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Continuous quantum phase transitions beyond the conventional paradigm of fluctuations of a
symmetry-breaking order parameter are challenging for theory. These phase transitions often involve
emergent deconfined gauge fields at the critical points as demonstrated in phase transitions between
different broken-symmetry states of 2þ 1-dimensional quantum magnets, as well as those between
symmetry-protected topological (SPT) phases. In this paper, we present several examples of deconfined
quantum critical points between SPT phases in 3þ 1-D for both bosonic and fermionic systems. These
critical theories can be formulated as non-Abelian gauge theories either in the infrared-free regime or in
the conformal window when they flow to the Banks-Zaks fixed points. We explicitly demonstrate several
interesting quantum critical phenomena. We describe situations in which the same phase transition allows
for multiple universality classes controlled by distinct fixed points. We exhibit the possibility—which we
dub “unnecessary quantum critical points”—of stable generic continuous phase transitions within the
same phase. We present examples of interaction-driven, band-theory-forbidden, continuous phase
transitions between two distinct band insulators. The understanding we develop leads us to suggest
an interesting possible 3þ 1-D field theory duality between SUð2Þ gauge theory coupled to one massless
adjoint Dirac fermion and the theory of a single massless Dirac fermion augmented by a decoupled
topological field theory.
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I. INTRODUCTION

Ground states of quantum many-particle systems can go
through phase transitions as the Hamiltonian is tuned.
When such a quantum phase transition is continuous, the
resulting quantum critical point has many interesting
properties, which have been explored for many decades
[1,2] in diverse contexts. Despite these studies, our intuition
for what kinds of continuous quantum phase transitions are
possible and their theoretical descriptions are very poor.
The standard examples involve continuous quantum phase
transitions separating a trivial gapped disordered phase
from a symmetry-breaking phase with a Landau order
parameter. In this case, the critical phenomena may be
described within the framework of a quantum Landau-
Ginzburg-Wilson (LGW) theory in terms of a fluctuating
order parameter field.

There are many examples of continuous quantum phase
transitions that are beyond the Landau paradigm. First, one
or both phases may have non-Landau order (for instance,
they may have topological order). Then, since an order-
parameter-based description fails to capture the non-
Landau phase, it is not surprising that the critical theory
is not within the standard LGW paradigm (see Ref. [3] for a
review). Perhaps more surprisingly, Landau-forbidden
continuous phase transitions may even occur between
phases that are Landau allowed themselves. A classic
example is the Néel-to-valence-bond solid-state transition
of spin-1=2 quantum magnets on a 2d square lattice [4–18].
The theory for this transition is an example of a phenome-
non dubbed “deconfined quantum criticality.” The critical
field theory is conveniently expressed in terms of “decon-
fined” fractionalized degrees of freedom (d.o.f.), though the
phases on either side only have conventional “confined”
excitations. Now, there are many other proposed examples
of deconfined quantum critical points in 2þ 1 space-time
dimensions [19–39]. Very similar (sometimes equivalent)
theories emerge for critical points between trivial and
symmetry-protected topological (SPT) phases of bosons
in 2þ 1 space-time dimensions [19,40–46]. (For a general
introduction to SPT phases, see, e.g., Refs. [42,47–54].)
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These theories have been shown [19] to be related by webs
of dualities of 2þ 1-D conformal field theories discussed
in recent years [55–58].
In this paper, we describe a number of surprising

quantum critical phenomena for which there are no (or
very few) previous examples as far as we know. Figure 1
contains a schematic description of some of our results. We
construct examples of deconfined quantum critical points
in 3þ 1-D, for which there are no prior examples.
These examples appear as critical theories separating
trivial and SPT phases of either bosons or fermions. We
describe situations where the same phase transition admits
multiple universality classes depending on where the phase
boundary is crossed. We also introduce and describe the
concept of “unnecessary continuous phase transitions.”
These are continuous transitions that happen within the
same phase. They are analogous to the liquid-gas transition
except that they are continuous. When talking about
quantum critical points in condensed matter physics, it
is common to assume that the most fundamental question
is to understand what the distinction is between the phases
on either side of the transition. The existence of unnec-
essary continuous phase transitions shows that quantum
critical points may occur that do not separate two distinct
phases.
In fermionic systems, we describe examples of

interaction-driven topological phase transitions that are
not possible within a free fermion description, even
though the phases themselves can be described by free
fermions. These transitions violate band theory rules for
which band insulators can be separated by continuous

phase transitions. Such band-theory-forbidden continu-
ous phase transitions between two band-theory-allowed
phases of matter are a close fermionic analog of the
familiar examples of Landau-forbidden continuous tran-
sitions between Landau-allowed phases in bosonic sys-
tems. We present examples where the critical theory is a
deconfined gauge theory.
Many of our results are obtained by considering the

phase diagram of non-Abelian gauge theories in space-time
dimensions D ¼ 3þ 1. If massless, we interpret the cor-
responding theory as a quantum critical point in the phase
diagram and identify the nearby phases obtained by turning
on relevant perturbations. As a bonus of the results on
fermionic, deconfined, quantum critical points, we discuss
a striking possible duality of fermions in 3þ 1-D.
Specifically, we show that an SUð2Þ gauge theory coupled
to one massless adjoint Dirac fermion and massive funda-
mental bosons may share the same infrared (IR) physics
with a theory of a free Dirac fermion supplemented by a
gapped topological field theory. Both theories have the
same local operators and the same global symmetries and
anomalies. Furthermore, they support the same massive
phases. These checks lend hope that the massless theories
may also be infrared dual. Closely related work on SUð2Þ
gauge theories with adjoint fermions has recently appeared
inRefs. [59,60], andwe use some of their results. In 2þ 1-D,
dualities of Yang-Mills theories with adjoint fermions
have been explored in recent work [61]. There are many
famous examples of dualities of supersymmetric field
theories in diverse dimensions [62]. Many interesting
nonsupersymmetric dualities have been found in 2þ 1-D

FIG. 1. (a) Deconfined quantum criticality at the trivial-to-SPT phase boundary of systems of either bosons or fermions. (b) Multiple
universality classes for the same phase transition. (c) “Unnecessary quantum critical points” that live within a single phase of matter.
(d) Band-theory-forbidden QCP between two band insulators.
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(starting from old work [63–65] on charge-vortex duality in
bosonic theories), particulary in recent years [55–58,66–
79]. However, there are no simple dualities of nonsuper-
symmetric theories that are known to us in 3þ 1-D.

II. PRELIMINARIES AND SUMMARY
OF RESULTS

A. Free massless Dirac fermions as
quantum critical points

In this section, we review how to interpret free massless
Dirac fermion theories in space-time dimensions D¼ 3þ1
as quantum critical points. This review will enable us to
introduce many ideas and methods that will be useful to us
later in a simple setting.
Consider a free Dirac fermion described by the

Lagrangian

L ¼ ψ̄ð−i=∂ þmÞψ : ð1Þ

Here, ψ is a 4-component Dirac fermion. We regard this as
the low-energy theory of electrons with global symmetry
Uð1Þ × ZT

2 (denoted as class AIII [49,50] in the condensed
matter literature). With this choice, the electric charge of
the global Uð1Þ symmetry is odd under time reversal, ZT

2 .
To probe the physics of the system, it is convenient to
introduce a background Uð1Þ gauge field A (more pre-
cisely, a spinc connection [80]). We also place the theory on
an arbitrary, smooth, oriented space-time manifold with
metric g. Examining the partition function for arbitrary
ðA; gÞ allows us to distinguish phases based on the response
to these probes.
Consider the phase diagram as a function of the mass

m. So long as jmj ≠ 0, there is a gap in the spectrum.
However, the phase with m > 0 is distinct from the one
with m < 0. Taking the m < 0 phase to be a trivial
insulator [82], the m > 0 phase will be a symmetry-
protected topological insulator. Thus, the massless Dirac
theory sits at a quantum critical point between a trivial
and a topological insulator.
The topological distinction between the two phases can

be understood physically by studying a domain wall in
space where the mass m changes sign. It is well known that
at this domain wall, there is a single, massless, Dirac
fermion, which reveals that the phase for one sign of the
mass is topological when the other is trivial.
It is extremely useful to establish this result in a more

formal but powerful way (see Ref. [83] for a review).
Consider the partition function of the free Dirac theory
defined by the Euclidean path integral:

Z½m;A; g� ¼
Z

Dψ̄Dψe−
R

d4x
ffiffi
g

p
ψ̄ð=DþmÞψ ð2Þ

¼ detð=DþmÞ: ð3Þ

Here, D is a covariant derivative. As =D is anti-Hermitian, it
has purely imaginary eigenvalues, which we write as iλi.
Furthermore, as

fi=D; γ5g ¼ 0 ð4Þ

for each nonzero eigenvalue λi, there is a partner −λi. Zero
modes of the Dirac operator do not have to appear in pairs,
however. These zero modes can be chosen to have definite
helicity, i.e., to have γ5 eigenvalues �1. Let N� be the
number of zero modes with helicity �1, respectively. The
index of the Dirac operator is defined to be J ¼ Nþ − N−,
and it is a topological invariant [it cannot be changed by
smooth deformations of ðA; gÞ]. Then, the partition func-
tion can be written

Z½m;A; g� ¼
�Y

λi>0

ðλ2i þm2Þ
�
ðmNþþN−Þ: ð5Þ

Now, consider the ratio of the partition functions of the
theories with masses þm and −m. Clearly,

Z½m;A; g�
Z½−m;A; g� ¼ ð−1ÞNþþN− ¼ ð−1ÞJ ¼ eiπJ: ð6Þ

Thus, the ratio of the partition functions is a topological
invariant. Furthermore, it is known [81] (by the Atiyah-
Singer index theorem) that

J ¼ 1

2

Z
d4x

F
2π

∧ F
2π

−
σ

8
; ð7Þ

where F ¼ dA and σ is an integer known as the signature of
the space-time manifold. It may be expressed in terms of
the Riemann curvature tensor:

σ ¼ −
1

24π2

Z
d4xtrðR ∧ RÞ: ð8Þ

Equation (6) thus gives exactly the right θ ¼ π response of
a topological insulator for one sign of mass if the other sign
is chosen to be trivial.
We note that the massless Dirac theory has extra

symmetries that are absent in the massive case. For
instance, we can write the Dirac fermion as two flavors
of Weyl fermions. The SUð2Þ flavor rotation of the two
Weyl fermions is a symmetry of the massless theory. We
regard these symmetries as emergent symmetries of the
critical point. These emergent symmetries have ’t Hooft
anomalies, and we discuss them later, as needed.
We can readily generalize the discussion above to N free

Dirac fermions or, equivalently, 2N Majorana fermions
with SOð2NÞ × ZT

2 symmetry. Taking the m < 0 theory to
be trivial, the m > 0 theory will describe a SPT phase of
fermions with SOð2NÞ × ZT

2 symmetry. This result is
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established by calculating the partition function ratio in the
presence of a background SOð2NÞ gauge field ASOð2NÞ and
metric g:

Z½m;ASOð2NÞ; g�
Z½−m;ASOð2NÞ; g� ¼ ð−1ÞJ: ð9Þ

The index J is a topological invariant related by the Atiyah-
Singer theorem to ðASOð2NÞ; gÞ by

2J ¼ p1ðASOð2NÞÞ − 2N
σ

8
; ð10Þ

where p1 is the first Pontryagin index of the SOð2NÞ gauge
field defined by

p1ðASOð2NÞÞ ¼ 1

2

Z
Y4

trSOð2NÞ

�
FSOð2NÞ

2π
∧ FSOð2NÞ

2π

�
: ð11Þ

Therefore,N massless free Dirac fermions can be viewed as
the critical theory for the quantum phase transition between
the trivial and SPT states of fermions with SOð2NÞ × ZT

2

symmetry.

