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We study a large-N tensor model with OðNÞ3 symmetry containing two flavors of Majorana fermions,
ψabc
1 and ψabc

2 . We also study its random counterpart consisting of two coupled Sachdev-Ye-Kitaev (SYK)
models, each containing NSYK Majorana fermions. In these models, we assume tetrahedral quartic
Hamiltonians which depend on a real coupling parameter α. We find a duality relation between two
Hamiltonians with different values of α, which allows us to restrict the model to the range of −1 ≤ α ≤ 1=3.
The scaling dimension of the fermion number operator Q ¼ iψabc

1 ψabc
2 is complex and of the form 1=2þ

ifðαÞ in the range −1 ≤ α < 0, indicating an instability of the conformal phase. Using Schwinger-Dyson
equations to solve for the Green functions, we show that in the true low-temperature phase this operator
acquires an expectation value, which demonstrates the breaking of an antiunitary particle-hole symmetry
and other discrete symmetries. We also calculate spectra of the coupled SYK models for values of NSYK

where exact diagonalizations are possible. For negative α, we find a gap separating the two lowest energy
states from the rest of the spectrum, leading to an exponential decay of the zero-temperature correlation
functions. For NSYK divisible by 4, the two lowest states have a small splitting. They become degenerate in
the large-NSYK limit, as expected from the spontaneous breaking of a Z2 symmetry.

DOI: 10.1103/PhysRevX.9.021043 Subject Areas: Condensed Matter Physics,
Particles and Fields, String Theory

I. INTRODUCTION AND SUMMARY

During the past several years, there has been a flurry of
activity on fermionic quantum-mechanical models which
are exactly solvable in the large-N limit because they are
dominated by the so-called melonic Feynman diagrams.
Work in this direction began with the Sachdev-Ye-Kitaev
(SYK) models [1–4], which have random couplings. More
recently, the tensor quantum-mechanical models [5,6],
which have continuous symmetry groups and no random-
ness, were constructed following the body of research on
melonic large-N tensor models in d ¼ 0 [7–13] (for
reviews, see Refs. [14–17]). Both the random and non-
random quantum-mechanical models are solvable via the
melonic Schwinger-Dyson equations [4,18–21], which
indicate the existence of the nearly conformal phase which
saturates the chaos bound. They shed new light on the
dynamics of two-dimensional black holes [22–25].

These models may also have applications to a range
of problems in condensed matter physics, including the
strange metals [3,26–32]. With such applications in mind,
it is interesting to study various dynamical phenomena in
the SYK and tensor models. For example, phase transitions
in such models have been studied in Refs. [33–35]. In this
paper, we identify a simple setting where spontaneous
symmetry breaking can occur: two SYK or tensor models
coupled via a quartic interaction. We take this interaction to
be purely melonic (i.e., tetrahedral in the tensor model case)
so that the symmetry breaking can be deduced from the
large-N Schwinger-Dyson equations.
In the random case, we study two coupled SYK models

with the Hamiltonian

H ¼ 1

4!
Jijklðχi1χj1χk1χl1 þ χi2χ

j
2χ

k
2χ

l
2 þ 6αχi1χ

j
1χ

k
2χ

l
2Þ; ð1:1Þ

where, as usual, all repeated indices are summed over.
The Majorana fermions are χi1 and χ

i
2 with i ¼ 1;…; NSYK,

and Jijkl is a fully antisymmetric real tensor with a
Gaussian distribution [36]. We show that the real para-
meter α may be restricted to the range −1 ≤ α ≤ 1=3 by a
duality symmetry. This quartic Hamiltonian, which couples
2NSYK Majorana fermions, is invariant under an antiunitary
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particle-hole symmetry [37–42] generated by P; see
Eq. (3.11). However, we show that for −1 ≤ α < 0 this
Z2 symmetry is spontaneously broken when NSYK is
divisible by 4 and taken to infinity [43]. In this limit, the
fermion number operatorQ ¼ iχj1χ

j
2 acquires an expectation

value. Such an expectation value leads to a gapped phase in
twocoupledSYKmodels similar to that foundbyMaldacena
and Qi [44] (for further results, see Refs. [45]); however,
insteadof the quartic theyassumedaquadratic coupling term
μQ which breaks the Z2 symmetry explicitly. This gapped
phase was argued to be dual to a traversable wormhole in
two-dimensional gravity [46,47], and our model (1.1) may
have a similar interpretation for −1 ≤ α < 0.
As we show in Sec. II D, a sign of instability of the

conformal phase for −1 ≤ α < 0 is the presence of a
complex scaling dimensions of the form 1=2þ ifðαÞ.
The appearance of complex dimensions with real part
equal to d=2 for some single-trace operators is a common
phenomenon in large-N models [48–52]. Via the AdS/CFT
correspondence [53–55], such operators are related to
scalar fields which violate the Breitenlohner-Freedman

stability bound [56]. The fact that α ¼ 0 is the lower edge
of the conformal window is related to the appearance of the
marginal double-trace operator Q2 there. For 0 < α ≤ 1=3,
there are actually two fixed points connected by the flow
of the coefficient of Q2, but at α ¼ 0 they merge and
annihilate, as explained, e.g., in Refs. [57,58].
The complex scaling dimensions have been observed

in bosonic tensor models [59,60] as well as in a complex
fermionic model introduced in Ref. [6] following the work
in Ref. [61]. This fermionic model is often called “bipa-
rtite” because of the two types of interaction vertices (black
and white) arranged in an alternating fashion, since the
propagator must connect different vertices. The bipartite
model was further studied in Ref. [17] and shown to
possess a complex scaling dimension of the operator
ψ̄abcψabc. Here we generalize this tensor model to one
with a continuous parameter α in such a way that the
bipartite model corresponds to α ¼ −1. This OðNÞ3 sym-
metric model for Majorana fermions ψabc

1 and ψabc
2 , with

a; b; c ¼ 1;…; N, has Hamiltonian

H ¼ g
4
ðψa1b1c1

1 ψa1b2c2
1 ψa2b1c2

1 ψa2b2c1
1 þ ψa1b1c1

2 ψa1b2c2
2 ψa2b1c2

2 ψa2b2c1
2 Þ

þ gα
2
ðψa1b1c1

1 ψa1b2c2
1 ψa2b1c2

2 ψa2b2c1
2 þ ψa1b1c1

1 ψa1b2c2
2 ψa2b1c2

1 ψa2b2c1
2 þ ψa1b1c1

1 ψa1b2c2
2 ψa2b1c2

2 ψa2b2c1
1 Þ: ð1:2Þ

For α ¼ 0, this Hamiltonian describes two decoupled copies
of the basic Majorana OðNÞ3 model with the tetrahedral
interaction [6]. The coupling term proportional to α pre-
serves its discrete symmetries and also has the tetrahedral
structure; i.e., every two tensors have only one index con-
traction, so that the model (1.2) is melonic. It is the tensor
counterpart of the coupled SYK model (1.1), and in the
large-N limit, it is governed by the same Schwinger-Dyson
equations for the two-point and four-point functions [62].
In Sec. II, we derive the Schwinger-Dyson equations and

use them to study the scaling dimensions of variousOðNÞ3-
invariant fermion bilinears. We also exhibit a duality
symmetry which allows us to restrict the model to the
range −1 ≤ α ≤ 1=3. The nearly conformal phase of the
theory is stable for 0 ≤ α ≤ 1=3, but it is unstable for −1 ≤
α < 0 as signaled by the complex scaling dimension of
operator iψabc

1 ψabc
2 . The true behavior of the theory with

negative α is the spontaneous breaking of the particle-hole
Z2 symmetry, as we demonstrate in Sec. III. In Secs. III A
and III B, we numerically study the large-N Schwinger-
Dyson equations and exhibit the exponential decay of
correlators at low temperature. We also ascertain the
existence of second-order phase transitions by numerically
computing the free energy. In Sec. III C, we study the
numerical spectrum of the coupled SYK model (1.1) via
exact diagonalizations at finite NSYK. We observe that for

−1 ≤ α < 0 there is a gap separating the two lowest energy
states from the rest of the spectrum. For NSYK divisible by
4, there is also a small gap between the two lowest states,
consistent with the fact that the ground state must be
nondegenerate [37–42], but this gap decreases as NSYK is
increased. In the large-NSYK limit, the two lowest states
become degenerate and give rise to the two inequivalent
vacua, which are present due to the spontaneous breaking
of the Z2 particle-hole symmetry.
These phenomena imply that the low-temperature

entropy is large for 0 ≤ α ≤ 1=3 but vanishes for −1 ≤
α < 0. It is tempting to suggest that the latter case is dual to
a wormhole. This sensitivity to the sign of the interaction
coupling two CFTs is like in Ref. [46], where the traversable
wormhole appears only for one of the signs [63].

