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We study a large-N tensor model with O(N)? symmetry containing two flavors of Majorana fermions,
y/‘fb" and z//gbc. We also study its random counterpart consisting of two coupled Sachdev-Ye-Kitaev (SYK)
models, each containing Ngyx Majorana fermions. In these models, we assume tetrahedral quartic
Hamiltonians which depend on a real coupling parameter a. We find a duality relation between two
Hamiltonians with different values of a, which allows us to restrict the model to the range of =1 < a < 1/3.
The scaling dimension of the fermion number operator Q = iwj’b"y/gb" is complex and of the form 1/2 +
if(a) in the range —1 < a < 0, indicating an instability of the conformal phase. Using Schwinger-Dyson
equations to solve for the Green functions, we show that in the true low-temperature phase this operator
acquires an expectation value, which demonstrates the breaking of an antiunitary particle-hole symmetry
and other discrete symmetries. We also calculate spectra of the coupled SYK models for values of Ngyx
where exact diagonalizations are possible. For negative a, we find a gap separating the two lowest energy
states from the rest of the spectrum, leading to an exponential decay of the zero-temperature correlation
functions. For Ngyk divisible by 4, the two lowest states have a small splitting. They become degenerate in

the large-Ngyk limit, as expected from the spontaneous breaking of a Z, symmetry.

DOI: 10.1103/PhysRevX.9.021043

I. INTRODUCTION AND SUMMARY

During the past several years, there has been a flurry of
activity on fermionic quantum-mechanical models which
are exactly solvable in the large-N limit because they are
dominated by the so-called melonic Feynman diagrams.
Work in this direction began with the Sachdev-Ye-Kitaev
(SYK) models [1-4], which have random couplings. More
recently, the tensor quantum-mechanical models [5,6],
which have continuous symmetry groups and no random-
ness, were constructed following the body of research on
melonic large-N tensor models in d =0 [7-13] (for
reviews, see Refs. [14-17]). Both the random and non-
random quantum-mechanical models are solvable via the
melonic Schwinger-Dyson equations [4,18-21], which
indicate the existence of the nearly conformal phase which
saturates the chaos bound. They shed new light on the
dynamics of two-dimensional black holes [22-25].
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These models may also have applications to a range
of problems in condensed matter physics, including the
strange metals [3,26-32]. With such applications in mind,
it is interesting to study various dynamical phenomena in
the SYK and tensor models. For example, phase transitions
in such models have been studied in Refs. [33-35]. In this
paper, we identify a simple setting where spontaneous
symmetry breaking can occur: two SYK or tensor models
coupled via a quartic interaction. We take this interaction to
be purely melonic (i.e., tetrahedral in the tensor model case)
so that the symmetry breaking can be deduced from the
large-N Schwinger-Dyson equations.

In the random case, we study two coupled SYK models
with the Hamiltonian

H = %J aaCaxn +aoxsi + 6ariixsi). - (11)
where, as usual, all repeated indices are summed over.
The Majorana fermions are % and y withi = 1, ..., Ngyk,
and Jjj; is a fully antisymmetric real tensor with a
Gaussian distribution [36]. We show that the real para-
meter a may be restricted to the range —1 < a < 1/3 by a
duality symmetry. This quartic Hamiltonian, which couples
2Ngyk Majorana fermions, is invariant under an antiunitary
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particle-hole symmetry [37-42] generated by P; see
Eq. (3.11). However, we show that for —1 < a < 0 this
Z, symmetry is spontaneously broken when Ngyyx is
divisible by 4 and taken to infinity [43]. In this limit, the
fermion number operator Q = § ;({ ;(é acquires an expectation
value. Such an expectation value leads to a gapped phase in
two coupled SYK models similar to that found by Maldacena
and Qi [44] (for further results, see Refs. [45]); however,
instead of the quartic they assumed a quadratic coupling term
1Q which breaks the Z, symmetry explicitly. This gapped
phase was argued to be dual to a traversable wormhole in
two-dimensional gravity [46,47], and our model (1.1) may
have a similar interpretation for —1 < a < 0.

As we show in Sec. IID, a sign of instability of the
conformal phase for —1 <a <0 is the presence of a
complex scaling dimensions of the form 1/2+ if(a).
The appearance of complex dimensions with real part
equal to d/2 for some single-trace operators is a common
phenomenon in large-N models [48-52]. Via the AdS/CFT
correspondence [53-55], such operators are related to
scalar fields which violate the Breitenlohner-Freedman
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For a = 0, this Hamiltonian describes two decoupled copies
of the basic Majorana O(N)? model with the tetrahedral
interaction [6]. The coupling term proportional to a pre-
serves its discrete symmetries and also has the tetrahedral
structure; i.e., every two tensors have only one index con-
traction, so that the model (1.2) is melonic. It is the tensor
counterpart of the coupled SYK model (1.1), and in the
large-N limit, it is governed by the same Schwinger-Dyson
equations for the two-point and four-point functions [62].
In Sec. II, we derive the Schwinger-Dyson equations and
use them to study the scaling dimensions of various O(N)3-
invariant fermion bilinears. We also exhibit a duality
symmetry which allows us to restrict the model to the
range —1 < a < 1/3. The nearly conformal phase of the
theory is stable for 0 < a < 1/3, but it is unstable for —1 <
a < 0 as signaled by the complex scaling dimension of
operator iy¢*cy4b¢. The true behavior of the theory with
negative « is the spontaneous breaking of the particle-hole
Z, symmetry, as we demonstrate in Sec. III. In Secs. Il A
and III B, we numerically study the large-N Schwinger-
Dyson equations and exhibit the exponential decay of
correlators at low temperature. We also ascertain the
existence of second-order phase transitions by numerically
computing the free energy. In Sec. III C, we study the
numerical spectrum of the coupled SYK model (1.1) via
exact diagonalizations at finite Ngykx. We observe that for

aybycy . aybycy  arbicy  a)bycy aybyc; aibycr  arbicy  aybyc ajbic; aybycy  a)bicy  arbycg
L ey ey gy g ey mbiey by ghi g @b, gl ahe, b))

stability bound [56]. The fact that @ = 0 is the lower edge
of the conformal window is related to the appearance of the
marginal double-trace operator Q there. For 0 < a < 1/3,
there are actually two fixed points connected by the flow
of the coefficient of Q?, but at @ = 0 they merge and
annihilate, as explained, e.g., in Refs. [57,58].

The complex scaling dimensions have been observed
in bosonic tensor models [59,60] as well as in a complex
fermionic model introduced in Ref. [6] following the work
in Ref. [61]. This fermionic model is often called “bipa-
rtite” because of the two types of interaction vertices (black
and white) arranged in an alternating fashion, since the
propagator must connect different vertices. The bipartite
model was further studied in Ref. [17] and shown to
possess a complex scaling dimension of the operator
pbeyabe Here we generalize this tensor model to one
with a continuous parameter « in such a way that the
bipartite model corresponds to @ = —1. This O(N)? sym-
metric model for Majorana fermions w{*¢ and y4%¢, with
a,b,c=1,...,N, has Hamiltonian

aybycy arbicy ) arbycy

Yy "5} )

(1.2)

|

—1 < a < 0 there is a gap separating the two lowest energy
states from the rest of the spectrum. For Ngyk divisible by
4, there is also a small gap between the two lowest states,
consistent with the fact that the ground state must be
nondegenerate [37-42], but this gap decreases as Ngyy 1S
increased. In the large-Ngyk limit, the two lowest states
become degenerate and give rise to the two inequivalent
vacua, which are present due to the spontaneous breaking
of the Z, particle-hole symmetry.