B. Massless 3 + 1-D non-Abelian gauge theories

Consider next a generalization to SUð2Þ gauge theories
coupled to Nf flavors of fermionic matter fields. We study
two distinct cases—(i) matter fields in the fundamental
representation of SUð2Þ and (ii) matter fields in the adjoint
representation. These two distinct cases correspond “micro-
scopically” to two very distinct kinds of physical situations.
When the matter fields are in the fundamental representa-
tion, all local (i.e., gauge-invariant) operators in the theory
(baryons, mesons, etc.) are bosons. We therefore regard the
gauge theory as the low-energy theory of a UV theory of
these gauge-invariant bosons [84]. When the matter fields
are in the adjoint representation, however, there are local
operators that are fermions. We can view the theory as
emerging from a UV system of these fermions (see Sec. IV
for more details).
The infrared behavior of 3þ 1-D quantum chromody-

namics with massless matter fields is an extremely impor-
tant and intensively studied topic in particle physics. The
renormalization group (RG) flow equation of the gauge
coupling, for SUðNcÞ gauge theory with Nf flavors of
fermions [85] in the representation R, reads

βðg2Þ¼ dg2

dl
¼ β0ðNc;Nf;RÞg4þβ1ðNc;Nf;RÞg6þOðg8Þ;

ð12Þ

where β0 and β1 are functions that depend on Nc, Nf and
the representation R. For instance, if R is the fundamental
representation, β0 and β1 are

β0 ¼
1

8π2
1

3
ð11Nc − 2NfÞ; ð13Þ

β1 ¼
1

128π2

�
34

3
N2

c −
1

2
Nf

�
2
N2

c − 1

Nc
þ 20

3
Nc

��
: ð14Þ

Based on the RG equation, the IR phases of the gauge
theory can be divided into three classes. First, for Nf bigger
than a critical value N1ðNc; RÞ, the leading term β0 is
negative (β1 is usually also negative for such Nf), and
gauge coupling g2 flows towards zero under RG, if we start
from a weak initial coupling. In the IR, the theory is free,
namely, decoupled gluons and free fermions. Second, for
Nf slightly smaller than the critical value N1, β0 is a small
positive parameter. When we take into account the g6 term
in the RG equation, there is a stable fixed point controlled
by ϵ ¼ β0 at finite g2� ∼Oðβ0=jβ1jÞ for β1 < 0. This point is
the famous Bank-Zaks fixed point [86,87], which is an
example of interacting conformal field theories in 3þ 1-D.
As Nf decreases further from N1, in general, jβ1j decreases
and g2� becomes larger. Eventually, for Nf approaching a
certain critical value N2ðNc; RÞ, jβ1j → 0, and the fixed
point goes to infinity, in which case, at low energy, the gauge
theory is believed to be in a confined phase. The schematic
RG flows for these three different regimes are summarized in
Fig. 2(a). Naively, the criticalN2 can be estimated by solving
the equation β1ðNc; Nf ¼ N2; RÞ ¼ 0. However, at that
point, perturbative RG is far from a controlled limit.
Therefore, the value of N2 is usually determined through
numerical calculations. The gauge theory is in the conformal
window if Nf ∈ ðN2; N1Þ. The conformal windows are
confirmed in numerical studies as well as in higher-loop
calculations for SUð2Þ gauge theories with fundamental
fermions and adjoint fermions [88–92]. For fundamental
fermions, the conformal window of SUð2Þ theory is around
8 to 11. For adjoint fermions, the conformal window is
around 1 to 2. One can find a plot for the conformal window
of SUðNcÞ gauge theories in Fig. 2(b). The IR behavior of
SpðNcÞ and SOðNcÞ gauge theories is similar to that of
SUðNcÞ gauge theories. Their corresponding conformal
windows have also been discussed using various methods
[91–94].

C. Summary of results

The IR-free gauge theories and the Bank-Zaks fixed
points are interesting examples of 3þ 1-D conformal field
theories. In this paper, we show how to interpret them as
quantum critical points in the phase diagram of the “micro-
scopic” d.o.f. of the system, similar to what we reviewed for
the free massless Dirac fermion theories in the previous
section. Remarkably, we find that these theories can be
viewed as deconfined quantum critical points for the
underlying boson or fermion systems. The gauge-theory
description emerges as a useful one right at the critical point
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(and its vicinity), though the phases on either side only have
conventional excitations (i.e., those that can be described
simply in terms of the underlying bosons or fermions and
their composites). In all cases we study, these massless
gauge theories provide valuable examples of quantum
critical points associated with phase transitions between
trivial and SPT phases of the underlying boson or fermion
system.
In Sec. III A, we describe 3þ 1-D deconfined quantum

critical points for bosonic systems. We begin with SUð2Þ
gauge theory with Nf fermions in the fundamental repre-
sentation. For simplicity, we restrict our attention to Nf

even in this paper. We consider the theory in the presence
of an arbitrary mass m that preserves the flavor symmetry.
When m ≠ 0, the theory flows, in the IR, to massive

phases. Them ¼ 0 point corresponds to a critical point. For
general m, the global symmetry of the theory is [95]
PSpðNfÞ × ZT

2 . We regard this gauge theory as the IR
theory of a system of UV (gauge-invariant) bosons with
PSpðNfÞ × ZT

2 global symmetry. First, consider Nf large
enough that the massless point is IR free. Thus, the gauge
coupling g2 flows to zero at the IR fixed point whenm ¼ 0.
For anym ≠ 0, however, there is an induced effective action
for the gauge field at low energies. The resulting pure
SUð2Þ gauge theory flows to strong coupling and will be
confined at long length scales. In Fig. 3, we sketch the
expected RG flows for this theory in the g2, m plane for
large Nf. For even Nf (the only case we consider), the
confinement results in a trivial vacuum. Thus, the massless
IR-free fixed point separates two strongly coupled confined

FIG. 2. (a) The renormalization group flow of the gauge coupling in three different regimes: (1) IR free (green curve), (2) Banks-Zaks
fixed point (red curve), conformal, and (3) IR confined (blue curve). (b) The conformal window for SUðNcÞ gauge theories with Nf
flavors of fundamental or adjoint fermion fields. The upper edge of the conformal window is sharply determined by the condition
β0ðNc;Nf; RÞ ¼ 0. The lower edge of the conformal window can only be determined through numerical simulations and higher-loop
calculations. Therefore, one should not take the numbers on the dotted line literally.

FIG. 3. On the left is a schematic demonstration of renormalization flow in the g2 −m plane for largeNf in the IR free case. The gauge
coupling g2 is a dangerous irrelevant operator for the m ¼ 0 critical point. On the right is the finite-temperature phase diagram for the
deconfined quantum phase transition. It features two interesting crossover scales. At temperature T ≫ m (or length scale l ≪ ξ ∼ 1=m),
the physics is controlled by the critical point, and the system has deconfined massless fermions with weakly interacting gluons. For
temperature my ≪ T ≪ m (or length scale ξ ≪ l ≪ ξy) with y > 1 a universal exponent, the system has deconfined but massive
fermions and weakly interacting gluons. For temperature lower than aboutmy (or l ≫ ξy), the gauge theory flows to strong coupling and
the system is in a confined phase.
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phases with symmetric gapped ground states. However, we
see that these phases are potentially distinct SPT phases of
the underlying boson system with PSpðNfÞ × ZT

2 global
symmetry. Just like in the free Dirac fermion, the massless
theory has extra symmetries: We regard them as emergent
symmetries of the massless fixed point and not as funda-
mental symmetries.
Note that the RG flows show that the Yang-Mills

coupling g2 is “dangerously irrelevant” in the vicinity of
the massless fixed point. Naturally, there are then two
length scales that emerge in the vicinity of the critical
point. There is a first length scale ξ ∼ ð1=mÞ associated
with the mass of the gauge charged fermions. At this scale,
g2 is still small. Confinement does not set in until a much
larger second length scale ξconf ∼ ξy, where y > 1 is a
universal exponent [96]. For SUðNcÞ gauge theory with
Nf fermion flavors in the fundamental representation,
y¼½ð2NfÞ=ð11NcÞ�. Close to the critical point, at length
scales smaller than ξ, the physics is that of the IR-free
massless fixed point of the large-Nf SUð2Þ gauge theory.
For length scales between ξ and ξconf , the physics is that
of massive fermions and massless gluons that are weakly
interacting. Finally, at the longest length scales greater
than ξconf , the physics is that of the trivial ground state
of the underlying boson system (but potentially in a SPT
phase). These critical crossovers are also manifested at
nonzero temperature as two distinct temperature scales
(see Fig. 3).
From a condensed matter perspective, consider systems

of interacting bosons with PSpðNfÞ × ZT
2 global sym-

metry; as we tune the parameters, we can drive phase
transitions between the various SPT phases. From this point
of view, as we show later, the SUð2Þ gauge theory coupled
to Nf fundamental massless Dirac fermions emerges as a
description of the quantum critical point between trivial and
SPT states of bosons. The SUð2Þ gauge fields only appear
at the critical point. For Nf < 8, the SUð2Þ gauge theory is
believed to be in a confined phase at low energy. This idea
implies that either the phase transition is first order or there
exists an intermediate, spontaneous symmetry-breaking
phase separating the two SPT states. For Nf > 10, the
gauge theory provides a description of the continuous
phase transition between the trivial and SPT states, where
the critical point is free SUð2Þ Yang-Mills theory with
decoupled massless Dirac fermions. An interesting situa-
tion [97] is that, for Nf ¼ 10 and 8, the phase transition can
be described by the Bank-Zaks fixed point, which is an
interacting conformal field theory in 3þ 1-D.
In Sec. III B, we find generalizations of the above

construction. The phase transitions between PSpðNfÞ ×
ZT
2 bosonic SPT states can also be described by SpðNcÞ

gauge theories coupled to Nf fundamental massless Dirac
fermions for anyNc ¼ 4Zþ 1. The transition is continuous
provided that Nf is inside or above the conformal window

of SpðNcÞ gauge theories. These theories are weakly dual
to the SUð2Þ gauge theory described above in the sense that
they are distinct low-energy descriptions of the same
underlying UV physical system [in our case, bosons with
global PSpðNfÞ × ZT

2 symmetry]. Furthermore, they
describe the same phases and phase transitions of this
system. However, clearly the theories with fixed Nf

and different Nc are truly distinct conformal field theories.
First, they clearly have different numbers of low-energy
massless fields—this result may be formalized by comput-
ing their a coefficients. Furthermore, the emergent sym-
metries (and their ’t Hooft anomalies) of these theories at the
massless point are different. Thus, these theories provide
valuable examples where the same continuous phase tran-
sition admits multiple distinct universality classes, con-
trolled by distinct fixed points. The IR theories are not dual
in a strong sense, and they are distinct conformal field
theories.
In Sec. III C, we discuss an interesting phenomenon,

which we call unnecessary phase transitions. We define
unnecessary phase transitions as generic continuous phase
transitions within the same phase. We provide several
explicit examples for this phenomenon. The first example
is a bosonic system with PSpðNfÞ × ZT

2 symmetry at
Nf ¼ 4Z. We show that there can be a generic continuous
phase transition inside the topologically trivial phase of this
bosonic system. The critical theory is an emergent SpðNcÞ
gauge theory at Nc ¼ 4Z, with Nf ¼ 4Z massless funda-
mental fermions. As the phases on the two sides of this
critical point are identical, the transition can be bypassed by
some symmetric path in the whole parameter space.
However, the transition is locally stable. We give another
example that does not involve emergent gauge fields. We
consider 16 copies of a topological superconductor in the
DIII class with an additional SOð2Þ × SOð7Þ global sym-
metry. In the topologically trivial phase of this system, there
can exist a generic second-order transition characterized
by 16 gapless free Majorana fermions in 3þ 1-D. The
transition can be circumvented by adding a strong inter-
action. In condensed matter physics, it is common that two
phases separated by a discontinuous (i.e., first-order, as for
the liquid-gas transition) phase transition can actually be
the same phase. The examples in this section teach us that
even a generic continuous phase transition does not
necessarily change the nature of the state.
Sections IV and V contain examples of deconfined

quantum critical points in fermionic systems for which
there are very few previous examples. We study 3þ 1-D
fermionic deconfined quantum critical points that can be
formulated as SUð2Þ gauge theories coupled to NA

f flavors
of adjoint Dirac fermions. The theory has local fermion
operators (baryons), and we therefore regard it as a low-
energy theory of a microscopic system of these local
fermions. However, to enable this point of view, we need
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to augment the theory by including a massive spin-1=2
[under the SUð2Þ gauge transformation] scalar particle in
our spectrum. Otherwise, the theory has physical loop d.o.f.
corresponding to “electric” field lines in the spin-1=2
representation [98]. We call this massive spin-1=2 scalar
the spectator field. To complete the theory, we need to
specify its symmetry quantum numbers under the global
symmetry, especially its time-reversal properties [99]. The
adjoint SUð2Þ theory can actually describe different quan-
tum phase transitions depending on the time-reversal
symmetry properties of the spectator field.
For NA

f > 2, the massless theory is free in the infrared
limit. This theory, by tuning the fermion mass m, describes
a quantum phase transition between a trivial and SPT state
protected by the global symmetry, which is SOð2NA

f Þ × ZT
2 .