II. SCHWINGER-DYSON EQUATIONS AND
SCALING DIMENSIONS

In this section, we study the two-flavor tensor model
with Hamiltonian (1.2) [64]. It can be compactly written in
the form

H¼ 1

4!
JIJKLðψ I

1ψ
J
1ψ

K
1 ψ

L
1 þψ I

2ψ
J
2ψ

K
2 ψ

L
2 þ6αψ I

1ψ
J
1ψ

K
2 ψ

L
2 Þ;
ð2:1Þ
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where the capital letters are a shorthand notation for three
tensor indices: I ¼ a1b1c1, J ¼ a2b2c2, etc., and the non-
random tetrahedral tensor coupling consists of six terms

JIJKL ¼ g
X
σ∈S3

sgnðσÞδa1aσð2Þδb1bσð3Þδc1cσð4Þδbσð2Þbσð4Þδcσð2Þcσð3Þ

× δaσð3Þaσð4Þ : ð2:2Þ

The tensor JIJKL is antisymmetric under permutation of
indices I, J, K, L and has a tetrahedron topology as shown
in Fig. 1. In the form (2.1), the tensor model Hamiltonian is
transparently similar to the SYK one (1.1). In terms of the
complex tensors,

ψ I ¼ 1ffiffiffi
2

p ðψ I
1 þ iψ I

2Þ; ψ̄ I ¼ 1ffiffiffi
2

p ðψ I
1 − iψ I

2Þ; ð2:3Þ

the Hamiltonian (2.1) assumes the form

H ¼ 1

4!
JIJKL

�
1 − 3α

2
ðψ IψJψKψL þ ψ̄ Iψ̄Jψ̄Kψ̄LÞ

þ 3ð1þ αÞψ̄ Iψ̄JψKψL

�
: ð2:4Þ

The Hamiltonian (2.1) is invariant under the OðNÞ3
transformation

ψabc
i → Aa

a0B
b
b0C

c
c0ψ

a0b0c0
i ; ð2:5Þ

where A, B, and C are orthogonal matrices. In addition, it
has a particle-holeZ2 symmetry [66] generated by [37–42],

P ¼ K
Y
I

ðψ I þ ψ̄ IÞ; ð2:6Þ

where K is the antiunitary operator which acts by

KiK ¼ −i; Kψ IK ¼ ψ I; Kψ̄ IK ¼ ψ̄ I: ð2:7Þ
The fermion number operator

Q ¼ iψ I
1ψ

I
2 ¼

1

2
½ψ̄ I;ψ I� ð2:8Þ

does not in general commute with H, but it is conserved
mod 4. The particle-hole symmetry is not anomalous only
if the total number of fermions 2N3 is a multiple of 8, i.e.,
when N is even [37–42]. Even in this case, we argue that in
the large-N limit, the symmetry is spontaneously broken
for −1 ≤ α < 0 because Q acquires an expectation value.

A. Duality in the Two-Flavor Models

In this section, we show that the two-flavor models with
different values of α can be equivalent. We demonstrate this
explicitly in the tensor model case (2.1), but the SYK case
(1.1) works analogously. Let us perform the following
transformation on the Majorana fermions:

ψ I
1 ¼

1ffiffiffi
2

p ðψ̃ I
1 þ ψ̃ I

2Þ; ψ I
2 ¼

1ffiffiffi
2

p ðψ̃ I
1 − ψ̃ I

2Þ: ð2:9Þ

It preserves the anticommutation relations and turns the
Hamiltonian (2.1) into [67]

H ¼ 1

4!
JIJKL

1þ 3α

2

�
ψ̃ I
1ψ̃

J
1ψ̃

K
1 ψ̃

L
1 þ ψ̃ I

2ψ̃
J
2ψ̃

K
2 ψ̃

L
2

þ 6ð1 − αÞ
1þ 3α

ψ̃ I
1ψ̃

J
1ψ̃

K
2 ψ̃

L
2

�
: ð2:10Þ

Thus, the energy levels are symmetric under the duality
transformation

J →
1þ 3α

2
J; α →

1 − α

1þ 3α
: ð2:11Þ

Defining

α̃ ¼ 1

2
ð1þ 3αÞ; J̃ ¼ J

ffiffiffiffiffiffi
jα̃j

p
; ð2:12Þ

we find that the duality transformation

α̃ → 1=α̃; J̃ → J̃ ð2:13Þ

acts on the rescaled Hamiltonian H̃ ¼ H=
ffiffiffiffiffiffijα̃jp

: [68]

H̃ ¼ 1

4!
J̃IJKL

�
ψ̃ I
1ψ̃

J
1ψ̃

K
1 ψ̃

L
1 þ ψ̃ I

2ψ̃
J
2ψ̃

K
2 ψ̃

L
2

þ
�
−2þ 4

α̃

�
ψ̃ I
1ψ̃

J
1ψ̃

K
2 ψ̃

L
2

�
: ð2:14Þ

Therefore, the fundamental domain is −1 ≤ α̃ ≤ 1. Thus,
we may restrict α to the domain

−1 ≤ α ≤
1

3
: ð2:15Þ

The values of α outside of this domain are related to it by
the duality. For α ¼ −1, the transformation (2.11) maps the
theory into itself, but with H → −H.

FIG. 1. Pictorial representation of the antisymmetric tensor JIJKL.
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In fact, the case α ¼ −1 corresponds to the complex
bipartite model [17,61]:

Hα¼−1 ¼ 2
1

4!
JIJKLðψ IψJψKψL þ ψ̄ Iψ̄Jψ̄Kψ̄LÞ; ð2:16Þ

where we introduce the complex tensor ψ I ¼ ð1= ffiffiffi
2

p Þ
ðψ I

1 þ iψ I
2Þ.

The theory with α ¼ 1=3 is mapped into itself by
Eq. (2.11). In this case, the Hamiltonian is

Hα¼1
3
¼ 4

1

4!
JIJKLψ̄ Iψ̄JψKψL; ð2:17Þ

which has OðNÞ3 × Uð1Þ symmetry. In the three-index
notation

Hα¼1
3
¼ g

3
ðψ̄a1b1c1 ψ̄a1b2c2ψa2b1c2ψa2b2c1

− ψ̄a1b1c1 ψ̄a2b1c2ψa1b2c2ψa2b2c1

þ ψ̄a1b1c1 ψ̄a2b2c1ψa1b2c2ψa2b1c2Þ: ð2:18Þ
This Hamiltonian is different from that of
theSUðNÞ2 ×OðNÞ ×Uð1Þ symmetric complex tensor
model [6]; which involves taking only the first term
in Eq. (2.18).

B. Feynman rules and two-point functions

At first we list the Feynman rules which follow from
the Hamiltonian (1.2). In Figs. 2 and 3, we define the
propagators and interaction vertices for the given two-
flavor tensor model. Since the interaction terms have a
tetrahedral tensor structure, the melonic Feynman diagrams
dominate in the large-N limit. Let us define bare two-point
functions

G11ðτ12Þ ¼
1

N3
hTψ I

1ðτ1Þψ I
1ðτ2Þi0;

G22ðτ12Þ ¼
1

N3
hTψ I

2ðτ1Þψ I
2ðτ2Þi0; ð2:19Þ

where the sum over indices I is assumed. The leading
melonic correction to the full two-point function G11 is
represented in Fig. 4. Using that

JIJKLJIJKL ¼ g2ð6N6 − 18N4 þ 12N3Þ; ð2:20Þ

we find

G11ðτ12Þ ¼ G11ðτ12Þ þ g2N3

Z
dτ3dτ4G11ðτ13Þ

× ½G11ðτ34Þ3 þ 3α2G11ðτ34ÞG22ðτ34Þ2�
×G11ðτ42Þ þ � � � : ð2:21Þ

A similar expression can be derived forG22. Since there is a
symmetry ψ1 ↔ ψ2, we can assume that G11 ¼ G22 ¼ G
and obtain a Schwinger-Dyson equation for the full two-
point function (see Fig. 5)

Gðτ12Þ ¼ Gðτ12Þ þ ð1þ 3α2Þg2N3

×
Z

dτ3dτ4Gðτ13ÞGðτ34Þ3Gðτ42Þ; ð2:22Þ

where GðτÞ ¼ 1
2
sgnðτÞ is the bare propagator.