These phenomena imply that the low-temperature
entropy is large for 0 < @ < 1/3 but vanishes for —1 <
a < 0. Itis tempting to suggest that the latter case is dual to
a wormhole. This sensitivity to the sign of the interaction
coupling two CFTs is like in Ref. [46], where the traversable
wormhole appears only for one of the signs [63].

II. SCHWINGER-DYSON EQUATIONS AND
SCALING DIMENSIONS

In this section, we study the two-flavor tensor model
with Hamiltonian (1.2) [64]. It can be compactly written in
the form

1
H=—JykL (W1W1W1 l//1 +W2W2W2 Wz +60‘W1W1V/2 Wz)

4!
(2.1)
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FIG. 1.

where the capital letters are a shorthand notation for three
tensor indices: I = a;b,cy, J = a,b,c,, etc., and the non-
random tetrahedral tensor coupling consists of six terms

JIJKL = g § Sgn(o-)éala,,(z) 5b]b,,(3)5clc,,(4) 5b5<2)b6(4) 50,,(2)6,,(3)

0ES;

X a5, (2.2)
The tensor J;;k; is antisymmetric under permutation of
indices 1, J, K, L and has a tetrahedron topology as shown
in Fig. 1. In the form (2.1), the tensor model Hamiltonian is
transparently similar to the SYK one (1.1). In terms of the
complex tensors,

1 1
1 I ol =1 I _ ol
- + iwl), =— —y), (2.3
¥ \/E(Wl w3) ¥ \/§(W1 wy). (2.3)
the Hamiltonian (2.1) assumes the form
1 1 -3a T K=
H_EJIJKL< 5— W'y Syt +wle et
+3(1+ a)u?’q?Jy/Kl//L). (2.4)

The Hamiltonian (2.1) is invariant under the O(N)3
transformation
yive = Ag By Copi, (2.5)

where A, B, and C are orthogonal matrices. In addition, it
has a particle-hole Z, symmetry [66] generated by [37—42],

P =KW +9"). 2.6)
T
where K is the antiunitary operator which acts by
KiK = —i, Ky!'K =y!, Ky'K =yl. (2.7)
The fermion number operator
0 = iplyh = L[y (2.8)

2

does not in general commute with H, but it is conserved
mod 4. The particle-hole symmetry is not anomalous only
if the total number of fermions 2N? is a multiple of 8, i.e.,
when N is even [37-42]. Even in this case, we argue that in
the large-N limit, the symmetry is spontaneously broken
for —1 < a < 0 because Q acquires an expectation value.

YT

Pictorial representation of the antisymmetric tensor J;x;.

A. Duality in the Two-Flavor Models

In this section, we show that the two-flavor models with
different values of a can be equivalent. We demonstrate this
explicitly in the tensor model case (2.1), but the SYK case
(1.1) works analogously. Let us perform the following
transformation on the Majorana fermions:

1 1

SR v 29

It preserves the anticommutation relations and turns the
Hamiltonian (2.1) into [67]

17
£t ). 2.10)
Thus, the energy levels are symmetric under the duality

transformation

14 3a l-a

J— > J, i Y (2.11)
Defining
1 5 p
a:§(1+3a), J=JV|al, (2.12)
we find that the duality transformation
a-1l/a, J-7J (2.13)

acts on the rescaled Hamiltonian H = H/+/|a|: [68]

- 1~ e e

H =23 [w{w{ FiwT + yhiny
4N\ e

+ <—2+5> s |- (2.14)

Therefore, the fundamental domainis —1 < @ < 1. Thus,
we may restrict a to the domain

—1<a<-. (2.15)

W =

The values of « outside of this domain are related to it by
the duality. For @ = —1, the transformation (2.11) maps the
theory into itself, but with H - —H.
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FIG. 2. Bare propagators for the Majorana tensor fields. Each thick black solid or dashed line carries three tensor indices a, b, c.

FIG. 3. Interaction vertices.

In fact, the case @ = —1 corresponds to the complex
bipartite model [17,61]:

1 K-
Hyy =2y (Whyy®ut + 5w/ v gt),

n (2.16)

where we introduce the complex tensor ' = (1/v/2)
(vl + iys).

The theory with a =1/3 is mapped into itself by
Eq. (2.11). In this case, the Hamiltonian is

1 -
= 4—J 'y y

Aoy =47

(2.17)

which has O(N)? x U(1) symmetry. In the three-index
notation

Ha:% — %(ll—/alb]c]lpa,bzczwazblczy/aszCl

— ll‘/ﬂlblcllpa2b102y/alb202y/dzbzcl
_|_ll—/alb]c]l/—/aszclwa]bzczwazb]Q)_ (218)
This  Hamiltonian is  different from that of

theSU(N)? x O(N) x U(1) symmetric complex tensor
model [6]; which involves taking only the first term
in Eq. (2.18).

B. Feynman rules and two-point functions

At first we list the Feynman rules which follow from
the Hamiltonian (1.2). In Figs. 2 and 3, we define the
propagators and interaction vertices for the given two-
flavor tensor model. Since the interaction terms have a
tetrahedral tensor structure, the melonic Feynman diagrams
dominate in the large-N limit. Let us define bare two-point
functions

G (e12) = 355 (TW (0w} ()b

1

Gx(t12) = ﬁ(Tll/é(Tl)l//é(TZ»O»

where the sum over indices / is assumed. The leading
melonic correction to the full two-point function Gy; is
represented in Fig. 4. Using that

(2.19)

i T2 ' .

-

FIG. 4. The leading melonic correction to the full two-point
function Gy;.

‘]I./KL‘]IJKL 292(6N6_ 18N4+ 12N3>, (220)
we find
Gii(112) = Gyi(12) +92N3/d73dT4G11<713>
X [Gy1(734)* + 367G (134) G (734)]
X Gyi(Tgp) + . (2.21)

A similar expression can be derived for G,,. Since there is a
symmetry y; <> y,, we can assume that G;; = Gy, =G
and obtain a Schwinger-Dyson equation for the full two-
point function (see Fig. 5)

G(712) = G(r12) + (1 + 3a%)*N?

X/%%ﬂmmwﬁﬁm% (2.22)

where G(7) = 1sgn(z) is the bare propagator.
In writing this Schwinger-Dyson equation, we implicitly
make an important assumption that the two-point functions

Gia(riz) = s (T (1 )w(e2).
Gor(r12) = g5 (TWA (e W =2) 2.23)

are zero G,(7) = Gy (7) =0, due to the Z, symmetry
W, = —y,. As we see below, the Z, symmetry can be
spontaneously broken for some range of parameter a and
dimensionless coupling fJ, where f = 1/T is the inverse
temperature and J?> = ¢?N*® is the effective coupling
constant.

1 72 1 72 1

T
— + 2

AR
T3 vu

FIG. 5. Schwinger-Dyson equation for the full two-point
function G(z1,).

021043-4



SYMMETRY BREAKING IN COUPLED SYK ...

PHYS. REV. X 9, 021043 (2019)

Let us first assume that Z, symmetry is not broken
and analyze the Schwinger-Dyson (SD) equation (2.22).
At large coupling constant #J and intermediate distances
1/J < © < f, the solution to this equation is given by

B 1 isgn(7)
G(r) = (47;(1 +3a2)> |12

(2.24)

C. Scaling dimensions of bilinear operators

We can use the large-N Schwinger-Dyson equations for
the three-point functions to deduce the scaling dimensions
of four families of bilinear operators:

07! =y 87"y + v 07y,
OgnH =y 107" Yy — w07y,
O =y 07 yry 4y 07y,

03" = y107"y, — 02"y, (2.25)

where n =0, 1,2, ..., and the sum over tensor indices is
assumed. [69] Each of these operators is invariant under the
O(N)*® symmetry, but they are distinguished by their
transformations to discrete symmetry.

