution and in Refs. [3,4,60] for communication
over bosonic Gaussian channels.

V. LARGER CONSTELLATIONS

While we choose to illustrate our technique with the
QPSKmodulation in this paper, our SDP approach general-
izes, in a straightforward way, to more complex modulation
schemes. For these schemes, we start with a target Gaussian
modulation, described by some thermal state

ρðγÞ ¼ ð1 − γ2Þ
X∞
k¼0

γ2kjkihkj

of parameter γ > 0, and a good modulation scheme will
aim at approximating this state by a mixture of a finite
number of coherent states.

FIG. 3. Secret key rate versus distance, for a Gaussian channel
with transmittance T ¼ 10−0.02d and excess noise ξ ¼ 0.005.
Other parameters are the same as in Fig. 2.

FIG. 5. Secret key rate versus α, for a distance of 50 km and
excess noise of ξ ¼ 0.002. Other parameters are the same as
in Fig. 2.

FIG. 4. Secret key rate versus distance, for a Gaussian channel
with transmittance T ¼ 10−0.02d and excess noise ξ ¼ 0.01. Other
parameters are the same as in Fig. 2.
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Consider, for instance, a modulation where n coherent
states fjαkigk¼1…n are prepared with probability
fpkgk¼1…n. A possible example would be to take n
coherent states on a circle (phase-shift keying) of the form
jαeik½ð2πÞ=m�i, as considered, for instance, in Refs. [28,61],
or more general QAM as in Ref. [62]. The average
state prepared by Alice in the PM version is simply
ρn ¼

P
n
k¼1 pkjαkihαkj. In the EB version of the protocol,

Alice would prepare the initial bipartite pure state
jΦni ¼ ð1 ⊗ ffiffiffiffiffi

ρn
p ÞP∞

i¼0 jiijii, where jii is a Fock state
with i photons. This specific choice of purification is made
to maximize the value of the parameter Z in the covariance
matrix and therefore to maximize the resulting lower bound
on the secret key rate. In particular, the objective function
of our SDP will be tr(ðabþ a†b†ÞρAB) with ρAB ¼ ðid ⊗
EÞðjΦnihΦnjÞ.
We now need to write the constraints of our SDP.

The first constraint is simply that the partial trace
trBðρABÞ should coincide with the partial trace of the
initial state, trBðjΦnihΦnjÞ ¼ ρn. This yields the constraint
trBðρABÞ ¼ ρn. The second constraint corresponds to the
variance of Bob’s reduced state, and this is given, as
before, by tr(1 ⊗ ð1þ 2b†bÞX) ¼ v. The third constraint
requires slightly more work since one needs to relate the
correlations c observed in the PM protocol to a measure-
ment applied to ρAB.
For a general QAM, the best way to define c is similar to

what is done in the protocols with a Gaussian modulation:
It should be the average of the dot product between the
L-dimensional complex vector ðαk1 ;…; αkLÞ of states sent
by Alice and the L-dimensional complex vector ðβ1;…;βLÞ
of measurement results of Bob. Here, βl is the outcome of
the heterodyne detection of Eðjαklihαkl jÞ, which is the state
received by Bob for the lth use of the channel. This dot
product can be alternatively written as the expectation of
ᾱkβk, where the conjugation is a consequence of working
with complex variables. Let us denote by M1

∞ the observ-
able corresponding to heterodyne detection:

M1
∞ ¼ 1

π

Z
C
βjβihβjdβ:

Our definition of c is therefore

c ≔
Xn
k¼1

pkᾱktr(M1
∞EðjαkihαkjÞ):

We now need to express c as the expectation of an
observable applied to the state ρAB in the EB protocol.
First, we observe that, by construction, there exists an
n-outcome measurement fFkgk¼1…n on system A such
that outcome k prepares the coherent state jαki on the
second mode. To see this, let us introduce the purification
jΦ0iCB ¼ P

n
k¼1

ffiffiffiffiffi
pk

p jϕkiCjαkiB of ρn, where fjϕkigk¼1…n

is an orthonormal family. Both jΦniAB and jΦ0iCB are

purifications of ρn, so there exists an isometry V∶C → B
such that ðV ⊗ 1ÞjΦ0iCB ¼ jΦniAB, and one can choose
Fk¼VjϕkihϕkjV†. This measurement satisfies

P
n
k¼1Fk¼1

and hΦnjFk ⊗ 1jΦni ¼ pk. Let us define the following
complex-valued observable:Mn ¼

P
n
k¼1 αkFk. It correctly

yields αk when the state sent by Alice through the quantum
channel is jαki. We can finally use the fact that
trAðM†

nρABÞ ¼
P

n
k¼1 pkᾱkEðjαkihαkjÞ to express c as

c ¼ tr(ðM†
n ⊗ M1

∞ÞρAB):

With these notations in place, we are now ready to define
the SDP that computes the term tr(ðabþ a†b†ÞρAB) of the
covariance matrix of ρAB in the EB version of the protocol,
namely,

min tr(ðabþ a†b†ÞX);

such that

8>>><
>>>:

trBX ¼ ρn

tr(1 ⊗ ð1þ 2b†bÞX) ¼ v

tr(ðM†
n ⊗ M1

∞ÞX) ¼ c

X ≽ 0.