In writing this Schwinger-Dyson equation, we implicitly
make an important assumption that the two-point functions

G12ðτ12Þ ¼
1

N3
hTψ I

1ðτ1Þψ I
2ðτ2Þi;

G21ðτ12Þ ¼
1

N3
hTψ I

2ðτ1Þψ I
1ðτ2Þi ð2:23Þ

are zero G12ðτÞ ¼ G21ðτÞ ¼ 0, due to the Z2 symmetry
ψ2 → −ψ2. As we see below, the Z2 symmetry can be
spontaneously broken for some range of parameter α and
dimensionless coupling βJ, where β ¼ 1=T is the inverse
temperature and J2 ¼ g2N3 is the effective coupling
constant.

FIG. 2. Bare propagators for the Majorana tensor fields. Each thick black solid or dashed line carries three tensor indices a, b, c.

FIG. 3. Interaction vertices. FIG. 4. The leading melonic correction to the full two-point
function G11.

FIG. 5. Schwinger-Dyson equation for the full two-point
function Gðτ12Þ.
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Let us first assume that Z2 symmetry is not broken
and analyze the Schwinger-Dyson (SD) equation (2.22).
At large coupling constant βJ and intermediate distances
1=J ≪ τ ≪ β, the solution to this equation is given by

GðτÞ ¼
�

1

4πð1þ 3α2Þ
�1

4 sgnðτÞ
jJτj1=2 : ð2:24Þ

C. Scaling dimensions of bilinear operators

We can use the large-N Schwinger-Dyson equations for
the three-point functions to deduce the scaling dimensions
of four families of bilinear operators:

O2nþ1
1 ¼ ψ1∂2nþ1

τ ψ1 þ ψ2∂2nþ1
τ ψ2;

O2nþ1
2 ¼ ψ1∂2nþ1

τ ψ1 − ψ2∂2nþ1
τ ψ2;

O2nþ1
3 ¼ ψ1∂2nþ1

τ ψ2 þ ψ2∂2nþ1
τ ψ1;

O2n
4 ¼ ψ1∂2n

τ ψ2 − ψ2∂2n
τ ψ1; ð2:25Þ

where n ¼ 0; 1; 2;…, and the sum over tensor indices is
assumed. [69] Each of these operators is invariant under the
OðNÞ3 symmetry, but they are distinguished by their
transformations to discrete symmetry.
We take some operator OðτÞ and consider two three-

point functions of the form

v11ðτ1; τ2; τ0Þ ¼ hψ I
1ðτ1Þψ I

1ðτ2ÞOðτ0Þi;
v22ðτ1; τ2; τ0Þ ¼ hψ I

2ðτ1Þψ I
2ðτ2ÞOðτ0Þi; ð2:26Þ

where we assume summation over the index I. In the large-
N limit, the functions (2.26) obey the melonic Bethe-
Salpeter equations. They are schematically represented in
Fig. 6. In the conformal limit, one can ignore the first
diagram on the right and obtain

�
v11
v22

�
¼

�
K11;11 K11;22

K22;11 K22;22

�
�
�
v11
v22

�
; ð2:27Þ

where assuming that G11 ¼ G22 ¼ G, we find

K11;11 ¼ K22;22 ¼
1þ α2

1þ 3α2
Kc;

K11;22 ¼ K22;11 ¼
2α2

1þ 3α2
Kc; ð2:28Þ

and Kc is the kernel of the SYK model defined in
conformal limit as

Kcðτ1; τ2; τ3; τ4Þ ¼ −
3

4π

sgnðτ13Þsgnðτ24Þ
jτ13j2Δjτ24j2Δjτ34j2−4Δ

; Δ ¼ 1

4
:

ð2:29Þ

An arbitrary conformal three-point function of the form
(2.26) with an operator of scaling dimension h has the form

vhðτ1; τ2; τ0Þ ¼
csgnðτ12Þ

jτ01jhjτ02jhjτ12j2Δ−h
; ð2:30Þ

and obviously must be antisymmetric under τ1 ↔ τ2. This
three-point function is an eigenvector of the kernel Kc with
the eigenvalue gðhÞ: [70]

gðhÞ
Z

dτ3dτ4Kcðτ1;τ2;τ3;τ4Þvhðτ3;τ4;τ0Þ¼ vhðτ1;τ2;τ0Þ:

ð2:31Þ

To solve Eq. (2.27), one has to find eigenvalues of the
matrix and equate them to unity, thus obtaining an equation
for possible scaling dimensions. It easy to see that this
matrix acquires a diagonal form in the basis of vectors
v11 þ v22 and v11 − v22, and we find two equations for the
scaling dimensions

gAðhÞ ¼ 1;
1 − α2

1þ 3α2
gAðhÞ ¼ 1;

gAðhÞ ¼ −
3

2

tan½π
2
ðh − 1

2
Þ�

h − 1=2
: ð2:32Þ

The scaling dimensions of the operator O2nþ1
1 ¼

ψ1∂2nþ1
τ ψ1 þ ψ2∂2nþ1

τ ψ2 satisfy gAðhÞ ¼ 1 and are inde-
pendent of α. They are given by the well-known series
h ¼ 2.00; 3.77; 5.68; 7.63; 9.60;…, which approaches
2nþ 3

2
. These are the same scaling dimensions as in the

basic OðNÞ3 tensor model [6] and the SYK model. On the
other hand, the scaling dimensions of operators O2nþ1

2 ¼
ψ1∂2nþ1

τ ψ1 − ψ2∂2nþ1
τ ψ2 are given by ½ð1−α2Þ=ð1þ3α2Þ�

gAðhÞ¼1 and depend on α. As a check, we note that for
α ¼ 0 the spectra of O2 and O1 are the same; this is as
expected since the two flavors are decoupled.
Now consider the last possible three-point function

v12ðτ1; τ2; τ0Þ ¼ hψ I
1ðτ1Þψ I

2ðτ2ÞOðτ0Þi: ð2:33ÞFIG. 6. The Bethe-Salpeter equations for the three-point func-
tions v11 and v22.
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The melonic Bethe-Salpeter equation for this three-point
function is represented in Fig. 7, and in the conformal limit,
neglecting the first diagram on the right, we get

v12ðτ1; τ2; τ0Þ ¼
Z

dτ3dτ4
2

1þ 3α2
½αKcðτ1; τ2; τ3; τ4Þ

− α2Kcðτ1; τ2; τ4; τ3Þ�v12ðτ3; τ4; τ0Þ:
ð2:34Þ

In this case, there are two general possibilities for the
conformal three-point function, namely, the antisymmetric
and symmetric cases

vAhðτ1; τ2; τ0Þ ¼
csgnðτ12Þ

jτ01jhjτ02jhjτ12j2Δ−h
;

vShðτ1; τ2; τ0Þ ¼
csgnðτ01Þsgnðτ02Þ
jτ01jhjτ02jhjτ12j2Δ−h

: ð2:35Þ

Therefore, we find equations which determine the spectra
of antisymmetric and symmetric operators

2ðαþ α2Þ
1þ 3α2

gAðhÞ ¼ 1;
6ðα − α2Þ
1þ 3α2

gSðhÞ ¼ 1;

gSðhÞ ¼ −
1

2

tan½π
2
ðhþ 1

2
Þ�

h − 1=2
: ð2:36Þ

The scaling dimensions of operators O2nþ1
3 satisfy the first

equation above and O2n
4 the second. We can check this

result by comparing with the results for the complex
bipartite fermion model (2.16). It was found [17] that
the scaling dimensions of O2n

4 are determined by

gsymðhÞ ¼
3

2

tan½π
2
ðhþ 1

2
Þ�

h − 1=2
¼ 1; ð2:37Þ

and indeed for α ¼ −1 we get f½6ðα−α2Þ�=ð1þ3α2ÞggS
ðhÞ¼gsymðhÞ.
To summarize, we find that scaling dimensions of the

operators (2.25) can be obtained by solving equations
giðhÞ ¼ 1, where

½g1ðhÞ;g2ðhÞ;g3ðhÞ;g4ðhÞ�

¼
�
gAðhÞ;

1−α2

1þ3α2
gAðhÞ;

2αð1þαÞ
1þ3α2

gAðhÞ;
6αð1−αÞ
1þ3α2

gSðhÞ
�
:

ð2:38Þ

The duality relation (2.11) is reflected in the behavior of
functions giðhÞ, which define scaling dimensions of the
operators Oi. Using Eqs. (2.38) and (2.11), one finds

½g1ðhÞ; g2ðhÞ; g3ðhÞ; g4ðhÞ� → ½g1ðhÞ; g3ðhÞ; g2ðhÞ; g4ðhÞ�:
ð2:39Þ

Indeed, under ψ → ψ̃, the operators Oi transform
as ðO1; O2; O3; O4Þ → ðO1; O3; O2; O4Þ.