We take some operator O(z) and consider two three-
point functions of the form

v11(71, 72, 79) = (w1 (71)y1(72) O(10)),

(71,72, T9) = <W§(71)W§(72)0(To)>’ (2.26)

where we assume summation over the index /. In the large-
N limit, the functions (2.26) obey the melonic Bethe-
Salpeter equations. They are schematically represented in
Fig. 6. In the conformal limit, one can ignore the first
diagram on the right and obtain

<U11> B <K11,11 K11,22) § <Un)
U2 Knit Ky U2

where assuming that G;; = G,, = G, we find

Tl 70 K N
o1 (71,72, 70) = = >+ +ive+ (Tm

T2

T1~ N, N, N, S

(2.27)

~\s TO \‘s \As N 3
vaa(r1, 72 0) = 8 = >+ e+ e+ e
To " o g # g

FIG. 6. The Bethe-Salpeter equations for the three-point func-
tions vy and vy,.

1+a?
Ky =Ky = T332 Rer
2a?
K=Ky = mKC, (2.28)

and K. is the kernel of the SYK model defined in
conformal limit as

3 sgn(ry3)sgn(ros)

_2 A=
47 71372 700 |2 |13y |42

1
K (71.72373,74) = 1
(2.29)

An arbitrary conformal three-point function of the form
(2.26) with an operator of scaling dimension 4 has the form

csgn(7ia)
(71,72, 70) = — . (2.30)
701 |" 702|714 7"
and obviously must be antisymmetric under 7, <> 7,. This
three-point function is an eigenvector of the kernel K. with
the eigenvalue g(h): [70]

g(h) / dT3dT4Kc(Tl 772;73,74)%(73,1'4,70) = Uh(fl ,Tz,To)-

(2.31)

To solve Eq. (2.27), one has to find eigenvalues of the
matrix and equate them to unity, thus obtaining an equation
for possible scaling dimensions. It easy to see that this
matrix acquires a diagonal form in the basis of vectors
v11 + vy and v — v, and we find two equations for the
scaling dimensions

)
W =1 g =1,
z(h -1
aui) = -3 R0 23)

The scaling dimensions of the operator 0%”“ =
w102 Ny + g 02y, satisfy g4 (h) = 1 and are inde-
pendent of a. They are given by the well-known series
h =2.00,3.77,5.68,7.63,9.60, ..., which approaches
2n + % These are the same scaling dimensions as in the
basic O(N)? tensor model [6] and the SYK model. On the
other hand, the scaling dimensions of operators 05"“ =
w07y — w07y, are given by [(1-a?)/(143a?)]
ga(h)=1 and depend on a. As a check, we note that for
a = 0 the spectra of O, and O, are the same; this is as
expected since the two flavors are decoupled.
Now consider the last possible three-point function

015(71, 72, 79) = <W{(71)W§(T2)0(To)>- (2.33)

021043-5
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FIG. 7. The Bethe-Salpeter equations for the three-point
functions v ,.

The melonic Bethe-Salpeter equation for this three-point
function is represented in Fig. 7, and in the conformal limit,
neglecting the first diagram on the right, we get

v12(71, 72, 7p) :/dTﬂMW[O‘Kc(ThTz;%M)

— @K (71,723 74,73)|012(73, 74, 7).
(2.34)
In this case, there are two general possibilities for the

conformal three-point function, namely, the antisymmetric
and symmetric cases

A csgn(7yy)

v =

A
csgn(o;)sgn(zop)

7];3(’[1,’[2,1'0) = 7 7 AN " (235)
|To1| |Toz| ‘712|

Therefore, we find equations which determine the spectra
of antisymmetric and symmetric operators

2 _ 2
2 gm=1. S =1,

~ ltanf5(h+5)]
gs(h) = —5}12_71/22 (2.36)

The scaling dimensions of operators 0%”“ satisfy the first
equation above and 02" the second. We can check this
result by comparing with the results for the complex
bipartite fermion model (2.16). It was found [17] that
the scaling dimensions of 03" are determined by

_ 3tanff(h+3)]
gsym( = 5;12_—1/22 =1, (2.37)

and indeed for @ = —1 we get {[6(a—a?)]/(1+3a?)}gs
(h):gsym(h)'

To summarize, we find that scaling dimensions of the
operators (2.25) can be obtained by solving equations
gi(h) = 1, where

[91 (h)792(h)’g3(h)794(h)]

=<gA(h) l1-a (h),Za(l—l—a)

6a(l—a
’1—|—3a2gA ( :

(2.38)

o S g ).

The duality relation (2.11) is reflected in the behavior of
functions g;(h), which define scaling dimensions of the
operators O;. Using Eqgs. (2.38) and (2.11), one finds

[91(R), g2(h), g3(), gs(h)] = [g1(h), g3(h), g2 (N), ga(h)].
(2.39)

Indeed, under w — W, the operators O; transform
as (011 023 039 04) - (017 037 027 04)

D. Complex scaling dimensions

In this section, we examine if there exist any complex
solutions of the equations g;(h) = 1 defined in Eq. (2.38).
If such a complex root exists, then a conformal primary has
a complex scaling dimension, which leads to a destabiliza-
tion of the model. Indeed, a complex scaling dimension
of the form %:I: if corresponds to a scalar fields in AdS,

whose m? is below the Breitenlohner-Freedman bound

mip = —1 Since A =1+, /1+m? [53-55],

m?> = ——— 2 < mip.

Z (2.40)

In such a case, one may expect “tachyon condensation” in
AdS space. In the dual CFT, the operator dual to the
tachyon acquires an expectation value leading to symmetry
breaking. We obtain some support for this picture.

First of all, we notice that the functions g, (4) and gg(h)
are real only if & is real or h = % + if for real f. Next, it is
easy to check that

3z

_ZSgA(1/2+if)<0’ —o0 < gs(1/2+if) <O.

(2.41)

Using the fact that —1 < [(1 — a?)/(1 + 3a?)] < 1 (and the
same for [2a(1 + a)]/(1 + 3a?) due to duality), we con-
clude that equations g;(1/2 + if) = 1 fori = 1, 2, 3 do not
have solutions; thus, the scaling dimensions of the oper-
ators Oy, O,, and O5 are always real.

On the other hand, since {[6a(1 —a)]/(1 +3a*)} <0
for negative a, the equation g4(h) =1 has solutions
h=1/2+if(a), where f(a) can be found from the
equation

_3a(l—a)

ftanh(zf/2) = 38

(2.42)

The plot of f(a) is shown in Fig. 8. For slightly negative a,
we find

01 1 0(a)).

fla) =/~ (243)
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FIG. 8. Imaginary part of the scaling dimension of the fermion
number operator Q. At a = —1, it reaches its maximum value of
approximately 1.5251.

while f(—1) ~ 1.5251 in agreement with the result for the
bipartite model found in Ref. [17]. Thus, for -1 <a <0
there is an operator with the complex scaling dimension
h=1/2+if(a) or its complex conjugate: the fermion
number operator Q = iOY. The complex scaling dimension
makes the conformal large-N limit unstable.