We first discuss the fermion SPT classification for this
symmetry. For example, for NA

f ∈ 2Zþ 1, we show that
the classification is Z8 × Z2, generalizing the known
results [100,101] for SOð2Þ × ZT

2 symmetry (known in
the condensed matter literature as a class AIII topological
superconductor). This generalization means that such
systems form distinct SPT states labeled by a pair of
integers ðn; ηÞ, where n ¼ 0; 1.;…:; 7 mod 8, and η ¼ 0, 1
mod 2. Phases with η ¼ 0 are accessible within free
fermion band theory. The IR-free massless gauge theory
with NA

f > 2 sits at the critical point between two such SPT
phases. A subtlety arises with the spectator field of the
theory. The precise SPT phase changes depending on the
time-reversal symmetry properties of the massive spectator
field. With one choice of spectator field, it describes the
phase transition between the n ¼ 0, η ¼ 0 (trivial) state
and the n ¼ 3, η ¼ 0 SPT state. This is a quantum
phase transition that is not generically second order in
free fermion systems where n can only jump by 1. Thus,
this is an example of an interaction-driven band-theory-
forbidden quantum critical point between two band insula-
tors. With a different choice of the spectator field, the
adjoint SUð2Þ theory can describe the phase transition
between the trivial state and the ðn ¼ −1; η ¼ 0Þ SPT state.
This transition can also occur within band theory where it
is described by a free Dirac theory of physical fermions.
However, the gauge theory yields a distinct fixed point
for the same transition. This case is yet another example of
multiple universality classes for the same phase transition
in fermionic systems. For NA

f ∈ 2Z, the SPT phase on the
m > 0 side does not depend on the choice of specta-
tor field.
If we banish the fundamental scalars from the spectrum,

at the IR-free massless point, the 1-form ðZ2Þ1 symmetry is
spontaneously broken. Turning on a small mass to the
fermions confines the symmetry and restores the ðZ2Þ1
symmetry. In other words, electric loops in the spin-1=2
representation are tensionful in the massive phase. These
loops are decoupled from the physical excitations of this

phase (which are the local fermions). Now, if we reintro-
duce the fundamental scalars, they will have no effect on
the low-energy properties at the critical point. However,
in the massive phase, the scalars allow the loops to break.
At the same time, they also affect the SPT characterization
of the phase.
In Sec. V, we consider the interesting case NA

f ¼ 1
(augmented as above with a spectator fundamental scalar).
This case describes the familiar system of fermions with
SOð2Þ × ZT

2 symmetry (the class AIII topological super-
conductor). This theory is asymptotically free, and there is
some numerical evidence showing that it flows to a CFT in
the IR [89]. Therefore, we first consider the fate of this
theory in the presence of a large mass (of either sign) when
trivial confined phases indeed result. The precise SPT
identification of these massive phases depends on the
symmetry realization on the spectator boson in exactly
the sameway as for generalNA

f ∈ 2Zþ 1. In contrast to the
previous examples, here the gauge-theory description of the
massless point is strongly coupled. In Sec. VI, we explore
the possibility of a low-energy theory that consists of a free
Dirac fermion together with a decoupled topological field
theory. This case may be viewed as a dual theory of the
SUð2Þ gauge theory with NA

f ¼ 1 adjoint Dirac fermions
[102]. The topological field theory is needed to match all
the anomalies of the theory (in the absence of the spectator
field) identified recently in Ref. [59]. We discuss physical
properties of this topological order. We show that the free
massless Diracþ topological theory has the same local
operators and (almost) the same global symmetries (both
exact and emergent), and it further enables matching all
’t Hooft anomalies of the emergent symmetries in the UV
gauge theory [103,105,106]. While these checks are
necessary to claim a duality, they are not sufficient as a
proof. A small mass in the gauge theory will map to a small
mass of the physical Dirac fermions of the IR theory but
will not destroy the extra topological order. This result
leads to a situation where, between the two large mass
insulators, there is an intermediate phase that has an addi-
tional topologically ordered sector.
Several mathematical details are given in the

Appendixes. In particular, we present some simple
models—not involving emergent gauge fields—for some of
the phenomena depicted in Fig. 1.We describe an interesting
mechanism for fractionalizing 1-form Z2 symmetry in
topological field theories. We also briefly discuss some
generalizations of the SUð2Þ gauge theory with arbitrary
flavors of adjoint Dirac fermions.

III. BOSONIC DECONFINED
CRITICAL POINTS IN 3+ 1-D

In this section, we study quantum phase transitions
between trivial and SPT phases in 3þ 1-D systems of
interacting bosons. The critical theories we construct for
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such transitions resemble the features of deconfined quan-
tum phase transitions in 2þ 1-D [4,19]. In particular, the
critical point has emergent, non-Abelian, deconfined gauge
fields and associated “fractionalized” matter fields. To
understand a phase transition, it is often helpful to first
identify the nature of the nearby phases, which provide
crucial information about the critical fluctuations at the
transition. Here, however, we pursue a reversed logic by
asking the following question: Given some deconfined
gauge theory in 3þ 1-D, what phase transition can this
theory describe? To complete the phase diagram, we start
from the deconfined gauge theory and then identify its
nearby gapped phases by perturbing the theory with a
relevant perturbation.

A. SUð2Þ gauge theory with Nf ∈ 2Z
fundamental fermions

Consider SUð2Þ gauge theory with Nf Dirac fermions in
the fundamental representation. We label it as SUð2Þ þ NF

f

theory. A key observation is that, in this theory, all local
[i.e., SUð2Þ gauge-invariant] operators are bosonic because
they are composed of an even number of fundamental
fermions [107]. Therefore, the theory describes a phase
transition in a purely bosonic system.
A relevant perturbation that can drive the massless theory

away from the critical point is the Dirac mass term, which is
uniform for all flavors. The Lagrangian of the system can
be written as follows:

LQCD ¼
XNf

i¼1

iψ̄ iγμDμψ i −mψ̄ iψ i: ð15Þ

We first show that both m < 0 and m > 0 phases (at least
for large jmj) are trivial gapped phases if Nf ∈ 2Z. Let us
assume that in them < 0 phase, integrating out the massive
fermions generates a trivial Θ term for the SUð2Þ gauge
theory. This case is always possible by certain UV
regularization. Then, on the m > 0 side, the massive
fermions contribute a Θ term for the SUð2Þ gauge field
at Θ ¼ πNf. With the condition Nf ∈ 2Z, both phases
have trivial SUð2Þ Θ terms because of the 2π periodicity of
the Θ angle. Therefore, the SUð2Þ gauge theory enters a
trivial confined phase at low energy, and the system has a
gapped spectrum in both cases. Importantly, it is believed
that when pure SUð2Þ gauge theory is confined, the
resulting ground state is also topologically trivial: There
is a unique ground state on all spatial manifolds. In
condensed matter parlance, we expect a “short-range-
entangled” (SRE) ground state [47,48]. In contrast, if
Nf ∈ 2Zþ 1, we have an SUð2Þ gauge theory with Θ ¼
π for them > 0 phase. The dynamics of this gauge theory is
nontrivial at low energy [108,109], and the ground state
likely has long-range entanglement. To keep things simple
in this paper, we henceforth focus on the case Nf ∈ 2Z.

With Nf ∈ 2Z, by tuning the uniform Dirac mass from
negative to positive, the system goes between two gapped
phases through a quantum phase transition, which is
described by the massless SUð2Þ þ NF

f theory. For large
enough Nf, the IR physics of the SUð2Þ þ NF

f theory is
either free or controlled by the Bank-Zaks fixed point.
Therefore, it describes a continuous phase transition. In the
following, we explain that the SUð2Þ þ NF

f theory with
uniform Dirac mass has PSpðNfÞ × ZT

2 symmetry. With
this global symmetry, the uniform Dirac mass is the only
symmetry-allowed relevant perturbation at the critical
point. The m < 0 and m > 0 phases are the trivial and
the symmetry-protected topological phases of this global
symmetry, respectively.
In order to illustrate the global symmetry explicitly, let us

construct the SUð2Þ þ NF
f theory in a more systematic way.

First, we consider 4Nf flavors of Majorana fermions in
3þ 1-D,

L0 ¼
X4Nf

j¼1

iχ̄jγμ∂μχj −mχ̄jχj; ð16Þ

with fγ0; γ1; γ2; γ3g ¼ fσ12; iσ03; −iσ22; −iσ01g and χ̄ ¼
χTγ0. γ5 ¼ iγ0γ1γ2γ3 ¼ σ32. (Here, σij is the shorthand
notation of σi ⊗ σj.) At this stage, the system has an
SOð4NfÞ flavor symmetry and time-reversal symmetry ZT

2 ,
whose actions on the Majorana fields are as follows:

SOð4NfÞ∶ χi → Oijχj; ð17Þ

T ∶ χiðx;tÞ→ γ0γ5χiðx;−tÞ¼−iσ20χiðx;−tÞ; i→−i:

ð18Þ

It is easy to check that the SOð4NfÞ and ZT
2 symmetry

[110] commute with each other and T 2 ¼ ð−1ÞF. Next,
we gauge a diagonal SUð2Þ subgroup of the flavor
symmetry. To specify the SUð2Þ subgroup, we reorganize
the fermion fields into a matrix form [19]. Let us split the
Majorana flavor index into two indices, namely, labeling
the Majorana fields as χv;j, with v ¼ 1; 2;…; Nf and
j ¼ 0, 1, 2, 3. The matrix fermion fields are defined as
follows:

Xv;α;β ¼
1ffiffiffi
2

p
�
χv;0Iαβ þ i

X3
μ¼1

χv;μσ
μ
αβ

�
; ð19Þ

where the σμ’s are Pauli matrices and α, β ¼ 1, 2. This
step can be viewed as combining four real fields into one
quaternion field. The theory written in terms of X is
manifestly invariant under right SUð2Þ rotation and a left
unitary rotation,
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X → LXRSUð2Þ: ð20Þ

The left rotation L must satisfy the reality condition of
Majorana fermions. As a result, L actually belongs to the
SpðNfÞ group. It turns out that the SpðNfÞ group is the
maximal symmetry group that commutes with the SUð2Þ.
The SUð2Þ and SpðNfÞ share the same center symmetry,
namely, SOð4NfÞ ⊃ f½SUð2Þ × SpðNfÞ�=Z2g. We now
gauge the SUð2Þ symmetry and get our SUð2Þ þ NF

f

theory,

LQCD ¼ trðiX̄γμDμX −mX̄XÞ; ð21Þ

where X̄ ¼ X†γ0. We can map this formulation back to the
complex Dirac fermions in Eq. (15) by ψα;i ¼ iσyα;βX1;i;β,
where α is the SUð2Þ index and i the flavor index.
The global symmetry after gauging the SUð2Þ subgroup

is manifestly G ¼ PSpðNfÞ × ZT
2 . One can check that with

this global symmetry, the uniform Dirac mass is the only
allowed mass term. For example, the imX̄γ5X mass is not
time-reversal invariant. Any mass term of the form χ̄iSijχj
or iχ̄iγ5Sijχj, with Sij ¼ Sji, is not invariant under
PSpðNfÞ rotation.
In the two gapped phases, on any closed spatial mani-

fold, the system has a nondegenerate ground state and no
spontaneous symmetry breaking. The distinction of the two
phases can only come from their topological properties.
They can be different SPT phases of the global symmetry G.
Let us assume that the m < 0 phase is the trivial disordered
phase under this symmetry. Now, we want to understand
the nature of the m > 0 phase. The strategy is to couple the
system to the background gauge fields of the global
symmetry PSpðNfÞ and identify its topological response,
which is a signature of the SPT state. To achieve this, we
first turn on a background gauge field for the whole
SOð4NfÞ flavor group and find its topological response.
Then, we reduce the response theory down to its SUð2Þ and
PSpðNfÞ subgroups.
Let us start from Eq. (16) and turn on a background

SOð4NfÞ gauge field ASOð4NfÞ. We consider the response to
the SOð4NfÞ gauge field after integrating out the massive
fermions. As shown in the previous sections, the ratio
between the Euclidean partition functions with m < 0 and
m > 0 is a good way to formulate the topological response.
From Eqs. (9) and (10), we get