D. Complex scaling dimensions

In this section, we examine if there exist any complex
solutions of the equations giðhÞ ¼ 1 defined in Eq. (2.38).
If such a complex root exists, then a conformal primary has
a complex scaling dimension, which leads to a destabiliza-
tion of the model. Indeed, a complex scaling dimension
of the form 1

2
� if corresponds to a scalar fields in AdS2

whose m2 is below the Breitenlohner-Freedman bound

m2
BF ¼ − 1

4
. Since Δ ¼ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þm2

q
[53–55],

m2 ¼ −
1

4
− f2 < m2

BF: ð2:40Þ

In such a case, one may expect “tachyon condensation” in
AdS space. In the dual CFT, the operator dual to the
tachyon acquires an expectation value leading to symmetry
breaking. We obtain some support for this picture.
First of all, we notice that the functions gAðhÞ and gSðhÞ

are real only if h is real or h ¼ 1
2
þ if for real f. Next, it is

easy to check that

−
3π

4
≤ gAð1=2þ ifÞ < 0; −∞ ≤ gSð1=2þ ifÞ < 0:

ð2:41Þ

Using the fact that − 1
3
≤ ½ð1 − α2Þ=ð1þ 3α2Þ� ≤ 1 (and the

same for ½2αð1þ αÞ�=ð1þ 3α2Þ due to duality), we con-
clude that equations gið1=2þ ifÞ ¼ 1 for i ¼ 1, 2, 3 do not
have solutions; thus, the scaling dimensions of the oper-
ators O1, O2, and O3 are always real.
On the other hand, since f½6αð1 − αÞ�=ð1þ 3α2Þg < 0

for negative α, the equation g4ðhÞ ¼ 1 has solutions
h ¼ 1=2� ifðαÞ, where fðαÞ can be found from the
equation

f tanhðπf=2Þ ¼ −
3αð1 − αÞ
1þ 3α2

: ð2:42Þ

The plot of fðαÞ is shown in Fig. 8. For slightly negative α,
we find

fðαÞ ¼
ffiffiffiffiffiffiffiffiffi
−6α
π

r
½1þOðαÞ�; ð2:43Þ

FIG. 7. The Bethe-Salpeter equations for the three-point
functions v12.
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while fð−1Þ ≈ 1.5251 in agreement with the result for the
bipartite model found in Ref. [17]. Thus, for −1 ≤ α < 0
there is an operator with the complex scaling dimension
h ¼ 1=2þ ifðαÞ or its complex conjugate: the fermion
number operatorQ ¼ iO0

4. The complex scaling dimension
makes the conformal large-N limit unstable.
For 0 ≤ α ≤ 1=3, there are no complex solutions of

g4ðhÞ ¼ 1. The two lowest positive real solutions h�ðαÞ
satisfy hþ þ h− ¼ 1. These two roots are the scaling
dimensions of operator Q in two different large-N CFTs
[71], as we explain below. We find

hþðαÞ ¼ 1=2þ
ffiffiffiffiffiffi
6α

π

r
þ � � � ð2:44Þ

when α is small and positive, and hþð1=3Þ ¼ 1. The fact
that α ¼ 0 is the lower edge of the conformal window is
related to the behavior of the scaling dimension of the
“double-trace” operator Q2. In the large-N limit, ΔQ2 ¼
2ΔQ. In one of the CFTs, ΔQ ¼ hþ so that ΔQ2 > 1. Since
the operator Q2 is irrelevant, this CFT is stable. There is
Renormalization Group flow leading to it, which originates
from another large-N fixed point where Q2 is relevant
[72,73]. At this UV fixed point,ΔQ ¼ h−. When α ¼ 0, the
two fixed points merge and annihilate, as in various other
theories, e.g., Refs. [48,49,57,58]. For −1 ≤ α < 0, there
are two different theories containing complex dimension
ΔQ ¼ 1=2þ ifðαÞ or its complex conjugate. They may be
formally regarded as “complex CFTs” [52], but we see in
the next section that their true physics includes symmetry
breaking, which leads to a gap in the energy spectrum.

III. SYMMETRY BREAKING

In Sec. II D, we show that for the coupled tensor model
(1.2) in the range−1 ≤ α < 0, the fermion number operator
Q ¼ iψ I

1ψ
I
2 has a complex scaling dimension, signaling an

instability of the conformal phase of the model. In this
section, we show that this operator acquires a vacuum

expectation value (VEV) in the true low-temperature phase
of the large-N model. It is, therefore, tempting to make the
following conjecture.
Conjecture. If the assumption of conformal invariance

in a large-N theory leads to a single-trace operator with a
complex scaling dimension of the form d=2þ if, then in
the true low-temperature phase, this operator acquires
a VEV.
In our case, the OðNÞ3 symmetry implies that

hiψ I
1ψ

J
2i ¼ δIJA; ð3:1Þ

where we use the shorthand notation I ¼ abc, and A is of
order 1 in the large-N limit.
This VEV leads to an exponential decay of correlation

functions and signifies a gap in the energy spectrum.
Furthermore, the VEV (3.1) implies that various discrete
symmetries, including the particle-hole symmetry (2.6),
the interchange symmetry between ψ1, ψ2, and the reflec-
tion symmetry ψ2 → −ψ2, are spontaneously broken.
Therefore, one should expect a second-order phase tran-
sition between the broken and unbroken symmetry phases.
In addition, the spontaneously broken symmetry also
implies a ground-state degeneracy in the large-N energy
spectrum [74].
In this section, we extensively analyze the phenomenon

of symmetry breaking, sometimes using the SYK counter-
part (1.1) of theOðNÞ3 tensor model (1.2). The two models
have many similarities at large N: They share the same
Schwinger-Dyson equations and the spectra of bilinear
operators. The SYK formulation, however, is advantageous
for the purpose of exact numerical diagonalizations: We
can study cases where the integerNSYK is not the cube of an
integer.
Let us first demonstrate the connection between the tensor

model and the SYK counterpart. For the one-flavor OðNÞ3
tensor model, the analogous SYK model has the random
tensor Jijkl which is fully antisymmetric. The mixed term

Aijklχ
i
1χ

j
1χ

k
2χ

l
2 has only the symmetries

Aijkl ¼ −Ajikl ¼ −Aijlk ¼ Aklij; ð3:2Þ

which are the same as for the Riemann tensor. However, the
full interaction term following from Eq. (1.2) is

Aijklðχi1χj1χk2χl2 þ χi1χ
j
2χ

k
1χ

l
2 þ χi1χ

j
2χ

k
2χ

l
1Þ

¼ ðAijkl þ Ailjk þ AikljÞχi1χj1χk2χl2: ð3:3Þ

Since Aijkl þ Ailjk þ Aiklj is fully antisymmetric due to
Eq. (3.2), the mixed term has a fully antisymmetric random
coupling.We assume that it is proportional to the coupling in
the diagonal term of Eq. (1.2), and are thus led to the random
model (1.1). This model is the special M ¼ 2 case of a
periodic SYK chain model

FIG. 8. Imaginary part of the scaling dimension of the fermion
number operator Q. At α ¼ −1, it reaches its maximum value of
approximately 1.5251.
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Hchain ¼
1