For 0 < a <1/3, there are no complex solutions of
g4(h) = 1. The two lowest positive real solutions A (a)
satisfy h, +h_ = 1. These two roots are the scaling
dimensions of operator Q in two different large-N CFTs
[71], as we explain below. We find

h+(a):1/2+\/%+m

when a is small and positive, and 4, (1/3) = 1. The fact
that @ = 0 is the lower edge of the conformal window is
related to the behavior of the scaling dimension of the
“double-trace” operator Q2. In the large-N limit, Ay =
2AQ. In one of the CFTs, AQ = h, so that AQz > 1. Since
the operator Q7 is irrelevant, this CFT is stable. There is
Renormalization Group flow leading to it, which originates
from another large-N fixed point where Q? is relevant
[72,73]. Atthis UV fixed point, Ay = h_. When a = 0, the
two fixed points merge and annihilate, as in various other
theories, e.g., Refs. [48,49,57,58]. For —1 < a < 0, there
are two different theories containing complex dimension
Ap =1/2+ if(a) or its complex conjugate. They may be
formally regarded as “complex CFTs” [52], but we see in
the next section that their true physics includes symmetry
breaking, which leads to a gap in the energy spectrum.

(2.44)

III. SYMMETRY BREAKING

In Sec. II D, we show that for the coupled tensor model
(1.2) in the range —1 < a < 0, the fermion number operator
Q = iy!w’ has a complex scaling dimension, signaling an
instability of the conformal phase of the model. In this
section, we show that this operator acquires a vacuum

expectation value (VEV) in the true low-temperature phase
of the large-N model. It is, therefore, tempting to make the
following conjecture.

Conjecture. If the assumption of conformal invariance
in a large-N theory leads to a single-trace operator with a
complex scaling dimension of the form d/2 + if, then in
the true low-temperature phase, this operator acquires
a VEV.

In our case, the O(N)? symmetry implies that

(3.1)

where we use the shorthand notation / = abc, and A is of
order 1 in the large-N limit.

This VEV leads to an exponential decay of correlation
functions and signifies a gap in the energy spectrum.
Furthermore, the VEV (3.1) implies that various discrete
symmetries, including the particle-hole symmetry (2.6),
the interchange symmetry between v, y,, and the reflec-
tion symmetry w, — —y,, are spontaneously broken.
Therefore, one should expect a second-order phase tran-
sition between the broken and unbroken symmetry phases.
In addition, the spontaneously broken symmetry also
implies a ground-state degeneracy in the large-N energy
spectrum [74].

In this section, we extensively analyze the phenomenon
of symmetry breaking, sometimes using the SYK counter-
part (1.1) of the O(N)? tensor model (1.2). The two models
have many similarities at large N: They share the same
Schwinger-Dyson equations and the spectra of bilinear
operators. The SYK formulation, however, is advantageous
for the purpose of exact numerical diagonalizations: We
can study cases where the integer Ngyk is not the cube of an
integer.

Let us first demonstrate the connection between the tensor
model and the SYK counterpart. For the one-flavor O(N)?
tensor model, the analogous SYK model has the random
tensor J;;;; which is fully antisymmetric. The mixed term

(iwiys) = 8"A,

Ayjuorixsy has only the symmetries

Aiji = —Ajit = —Ajjic = Awij» (3.2)
which are the same as for the Riemann tensor. However, the
full interaction term following from Eq. (1.2) is

A s + X + xueisi)

= (A + Ayji + Aiklj))(li){]ﬂ(]zc)(lz- (3.3)
Since Ajji + Ajji + Ajggj 1s fully antisymmetric due to
Eq. (3.2), the mixed term has a fully antisymmetric random
coupling. We assume that it is proportional to the coupling in
the diagonal term of Eq. (1.2), and are thus led to the random
model (1.1). This model is the special M =2 case of a
periodic SYK chain model
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1 N y
H epyin = Z‘]ijkl Z (s + 30)(5()()/&(];“)(;“)7 (3.4)
: x=1

where the integer x labels the lattice site, and y},., = /.
This Hamiltonian can be obtained from the model of
Ref. [26] by identifying the separate random couplings up
to a factor of a.

Introducing the complex combination w/ = (1//2)

()({ + i)(é), we may write the Hamiltonian (1.1) as

1 1-3a, . . L
H =i <T (w'yyy! + i)

+3(1+ a)y'ﬂ'y‘/fy/ky/). (3.5)

As usual, we assume that each variable J;;; has a Gaussian

distribution with variance 6J>Ngy,. We typically state
energies in units of J or equivalently set J = 1.

The duality symmetry described in Sec. II A applies to
the coupled SYK model (1.1) and again allows us to restrict
a to the range from —1 to 1/3. There are two interesting
limiting cases. For @ = —1, the transformation (2.11) maps
H — —H. This means that for any random choice of J;j,
the energy spectrum is exactly symmetric under £ — —E.
This can be seen in the histograms of the spectrum shown in
Fig. 18; in particular, there are many states whose energy is
exactly zero. For @ = —1, the model is a random counter-
part of the complex bipartite model:

2 o e
Hy = 47Jijkl(l//l1//]ll/kl//l +whpphy!). (3.6)
The fermion number operator

AT
0 = irn =5 vl (3.7)
does not in general commute with H, but it is conserved

mod 4, just like in the Maldacena-Qi model [45]. For
a = 1/3, however, we find the Hamiltonian

4
H,y = Ty /!, (3.8)

1 [Q.H,i] =0.

Thus, there is an enhanced U(1) symmetry y/ — ey’
[75]. We note that for @« = 1/3, the scaling dimension of
operator Q = Of is h =1, consistent with charge con-
servation. Also, here g,(h) = g3(h) so that the scaling
dimensions of 03" and 03" are equal. This is because

O+l 1 0¥+ = 2y gy, (3.9)

Furthermore, the transformation (2.11) maps H,_, into

3

itself, so the theory is self-dual.

For general a, the model (1.1) has multiple discrete
symmetries, which are discussed in more detail in
Appendix A. These discrete symmetries can be sponta-
neously broken due to a VEV of Q if Q is not invariant
under them. In the model (1.1), there are two symmetries
that are not broken by a VEV of Q: the antiunitary time-
reversal symmetry K and a Z, symmetry generated by z/2
rotation R in yy, y»,

RyR =y, RpR' =—p. (3.10)
They both preserve Q. The model (1.1) also has multiple
reflection symmetries that are spontaneously broken by the
VEV of Q, which we list in Appendix A. In fact, all unitary
discrete symmetries of the model (1.1) form the dihedral
group of order 8, D,. In our case, any two broken
symmetries that can be related by an unbroken symmetry
do not produce extra ground-state degeneracy, and there-
fore, it is enough to focus on one of them.

Let us focus on the particle-hole symmetry [37-42]
generated by

Nsyk

P=K H (llji + 1/_/i), P2 = (_1)NSYK<NSYK_1)/2'
i=1

(3.11)

It acts on the fermion number as

POP = -P2Q. (3.12)

For Ngyk not divisible by 4, there is a twofold degen-
eracy of the ground state in Sec. III C due to an anomaly in
the particle-hole symmetry [37-42]. For Ngyk divisible
by 4, this symmetry is not anomalous, and we find a
nondegenerate ground state, which is followed by a nearby
state when —1 < a < 0. The two lowest states become
degenerate in the large-Nqyk limit, and they are separated
by a gap from the remaining states. This asymptotic
degeneracy leads to a spontaneous symmetry breaking
through the formation of an expectation value of Q. We
demonstrate this effect by solving the large-Ngyk
Schwinger-Dyson equations for the Green functions and
with diagonalizations at finite Ngyy.