Stopo ¼ Log

�
Z½m < 0; A; g�
Z½m > 0; A; g�

�

¼ i
π

2

�
p1ðASOð4NfÞÞ − Nf

2
σ

�
: ð22Þ

The topological action contains the Θ terms of the
SOð4NfÞ gauge field in terms of the first Pontryagin class

p1 and the gravitational Θ term [written in terms of the
manifold signature σ—see Eq. (8)]. The first Pontryagin
class is written as

p1ðASOð4NfÞÞ ¼ 1

2

Z
Y4

trSOð4NfÞ

�
FSOð4NfÞ

2π
∧ FSOð4NfÞ

2π

�

¼ 2lSOð4NfÞ; ð23Þ

and it is equal to twice the instanton number of the
SOð4NfÞ gauge field. More details about the definition
for the Pontryagin class and instanton number are given in
Appendix A.
We restrict the SOð4NfÞ to particular configurations that

have separate SpðNfÞ and SUð2Þ gauge fields.

p1ðASOð4NfÞÞ ¼ 2p1ðASpðNfÞÞ þ 2Nfp1ðaSUð2ÞgÞ; ð24Þ

¼ 2lSpðNfÞ þ 2NflSUð2Þ; ð25Þ

¼ 2lPSpðNfÞ þ 2NflSOð3Þ; ð26Þ

¼PðwPSpðNfÞ
2 Þþ2w

PSpðNfÞ
4 þNf

2
PðwSOð3Þ

2 Þ mod 4; ð27Þ

where l represents the instanton number for the gauge
bundle, PðaÞ is the Pontryagin square operator (for a
definition, see Refs. [19,111] and references therein), and
w2 and w4 are the second and fourth Stiefel-Whitney
classes [81]. Here, we use the following relations between
the instanton numbers and characteristic classes for the
vector bundles [19,112]:

2lPSpðNfÞ ¼PðwPSpðNfÞ
2 Þþ2w

PSpðNfÞ
4 mod 4 for Nf ∈ 2Z;

ð28Þ

4lSOð3Þ ¼ PðwSOð3Þ
2 Þ mod 4: ð29Þ

Since our fermions transform projectively under the
SOð3Þ and PSpðNfÞ gauge bundle, in order for the theory
to be consistently defined on any manifold with or without
spin structure, we should impose the following constraint
on the gauge bundles:

wSOð3Þ
2 þ w

PSpðNfÞ
2 þ wTY4

2 ¼ 0 mod 2: ð30Þ

This constraint is the obstruction-free condition to lift a
SOð3Þ×PSpðNfÞ×SOð4ÞTY4 bundle to (SUð2Þ×SpðNfÞ×
Spinð4ÞTY4)=ðZ2×Z2Þ. Based on this relation and the
following few useful identities (for references, see Wang
et al. [19]),

Pðaþ bÞ ¼ PðaÞ þ PðbÞ þ 2a ∪ b mod 4; ð31Þ
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PðaÞ ¼ a ∪ a mod 2; ð32Þ

a ∪ wTY4

2 ¼ a ∪ a for any a ∈ H2ðZ2Þ; ð33Þ
Z
Y4

PðwTY4

2 Þ ¼ σ mod 4; ð34Þ

we can simplify the response theory in Eq. (27). There are
four types of response theories depending on Nf=2 ¼ k
mod 4.

(i) k ¼ 0 mod 4, e.g., Nf ¼ 8; 16; 24;…

Sk¼1
topo ¼ iπlPSpðNfÞ: ð35Þ

This result is the usual Θ term for the PSpðNfÞ
gauge field, and the value of Θ ¼ π is protected by
ZT
2 symmetry.

(ii) k ¼ 1 mod 4, e.g., Nf ¼ 2; 10; 18;…

Sk¼1
topo ¼ iπw

PSpðNfÞ
4 : ð36Þ

The topological phase associated with such topo-
logical response is robust against ZT

2 breaking
because w4 is a Z2 class. However, if ZT

2 is
broken, the ψ̄iγ5ψ mass is also allowed at the
critical point. Therefore, the ZT

2 symmetry must be
preserved in order to have a generic second-order
transition.

(iii) k ¼ 2 mod 4, e.g., Nf ¼ 4; 12; 20;…

Sk¼2
topo ¼ iπlPSpðNfÞ þ iπw

PSpðNfÞ
2 ∪ w

PSpðNfÞ
2 : ð37Þ

The first term is the Θ term for the PSpðNfÞ gauge
fields, which requires ZT

2 symmetry to be stable. The
second term is an independent topological term that
can be nontrivial on a nonspin manifold. The second
term is a Z2 class and hence is stable against ZT

2

breaking.
(iv) k ¼ 3 mod 4, e.g., Nf ¼ 6; 14; 22;…

Sk¼3
topo ¼ iπw

PSpðNfÞ
4 þ iπw

PSpðNfÞ
2 ∪ w

PSpðNfÞ
2 : ð38Þ

Both terms are stable against ZT
2 symmetry breaking.

The conformal window for SUð2Þ þ NF
f theory is

Nf ∼ 6–11 from numerical studies. For Nf > 11, the
theory is free. Therefore, we have many examples of
3þ 1-D deconfined quantum phase transitions between
the trivial and the PSpðNfÞ × ZT

2 SPT states, which are
described by free SUð2Þ þ NF

f theory for even Nf > 11.
Assuming further that for Nf ¼ 8 and 10 a small mass
can drive the Banks-Zaks theories to the large mass fixed
points, we then have two explicit examples of 3þ 1-D

DQCP, which are described by strongly interacting
CFTs. They separate trivial and the PSpðNfÞ × ZT

2

bosonic SPT states.

B. Multiple universality classes

In this section [113], we demonstrate that the phase
transition between the trivial and SPT states protected by
PSpðNfÞ × ZT

2 symmetry can have many descriptions that
are distinct from each other. A schematic renormalization
flow diagram is shown in Fig. 4. In practice, such a
situation, although not forbidden by any physical principle,
is not commonly observed in critical phenomena. It is
interesting that here we can show such an example
explicitly in a controlled way.
To introduce these different transition theories, we

consider a generalization of our previous construction of
3þ 1-D bosonic DQCP. We start with 4NcNf flavors of a
Majorana fermion in 3þ 1 dimensions,

L0 ¼
X4NcNf

j¼1

χ̄jðiγμ∂μ −mÞχj: ð39Þ

The total flavor symmetry is SOð4NcNfÞ. There is a well-
known group decomposition for the SOð4NcNfÞ group,

SOð4NcNfÞ ⊃
SpðNcÞ × SpðNfÞ

Z2

: ð40Þ

We can understand the general group decomposition
intuitively as follows. First, we use four real fermions to
form a quaternion fermion. Then, we arrange the NfNc

quaternion fermions into a Nf × Nc quaternion matrix
fermion field X . The SpðNfÞ transformation can be packed
into a Nf × Nf quaternion matrix L, and it has a natural
action on an Nf-dimensional quaternion vector. Thus, the

FIG. 4. A schematic renormalization flow diagram for degen-
erate quantum critical points.
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SpðNfÞ action on the X field is the left multiplication on
the X matrix, namely, X → LX . Similarly, the SpðNcÞ
action is the right multiplication on X by an Nc × Nc
quaternion matrix R, namely, X → XR [114]. The group
decomposition we used in the previous section is a special
case with Nc ¼ 1 and Nf ∈ 2Z.
Let us gauge the SpðNcÞ part of the flavor symmetry.

The result is an SpðNcÞ gauge theory with Nf fundamental
fermions, which we label as SpðNcÞ þ NF

f theory,

LQCD ¼ trðiX̄γμDμX −mX̄XÞ: ð41Þ

The global symmetry of this theory is again PSpðNfÞ×
ZT
2 . Notice the global symmetry only depends on Nf but

not on Nc. Next, we need to identify the nature of them< 0
and m > 0 phases by their topological response to the
background field of the global PSpðNfÞ symmetry. After
integrating out fermions, we get the following topological
action for the m > 0 phase:

Stopo ¼ i
π

2

�
2lSOð4NcNfÞ −

4NcNf

8
σ

�
; ð42Þ

¼ i
π

2

�
2NclPSpðNfÞ þ2NflPSpðNcÞ−

NcNf

2
σ

�
: ð43Þ

The instanton numbers have the following algebraic rela-
tions with the Stiefel-Whitney classes [112]. For n ∈ Z,

4lPSpð2nþ1Þ ¼ PðwPSpð2nþ1Þ
2 Þ mod 4; ð44Þ

2lPSpð2nÞ ¼ PðwPSpð2nÞ
2 Þ þ 2wPSpð2nÞ

4 mod 4: ð45Þ

Let us consider a case in which Nf ¼ 2p; p ∈ Z, Nc ¼
4qþ 1, q ∈ Z. With the above relations, we can simplify
the topological action.

Stopo ¼ i
π

2

�
2NclPSpðNfÞ þ2NflPSpðNcÞ−

NcNf

2
σ

�
; ð46Þ

¼ i
π

2
fð4qþ 1ÞðPðwPSpðNfÞ

2 Þ þ 2w
PSpðNfÞ
4 Þ

þ pPðwPSpðNcÞ
2 Þ − pð4qþ 1Þσg; ð47Þ

¼ i
π

2
fPðwPSpðNfÞ

2 Þ þ 2w
PSpðNfÞ
4

þ pPðwPSpðNcÞ
2 Þ − pσg: ð48Þ

If p ∈ 4Zþ 1, namely, Nf ∈ 8Zþ 2, we get

Stopo ¼ i
π

2
fPðwPSpðNfÞ

2 Þ þ 2w
PSpðNfÞ
4 þ PðwPSpðNcÞ

2 Þ − σg;
ð49Þ

¼ iπw
PSpðNfÞ
4 þi

π

2
fPðwPSpðNfÞ

2 ÞþPðwPSpðNcÞ
2 Þ−σg:

ð50Þ

We have the following consistency relation for the gauge
and tangent bundles, which is the analog of Eq. (30),

w
PSpðNfÞ
2 þ wPSpðNcÞ

2 þ wTY
2 ¼ 0 mod 2: ð51Þ

We can prove that the second term in Eq. (50) vanishes
mod 4.

PðwPSpðNfÞ
2 Þ þ PðwPSpðNcÞ

2 Þ − σ

¼ 2PðwPSpðNcÞ
2 Þ þ 2wPSpðNcÞ

2 ∪ wTY
2 þ PðwTY

2 Þ − σ

¼ 0 mod 4: ð52Þ

In the derivation, we have again used relations in Eqs. (31)–
(34) to simplify the result. In the end, the topological
response for the background PSpðNfÞ gauge field is quite
simple and familiar. The topological action reads

Stopo¼ iπw
PSpðNfÞ
4 forNc∈4Zþ1; Nf ∈8Zþ2: ð53Þ

One interesting observation is that the topological action
does not depend on Nc as long as Nc ∈ 4Zþ 1. For a fixed
but very large Nf∈8Zþ2 and small enough Nc ∈ 4Zþ 1,
the SpðNcÞ þ NF

f theory is free in the infrared limit.
By increasing Nc ∈ 4Zþ 1 before it hits some critical
value, we have different free SpðNcÞ gauge theories. (They
are labeled by the red dots in Fig. 5.) Most importantly,
these theories all describe a phase transition between the

FIG. 5. A sketch for the conformal window of SpðNcÞ gauge
theories (numbers on the Nf axis are not precise). The red and
green dots are different gauge theories. The red ones are free, and
the green one is strongly interacting. However, they all describe
the topological phase transition from the trivial state to the same
PSpðNfÞ × ZT

2 bosonic symmetry-protected topological phase.
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trivial state and the same SPT state protected by
PSpðNfÞ × ZT

2 symmetry.
These free theories are truly distinct conformal field

theories. For instance, they have different numbers of
emergent low-energy d.o.f. This distinction may be for-
malized based on the a theorem. The quantity a is a
universal number used to characterize 4D CFT. It is the 4D
analogy of the central charge of 2D conformal field
theories. The trace of the stress energy tensor of a 4D
CFT can be expressed as follows:

hTμ
μi ¼ −aE4 þ cW2; ð54Þ

where E4 is the Euler density and W2 is the square of the
Weyl tensor. The a value is a universal signature for a 4D
CFT, similar to the central charge of 2D CFTs. It was
conjectured and subsequently proven to be a monotonic
function under RG flow [116], the so-called a theorem.
Since these SpðNcÞ þ NF

f theories are IR-free theories, we
know the answer for the a values [116],

aðNc; NfÞ ¼ 22NcNf þ 62Ncð2Nc þ 1Þ: ð55Þ

For fixed Nf, different Nc’s give different a values,
indicating that they are distinct 4D CFTs.
Furthermore, if Nc is in an appropriate range, the

SpðNcÞ þ NF
f theory can possibly fall into the conformal

window of SpðNcÞ gauge theory (labeled by the green
dots in Fig. 5), which is described by the Bank-Zaks
fixed point. It is a strongly interacting deconfined gauge
theory, which is most likely distinct from free theories.
For instance, it has different scaling dimensions for the
gauge-invariant operators from those of the free theo-
ries [88].
The SpðNcÞ generalization provides an explicit example

for the phenomenon that there can exist multiple distinct
critical theories that describe the transition between the
same two nearby phases. In this controlled example, we are
certain that these critical points are not dual to each other.
We call them multiversality classes. In later sections, we
provide more examples of such phenomena for fermionic
deconfined critical points.