4!
Jijkl

XM
x¼1

ðχixχjxχkxχlx þ 3αχixχ
j
xχkxþ1χ

l
xþ1Þ; ð3:4Þ

where the integer x labels the lattice site, and χiMþ1 ≡ χi1.
This Hamiltonian can be obtained from the model of
Ref. [26] by identifying the separate random couplings up
to a factor of α.
Introducing the complex combination ψ j ¼ ð1= ffiffiffi

2
p Þ

ðχj1 þ iχj2Þ, we may write the Hamiltonian (1.1) as

H ¼ 1

4!
Jijkl

�
1 − 3α

2
ðψ iψ jψkψ l þ ψ̄ iψ̄ jψ̄kψ̄ lÞ

þ 3ð1þ αÞψ̄ iψ̄ jψkψ l

�
: ð3:5Þ

As usual, we assume that each variable Jijkl has a Gaussian
distribution with variance 6J2N−3

SYK. We typically state
energies in units of J or equivalently set J ¼ 1.
The duality symmetry described in Sec. II A applies to

the coupled SYKmodel (1.1) and again allows us to restrict
α to the range from −1 to 1=3. There are two interesting
limiting cases. For α ¼ −1, the transformation (2.11) maps
H → −H. This means that for any random choice of Jijkl,
the energy spectrum is exactly symmetric under E → −E.
This can be seen in the histograms of the spectrum shown in
Fig. 18; in particular, there are many states whose energy is
exactly zero. For α ¼ −1, the model is a random counter-
part of the complex bipartite model:

Hα¼−1 ¼
2

4!
Jijklðψ iψ jψkψ l þ ψ̄ iψ̄ jψ̄kψ̄ lÞ: ð3:6Þ

The fermion number operator

Q ¼ iχj1χ
j
2 ¼

1

2
½ψ̄ j;ψ j� ð3:7Þ

does not in general commute with H, but it is conserved
mod 4, just like in the Maldacena-Qi model [45]. For
α ¼ 1=3, however, we find the Hamiltonian

Hα¼1
3
¼ 4

4!
Jijklψ̄ iψ̄ jψkψ l; ½Q;Hα¼1

3
� ¼ 0: ð3:8Þ

Thus, there is an enhanced Uð1Þ symmetry ψ j → eiγψ j

[75]. We note that for α ¼ 1=3, the scaling dimension of
operator Q ¼ O0

4 is h ¼ 1, consistent with charge con-
servation. Also, here g2ðhÞ ¼ g3ðhÞ so that the scaling
dimensions of O2nþ1

2 and O2nþ1
3 are equal. This is because

O2nþ1
2 þ iO2nþ1

3 ¼ 2ψ j∂2nþ1
t ψ j: ð3:9Þ

Furthermore, the transformation (2.11) maps Hα¼1
3
into

itself, so the theory is self-dual.

For general α, the model (1.1) has multiple discrete
symmetries, which are discussed in more detail in
Appendix A. These discrete symmetries can be sponta-
neously broken due to a VEV of Q if Q is not invariant
under them. In the model (1.1), there are two symmetries
that are not broken by a VEV of Q: the antiunitary time-
reversal symmetry K and a Z4 symmetry generated by π=2
rotation R in χ1, χ2,

Rχ1R† ¼ χ2; Rχ2R† ¼ −χ1: ð3:10Þ
They both preserve Q. The model (1.1) also has multiple
reflection symmetries that are spontaneously broken by the
VEVof Q, which we list in Appendix A. In fact, all unitary
discrete symmetries of the model (1.1) form the dihedral
group of order 8, D4. In our case, any two broken
symmetries that can be related by an unbroken symmetry
do not produce extra ground-state degeneracy, and there-
fore, it is enough to focus on one of them.
Let us focus on the particle-hole symmetry [37–42]

generated by

P ¼ K
YNSYK

i¼1

ðψ i þ ψ̄ iÞ; P2 ¼ ð−1ÞNSYKðNSYK−1Þ=2:

ð3:11Þ
It acts on the fermion number as

PQP ¼ −P2Q: ð3:12Þ
For NSYK not divisible by 4, there is a twofold degen-

eracy of the ground state in Sec. III C due to an anomaly in
the particle-hole symmetry [37–42]. For NSYK divisible
by 4, this symmetry is not anomalous, and we find a
nondegenerate ground state, which is followed by a nearby
state when −1 ≤ α < 0. The two lowest states become
degenerate in the large-NSYK limit, and they are separated
by a gap from the remaining states. This asymptotic
degeneracy leads to a spontaneous symmetry breaking
through the formation of an expectation value of Q. We
demonstrate this effect by solving the large-NSYK
Schwinger-Dyson equations for the Green functions and
with diagonalizations at finite NSYK.

A. Schwinger-Dyson equations and
the effective action

In this section, we derive the large-NSYK effective action
of GΣ type and the Schwinger-Dyson equations for
the coupled SYK model (1.1). Following Ref. [44], we
introduce bilocal variables

Gabðτ; τ0Þ ¼
1

NSYK
hTχiaðτÞχibðτ0Þi ð3:13Þ

and the corresponding Lagrange multipliers Σabðτ; τ0Þ,
where a, b ¼ 1, 2. The effective action is given by
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−
βSeff
NSYK

¼ logPfð∂τδab − ΣabÞ −
1

2

Z
dτdτ0

�X
a;b

Σabðτ; τ0ÞGabðτ; τ0Þ −
J2

4

�X
a;b

G4
abðτ; τ0Þ

þ 6α½G2
12ðτ; τ0Þ þ G2

21ðτ; τ0Þ�½G2
11ðτ; τ0Þ þG2

22ðτ; τ0Þ� þ 6α2½G2
11ðτ; τ0ÞG2

22ðτ; τ0Þ

þ G2
12ðτ; τ0ÞG2

21ðτ; τ0Þ þ 4G11ðτ; τ0ÞG22ðτ; τ0ÞG12ðτ; τ0ÞG21ðτ; τ0Þ�
��

:

By translation invariance,

Gabðτ; τ0Þ ¼ Gabðτ − τ0Þ; Σabðτ; τ0Þ ¼ Σabðτ − τ0Þ:
ð3:14Þ

We also have the general properties

G11ðτÞ ¼ −G11ð−τÞ; G22ðτÞ ¼ −G22ð−τÞ;
G12ðτÞ ¼ −G21ð−τÞ: ð3:15Þ

The SD equations for the two-point functions assume the
form [76]

∂τG11ðτÞ −
Z

dτ0½Σ11ðτ − τ0ÞG11ðτ0Þ þ Σ12ðτ − τ0ÞG21ðτ0Þ� ¼ δðτÞ;

∂τG12ðτÞ −
Z

dτ0½Σ11ðτ − τ0ÞG12ðτ0Þ þ Σ12ðτ − τ0ÞG22ðτ0Þ� ¼ 0;

J−2Σ11 ¼ G3
11 þ 3αG11ðG2

12 þ G2
21Þ þ 3α2G11G2

22 þ 6α2G22G12G21;

J−2Σ12 ¼ G3
12 þ 3αG12ðG2

11 þ G2
22Þ þ 3α2G12G2

21 þ 6α2G11G22G21; ð3:16Þ

and similarly for 1 ↔ 2. These equations and the effective
action are invariant under 1 ↔ 2 and G12 → −G12,
G21 → −G21.