A. Schwinger-Dyson equations and
the effective action

In this section, we derive the large-Ngyy effective action
of GX type and the Schwinger-Dyson equations for
the coupled SYK model (1.1). Following Ref. [44], we
introduce bilocal variables

Gab (T’ T,) =

(Tra()xy (7)) (3.13)

Nsyk

and the corresponding Lagrange multipliers X,,(z,7’),
where a, b = 1, 2. The effective action is given by
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SYK

BS. 1 J?
N =10g Pf(0:80 = Za) = 5 [ ded? azbjzam !)Gu(z.7) = aijGim, 7)

+6a[Gh(r.7') + G3, (. 7)][G, (7. 7') + G3, (7. 7')] + 60°[GH, (7. 7) G, (7. 7')

- Gy(r. )G (1. 7) + 4Gy (1.7 Goa (5. 7)o (5. )G (. r')J)] .

By translation invariance,

Gab(T’ T/) = Gab<T - Tl)’ z“ab(":’ Tl) = z“ab (T - T/)'

(3.14)

We also have the general properties

|
G (r) = =Gy (-7),
Gz(1) = =Gy (-7).

Gx(t) = =Gxn(-1),
(3.15)

The SD equations for the two-point functions assume the
form [76]

0.G,(7) — / dv'[Z11(r = 7)G (7)) + Z15(r — 7) Gy (7)) = 6(7),

9,G1a(c) - / 42501 (r = 2)Gro(2) + Zia(e — )G ()] = O,

J7E = Gy, +3aG)1(G, + G3)) + 307G, G5, + 607G G126y,

7R, = G?z + 3‘1612((}%1 + G%z) + 30‘2G12G%1 +60°G11GGyy,s

and similarly for 1 <> 2. These equations and the effective
action are invariant under 1 <> 2 and Gy, - —G,,
Gy = =Gy

B. Solutions of Schwinger-Dyson equations
and symmetry breaking

For 0 < a < 1/3, there are no operators with complex
scaling dimensions, so it is consistent to assume that the
discrete symmetries are unbroken and set Gy, = 0 and
G1; = Gy, to obtain a nearly conformal solution in the
low-energy limit. However, the appearance of a complex
scaling dimension for —1 <@ <0 shows that such a
conformal phase is unstable. We show that in this range of
a, the true phase of the theory exhibits spontaneous
symmetry breaking. In order to exhibit it, we have to
allow the possibility that G1,(z) # 0. The underlying Z,
symmetry of the Hamiltonian (1.1) implies that such
solutions must come in pairs related by G,(r) -
—G»(7) (in our numerical work, we typically exhibit
only one of these two solutions). They correspond to
working around the two inequivalent vacua, which we
call |0, ) and |0_). They are distinguished by the sign of
the expectation value of operator Q = iy!y}:

<0+|Q‘0+> = ANsyk,
(0_1Q[0,) =0.

(0_]0[0-) = -ANsyx.
(3.17)

(3.16)

|
The unbroken symmetry R in Eq. (3.10) implies

Gx(1) = Gy (1),
(3.18)

Gia(=7) = =Gy (7) = G12(7),

and similarly for X,;,. Using these constraints, we obtain for
the effective action

_ ﬁSeff _

p
logPf(8,,0, —Z) —ﬁ/ dr (ZIIGII +Z,Gpp
SYK
0

J2
_ZKI +3a%)(G}, +G1,) +12a(1 —a)G%lG%2]> )

(3.19)
The Schwinger-Dyson equations become
0.6u(0) - [ de(zn(e=2)6u (@)
= (1= 7)Gp(7)] = 8(z),
0.61(6) - [ a2z = ¥)G0(?)
+Zp(r - )G ()] =0, (3.20)
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B8J =50, =—0.2

B8J =10, = —0.2

BJ =100,0 = —0.2

0.5 0.5 0.5
— G11 I Gll
— iGlg - iGl?
—Gn
— iG12
0 \ 0 0
0 ™ 27r9 0 ™ 27r9 0 ™ 27r9
B8J =20, =—0.5 B8J =10,a = —0.5 B8J =2,aa=-0.5
0.5 T T y 0.5 T T y 0.5 T
— Gn 7 Gll
— G2 — G2 —Gn
— G2
0 0 0
0 ™ 27r0 0 ™ 27r0 0 ™ 27r0
BJ =20, = -1 B8J =10, = —1 B =2,a=-1
0.5 T T y 0.5 T T y 0.5 T
— _Gn 7 _Gll
- ZG12 - ZG12 - Gll
— G2
0 0 0
i 27r9 i 27r9 i 27r9
FIG. 9. Numerical solutions for « = —1, —0.5, —0.2, and various values of /.

and

J72E (1) = (14 30%)G3, (1) + 6a(1 — )Gy (7)G3,(7),

J72E15(1) = (14 30%)G3, (1) + 6a(1 — @)G3, () G5 (7).
(3.21)

Equation (3.20) may be written in momentum space as

o —iw, — Xy (w,)

(o, —Z)* + 2

2lZ(er)
(—iw, —Z11)* + =1,

Gy (w,)

Gn(w,) = (3.22)

These equations together with Eq. (3.21) can be solved
numerically using the method of weighted iterations used

|(?12(0)[

a=—0.5
0.04 F T

0.03F
0.02F

0.01f

0 1 1 1 1 1 1 1 1 /BJ
5 5.02 5.04 5.06 5.08 5.1

FIG. 10. The expectation value of Q/Ngyk, i.e., |G1,(0)], as a
function of BJ for @ = —0.5. The region near (fJ )., is shown.

in Ref. [19,77]. To trigger the spontaneous symmetry
breaking, we start our iteration process with a tiny nonzero
G1,(r) which is purely imaginary. If we are in the unbroken
phase, after the iterations, G|, becomes zero, whereas if we
are in the broken phase, we find a nonzero purely imaginary
solution for G,.

The plots of G|, and iG, for different values of @ and J
are shown in Fig. 9. For each value of a between —1 and 0,
there are two phases. In the low-temperature phase (large
pJ), there are three distinct solutions: two solutions with
nonvanishing iGy, related by G,(7) > —G5(7) and the
one where G,(7) = 0. The solutions with nonvanishing
iGy, are the ones with the lower free energy. As fJ
decreases, |G, ()| decreases everywhere for the nontrivial
solution (see Figs. 9 and 10) and at the critical value

(BJ) crit

40 | 4
[} ]
I
30 F ,Z: 4
Symmetry-broken phase 9 ]
20 f g? 1
7
10 e .
;———o——e——9'~"°’—_°”e i
0 1 1 1 1 1 1 1 1 1 (0]
—1 —-0.8 —0.6 —0.4 —0.2 0

FIG. 11. Critical value of J as a function of a.
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Large-N free energy for « = —land J =1

—0.2

— F
== Fei,=0 1

B

2 4 6 8 10

Large-N entropy for a« = —1land J =1

06

I — S/Ngsvk
0.5
04}
0.3}

T T T

FIG. 12. Large-N free energies of the true numerical solution and the solution with G, = 0 fora@ = —1, J = 1. The graph on the right
shows the entropy; we can clearly see a second-order phase transition, as there is a discontinuity in its derivative near critical

temperature.

becomes exactly zero. For fJ < (/) the only possible
solution is G,(7) = 0. Thus, the Z, symmetry is restored,
and this is a second-order phase transition. The plot of
(BT ) erie Vs ais shown in Fig. 11; it blows up as a approaches
zero from below [78].