C. Unnecessary continuous phase transitions

In this section, we introduce a phenomenon that we call
the unnecessary phase transition. Unnecessary phase tran-
sitions are generic, stable, continuous phase transitions
between two identical phases. We show examples of such a
phenomenon within the SpðNcÞ þ NF

f theory. We also
discuss examples that do not involve gauge fields.
Example 1: SpðNcÞ þ NF

f theory with Nc ∈ 4Z
and Nf ∈ 4Z.
The first examplewe consider is the SpðNcÞ þ NF

f theory
with different Nc and Nf from previous sections.

An interesting situation is Nc ¼ 4q∈ 4Z and Nf ¼
4p ∈ 4Z. With such conditions, the two phases with
m < 0 and m > 0 are actually the same phase. We can
show that the topological response for the m > 0 phase is
Stopo ¼ i2πZ,

Stopo ¼ i
π

2

�
2NclPSpðNfÞ þ2NflPSpðNcÞ−

4NcNf

8
σ

�
ð56Þ

¼ i
π

2

�
4qðPðwPSpðNfÞ

2 Þ þ 2w
PSpðNfÞ
4 Þ

þ 4pðPðwPSpðNcÞ
2 Þ þ 2wPSpðNcÞ

4 Þ − 16qp
2

σ

�
ð57Þ

∼2πiZ: ð58Þ

Namely,m < 0 andm > 0 have identical partition functions
for any gauge configuration,whichmeans the twophases are
identical.
Nevertheless, there is a generic continuous phase tran-

sition in the phase diagram by tuning m from negative to
positive. In the large-Nf limit, the m ¼ 0 theory is IR free.
The uniform mass m, as the driving parameter, is the only
relevant symmetric perturbation at the critical point. Other
generic interactions that respect the symmetry are pertur-
batively irrelevant. In other words, the IR free gauge theory
controls the whole critical line that exists within a single
phase of matter. A schematic phase diagram is shown in
Fig. 6 [117].
Example 2: 16 copies of 3He-B phases.We now describe

an example for an unnecessary continuous phase transition
in a 3þ 1-D fermionic system without gauge fields. Let us
consider a 3þ 1-D topological superconductor (TSC) in
the DIII class, namely, a TSC protected by time-reversal
symmetry and T 2 ¼ −1. The interacting fermionic SPT has
a Z16 classification [100,119,120] labeled by an integer ν.
The low-energy theory for the ν ¼ 1 DIII TSC state can be

FIG. 6. A schematic phase diagram for unnecessary phase
transitions.
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represented by a massive Majorana fermion in 3þ 1-D
bulk. Reversing the bulk Majorana mass can tune a trivial
superconductor to topological superconductor phase tran-
sition. Now, we take 16 copies of the ν ¼ 1DIII TSC states.
We can consider the phase transition from the trivial state to
the topological state for all copies of the system. Certainly,
16 copies of 3He-B are adiabatically connected to a trivial
phase because the surface has no time-reversal anomaly
[100]. However, the transition is not guaranteed to be a
single generic transition. Different copies of the system can
go through phase transition successively. In order to have a
single transition, there must be some flavor-rotation sym-
metry. The most naive one is an SOð16Þ symmetry, which
rotates the 16 copies of TSC’s. This symmetry, together
with ZT

2 symmetry, allows only one Majorana mass term.
The bulk low-energy theory is

L×16
TSC ¼

X16
i¼1

χ̄iðiγμ∂μ −mÞχi þ � � � : ð59Þ

Therefore, there is a generic continuous phase transition
when we tune the mass from negative to positive. However,
in this situation, the two sides of the phase transition are
different topological phases protected by the SOð16Þ
symmetry. In particular, on one side, m < 0, we can
regularize the system to be in the trivial phase, where
we have a trivial response theory for the SOð16Þ
background gauge field. On the other side, m > 0, the
response theory of the background SOð16Þ gauge field has
a Θ term, with Θ ¼ π, which indicates that the system is a
SPT state protected by the SOð16Þ symmetry. Since the
two sides are distinct topological phases of the SOð16Þ
symmetry, there will always be a phase transition sepa-
rating them. This case seems to be a disappointing one.
Nonetheless, a slight modification of the global symmetry
gives us an example of an unnecessary continuous phase
transition.
Consider breaking the flavor symmetry from SOð16Þ to

SOð2Þ × SOð7Þ symmetry. The symmetry action on the
fermions can be understood in the following way. Let us
pack the 16 Majorana fields into a 2 × 8matrix. The SOð2Þ
and SOð7Þ symmetries are implemented by the left and
right multiplication by orthogonal matrices. Here, the right
multiplications are in the eight-dimensional spinor repre-
sentation of the SOð7Þ group. This symmetry only allows
the χ̄χ mass. To see this case, we can write down the general
form of the Lorentz and time-reversal symmetric mass term
χ̄iSijχ, where Sij is a real symmetric matrix in flavor space.
Note that S can, in general, be decomposed into two
classes: S ∼ S2 ⊗ S8 or S ∼ A2 ⊗ A8, where S2 and S8
denote real symmetric matrices of dimension 2 and 8, and
A2 and A8 are antisymmetric matrices of dimension 2 and 8.
The SOð2Þ generators are A2 ⊗ I8 and SOð7Þ ∈ I2 ⊗ A8.
We can explicitly check that the only matrix that commutes
with all the SOð2Þ and SOð7Þ generators is I2 ⊗ I8, which

is the identity. Therefore, the χ̄χ term is the only allowed
mass term. This means that, with SOð2Þ × SOð7Þ sym-
metry, there is still a generic phase transition as we tune the
mass from negative to positive. Since the phase transition is
described by free fermions, it is stable against small
interactions.
Next, we show that in the SOð2Þ × SOð7Þ case, the

m < 0 and m > 0 phases are actually the same phase. We
argue this through the surface state of the system. At the
free fermion level, the natural 2þ 1-D surface state of the
m > 0 phase has 16 gapless Majorana fermions. We argue
that the surface state can become symmetrically gapped out
by interaction, which indicates that the bulk state is in the
same class as the trivial state. First, let us organize the 16
Majorana fermions into 8 Dirac fermions:

H ¼
X8
i¼1

ψ†
i ðpxσx þ pyσzÞψ i: ð60Þ

The SOð2Þ or the Uð1Þ is now the phase rotation of the ψ
fermion. The time-reversal action is T ∶ψ → iσyψ†. The
ψ i’s also form the spinor representation of the SOð7Þ
symmetry. Then, we introduce a spin singlet pairing in the
theory, which completely gaps out the surface state.

Hpairing ¼
X8
i¼1

ΔψT
i iσ

yψ i þ H:c: ð61Þ

This pairing obviously preserves the SOð7Þ symmetry. It
breaks both Uð1Þ and the time reversal T . However, it
preserves another anti-unitary symmetry T̃ ¼ T Uðπ=2Þ
[100]. The next step is to quantum fluctuate the pairing
order parameter to restore the symmetries. This fluctuation
can be done by condensing the 2π vortices of the pairing
order parameter. There are two key requirements for getting
a symmetric gapped surface state after the condensation.
First of all, in order to restore both Uð1Þ and T , the
condensation has to preserve the T̃ symmetry. Second, the
vortices must carry a gapped spectrum. These conditions
need special care because the vortex core of the system
carries Majorana zero modes[121]. For our system, in a 2π
vortex (π flux for fermions), there will be eight Majorana
zero modes, χi, i ¼ 1;…; 8. Their T̃ transformation is
T̃ ∶χi → χi because the T̃ does not change the vortex
background. This time-reversal symmetry will forbid us to
gap out the zero modes by a fermion bilinear term.
However, it is well known that an SOð7Þ-invariant four-
fermion interaction term, which is the so-called Fidkowski-
Kitaev interaction [122], can give rise to a gapped spectrum
for eight Majorana modes. With this interaction, we can
condense the 2π vortices and get a symmetric gapped
surface state. This result indicates that the bulk state is
topologically trivial.
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The phase diagram of the system is demonstrated in
Fig. 6. Them term precisely corresponds to the free fermion
mass andUint to the Fidkowski-Kitaev interaction. The free
fermion phase transition in 3þ 1-D is stable against small
interactions. In the limit of large interactions, we can first
diagonalize the on-site interaction and treat the kinetic term
as a perturbation. In the large interaction limit, the system is
essentially a trivial insulator with a tensor-product wave
function. Therefore, the phase transition can be avoided by
going through the strongly interacting part of the phase
diagram.

IV. FERMIONIC DECONFINED CRITICAL
POINTS IN 3+ 1-D

In this section and the following ones, we study quantum
critical points that can be formulated as 3þ 1-D SUð2Þ
gauge theory coupled toNf flavors ofmassless adjointDirac
fermions, denoted as SUð2Þ þ NA

f theory. Based on the
perturbative calculation, forNA

f > 2, the theory is free in the
infrared limit. Numerically, the NA

f ¼ 2 theory is inside
the conformal window [90]. There are also numerical
indications that the NA

f ¼ 1 theory is conformal in the IR
[89]. In this section, we study in detail the IR-free SUð2Þ
gauge theories withNA

f ¼ 3massless adjoint Dirac fermions
and interpret them as quantum critical points between
fermionic SPT states. Since the gauge theory is free in the
IR, we can make many precise statements. Generalizations
to arbitraryNf and possibly other gauge groups are discussed
in the next section and in Appendixes G–I.

A. SUð2Þ gauge theory with Nf = 3 adjoint fermions

We consider a quantum critical point that can be
described by 3þ 1-D SUð2Þ gauge theory with three
flavors of adjoint Dirac fermions. The case is very similar
for all the odd NA

f > 3. We label the fermions by ψa
i , where

a ¼ 1, 2, 3 is the SUð2Þ gauge index, and i ¼ 1, 2, 3 is the
flavor index. A key difference from the fundamental
fermion case is that there are gauge-singlet fermion
operators (the baryons) such as ϵabcψ

aψbψc and
ϵabcψ

a†ψbψc (Lorentz indices are suppressed here).
Indeed, all local operators of the theory carry quantum
numbers that can be built up as composites of these
baryons. Therefore, the SUð2Þ gauge theory with adjoint
fermion fields describes a critical theory in intrinsic
fermionic systems.
The Lagrangian for the NA

f ¼ 3 theory reads

L
NA

f¼3

adj ¼
X3
j¼1

iψ̄ jγμð∂μ − aiμTiÞψ j −mψ̄ jψ j þ � � � ; ð62Þ

where fγ0; γ1; γ2; γ3g ¼ fσ12; iσ03;−iσ22;−iσ01g, γ5 ¼
iγ0γ1γ2γ3 ¼ σ32, and Ti, i ¼ 1, 2, 3, are the SUð2Þ

generators in the spin-1 representation. The theory has a
ZT
2 symmetry [123] whose transformation on the fermion

fields is as follows:

ZT
2∶ ψðx; tÞ→ γ0γ5ψ

†ðx;−tÞ¼−iσ20ψ†ðx;−tÞ; i→−i:

ð63Þ

Following the method in previous sections, we can con-
struct the adjoint SUð2Þ theory from 18 Majorana fermions
and then gauge the diagonal SOð3Þ part of the total SOð18Þ
flavor symmetry. Since SOð18Þ ⊃ SOð3Þ × SOð6Þ, the
global symmetry after gauging is G ¼ SOð6Þ × ZT