B. Solutions of Schwinger-Dyson equations
and symmetry breaking

For 0 ≤ α ≤ 1=3, there are no operators with complex
scaling dimensions, so it is consistent to assume that the
discrete symmetries are unbroken and set G12 ¼ 0 and
G11 ¼ G22 to obtain a nearly conformal solution in the
low-energy limit. However, the appearance of a complex
scaling dimension for −1 ≤ α < 0 shows that such a
conformal phase is unstable. We show that in this range of
α, the true phase of the theory exhibits spontaneous
symmetry breaking. In order to exhibit it, we have to
allow the possibility that G12ðτÞ ≠ 0. The underlying Z2

symmetry of the Hamiltonian (1.1) implies that such
solutions must come in pairs related by G12ðτÞ →
−G12ðτÞ (in our numerical work, we typically exhibit
only one of these two solutions). They correspond to
working around the two inequivalent vacua, which we
call j0þi and j0−i. They are distinguished by the sign of
the expectation value of operator Q ¼ iχi1χ

i
2:

h0þjQj0þi ¼ ANSYK; h0−jQj0−i ¼ −ANSYK;

h0−jQj0þi ¼ 0: ð3:17Þ

The unbroken symmetry R in Eq. (3.10) implies

G12ð−τÞ ¼ −G21ðτÞ ¼ G12ðτÞ; G22ðτÞ ¼ G11ðτÞ;
ð3:18Þ

and similarly for Σab. Using these constraints, we obtain for
the effective action

−
βSeff
NSYK

¼ logPfðδab∂τ−ΣabÞ−β

Zβ
0

dτ

�
Σ11G11þΣ12G12

−
J2

4
½ð1þ3α2ÞðG4

11þG4
12Þþ12αð1−αÞG2

11G
2
12�

�
:

ð3:19Þ

The Schwinger-Dyson equations become

∂τG11ðτÞ −
Z

dτ0½Σ11ðτ − τ0ÞG11ðτ0Þ

− Σ12ðτ − τ0ÞG12ðτ0Þ� ¼ δðτÞ;

∂τG12ðτÞ −
Z

dτ0½Σ11ðτ − τ0ÞG12ðτ0Þ

þ Σ12ðτ − τ0ÞG11ðτ0Þ� ¼ 0; ð3:20Þ
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and

J−2Σ11ðτÞ ¼ ð1þ 3α2ÞG3
11ðτÞ þ 6αð1 − αÞG11ðτÞG2

12ðτÞ;
J−2Σ12ðτÞ ¼ ð1þ 3α2ÞG3

12ðτÞ þ 6αð1 − αÞG2
11ðτÞG12ðτÞ:

ð3:21Þ
Equation (3.20) may be written in momentum space as

G11ðωnÞ ¼
−iωn − Σ11ðωnÞ

ð−iωn − Σ11Þ2 þ Σ2
12

;

G12ðωnÞ ¼
Σ12ðωnÞ

ð−iωn − Σ11Þ2 þ Σ2
12

: ð3:22Þ

These equations together with Eq. (3.21) can be solved
numerically using the method of weighted iterations used

in Ref. [19,77]. To trigger the spontaneous symmetry
breaking, we start our iteration process with a tiny nonzero
G12ðτÞwhich is purely imaginary. If we are in the unbroken
phase, after the iterations, G12 becomes zero, whereas if we
are in the broken phase, we find a nonzero purely imaginary
solution for G12.
The plots ofG11 and iG12 for different values of α and βJ

are shown in Fig. 9. For each value of α between −1 and 0,
there are two phases. In the low-temperature phase (large
βJ), there are three distinct solutions: two solutions with
nonvanishing iG12 related by G12ðτÞ → −G12ðτÞ and the
one where G12ðτÞ ¼ 0. The solutions with nonvanishing
iG12 are the ones with the lower free energy. As βJ
decreases, jG12ðτÞj decreases everywhere for the nontrivial
solution (see Figs. 9 and 10) and at the critical value

FIG. 9. Numerical solutions for α ¼ −1, −0.5, −0.2, and various values of βJ.

FIG. 10. The expectation value of Q=NSYK, i.e., jG12ð0Þj, as a
function of βJ for α ¼ −0.5. The region near ðβJÞcrit is shown. FIG. 11. Critical value of βJ as a function of α.
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becomes exactly zero. For βJ < ðβJÞcrit, the only possible
solution is G12ðτÞ ¼ 0. Thus, the Z2 symmetry is restored,
and this is a second-order phase transition. The plot of
ðβJÞcrit vs α is shown in Fig. 11; it blows up as α approaches
zero from below [78].

Using the solutions of the Schwinger-Dyson equations,
we can numerically compute the large-N free energy

−
βF

NSYK
¼ log2þ1

2

Xþ∞

n¼−∞
log

��
1þΣ11ðωnÞ

iωn

�
2

−
Σ2
12ðωnÞ
ω2
n

�

þ3

4

Xþ∞

n¼−∞
½Σ11ðωnÞG11ðωnÞ−Σ12ðωnÞG12ðωnÞ�;

ð3:23Þ

where the sum
P

n logð−iωnÞ is replaced by log(2). The
energy can be computed with the formula

E
NSYK

¼ 1

2β

Xþ∞

n¼−∞
½Σ11ðωnÞG11ðωnÞ − Σ12ðωnÞG12ðωnÞ�;

ð3:24Þ
and at low temperatures it should converge to the energy of
the ground state E0 divided by NSYK.
Now one can compare the free energy in the symmetry-

broken phase FG12≠0 with that of the symmetry-unbroken
phase FG12¼0. In particular, the free energy of the latter
phase is simply twice that of a single SYK with a rescaling

FIG. 12. Large-N free energies of the true numerical solution and the solution with G12 ¼ 0 for α ¼ −1, J ¼ 1. The graph on the right
shows the entropy; we can clearly see a second-order phase transition, as there is a discontinuity in its derivative near critical
temperature.

FIG. 13. Large-N free energies at fixed β and J. We take β ¼ 5,
J ¼ 1, and decrease α. We observe also a second-order phase
transition.

FIG. 14. Plot of solutions GLL and iGLR for the model in
Ref. [44] superimposed with G11 and iG12. Parameters chosen so
that the solutions are close for most of the range of θ.

FIG. 15. The expectation value of Q=NSYK, i.e., jG12ð0Þj, as a
function of α for βJ ¼ 5000.
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J →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3α2

p
J. It follows that in the “conformal window”

0 ≤ α ≤ 1=3, the low-temperature limit of the entropy is

S0 ¼ 2c0N; c0 ¼
1

8
log 2þ K

2π
≈ 0.2324; ð3:25Þ

which is twice that of the single SYK model. The fact that
S0 is independent of α means that the g theorem [79] is
obeyed to leading order in N, even though the theory is not
exactly conformal due to the peculiarities of the h ¼ 2
mode. As a further check, one can consider a large-q
expansion [19,80],

βFðqÞ
G12¼0 ¼ − log 2 −

1

q2
2πν

�
tan

πν

2
−
πν

4

�

−
1

q3
2πν

�
πν − 2 tan πν

�
1 −

π2ν2

12

��
þ…;

ð3:26Þ
where βJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ3α2Þ21−qq

p
¼fðπνÞ=cos½ðπνÞ=2�g. The free

energy of the symmetry-unbroken phase FG12¼0 is seen to

agree well numerically with Fð4Þ
G12¼0.

In Fig. 12, we plot for α ¼ −1 the free energy of the
symmetry-broken phase (3.23) as a function of βJ and

compare it with that of the unbroken phase obtained by
setting G12 ¼ 0 in the SD equations (3.20) and (3.21). We
also show the entropy as a function of βJ. The plot shows a
clear second-order phase transition at ðβJÞcrit ≈ 2.87, and
the derivative of the entropy is discontinuous. We also
observe a second order phase transition as one fixes
temperature and varies α as shown in Fig. 13. We will
systematically study the critical exponents in future work.
We notice that at sufficiently large βJ, there is a range of

τ where both iG12ðτÞ and G11ðτÞ decay exponentially and
share the same decay rate. To explain this fact, let us study
the T ¼ 0 case and insert the complete set of states

G11ðτÞ ¼ h0þje−Hτχ11ð0ÞeHτjnihnjχ11ð0Þj0þi: ð3:27Þ

For large τ, the sum is dominated by the lowest excited
state, and we find

G11ðτÞ → e−ðE1−E0Þτh0þjχ11ð0Þj1ih1jχ11ð0Þj0þi: ð3:28Þ

Similarly, we find that the large-τ behavior of G12 is

G12ðτÞ → e−ðE1−E0Þτh0þjχ11ð0Þj1ih1jχ12ð0Þj0þi: ð3:29Þ

FIG. 17. Left: The energy spectrum for α ¼ 0, i.e., for two decoupled SYK models, for a single sampling of NSYK ¼ 30. Right:
The same spectrum magnified near the lower edge.