Large-N free energy for f =5and J =1

—0.18
—0.22F
—0.26 p
—0.3 N N N N N N N N N o
-1 -0.8 —0.6 -0.4 —0.2 0
FIG. 13. Large-N free energies at fixed  and J. We take f = 5,

J =1, and decrease a. We observe also a second-order phase
transition.

BJ =100, Bu=12, a=—0.15

0.5
0 \
—0.5 . . . . . . 0
—27 -7 0 m 2w

FIG. 14. Plot of solutions G;; and iG;p for the model in
Ref. [44] superimposed with G, and iG,. Parameters chosen so
that the solutions are close for most of the range of 6.

Using the solutions of the Schwinger-Dyson equations,
we can numerically compute the large-N free energy

F 1 &= > 2y
:10g2+5210g{<1+ ll(a)n)> _ 12(;’)n):|

SYK P lw, Wy

4% Z"" [Z11(0,)G11(@,) = Z12(@,)Gra(@,)],

n=—00

(3.23)

where the sum ), log(—iw,) is replaced by log(2). The
energy can be computed with the formula

E

NSYK

1 +00
= ﬁ Z [zll(wn)Gll(wn) - ZlZ(wiz)GIZ(wn)]’

n=—0oo

(3.24)

and at low temperatures it should converge to the energy of
the ground state E, divided by Ngyk.

Now one can compare the free energy in the symmetry-
broken phase Fg o with that of the symmetry-unbroken
phase F ,—o. In particular, the free energy of the latter
phase is simply twice that of a single SYK with a rescaling

|G12(0)| as a function of « for 5J = 5000

0.29

0.28F

N N N " " " " (6%
-1 -0.8 —0.6 —0.4 —0.2

FIG. 15. The expectation value of Q/Ngyk, i.e., |G»(0)], as a
function of « for pJ = 5000.
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Eo/(JNsyxk)

—0.12f

—0.16

—0.2}F

—0.241

» Exact diagonalization results

—0.8 —0.6 —0.4 -0.2

Q

Egap/J
0.8

«

-1 -0.8 —0.6 —0.4 —0.2 0

FIG. 16. Right: The value of E;/(JNgyk) as a function of a. Both graphs are approximately linear in « for a not too small. Results
from exact diagonalizations [Eq. (3.33)] are shown with dots. Left: The large-Ngygk energy gap in the spectrum computed from the

exponential decay of the Green functions.

Eigenvalues for Ngyk = 30

X

—_

=)
=

Nsyk = 30
T a=0

Number of eigenvalues

-1 0 1 2
Energy, in units J

—2

Eigenvalues for Ngyk = 30 near the ground state

X

—_

=)
=

Nsyk = 30
& =0
RN
g ----Quadratic fit
g
.80
<]
B
8
Q
g
=
z

—-2.8

—2.6
Energy, in units J

2.7 —2.5 —24

FIG. 17. Left: The energy spectrum for a = 0, i.e., for two decoupled SYK models, for a single sampling of Ngyx = 30. Right:

The same spectrum magnified near the lower edge.

J = V1 + 3a2J. It follows that in the “conformal window”
0 < a < 1/3, the low-temperature limit of the entropy is
SO = 2CON s

1 K
¢y = glog2 +7-~ 02324, (3.25)

8
which is twice that of the single SYK model. The fact that
Sy 1s independent of @ means that the g theorem [79] is
obeyed to leading order in N, even though the theory is not
exactly conformal due to the peculiarities of the & =2
mode. As a further check, one can consider a large-g
expansion [19,80],

v

1 v
ﬂF(qu)z:() - - 10g2 - ?2”1/ (tan; - Z)

71'21/2
=

(3.26)
where 8J+/(1+3a?)2'"9g={(zv)/cos|(av)/2]}. The free

energy of the symmetry-unbroken phase F ,_ is seen to

agree well numerically with F g1)2=0'

In Fig. 12, we plot for « = —1 the free energy of the
symmetry-broken phase (3.23) as a function of AJ and

1
——32ﬂv[ﬂu—2tann’v<l -
q

compare it with that of the unbroken phase obtained by
setting Gy, = 0 in the SD equations (3.20) and (3.21). We
also show the entropy as a function of /. The plot shows a
clear second-order phase transition at (8J).;, ~ 2.87, and
the derivative of the entropy is discontinuous. We also
observe a second order phase transition as one fixes
temperature and varies @ as shown in Fig. 13. We will
systematically study the critical exponents in future work.
We notice that at sufficiently large AJ, there is a range of
7 where both iG,(7) and G,,(z) decay exponentially and
share the same decay rate. To explain this fact, let us study
the 7 = 0 case and insert the complete set of states
Gi(7) = (04| 7x1(0)e™ ) (nly1(0)]04).  (3.27)
For large 7, the sum is dominated by the lowest excited
state, and we find

Gi(7) = e EE0, [} (0)[1)(1[r1(0)]0,).  (3.28)

Similarly, we find that the large-z behavior of Gy, is

Gia(7) = e =R (0, 7] (0)[1)(1r3(0)[04).  (3.29)
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Eigenvalues for Ngyx = 15, plotted with 300 bins

” [ Nsyk =15
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£ 120p @ =—1
z
&)
20
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1S
z
E 10
Z -----------
o4
Energy, in units J
Enlargement of energy levels near the ground state
30F Nsyk =15
[ a=-1
ER
g
Z 20F
.20
[}
= F
5 Doubly degenerate
g 10f  ground state Fy
El
Z Egap
0—4 —3.6 —3.2 —2.8
Energy, in units J
Eigenvalues for Ngyk = 16, plotted with 300 bins
300+ Neyk = 16
g lo=-1 ]
=
<
Z 200}
()
20
()
o
3
£ 100t
g
= P
z
i e 0 2
Energy, in units J
Enlargement of energy levels near the ground state
30F Ngyk = 16
2 ta=-1
=
E
= 20p
()
20
()
o
3
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,qné) 10¢ split states
El
“ Egap
0

- >
—4.2 -3.8 —3.4

Energy, in units J

FIG. 18. The spectrum for a single realization with Ngyx = 15, 16
E = 0 when Ngyx is odd and a large number of states with £ = 0.

Thus, the universal decay rate among correlators signifies a
mass gap in the spectrum.

In the work of Maldacena and Qi [44], the functions Gy,
and G, were also found to be exponentially decreasing
for sufficiently large BJ. In Fig. 14, we exhibit super-
imposed plots of the low-temperature solutions to our
system of equations and those from Ref. [44], with

Eigenvalues for Ngyk = 15, plotted with 300 bins

| Nsyx =15
a=—0.5

Number of eigenvalues

1

\Energy7 in units J

Enlargement of energy levels near the ground state

30F Ngyk = 15
P fa=-05
=
<
Z 20F
5
20
() F
kS Doubly degenerate
g 10F ground state Ey
g
= L
4

0

-2
Energy, in units J

—-24 -1.6

Eigenvalues for Ngyk = 16, plotted with 300 bins

[ Nsyk = 16 |
] a=—-05
% 800 + g
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=
Z,
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-1 0 1
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308 Noyic = 16
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>
£ 20}
b
()
<
=}
- Two slightly
é 10F  split states
20
Egap
0 2.2
Energy, in units J
and @ = —1, —0.5. For @ = —1, the spectrum exhibits a gap near

parameters chosen so that the solutions are close to one
another for most of the range. We observe a difference in
the behavior of iG,(7) and iG () at small z: In our case,
the function is smooth with a vanishing derivative at
7 = 0, while in Ref. [44], its derivative is discontinuous at
7=0. This is due to the fact that their Hamiltonian
includes a quadratic term.
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Elgenvalues for Nsyk = 16 plotted Wlth 300 bms
400 E

NSYK—16

2 a=1/3
= 300} ]
g
=]
o]
.50
T 200 1
S
o
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"2 100 :
=
Z.