2 [124].
The Dirac mass in Eq. (62) is the only mass term allowed
by the global symmetry.
The theory in Eq. (62) also has a global 1-form Z2 center

symmetry [125] because we did not include any matter field
in the SUð2Þ fundamental representation. The physical
manifestation of the 1-form symmetry is that the Hilbert
space of the system contains unbreakable spin-1=2 electric
flux loops. However, if we are to view the gauge theory as
emerging from a UV system of gauge-invariant fermions
(defined, perhaps, on a lattice), the 1-form symmetry can
only be an infrared emergent symmetry. Therefore, we
should allow for explicit breaking of the 1-form symmetry
in the UV. To that end, we introduce a massive spin-1=2
particle into our theory, which we call the spectator field.
The spectator field allows the spin-1=2 electric flux loops to
break. We emphasize that, from the point of view adopted in
this paper, the theory in Eq. (62) is not complete yet because
we did not specify the properties of the spin-1=2 spectator
fields under the global symmetry G. To have a complete
theory, we need to specify the symmetry charges of the
spectator field under the 0-form global symmetry G. (This
method is, in some sense, equivalent to defining the sym-
metry properties of the spin-1=2 electric flux lines.) Perhaps
surprisingly, the symmetry charges of the massive spectator
field crucially determine the nature of the m ≠ 0 phases of
this theory, although they do not participate in the low-energy
physics at all.We explain this phenomenon in detail later. For
now, let us restrict our attention only to the 0-form global
symmetry of the system, which is G ¼ SOð6Þ × ZT

2 .
The theory in Eq. (62) at the massless point is a free

theory in the infrared. The fermion mass is a relevant
perturbation that will drive the system to the infinite-mass
fixed point. Thus, the massless theory describes a continu-
ous quantum phase transition between them< 0 andm > 0
phases. The schematic renormalization group flow of the
fermion mass and gauge coupling is similar to that in Fig. 3.
Let us identify the phases with large negative or positive
fermion masses. For large fermion mass, we can integrate
out the fermions first. We choose a UV regularization such
that, in the m < 0 phase, the SUð2Þ Θ term generated by
integrating out the massive fermions is zero. The SUð2Þ
gauge theory is confined at low energy, and the resulting
state is a trivial gapped state. For the large m > 0 phase,
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one can show that the Θ angle is 12π for the SUð2Þ gauge
fields [126]. This case is also trivial because of the 2π
periodicity of the Θ angle, and the SUð2Þ gauge theory is
again in a confined phase. In particular, both confined
phases are believed to be in a short-range-entangled ground
state. For both signs of the mass, in the large mass limit, we
expect a gapped and nondegenerate ground state with no
symmetry breaking. They must fall into the classification of
the fermionic SPT states with SOð6Þ × ZT

2 symmetry. Since
this symmetry class is not usually considered in the
literatures, let us first discuss the interacting classification
of such fermionic SPT phases.
The classification of fermion SPTs for this symmetry in

3þ 1-D is Z8 × Z2, which can be labeled by two indices
n ∈ Z8 and η ∈ Z2. The Z2 part comes from the pure ZT

2

SPT labeled [127] by efmf. The Z8 part is the reduced
classification from the free fermion SPT with the same
symmetry. Note that at the free fermion level, SPTs with
this symmetry have a Z classification, which we label by
the same index n. The root n ¼ 1 state of the free fermion
SPT with SOð6Þ × ZT

2 symmetry can be viewed as six
copies of the topological superconductor with ZT

2 sym-
metry, namely, the DIII class. The six copies form a vector
representation under SOð6Þ. At the surface, the n ¼ 1 state
has (within free fermion theory) six massless Majorana
fermions. For general n, there will correspondingly be 6n
massless Majorana fermions at the surface. With inter-
actions, we need to consider whether, for some special n,
the surface is anomaly-free. The anomaly on the surface has
two parts: (1) a pure time-reversal anomaly and (2) a mixed
anomaly between the SOð6Þ and ZT

2 , which is sometimes
called the (generalized) parity anomaly in the literature.
The pure time-reversal anomaly isZ16-fold. Physically, this
means 16 copies of Majorana fermions in 2þ 1-D are time-
reversal anomaly-free. Therefore, at least eight copies of
the root states are needed to cancel the surface time-reversal
anomaly. The mixed anomaly between SOð6Þ and ZT

2 or the
parity anomaly is fourfold [128].
The physical diagnosis for this mixed anomaly is the

quantum number of the background SOð6Þ monopole. One
can show that, for four copies of the root state, the
monopole of the background SOð6Þ gauge field is a trivial
boson. Therefore, the surface of the n ¼ 8 state is totally
anomaly-free. Hence, with interactions, the free fermion
SPT classification collapses to Z8. In addition, the n ¼ 4
state corresponds to the eTmT state [42,127]. For n ¼ 4,
there is no parity anomaly involving SOð6Þ and ZT

2 . The
surface anomaly purely comes from the time-reversal
anomaly. For n ¼ 4, the surface theory has 4 × 6 ¼ 24
Majorana fermions. Since the time-reversal anomaly is Z16

periodic, the surface corresponds to the surface of the ν ¼
24 ∼ 8 state in the DIII class, which is precisely equivalent
to the eTmT anomalous surface.
Let us always assume that the m < 0 phase is the trivial

state ðn ¼ 0; η ¼ 0Þ, which can be achieved by certain UV

regularization. The question is which (n, η) the m > 0
phase falls into. To answer this question, we derive the
topological response to a background SOð6Þ gauge field
with the same method as used before, namely, gauging the
total SOð18Þ group and restricting the gauge configurations
to its subgroups. The topological action for the m > 0
phase (on an arbitrary, closed oriented space-time mani-
fold) is

Stopo ¼ i
π

2

�
p1ðASOð18ÞÞ − 9

4
σ

�

¼ i
π

2

�
3p1ðASOð6ÞÞ þ 6p1ðaSOð3ÞÞ − 9

4
σ

�

¼ i3π

�
1

2
p1ðASOð6ÞÞ − 3

8
σ

�
þ iπp1ðaSOð3ÞÞ ð64Þ

¼ i3π

�
SSOð6Þ
θ −

3

8
σ

�
þ iπPðwSOð3Þ

2 Þ; ð65Þ

where SSOð6Þ
θ is the usual Θ term for the SOð6Þ background

gauge field, and the combination ðSSOð6Þ
θ − 3σ=8Þ is always

an integer. The response theory until now indicates that the
m > 0 phase is a nontrivial topological state. However, it is
not enough to exactly determine the topological index of
the state. In particular, we cannot tell whether the system
belongs to the n ¼ 3 state or the n ¼ 7 ∼ −1 state. The
difference between the two is the n ¼ 4 state or the eTmT
state, whose partition function is always trivial on an
orientable manifold. It turns out that to settle this differ-
ence, we have to consider the symmetry properties of the
spectator field. We shall see that different symmetry
properties of the spectator field lead to different topological
phases on the m > 0 side.
To demonstrate the importance of the spectator field, we

consider the following two different choices of spectators.
There are other ways to choose spectator fields. We leave
them to future studies. From the discussions below, we
shall see that the symmetry properties of the spectator field
crucially determine the nature of the m > 0 phase.

B. Band-theory-forbidden phase transition between
band-theory-allowed insulators

The simplest choice of the spectator is a bosonic particle
that is neutral under all global symmetries, namely, an
SUð2Þ spin-1=2 boson, which is a scalar under SOð6Þ and
has T 2 ¼ 1. We see that this choice of spectator field leads
to an interesting type of band-theory-forbidden phase
transition between two band-theory-allowed states.
To consistently define this spectator field, we have a

constraint on the gauge connections

wSOð3Þ
2 ¼ 0 mod 2: ð66Þ
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This relation must be satisfied on any base manifold Y4.
Then, the topological response can be simplified as

SA
topo ¼ i3π

�
SSOð6Þ
θ −

3

8
σ

�
; ð67Þ

which suggests n ¼ 3 in the Z8 classification.
To confirm the nature of the topological phase, let us

investigate the surface state of the system. The natural
surface state of the system is a QCD3 theory with an SUð2Þ
gauge field coupled to three flavors of massless adjoint
Dirac fermions [19]. The action for the 2þ 1-D surface
theory can be written as follows:

Lsurf ¼
X3
j¼1

iψ̄ jγμð∂μ − iaiμTiÞψ jþ
				
�
∂μ − iaiμ

σi

2

�
z

				
2

þmjzj2 þ � � � ; ð68Þ

where fγ0; γ1; γ2g ¼ fσy;−iσz; iσxg. Here, we explicitly
include the massive spectator field labeled by z. The time-
reversal symmetry and gauge transformations are

ZT
2∶ ψ → iγ0ψ†; ð69Þ

ZT
2∶ z → z�; ð70Þ

SUð2Þ∶ ψa → ðeiθaTaÞabψb; ð71Þ

SUð2Þ∶ z → eiθ
aðσa=2Þz: ð72Þ

The surface theory in Eq. (68) is not very illuminating to
us because it involves gauge fields. We want to deform the
surface theory in a symmetry-preserving manner to a more
familiar surface state. Notice that the spectator boson z is
only charged under the SUð2Þ gauge group. Let us condense
the z boson, i.e., go into a “Higgs” phase with hzi ≠ 0. This
condensate preserves the SOð6Þ × ZT

2 global symmetry.
Furthermore, the condensate completely Higgses the
SUð2Þ gauge fields because z carries the fundamental
representation of the SUð2Þ gauge group. There are no
residual gauge fields left on the surface. As a result, the ψ
fermions become physical fermions. The surface state now
consists of 18 physical massless Majorana fermions with
SOð6Þ × ZT

2 symmetry. This is precisely the surface of the
n ¼ 3 state in the SOð6Þ × ZT

2 fermionic SPT classification.
This theory implies a very interesting schematic phase

diagram, which is shown in Fig. 7. The phase transition
between the trivial state and the n ¼ 3 state in the SOð6Þ ×
ZT
2 class can occur in two different ways. In the weakly

interacting limit, a trivial superconductor can only become
an n ¼ 3 TSC by three successive topological phase
transitions. At each step, the topological index can only
jump by one, and the low-energy theory is described by six
massless Majorana fermions with SOð6Þ symmetry.

However, the SUð2Þ þ NA
f ¼ 3 formulation suggests

another very striking possibility that, in the strong inter-
action region, it is possible to go between the trivial
topological state and the n ¼ 3 state through a single,
generic, second-order transition. It is a quantum phase
transition between two band insulators, which is forbidden
by band theory. In Appendix D, we give a very simple
example of this phenomenon that does not involve emer-
gent gauge fields.
These two possibilities for the phase transition may

merge at a multicritical point somewhere in the phase
diagram. One possible theory for the multicritical point is
the Higgs transition of the bosonic spin-1=2 spectator in the
3þ 1-D bulk. Once the spectator is condensed in the bulk,
the SUð2Þ gauge fields are completely Higgsed out, and
each flavor of the adjoint fermions becomes three physical
fermions with topological band structure. Let us label the
physical fermions by caj, a, j ¼ 1, 2, 3. They can be
expressed by the gauged fermion ψ and spectator field z.
More explicitly, the resultant physical fermions have the
following form:

c1j ∼ ψj · ðz†σzÞ;
c2j ∼ ψj · ReðztiσyσzÞ;
c3j ∼ ψj · ImðztiσyσzÞ: ð73Þ

The c fermions are gauge-invariant operators. It can be
easily checked that the c fermions share the same symmetry
transformation as the ψ fermions. The three successive

FIG. 7. A schematic phase diagram. The μ axis represents some
parameter that can tune the transition from n ¼ 0 to n ¼ 3 SPT
states with SOð6Þ × ZT

2 symmetry in the free fermion limit.
Generically, the free fermion transition will split into three
transitions, each of which is described by three massless Dirac
fermions (or six Majorana fermions) in the bulk. However, there
can be a single transition in the strongly interacting region. The
critical theory for the single transition is the SUð2Þ þ NA

f ¼ 3

gauge theory, which is infrared-free. The phase diagram shows
one natural postulation about the intermediate coupling regime of
the phase diagram. The three weakly coupling phase transitions
may merge into a single multicritical point, which could be
described by an SUð2Þ þ NA

f ¼ 3 QCD4-Higgs transition.
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phase transitions can be viewed as the mass inversion
transition for each flavor of the c fermion.
It is interesting to ask what happens if we first take the

mass of the fundamental spectator scalar to infinity. Then, the
gauge theory has the Z2 1-form symmetry associated with
the spin-1=2 electric flux loops. This symmetry is sponta-
neously broken in the free theory that emerges at themassless
point. Upon perturbing with a fermion mass, the gauge
theory enters a confined phase. Then, the electric flux loops
acquire a line tension, and the ðZ2Þ1 symmetry is restored.
The spin-1=2 electric loops are, however, decoupled from
other excitations. If we now reintroduce the fundamental
scalars to explicitly break the ðZ2Þ1 symmetry, in either
phase, the loops can break, but the sole effect on the phase is
to determine the SPT character. At themassless critical point,
the explicit breaking of the ðZ2Þ1 has no effect on low-energy
critical properties of the fermions. The spectator scalars will
be deconfined at the critical point and gapped away from it.