FIG. 16. Right: The value of E0=ðJNSYKÞ as a function of α. Both graphs are approximately linear in α for α not too small. Results
from exact diagonalizations [Eq. (3.33)] are shown with dots. Left: The large-NSYK energy gap in the spectrum computed from the
exponential decay of the Green functions.
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Thus, the universal decay rate among correlators signifies a
mass gap in the spectrum.
In the work of Maldacena and Qi [44], the functionsG11

and G12 were also found to be exponentially decreasing
for sufficiently large βJ. In Fig. 14, we exhibit super-
imposed plots of the low-temperature solutions to our
system of equations and those from Ref. [44], with

parameters chosen so that the solutions are close to one
another for most of the range. We observe a difference in
the behavior of iG12ðτÞ and iGLRðτÞ at small τ: In our case,
the function is smooth with a vanishing derivative at
τ ¼ 0, while in Ref. [44], its derivative is discontinuous at
τ ¼ 0. This is due to the fact that their Hamiltonian
includes a quadratic term.

FIG. 18. The spectrum for a single realization with NSYK ¼ 15, 16 and α ¼ −1, −0.5. For α ¼ −1, the spectrum exhibits a gap near
E ¼ 0 when NSYK is odd and a large number of states with E ¼ 0.

SYMMETRY BREAKING IN COUPLED SYK … PHYS. REV. X 9, 021043 (2019)

021043-13



We can also study what happens at low temperatures
(large βJ) as a function of α. In Fig. 15, we plot iG12ð0Þ,
which is the expectation value of the order parameter
Q=NSYK, for a large βJ. This quantity becomes small as α
is increased towards zero. In Fig. 16, we plot the large-
NSYK limit of the energy gap Egap divided by J calculated
from the exponential decay of the Green functions. We also
plot the ground-state energy E0 divided by JNSYK calcu-
lated using Eq. (3.24). The results from exact diagonaliza-
tions extrapolated to large NSYK [Eq. (3.33)] are shown
with dots and demonstrate very good agreement. The exact
diagonalizations for finite NSYK are discussed in the next
section.

C. Exact diagonalization for finite NSYK

In this section, we present numerical results for the
spectra of two coupled SYK models with Hamiltonian
(1.1). We first check that the results from exact diagonal-
izations agree well with expectations: The spectrum for
α ¼ 0 and NSYK ¼ 30 and the ground-state energy of
α ¼ −1 for various NSYK concur well with analytical
arguments and with the results from Sec. III B. Then,
we present our results on the energy gap and broken
symmetry.
The biggest number we are able to access via exact

diagonalization of the coupled SYK models is NSYK ¼ 16.
In this case, the discrete symmetry (3.11) is not anomalous,
and the ground state is nondegenerate. However, for −1 ≤
α < 0 we observe a nearby excited state followed by a gap.
We interpret this as indication of an approach to sponta-
neous symmetry breaking, which takes place in the large-
NSYK limit. We also present spectra for NSYK ¼ 15, where
the discrete symmetry (A5) is anomalous so that the states
are doubly degenerate. There is again a gap in the spectrum
present for −1 ≤ α < 0. Furthermore, we present numerical
results on the VEVof operator iχi1χ

i
2 for NSYK ¼ 14, which

demonstrates that it is nonvanishing for −1 ≤ α < 0.
First, let us consider α ¼ 0, where we find the spectrum

of two SYK models with the same random couplings. The
density of states for this model is simply given by the
convolution of that of the single SYK model [81]:

ρdoubleðEÞ ¼
Z

deρðeÞρðE − eÞ: ð3:30Þ

FIG. 19. The spectrum for a single realization for NSYK ¼ 16
and α ¼ 1=3.

FIG. 20. The spectrum for a single realization of the coupled SYK model with NSYK ¼ 16 and α ¼ −1 separated into four Z4

symmetry sectors. In each of the sectors, the spectrum is symmetric under E → −E. The Z4-invariant sector shows two nearly degenerate
lowest states separated by a gap from the rest of the states.
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Equation (3.30) in particular helps us determine the
behavior of ρdoubleðEÞ near the ground state. Shifting the
energy so that the ground state is at zero, we know that
ρðEÞ → A

ffiffiffiffi
E

p
for small E. Therefore, for small E,

ρdoubleðEÞ → A2

ZE
0

de
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðE − eÞ

p
¼ πA2E2

8
: ð3:31Þ

The numerical density of states shown in Fig. 17 for
NSYK ¼ 30 is in good agreement with the E2 dependence
near the ground state.
Let us proceed to the spectra for nonvanishing values of

α. In Figs. 18 and 19, we plot the spectra of energy divided
by J for α ¼ −1, −1=2, 1=3, and different values of NSYK.
These energy distributions have interesting and unusual
shapes. For the special values α ¼ −1 and 1=3, we observe
large numbers of states with E ¼ 0; this creates the zero-
energy peaks seen in the graphs. For α ¼ −1 and oddNSYK,
we find that the E ¼ 0 peak is separated by gaps from the
remaining states, but for even NSYK, it is not.
In order to clarify the peculiar shapes of the energy

distributions in Fig. 18, it is useful to separate them into
distinct Z4 symmetry sectors [82] labeled by the eigenvalue
of eπiQ=2, as shown in Fig. 20 for NSYK ¼ 16. The sectors
where eiπQ=2 ¼ �i, i.e., Q ¼ �1 mod 4, have identical
energy spectra which are shown on the right. They contain
the symmetric bumps, which produce the “rabbit ears”

pattern in the overall distribution. For α ¼ −1, these sectors
also contain large numbers of states with E ¼ 0 (they are
discussed in Appendix B). On the left in Fig. 20, we show
the states with eiπQ=2 ¼ �1. For eiπQ=2 ¼ −1, the distribu-
tion is smooth and does not contain a sharp peak at E ¼ 0.
The Z4-invariant sector eiπQ=2 ¼ 1 contains the two nearly
degenerate lowest states separated by a very clear gap from
the remaining states. For α ¼ −1, this sector also contains a
large number of E ¼ 0 states [83].
For NSYK ¼ 15, due to the anomaly in particle-hole

symmetry, there are two degenerate ground states; see
Fig. 18 [84]. In fact, each energy level is doubly degenerate.
This is due to the fact that the spectra in the sectors with
chargesQ¼1=2mod 4 and with chargesQ ¼ −1=2mod 4
are identical; similarly, the spectra with Q ¼ �3=2 mod 4
are identical. For −1 ≤ α < 0, we observe a gap between
the lowest energy level and the next one, as expected. The
spectra for α ¼ −1 separated into the four sectors are
shown in Fig. 21. On the other hand, forNSYK ¼ 16 there is
no exact degeneracy of the ground state, but the first gap is
very small, indicating a tendency towards spontaneous
symmetry breaking at large NSYK. We show the NSYK ¼ 16

spectra for α ¼ −1 and α ¼ −0.5 in Fig. 18. In both cases,
for a typical sampling of the coupling constants Jijkl, we
observe two closely spaced states followed by a visible gap.
For large NSYK, the energy gap between the two lowest
states is expected to decrease exponentially:

FIG. 21. The spectrum for a single realization of the coupled SYK model with NSYK ¼ 15 and α ¼ −1 separated into four Z4

symmetry sectors. In each of the sectors, the spectrum is symmetric under E → −E. The sectors with Q ¼ �1=2 mod 4 contain the
ground state separated by a gap from the rest of the states.
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− log
E1 − E0

J
∼ NSYK: ð3:32Þ

For α ≥ 0, the low-lying spectrum is different; we observe
many closely spaced low-lying states without large gaps,
similar to the standard SYK spectrum.
In Fig. 22, we plot the ground-state energy for α ¼ −1

and α ¼ −0.5withNSYK ¼ 10;…; 16. The plots where J is
set to 1 are approximately linear, and the fits give

Eα¼−1
0 ¼ −0.283NSYK þ 0.373;

Eα¼−0.5
0 ¼ −0.179NSYK þ 0.217: ð3:33Þ

The limiting values Eα¼−1
0 =NSYK ¼ −0.283 and Eα¼−0.5

0 =
NSYK ¼ −0.179 are in good agreement with the result
found from the Schwinger-Dyson equations; see Fig. 16.
In Fig. 22, we also exhibit the energy gap between the
second and third states as a function of α. As α is increased
from −1 to 0, the gap decreases as expected.
Exact diagonalizations also provide support for the

statement that the fermion number Q acquires a vacuum
expectation value for −1 ≤ α < 0. For NSYK not divisible
by 4, there are two ground states j0�i which map into each

other under the symmetry generator P. This can be viewed
as anomalous breaking of the time-reversal Z2 symmetry
(3.11) which occurs for a finite number of degrees of
freedom [37–39,41,42]. In Fig. 23, the vacuum expectation
value as a function of α is plotted forNSYK ¼ 14. This is the
finite NSYK analogue of Fig. 15, where the large-NSYK limit
of the condensate is plotted. We also note the qualitative
similarity of Fig. 23 and that of the imaginary part of the
scaling dimension of Q in Fig. 8.
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APPENDIX A: MORE ON THE DISCRETE
SYMMETRIES

The model (1.1) has the antiunitary particle-hole Z2

symmetry generated by Eq. (3.11). The operator K is
defined to take z → z̄, z ∈ C but acts as the identity on ψ or
ψ̄ . It may be identified as a kind of time-reversal generator
which satisfies K2 ¼ 1 [37–39]. It acts by

FIG. 23. The expectation value h0þjQj0þi as a function of α for
a single realization of random couplings at NSYK ¼ 14.