025 —1 0 1 2

Energy, in units J

FIG. 19. The spectrum for a single realization for Ngyx = 16
and a = 1/3.

We can also study what happens at low temperatures
(large BJ) as a function of a. In Fig. 15, we plot iG,(0),
which is the expectation value of the order parameter
Q/Ngyk, for a large #J. This quantity becomes small as a
is increased towards zero. In Fig. 16, we plot the large-
Ngyk limit of the energy gap E,,, divided by J calculated
from the exponential decay of the Green functions. We also
plot the ground-state energy E divided by JNgyk calcu-
lated using Eq. (3.24). The results from exact diagonaliza-
tions extrapolated to large Ngyk [Eq. (3.33)] are shown
with dots and demonstrate very good agreement. The exact
diagonalizations for finite Ngyk are discussed in the next
section.

C. Exact diagonalization for finite Ngyx

In this section, we present numerical results for the
spectra of two coupled SYK models with Hamiltonian
(1.1). We first check that the results from exact diagonal-
izations agree well with expectations: The spectrum for
a=0 and Ngyg =30 and the ground-state energy of
a = —1 for various Ngyx concur well with analytical
arguments and with the results from Sec. III B. Then,
we present our results on the energy gap and broken
symmetry.

The biggest number we are able to access via exact
diagonalization of the coupled SYK models is Ngyx = 16.
In this case, the discrete symmetry (3.11) is not anomalous,
and the ground state is nondegenerate. However, for —1 <
a < 0 we observe a nearby excited state followed by a gap.
We interpret this as indication of an approach to sponta-
neous symmetry breaking, which takes place in the large-
Ngyk limit. We also present spectra for Ngyx = 15, where
the discrete symmetry (AS) is anomalous so that the states
are doubly degenerate. There is again a gap in the spectrum
present for —1 < a < 0. Furthermore, we present numerical
results on the VEV of operator iy’ y5 for Ngyx = 14, which
demonstrates that it is nonvanishing for —1 < a < 0.

First, let us consider @ = 0, where we find the spectrum
of two SYK models with the same random couplings. The
density of states for this model is simply given by the
convolution of that of the single SYK model [81]:

PaoanielE) = / dep(eyp(E—e).  (330)

160+ NSYK = 16
| a= -1

—_

Do

(=]
T

Number of eigenvalues
IS )
S S
:

@ =0mod 4 |

—_ =

Do D

= (=]
T

Number of eigenvalues
©
S

.NSYK:16 Q:1m0d4_
-1

| a= -1
‘ H I
1 2 3

40
0 1 2 4 0=
Energy, in units J Energy, in units J
160}F NSYK=16 Q=—1 m0d4 i
a=-—1

=
Do
(=]

Number of eigenvalues
B )
S =)

I Hu l
-4 -3 -2 4
Energy7 in units J

(=)

—_

Do

(=)
T

Number of eigenvalues
' )
S S
-

|
-3 2 -1
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(=)

0 1 2

FIG. 20. The spectrum for a single realization of the coupled SYK model with Ngyx = 16 and @ = —1 separated into four Z,
symmetry sectors. In each of the sectors, the spectrum is symmetric under £ — —E. The Z4-invariant sector shows two nearly degenerate

lowest states separated by a gap from the rest of the states.
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FIG. 21. The spectrum for a single realization of the coupled SYK model with Ngyx = 15 and a = —1 separated into four Z,

symmetry sectors. In each of the sectors, the spectrum is symmetric under E — —E. The sectors with Q = +1/2 mod 4 contain the

ground state separated by a gap from the rest of the states.

Equation (3.30) in particular helps us determine the
behavior of pyoupe(E) near the ground state. Shifting the
energy so that the ground state is at zero, we know that

p(E) - AVE for small E. Therefore, for small E,

E

pdouble(E) - A2 / de €(E - 6)
0

B TA2E?

(3.31)

The numerical density of states shown in Fig. 17 for
Ngyk = 30 is in good agreement with the E> dependence
near the ground state.

Let us proceed to the spectra for nonvanishing values of
a. In Figs. 18 and 19, we plot the spectra of energy divided
by J for @ = —1, —1/2, 1/3, and different values of Ngyg.
These energy distributions have interesting and unusual

shapes. For the special values @ = —1 and 1/3, we observe
large numbers of states with £ = 0; this creates the zero-
energy peaks seen in the graphs. For @ = —1 and odd Ngy,

we find that the £ = 0 peak is separated by gaps from the
remaining states, but for even Ngyg, it is not.

In order to clarify the peculiar shapes of the energy
distributions in Fig. 18, it is useful to separate them into
distinct Z, symmetry sectors [82] labeled by the eigenvalue
of e™2/2 as shown in Fig. 20 for Ngyx = 16. The sectors
where ¢72/2 = 4 ie., Q = +1 mod 4, have identical
energy spectra which are shown on the right. They contain
the symmetric bumps, which produce the “rabbit ears”

pattern in the overall distribution. For @ = —1, these sectors
also contain large numbers of states with £ = 0 (they are
discussed in Appendix B). On the left in Fig. 20, we show
the states with ¢72/2 = +1. For ¢72/2 = —1, the distribu-
tion is smooth and does not contain a sharp peak at £ = 0.
The Z,-invariant sector ¢#2/2 = | contains the two nearly
degenerate lowest states separated by a very clear gap from
the remaining states. For « = —1, this sector also contains a
large number of E = 0 states [83].

For Ngyx = 15, due to the anomaly in particle-hole
symmetry, there are two degenerate ground states; see
Fig. 18 [84]. In fact, each energy level is doubly degenerate.
This is due to the fact that the spectra in the sectors with
charges O = 1/2 mod 4 and with charges Q = —1/2 mod 4
are identical; similarly, the spectra with Q = +3/2 mod 4
are identical. For —1 < a < 0, we observe a gap between
the lowest energy level and the next one, as expected. The
spectra for @ = —1 separated into the four sectors are
shown in Fig. 21. On the other hand, for Ngyg = 16 there is
no exact degeneracy of the ground state, but the first gap is
very small, indicating a tendency towards spontaneous
symmetry breaking at large Ngyk. We show the Ngyx = 16
spectra for ¢ = —1 and @ = —0.5 in Fig. 18. In both cases,
for a typical sampling of the coupling constants J;;, we
observe two closely spaced states followed by a visible gap.
For large Ngyk, the energy gap between the two lowest
states is expected to decrease exponentially:
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FIG. 22. Left: The ground-state energy for « = —0.5, —1 and Ngyx = 10, 11, ..., 16 (the number of samples are 250 000,120 000,
50 000,5000,5000,2000,500). The linear fit is shown by dashed lines. Right: The energy gap between the second and third states as a
function of « for a single realization of random couplings at Ngyx = 16.

E,—Ey

—IOg ~ NSYK' (332)

For a > 0, the low-lying spectrum is different; we observe
many closely spaced low-lying states without large gaps,
similar to the standard SYK spectrum.