C. Multiple universality classes in
fermionic phase transitions

Another choice of the massive spectator field is a (gauge)
spin-1=2 bosonic particle, which is an SOð6Þ scalar but a
Kramers doublet under time reversal, namely, QSOð6Þ ¼ 0

and T 2 ¼ −1. This choice of spectator field implies the
following constraint on the gauge connection:

wSOð3Þ
2 ¼ wTY

1 ∪ wTY
1 mod 2: ð74Þ

Equations (66) and (74) are the fundamental differences
between the two theories. The difference only arises when
we consider the gauge bundle on nonorientable [129]
manifolds such as RP4. This relation implies that, on an

orientable manifold, wSOð3Þ
2 ¼ 0 mod 2, meaning that the

SOð3Þ connection can always be lifted to an SUð2Þ
connection. In this case, we get the same topological
response theory, Eq. (7), on an orientable manifold:

SB
topo ¼ i3π

�
SSOð6Þ
θ −

3

8
σ

�
: ð75Þ

It appears that this state also corresponds to the n ¼ 3 state.
However, it is known that the eTmT state, which corre-
sponds to the n ¼ 4 state [100,130], is only visible in the
partition function on a nonorientable manifold [128,131–
133]. Therefore, the topological response on an orientable
manifold cannot tell us precisely what topological phase the
m > 0 state belongs to. In the following, we instead use
similar physical surface arguments as in the previous
section to determine the topological index of this system.
To determine the nature of the m > 0 phase, we again

look at the boundary state. The surface theory has the same
form as the QCD3 theory written in Eq. (68), while the only
difference is the time-reversal symmetry transformation
on z [134],

ZT
2∶ z → iσyz; i → −i: ð76Þ

In this situation, it appears that condensing the bosonic
spectator field would break the time-reversal symmetry.
However, the condensate actually preserves the physical
time-reversal symmetry. The reason for this is that z is not
gauge neutral, and the time-reversal transformation on z can
always be combinedwith an SUð2Þ gauge rotation. Physical
time-reversal symmetry is preserved so long as such a
combination of the time-reversal action in Eq. (76) and
an SUð2Þ gauge rotation can keep the action invariant.
Explicitly, we consider a gauge-equivalent time-reversal
transformation Z̃T

2 [135]:

Z̃T
2∶ z → iσye−i½ðπσyÞ=2�z ¼ z; i → −i: ð77Þ

The boson is a Kramer’s singlet for this time-reversal
symmetry transformation [136]. Notice that this time-
reversal transformation also has a different action on the
gauged fermion fields by an additional gauge rotation (here,
we suppress the flavor index because all the operations are
identical for the three flavors),

Z̃T
2∶ ψa → iγ0ðe−iπTyÞabψb†; i → −i: ð78Þ

In component form,

Z̃T
2∶ ψ1;3 → −iγ0ψ1;3†;

ψ2 → iγ0ψ2†: ð79Þ
Now, let us condense the spectator boson with hImðzÞi ¼ 0
and hReðzÞi ≠ 0. This condensate completely Higgses the
SUð2Þ gauge theory while preserving the SOð6Þ × Z̃T

2

symmetry. The three adjoint fermions become nine
physical Dirac fermions. However, we need to be careful
about their time-reversal transformation in order to deter-
mine the topological index. In particular, the relative sign of
the time-reversal transformation of the surface Dirac fer-
mions plays an important role here. In our convention, the
Dirac fermion with the “þ” transformation, namely,
ψ → þiγ0ψ†, contributes n ¼ þ1 to the topological index
for the bulk. Correspondingly, the “−” transformation will
contribute n ¼ −1 [83]. Based on the transformation in
Eq. (79), the surface state corresponds to the n ¼ −1þ 1 −
1 ¼ −1 state in the Z8 classification.
From the above physical arguments, we see that the

spectator field plays an important role in defining the global
structure of the gauge fields and in determining the nearby
topological phase, although it is massive and never appears
at low energy near the critical point. To our knowledge, this
is not a widely appreciated phenomenon. However, it is not
uncommon. We include an example of this phenomenon in
a 2þ 1-D bosonic Mott insulator to a time-reversal-
symmetry-enriched Z2 spin liquid transition in Appendix E.
This system provides a clear example of multiple

universality classes in fermionic systems. The transition
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between the n ¼ 0 state and the n ¼ −1 state can happen
within band theory. The critical theory is described by three
massless Dirac fermions in the bulk with the SOð6Þ × ZT

2

symmetry. The SUð2Þ þ NA
f ¼ 3 theory gives another

phase transition theory between the n ¼ 0 and n ¼ −1
states. We know in the IR that this theory contains just free
SUð2Þ gluons and nine Dirac fermions, which is clearly
different from the critical theory in the free fermion limit.
These two theories not only differ by their matter contents
but also by the emergent symmetries at the critical point. In
particular, the gauge theory has an emergent Z2 1-form
symmetry, which is spontaneously broken in the IR.
The theory discussed in this section is readily general-

izable to all odd NA
f > 3. With general NA

f , the global
symmetry of the system is SOð2NA

f Þ × ZT
2 . The interacting

fermionic SPT classification for this class is againZ8 × Z2.
With a Kramers singlet bosonic spectator field [SUð2Þ
gauge spin-1=2 and SOð2NA

f Þ scalar], the massless
SUð2Þ þ NA

f theory describes a phase transition between
n ¼ 0 and n ¼ 3 SPT states in this symmetry class, which
provides new examples of band-theory-forbidden continu-
ous phase transitions between band-theory-allowed states.
For a Kramers doublet bosonic spectator, the massless
SUð2Þ þ NA

f theory is a theory of a continuous phase
transition between the n ¼ 0 and n ¼ −1 SPT states. Since
NA

f is large enough, this theory contains only free gluons
and free fermions in the IR. Another route for such a phase
transition is a free fermion phase transition that is charac-
terized by free massless Dirac fermions in the 3þ 1-D
bulk. These two critical theories are obviously distinct from
each other. They demonstrate another example of multiple
universality classes for phase transitions in fermionic
systems.
The SUð2Þ gauge theories with even NA

f flavors of
massless adjoint Dirac fermions can also be interpreted as
quantum critical points between fermionic SPT states. The
phenomenology of the even series is slightly different from
the odd series. In particular, the topological phase on the
m > 0 side of the phase diagram does not depend on the
choice of the spectator field. We present the example of
NA

f ¼ 2 in Appendix G. It is straightforward to generalize
the theory to larger, even NA

f . We also provide generaliza-
tions to the SUð2Þ þ NA

f theories with half-integer NA
f , as

well as a generalization to SUð4Þ gauge theory withNA
f ¼ 1

flavor of adjoint fermion in the Appendixes H and I.

V. THE SUð2Þ GAUGE THEORY WITH
ONE-FLAVOR ADJOINT DIRAC FERMION

The SUð2ÞþNA
f ¼1 theory is a special case for the odd

NA
f series. The global symmetry in this case is SOð2Þ×

ZT
2 ≃Uð1Þ×ZT

2 , which is the symmetry of the topological
superconductor in the AIII class. Since this theory is a

strongly interacting gauge theory in the IR, its low-energy
fate is much more subtle than previous examples. We
discuss this theory in detail in the following sections. We
notice there is some numerical evidence that this theory is
conformal in the IR [89]. We explore its interpretation as a
quantum critical point.
Note that the fermion mass is a relevant perturbation for

the massless SUð2Þ þ NA
f ¼ 1 theory [89]. However, the

massless SUð2Þ þ NA
f ¼ 1 theory is strongly coupled in the

gauge-theory description. A priori, we do not knowwhether
an infinitesimalmassm perturbationwill lead theRG flow to
the infinite-mass fixed point. If small mass does lead to a
flow to the infinite-mass limit, we will have a direct second-
order phase transition between the two gapped phases. If this
is not the case, there may be an intermediate phase in the
small-mass limit. In this section, we only discuss the
properties of the system with large fermion mass, and we
determine the distinct gapped phases. Inspired by this
understanding, in Sec. VI, we describe a possible IR theory
of the massless SUð2Þ þ NA

f ¼ 1 theory.We see that, within
this proposed IR theory, there are indeed intermediate phases
for small m that differ from the large-m phases by the
presence of an extra topological ordered state.

A. Global symmetry and topological response

As mentioned in the previous section, the SUð2Þ gauge
theory with adjoint fermion fields describes a critical theory
in intrinsically fermionic systems. The Lagrangian for the
NA

f ¼ 1 theory reads

L
NA

f¼1

adj ¼ iψ̄γμð∂μ − aiμTiÞψ −mψ̄ψ þ � � � : ð80Þ

The theory has Uð1Þ × ZT
2 global symmetry whose trans-

formations on the fermion fields are as follows:

Uð1Þ∶ ψ → eiθψ ; ð81Þ

ZT
2∶ ψðx; tÞ → γ0γ5ψ

†ðx;−tÞ; i → −i: ð82Þ

Note that Uð1Þ × ZT
2 is the symmetry for a topological

superconductor in the AIII class in the condensed matter
language. The Dirac mass in Eq. (80) is the only mass term
allowed by the symmetry. As written, the theory in Eq. (80)
also has a global 1-form Z2 center symmetry because of the
absence of the matter fields in the gauge SUð2Þ funda-
mental representation. However, as we emphasized before,
this gauge theory is to be viewed as an emergent theory
from a UV system of gauge-invariant fermions, where there
is no 1-form symmetry. Therefore, we impose explicit
breaking of the 1-form symmetry in the UV by introducing
a massive spin-1=2 spectator field into our theory. In this
section, we only consider the 0-form global symmetry of
the system, which is G ¼ Uð1Þ × ZT

2 .
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We want to explore the theory in the large fermion mass
limit. We can then analyze the theory by integrating out the
fermions first. We choose a UV regularization such that, in
the m < 0 phase, the SUð2Þ Θ term is zero. The SUð2Þ
gauge theory is confined at low energy, and the resulting
state is a trivial gapped state. For the large m > 0 phase,
one can show that the Θ angle is 4π for the SUð2Þ gauge
fields. This is also trivial because of the 2π periodicity, and
the SUð2Þ gauge theory is again in a confined phase. In
particular, both confined phases are believed to be in a
short-range-entangled ground state.
For both signs of the mass, in the large-mass limit, we

expect a gapped and nondegenerate ground state with no
symmetry breaking. They must fall into the classification of
the AIII TSC in 3þ 1-D, which, as we mentioned before, is
Z8 × Z2 once we include interaction effects [100]. We
again denote different AIII TI states by two labels n ∈ Z8

and η ∈ Z2. The n ≠ 0 states are descendents of the free
fermion AIII TSC. The typical 2þ 1-D surface state is n
flavors of massless Dirac fermions. The n ¼ 4 state is in the
same phase of a bosonic SPT protected by ZT

2 symmetry,
which is usually signified by its surface Z2 topological
order, the so-called eTmT state [42,51,127]. The η ¼ 1

state is another ZT
2 bosonic SPT state, whose surface

Z2 topological order is the so-called efmf state [42].
Let us always assume that the m < 0 phase is the trivial
state ðn ¼ 0; η ¼ 0Þ. We want to determine which (n, η) the
m > 0 phase falls into.
We derive the topological response to a background

Uð1Þ gauge field with the same method used before. The
topological action for the m > 0 phase (on an arbitrary
closed oriented space-time manifold) is

Stopo ¼ i
π

2

�
p1ðASOð6ÞÞ − 3

4
σ

�

¼ i
π

2

�
3p1ðASOð2ÞÞ þ 2p1ðaSOð3ÞÞ − 3

4
σ

�

¼ i3π

�
1

2
p1ðASOð2ÞÞ − 1

8
σ

�
þ iπp1ðaSOð3ÞÞ ð83Þ

¼ i3π
�
SUð1Þ
θ −

1

8
σ

�
þ iπPðwSOð3Þ

2 Þ: ð84Þ

The response theory implies that the m > 0 phase is a
nontrivial topological state. However, as before, we cannot
tell precisely which class the system belongs to. There may
be a n ¼ 4 state or an eTmT state attached to the system,
whose partition function is always trivial on an orientable
manifold. This case can be settled by considering the
symmetry properties of the spectator field. Just like in the
previous section, we demonstrate that different symmetry
properties of the spectator field lead to different topological
phases on the m > 0 side.