FIG. 22. Left: The ground-state energy for α ¼ −0.5, −1 and NSYK ¼ 10; 11;…; 16 (the number of samples are 250 000,120 000,
50 000,5000,5000,2000,500). The linear fit is shown by dashed lines. Right: The energy gap between the second and third states as a
function of α for a single realization of random couplings at NSYK ¼ 16.
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KiK ¼ −i; Kχi1K ¼ χi1; Kχi2K ¼ −χi2; ðA1Þ

and therefore satisfies

½K;H� ¼ ½K;Q� ¼ 0: ðA2Þ

Note that although K can be anomalous, K is unbroken
as it does not change the sign of Q. Another unbroken
symmetry is the π=2 rotation between χi1 and χi2,

R ¼ ð−1ÞNSYK=42−NSYK=2
Y
i

ð1 − 2χi1χ
i
2Þ: ðA3Þ

It satisfies

RR† ¼ 1; Rχi1R
† ¼ χi2; Rχi2R

† ¼ −χi1; R4 ¼ 1: ðA4Þ

Note R2 ¼ ð−1ÞF. There are also various reflection Z2

symmetries that are spontaneously broken by the VEV of
Q. In particular, we have the reflection symmetry

P ¼
(
ð−1ÞNSYKðNSYK−1Þ=42NSYK=2

QNSYK
i¼1 χi1 if NSYK ¼ 2k; k ∈ Z;

ð−1ÞNSYKðNSYK−1Þ=42NSYK=2
QNSYK

i¼1 χi2 if NSYK ¼ 2kþ 1; k ∈ Z;
ðA5Þ

such that

PP† ¼ 1; Pχi1P
† ¼ −χi1; Pχi2P

† ¼ χi2; P2 ¼ 1:

ðA6Þ

In fact, R, P, and K are enough to generate all discrete
symmetries of the model (1.1). In particular, all the
unitary discrete symmetries form D4, the dihedral group
of order 8. To see this, it is enough to check that the group
presentation R4 ¼ P2 ¼ ðRPÞ2 ¼ 1. The remaining reflec-
tions can be identified with RP, R2P, and R3P. For a given
unitary symmetry, we can compose it with K to obtain an
antiunitary one.
In our case, when NSYK → ∞, although multiple Z2

symmetries are spontaneously broken, we expect only a
twofold ground-state degeneracy. In fact, any two broken
symmetries that can be related by an unbroken symmetry
do not produce any extra ground-state degeneracy. To see
this, consider for example the reflection symmetry RP.
Since R is unbroken, we may assume Rj0i ¼ j0i without
loss of generality. Then, RPj0i ¼ RPRj0i ¼ Pj0i.
At finite NSYK, however, certain discrete symmetry can

be anomalous and is responsible for an exact twofold
degeneracy for certainNSYK. For example, the particle-hole
symmetry P ∼ KP acts on the fermions as

Pψ jP ¼ ηψ̄ j; Pψ̄ jP ¼ ηψ j;

η ¼ ð−1ÞðNSYKþ2ÞðNSYK−1Þ=2: ðA7Þ

The fermion number operator (3.7) is odd under this
symmetry:

PQP ¼ −P2Q: ðA8Þ

When NSYK is not divisible by 4, there are two degenerate
ground states j0�i, and the symmetry generator P maps
them into each other [37–42]:

Pj0þi ¼ ð−1ÞNSYKðNSYK−1Þ=4j0−i;
Pj0−i ¼ ð−1ÞNSYKðNSYK−1Þ=4j0þi: ðA9Þ

In this case, we can say that the particle-hole symmetry is
anomalous.

APPENDIX B: ZERO-ENERGY STATES IN
THE BIPARTITE MODEL

The bipartite model, which is the α ¼ −1 case of the
two-flavor tensor or SYK model, has some additional
symmetries which make it special. In general, the spectrum
of the two-flavor SYK is not symmetric under E → −E for
a given random coupling Jijkl. However, for α ¼ −1, the
spectrum is exactly symmetric for any choice Jijkl due to
the duality symmetry (2.11). This symmetry acts by

ψ j →
1þ iffiffiffi

2
p ψ̄ j; ψ̄ j →

1 − iffiffiffi
2

p ψ j; ðB1Þ

and for α ¼ −1 this reverses the sign of the Hamiltonian of
bipartite model Hα¼−1, which is given in Eq. (3.6).
Furthermore, the model with α ¼ −1 has a large number

of zero-energy states. For the SYK model, the sharp peak at
E ¼ 0 may be seen in Fig. 18. For a generic choice of Jijkl
where they are all nonvanishing, the number of E ¼ 0
states does not depend on their values. In fact, it is not hard
to calculate this number separately for each Z4 symmetry
sector. The separate sectors may be labeled byQ¼Q̃mod 4,
where Q̃ ¼ 0,�1, 2 whenN is even, and Q̃ ¼ �1=2,�3=2
when N is odd [85]. The general formula for the number of
E ¼ 0 states in sector Q̃ is

N Q̃ ¼
X½ðN−2Q̃Þ=8�

m¼−½ðNþ2Q̃Þ=8�
ð−1Þm

�
N

N
2
þ Q̃þ 4m

�
: ðB2Þ

This formula is applicable to “generic” bipartite
Hamiltonians (3.6), where all Jijkl are nonvanishing; in
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such cases, it does not depend on the specific choice of
couplings. However, if some couplings Jijkl vanish, then
the number of E ¼ 0 states may be higher than Eq. (B2).
For example, in the OðN1Þ ×OðN2Þ ×OðN3Þ tensor
bipartite models, where many quartic couplings vanish
[17], the number of E ¼ 0 states is greater than that given
by Eq. (B2) with N ¼ N1N2N3.
To explain the origin of the formula (B2), let us consider

for example the Q̃ ¼ 0 sector of a model with even NSYK.
In this sector, the E ¼ 0 states may be obtained from
superpositions of states with Q ¼ 0 mod 8 [86]. The
dimension of Hilbert space in this sector is

d0mod8 ¼
X
m

�
N

N
2
þ 8m

�
: ðB3Þ

When the Hamiltonian of the bipartite model acts on such a
state, it maps it to a superposition of states withQ ¼ 4mod
8 (see Fig. 24). The total number of such states isP

mð N
N
2
þ4þ8mÞ, and this is the number of constraints from

the requirement that Hα¼−1 annihilates the zero-energy
states. Subtracting this number of constraints from d0mod8,
we arrive at Eq. (B2) for the case Q̃ ¼ 0. Analogous
reasoning provides a derivation of Eq. (B2) for other
values of Q̃. We check numerically that all the E ¼ 0
wave functions are mixtures of only the states with
Q ¼ Q̃ mod 8 and that their numbers for any random
sampling of Jijkl are given by Eq. (B2).
For example, for N ¼ 16 the number of states in the

Q̃ ¼ 0 sector is

N 0 ¼
�
16

8

�
þ 2

�
16

16

�
− 2

�
16

4

�
¼ 9232: ðB4Þ

The number of states in the Q̃ ¼ �1 sectors is

N 1 ¼ N −1 ¼
�
16

7

�
þ
�
16

15

�
−
�
61

3

�
−
�
16

11

�
¼ 6528:

ðB5Þ

The number of states in the Q̃ ¼ 2 sector vanishes for any
even N.
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