In Fig. 22, we plot the ground-state energy for a = —1
and a = —0.5 with Ngyx = 10, ..., 16. The plots where J is
set to 1 are approximately linear, and the fits give

ES=1 = —0.283Ngyg + 0.373,

Eg:_oj = _0'179NSYK + 0.217. (333)

The limiting values E2~~!/Ngyx = —0.283 and E{~05/
Ngyx = —0.179 are in good agreement with the result
found from the Schwinger-Dyson equations; see Fig. 16.
In Fig. 22, we also exhibit the energy gap between the
second and third states as a function of a. As a is increased
from —1 to 0, the gap decreases as expected.

Exact diagonalizations also provide support for the
statement that the fermion number Q acquires a vacuum

expectation value for —1 < a < 0. For Ngyk not divisible
by 4, there are two ground states |0.) which map into each

(04+]Q|04) as a function of a for Ngyx = 14

0 " " " " (8%
-1 —0.4 0 0.4
FIG. 23. The expectation value (0 |Q|0, ) as a function of « for

a single realization of random couplings at Nqyx = 14.

other under the symmetry generator P. This can be viewed
as anomalous breaking of the time-reversal Z, symmetry
(3.11) which occurs for a finite number of degrees of
freedom [37-39,41,42]. In Fig. 23, the vacuum expectation
value as a function of a is plotted for Ngyx = 14. This is the
finite Ngyk analogue of Fig. 15, where the large-N gy limit
of the condensate is plotted. We also note the qualitative
similarity of Fig. 23 and that of the imaginary part of the
scaling dimension of Q in Fig. 8.
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APPENDIX A: MORE ON THE DISCRETE
SYMMETRIES

The model (1.1) has the antiunitary particle-hole Z,
symmetry generated by Eq. (3.11). The operator K is
defined to take z — Z, z € C but acts as the identity on y or
. It may be identified as a kind of time-reversal generator
which satisfies K> = 1 [37-39]. It acts by
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KiK = —i, K)(’iK :)(’i, K)(éK = —)(é, (A1)
and therefore satisfies
[K,H| =[K, Q] =0. (A2)

Note that although K can be anomalous, K is unbroken
as it does not change the sign of Q. Another unbroken
symmetry is the z/2 rotation between y} and y5,

(_])NSYK(NSYK—I)/42NSYK/2 Hiv_sin( )(i
P = =
(=) Yoo ApNor 2 TN i if Noyi = 2k + 1.k € Z,

such that

P2=1.
(A6)

PPT =1,  PyiP'=—y,  PriP" =4,

In fact, R, P, and K are enough to generate all discrete
symmetries of the model (1.1). In particular, all the
unitary discrete symmetries form Dy, the dihedral group
of order 8. To see this, it is enough to check that the group
presentation R* = P?> = (RP)? = 1. The remaining reflec-
tions can be identified with RP, R*P, and R*P. For a given
unitary symmetry, we can compose it with K to obtain an
antiunitary one.

In our case, when Ngyg — oo, although multiple Z,
symmetries are spontaneously broken, we expect only a
twofold ground-state degeneracy. In fact, any two broken
symmetries that can be related by an unbroken symmetry
do not produce any extra ground-state degeneracy. To see
this, consider for example the reflection symmetry RP.
Since R is unbroken, we may assume R|0) = |0) without
loss of generality. Then, RP|0) = RPR|0) = P|0).

At finite Ngyg, however, certain discrete symmetry can
be anomalous and is responsible for an exact twofold
degeneracy for certain Ngyk. For example, the particle-hole
symmetry P ~ KP acts on the fermions as

PyiP=nil,  PEP=ny,
n= (—1)(NSYK+2)(NSYK—1)/2. (A7)

The fermion number operator (3.7) is odd under this
symmetry:

POP = -P?Q. (A8)
When Ngyk is not divisible by 4, there are two degenerate

ground states |0.), and the symmetry generator P maps
them into each other [37-42]:

R = (=12 T](1 - 2. (A3)

It satisfies
RR' =1, RY\R' =y, RyAR =—y, R*=1. (A4)
Note R? = (—1)F. There are also various reflection Z,

symmetries that are spontaneously broken by the VEV of
Q. In particular, we have the reflection symmetry

lf NSYK - 2k,k S Z,

,P|0+> = (_1 )NSYK(NSYK_I)/4|O_>’

Pl0_) = (=1)VorMsi4, ). (A9)
In this case, we can say that the particle-hole symmetry is
anomalous.

APPENDIX B: ZERO-ENERGY STATES IN
THE BIPARTITE MODEL

The bipartite model, which is the @ = —1 case of the
two-flavor tensor or SYK model, has some additional
symmetries which make it special. In general, the spectrum
of the two-flavor SYK is not symmetric under £ — —F for
a given random coupling J;;;. However, for a = —1, the
spectrum is exactly symmetric for any choice J;j; due to
the duality symmetry (2.11). This symmetry acts by

WERELS

N

and for @ = —1 this reverses the sign of the Hamiltonian of
bipartite model H,__;, which is given in Eq. (3.6).

Furthermore, the model with « = —1 has a large number
of zero-energy states. For the SYK model, the sharp peak at
E = 0 may be seen in Fig. 18. For a generic choice of J;;y;
where they are all nonvanishing, the number of £ =0
states does not depend on their values. In fact, it is not hard
to calculate this number separately for each Z, symmetry
sector. The separate sectors may be labeled by Q=0 mod 4,
where O = 0, 1, 2 when N is even, and Q = +1/2,43/2
when N is odd [85]. The general formula for the number of
E = 0 states in sector Q is

—i

_j_) j’
N

(B1)

[(N—iQ:)/f%] N

N = <_1>m< . ) (82)
0 N

m=—((N+20)/8) 2+ O+ dm

This formula is applicable to “generic” bipartite

Hamiltonians (3.6), where all J;;; are nonvanishing; in
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) (N/]2V— 4) <N/;V+ 4>

FIG. 24. This picture represents the counting of zero-energy
states in the Q = 0 sector. They are superpositions of states with
charges Q = 0 mod 8.

such cases, it does not depend on the specific choice of
couplings. However, if some couplings J;j; vanish, then
the number of E = 0 states may be higher than Eq. (B2).
For example, in the O(N;)x O(N,) x O(N3) tensor
bipartite models, where many quartic couplings vanish
[17], the number of E = 0 states is greater than that given

To explain the origin of the formula (B2), let us consider
for example the O = 0 sector of a model with even Ngyk.
In this sector, the £ =0 states may be obtained from
superpositions of states with Q@ =0 mod 8 [86]. The
dimension of Hilbert space in this sector is

(B3)

N
d = .
Omod8 Z <% + 8m>

m

When the Hamiltonian of the bipartite model acts on such a
state, it maps it to a superposition of states with Q = 4 mod
8 (see Fig. 24). The total number of such states is
Zm(% 45gn)» and this is the number of constraints from
the requirement that H,__; annihilates the zero-energy
states. Subtracting this number of constraints from g3,
we arrive at Eq. (B2) for the case 0=0. Analogous
reasoning provides a derivation of Eq. (B2) for other
values of Q. We check numerically that all the E =0
wave functions are mixtures of only the states with
Q =0 mod 8 and that their numbers for any random
sampling of J;;; are given by Eq. (B2).

For example, for N = 16 the number of states in the

O = 0 sector is

No = <186> + 2<12) - 2(146> —=9232. (B4)

The number of states in the O = +1 sectors is

s (5) (9 () (1) e

(B5)

The number of states in the Q = 2 sector vanishes for any
even N.
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