ð6Þ

The final constraint simply expresses that X (corresponding
to our unknown state ρAB) is a valid density matrix and
hence a positive semidefinite operator. Just as before, the
solution Z� of this program yields a covariance matrix

Γ� ¼
hVA12 Z�σZ
Z�σZ VB12

i
, where σZ ¼

h
1 0

0 −1
i
and VA is

now the variance of ρn, which can be used to compute the
upper bound χðY;EÞρ�AB on the Holevo information between
Bob and Eve.
Such a SDP can be solved efficiently, but its size appears

to grow quite rapidly with the number n of states in the
constellation. This is because the state ρAB is represented by
an nN × nN matrix, with n the dimension of Alice’s space
(spanned by n coherent states) and an N-dimensional
truncation of Bob’s Fock space. For large constellations,
a better idea might be to truncate Alice’s Hilbert space to
the first N Fock states, which would yield a matrix of
size N2 × N2.
It is instructive to consider what happens in the

limit n → ∞ where the constellation becomes exactly
Gaussian. In that case, the observable Mn tends to the
(rescaled and conjugated) heterodyne detection ðMγ

∞Þ† ¼
ð1=πÞ RC γβ̄jβihβjdβ as the constellation approaches the
thermal state ρðγÞ:

Mn⟶
ρn→ρðγÞ

ðMγ
∞Þ†:

This is because the purification (1⊗
ffiffiffiffiffiffiffiffiffi
ρðγÞp

)
P∞

i¼0 jiijii¼ffiffiffiffiffiffiffiffiffiffiffi
1−γ2

p P∞
k¼0 γ

kjkijki of a thermal state ρðγÞ is a two-mode
squeezed vacuum state, and performing a heterodyne
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detection (corresponding toM1
∞) on the first mode prepares

a coherent state jγᾱi for the second mode upon the
measurement result α. In that case, the third constraint
becomes trf½ðMγ

∞Þ† ⊗ M1
∞�Xg ¼ c. We also know that a

heterodyne detection is nothing but two noisy homodyne
detections, which gives

trf½ðMγ
∞Þ† ⊗ M1

∞�Xg ¼ γtrf½ðM1
∞Þ† ⊗ M1

∞�Xg

¼ γtr
�
1

2
ðq̂A ⊗ q̂B − p̂A ⊗ p̂BÞX

�

¼ γtr(ðabþ a†b†ÞX):

In other words, the objective function of the SDP is simply
a scalar multiple of the third constraint. As a consequence,
the solution is unique and given by γ−1c, which is indeed
the correct value of the covariance for a CVQKD protocol
with Gaussian modulation [49].
Since the limit of the SDP for large constellations

(n → ∞) recovers the value of the secret key rate for
protocols with a Gaussian modulation, it is tempting to
exploit continuity arguments to show that the secret key
rate of CVQKD protocols with large constellations is close
to that of Gaussian protocols. To make this case quanti-
tative, one must study the stability of the SDP of Eq. (6)
against small perturbations in the constraints, namely, when
ρn approximates ρðγÞ andMn approximatesMγ

∞ in the first
and third constraints, respectively. Such questions have
been studied in the literature on complex optimization, for
instance, in Ref. [63], but are beyond the scope of the
present work.

VI. DISCUSSION AND PERSPECTIVES

In this work, we give a general technique to derive a
lower bound on the secret key rate of CVQKD with a
discrete modulation and apply it to the case of the QPSK
modulation. We do not expect this bound to be tight, and
we believe that it could likely be improved; however, this
improvement would require fundamentally new proof
techniques. The bound is loose because it crucially relies
on Gaussian optimality, meaning that χðY;EÞ is computed
for the Gaussian state with the same covariance matrix as
the one returned by the SDP. That state, however, is non-
Gaussian, and χðY;EÞ is therefore overestimated. This
result is clear, for instance, in the QPSK protocol because
ρA is a mixture of four coherent states and therefore non-
Gaussian. The issue is that the SDP is not looking for a state
that would yield the maximum value of χðY;EÞ but rather
for a state with a very specific covariance matrix. At the
same time, this restriction disappears when the size of the
constellation increases since the SDP bound converges to
the optimal secret key rate in the limit of a Gaussian
modulation.
A remaining open question in the field of CVQKD is

whether one can provide a composable security proof

against general attacks for protocols with a discrete
modulation. We do not get such a composable security
proof here because we do not analyze the parameter
estimation procedure. While parameter estimation is rather
straightforward for BB84-like protocols, the situation is
more complicated for continuous variables because we
need to obtain a confidence region for parameters, such as
the variance of Bob’s state, which are unbounded. Because
of that, standard statistical tools to get tail bounds on
distributions of random variables such as the Chernoff
bound or variants do not apply anymore. A solution is to
exploit some specific symmetry of the protocol in phase
space as in Ref. [16]; however, discrete modulations break
this symmetry, and a new approach is therefore needed. At
the same time, the fact that Bob’s detection is rotationally
invariant gives us hope that a rigorous analysis of the
parameter estimation procedure should be possible.
Combining such an analysis with our results would then
yield a composable security proof that is valid against
collective attacks, and the exponential de Finetti theorem of
Renner and Cirac would then imply a composable security
proof that is valid against general attacks [37], albeit with
pessimistic bounds in the finite-size regime. This result
points to two important directions for future work: analyz-
ing the parameter estimation procedure of protocols with a
discrete modulation and improving on the exponential de
Finetti theorem of Ref. [37].

VII. CONCLUSION

In this work, we focus on the CVQKD protocol with a
QPSK modulation and establish a lower bound on its secret
key rate in the asymptotic limit. This bound is obtained by
solving a semidefinite program that computes the covari-
ance matrix of the state shared by Alice and Bob in the
entanglement-based version of the protocol. While our
bounds are likely not tight, they already show that secret
key rates can be distributed over more than 100 km for
realistic values of the excess noise. We also show how the
same technique can be applied to analyze the security of
more complicated QAM. This method is a major step
towards the full security of CVQKD with a discrete
modulation. If the parameter estimation procedure of such
protocols could be analyzed rigorously, our result would
imply a composable security proof valid against general
attacks. We leave this question for future work.
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