B. An alternate argument to identify the massive phases

It is straightforward to use the argument in the previous
section to justify that (1) with a T 2 ¼ 1 charge-neutral
spin-1=2 spectator boson, the m > 0 phase is the n ¼ 3,
η ¼ 0 state in the AIII class and (2) with the T 2 ¼ −1
spectator boson, the m > 0 phase is the n ¼ −1, η ¼ 0
state. We will not repeat this argument again. However, in
this section, we provide a different argument to support this
result.
We can justify the nature of the gapped phases from

another point of view. Let us first consider the structure of
the massive phases in the infinitely massive spectator limit.
Later, we will reinstate the finite mass of the spectator. We
are particularly interested in understanding the anomaly of
the surface theory as a window into which SPT phase the
bulk system is in. The way to identify the anomaly of the
surface state is through the method of anomaly inflow.
Deep in the confined phases, all the SUð2Þ electric flux

lines have line tension. In the infinitely massive spectator
limit, the spin-1=2 electric flux lines cannot end in the bulk.
In other words, the system has an exact 1-form Z2

symmetry. The physical difference between the two
spectator choices in this case lies in the properties of the
spin-1=2 electric flux lines. While for the T 2 ¼ 1 case the
spin-1=2 line has nothing special associated with it,
the T 2 ¼ −1 case physically corresponds to the situation
in which each spin-1=2 line is decorated with a Haldane
chain protected by the time-reversal symmetry [42,137].
For our system, the surface anomaly contributions come

from both the bulk massive adjoint fermions and the
unbreakable spin-1=2 electric flux loop sector. Here, we
want to do a comparison between the T 2 ¼ 1 and T 2 ¼ −1
spectator cases. Notice that the only physical difference
between the two cases is whether or not we decorate the
spin-1=2 loops with a Haldane chain protected by ZT

2 . Since
the adjoint fermions are topologically decoupled from the
spin-1=2 loops, changing the symmetry properties of these
loops should not change the surface anomaly contributed
by the bulk adjoint fermions. Therefore, we focus on the
differences in the surface anomalies contributed by the loop
sector for the T 2 ¼ 1 and T 2 ¼ −1 spectator cases.
A useful formal approach to identify the surface Hilbert

space and anomalies is to couple the system with the
background gauge field of the global symmetry. We can
study the statistical and symmetry properties of the back-
ground symmetry fluxes in the bulk and then use the
anomaly inflow argument to identify the surface excitations
[138]. Since the anomaly on the surface is a renormaliza-
tion-group-invariant property of the SPT phase, we can
consider the anomalies in the weak coupling or UV limit in
which we can do reliable calculations.
The symmetry we are interested in here is the 1-form

Z2 symmetry. Let us couple the system to a background
2-form gauge field for the 1-form Z2 symmetry and
consider a background Z2 flux. This case corresponds to
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an SOð3Þ magnetic monopole configuration. The time-
reversal-symmetry quantum number and statistics of this
background monopole will be different between the m < 0
and m > 0 phases because the adjoint fermions respond to
the SOð3Þ monopoles. In particular, the fermions in the
topological nontrivial band will contribute zero modes to
the monopole configurations and potentially change the
time-reversal quantum number and the statistics of the
monopole. We show that in the m > 0 phase, the gauge-
neutral and global Uð1Þ charge-neutral SOð3Þ monopole is
a Kramers singlet fermion. This statement is independent of
the properties of the spin-1=2 Wilson lines. It is an analog
of the statistical Witten effect in a bosonic topological
insulator with Uð1Þ⋊ ZT

2 symmetry [138]. A schematic
demonstration of the excitations in the massive phases is
shown in Fig. 8.
To demonstrate this, let us put the systemon a large sphere

and consider a configuration of 2π magnetic flux of the
SOð3Þ gauge field coming out of the bulk. For m < 0, we
know that there is no gapless surface state, and the SOð3Þ
monopole carries trivial time-reversal quantum-number and
bosonic statistics. However, form > 0, the surface theory is
a QCD3 with massless adjoint fermions. It is sufficient to
calculate the symmetry and statistical properties of the
SOð3Þ monopole in the weak coupling limit—the answers
will be unmodified in the strong coupling limit. Let us write
down the surface action with a background SOð3Þ gauge
flux along the z direction in color space:

Lsurf ¼ iψ̄γμð∂μ − iazμTzÞψ ; ð85Þ

where Tz is the SOð3Þ generator along the z direction.
We can diagonalize the Tz matrix by unitary rotations of the
fermions, and it has eigenvalues �1 and 0. Let us label the
three flavors of fermions as ψþ;ψ−;ψ0 (ψþ ∼ ψx þ iψy;
ψ− ∼ ψx − iψy;ψ0 ∼ ψ z). Only ψþ and ψ− are coupled to
azμ, with chargeþ1 and−1, respectively. Hence,ψþ feels 2π
flux and ψ− feels −2π flux. With rotational symmetry
in the color space, every monopole can always be viewed
this way. The gauge fluxes in our case are time-reversal
invariant since time-reversal symmetry flips the gauge
charges instead of the fluxes. From the surface theory in
Eq. (85), we know that the 2π flux of az will trap two
complex fermion zero modes guaranteed by the index
theorem. One zero mode is associated with the ψþ fermion,
which we label as fþ. The other one is associated with the
ψ− fermion, which we label as f−. Let us denote the state
associated with the flux background with both zero modes
empty by j0i. There are, in total, four states, which are
labeled by j0i; f†þj0i; f†−j0i; f†þf†−j0i. Note that fþ and f−
carry opposite gauge charges but the same global Uð1Þ
charge. The gauge neutral states from the four states are j0i
and f†þf†−j0i. However, they carry opposite global Uð1Þ
charge of�1. We can attach the ψ0 fermion to the monopole
state to compensate the Uð1Þ charge. However, this makes
the monopole a fermionic object. Let us label the two states
as jM1i ∼ ψ†

0j0i and jM2i ∼ ψ0f
†
þf†−j0i. Under time rever-

sal, ZT
2∶j0i → f†þf†−j0i;ψ0 → γ0γ5ψ

†
0. The time-reversal

transformations on fþ and f− are a bit subtle. After carefully
solving the zero-mode wave function in Appendix C, we
find f†þ → −ifþ; f†− → if−, where the relative minus sign
indicates that the fluxes are opposite. With these results, we
can work out the time-reversal transformation on the flux as
follows:

jM1i ∼ ψ†
0j0i → γ0γ5ψ0f

†
þf†−j0i ∼ γ0γ5jM2i;

jM2i ∼ ψ0f
†
þf†−j0i → γ0γ5ψ

†
0ð−ifþif−Þf†þf†−j0i

∼ −γ0γ5jM1i: ð86Þ
Since ðγ0γ5Þ2 ¼ −1, the SOð3Þ monopole is a Kramer’s
singlet fermion [139]. Note that this result cannot be altered
if we redefine the ZT

2 transformation by combining with the
Uð1Þ phase rotation because the two states are gauge and
global charge neutral.
Let consider an interface between the vacuum and our

system. Now, imagine a process in which we take a
background SOð3Þ monopole in the vacuum and drag it
into our system. This process can be viewed as an instanton
event for the 2þ 1-D interface, where the background
SOð3Þ flux changes from 0 to 2π. The SOð3Þmonopole is a
neutral boson in the vacuum; however, it becomes a neutral
fermion in the bulk system. As a result, the instanton event,
besides creating a 2π background flux on the surface, must
also nucleate a neutral fermion excitation, labeled by f, in
order to conserve the fermion parity of the whole system.

FIG. 8. Deep in the large m < 0 and m > 0 phases (the
discussion of small fermion mass is postponed to the next
section), in the bulk, the SUð2Þ gauge theory is in a confined
phase, where all electric flux lines have line tension. In the
infinitely massive spectator limit, the spin-1=2 electric flux loops
cannot break. The system has a global 1-form Z2 symmetry. We
can couple the system to a background 2-form Z2 gauge field.
The Z2 flux of the 2-form gauge field physically corresponds to
the SOð3Þ magnetic monopole. It has a nontrivial π mutual
braiding phase with the spin-1=2 electric flux loops. The
statistical and symmetry properties of the SOð3Þ monopole are
different between the m < 0 phase and the m > 0 phase because
of the topological band structure of the adjoint fermions.
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Therefore, the surface must have a neutral fermion
excitation.
Now, let us introduce a finite-mass spin-1=2 spectator

boson on the surface, which can be viewed as the end point
of the spin-1=2 electric flux line on the boundary. We label
it by e. In the weak coupling limit, it is a deconfined particle
on the surface. We need to determine the braiding statistics
between e and f. The instanton event we described above is
a local process on the surface. The locality implies that, if
we adiabatically drag the spectator boson e around the
location of the instanton event, there should be no differ-
ence in the accumulated Berry phase before and after the
instanton event. As a result, the braiding phase between the
spectator and the neutral fermion f must cancel that
between the spectator and the 2π background flux. Since
the spin-1=2 spectator can be viewed as the half-charge
under SOð3Þ, the braiding phase between the spectator and
the 2π flux is π. Therefore, e and f have a mutual π
braiding phase, and they form a Z2 topological order on the
surface. Now, let us consider the time-reversal properties of
the Z2 topological order. For the first case with the T 2 ¼ 1
spectator, we have a vanilla Z2 topological order, which is
not anomalous. For the other case with the T 2 ¼ −1
spectator, since f is a Kramers singlet, the bound state m ∼
ef is also a Kramers doublet boson. The Z2 topological
order is the so-called eTmT state, which carries a time-
reversal anomaly of the n ¼ 4 state in the AIII class.
We can also include the spin-1=2 matter and break the

1-form Z2 symmetry in the bulk. Dynamically, the SUð2Þ
gauge theory will be in a confined phase for large fermion
mass, which means all electric flux lines have finite line
tension. With 1-form Z2 symmetry, in the confined phase,
the system has unbreakable, tensionful, spin-1=2, electric
flux loops. With finite-mass spectators, these loops will
break dynamically in the bulk, and the system is in an
ordinary confined phase. However, since the time-reversal
anomaly on the surface does not involve the 1-form
symmetry, it will survive even with a finite spectator mass.

VI. POSSIBLE 3+ 1-D DUALITY

The SUð2Þ þ NA
f ¼ 1 theory with a T 2 ¼ −1 spectator

field potentially provides a continuous phase transition
theory between the n ¼ 0 and n ¼ −1 states in the AIII
class. The same phase transition can also happen in a free
fermion setting, which is described by a free massless Dirac
fermion. There are several possible scenarios about the
relationship between the strongly coupled gauge theory and
the single Dirac fermion theory. For example, a simple
possibility is that the low-energy theory of SUð2Þ� þ NA

f ¼
1 [140] theory is a completely different critical theory from
the single Dirac fermion [141]. Perhaps the most exciting
scenario is that the SUð2Þ� þ NA

f ¼ 1 theory in the IR is
strictly dual to a single Dirac fermion as shown schemati-
cally in Fig. 9. Unfortunately, we argue that this scenario is

very unlikely. Instead, a candidate low-energy theory of the
SUð2Þ� þ NA

f ¼ 1 theory can be very close to a single
Dirac fermion. In particular, we suggest a possible IR
theory that contains a single, free, Dirac fermion plus a
decoupled gapped topological sector. For energy lower than
the gap of the topological order, the theory is described
purely by a free Dirac fermion.
An important consistency check on any proposed IR

theory is anomaly matching with the UV theory. Our UV
theory in the m ¼ 0 limit has emergent global symmetries
that are anomalous. Matching the emergent symmetries
and their anomalies between IR and UV provides nontrivial
constraints. In particular, our theory in the infinite-
spectator-mass limit is closely related to the celebrated
Seiberg-Witten theory [59,142] whose global symmetry
and anomaly structure are well understood in the high-
energy literature. Exploiting this idea, Ref. [59] recently
provided a very nice discussion of the various anomalies of
the SUð2Þ gauge theory with a single, massless, adjoint
Dirac fermion. The exact 1-form ðZ2Þ1 symmetry of this
theory was shown to have mixed anomalies with the
emergent global symmetry and geometry [59], which put
more constraints on the possible low-energy theories.
Therefore, we start our discussion from the infinitely
massive spectator limit and later reinstate the finite mass
to the spectator field. We first identify the emergent 0-form
global symmetry and the anomalies in the SUð2Þ þ NA

f ¼ 1

theory. We see that the 0-form emergent symmetry and
anomaly can indeed be matched by a single Dirac fermion
theory. However, the single Dirac fermion does not have
the Z2 1-form symmetry and hence cannot match the UV
anomalies associated with it. This result indicates that the
low-energy theory must contain either additional gapless or
gapped topological d.o.f. that could compensate the

FIG. 9. The transition between the n ¼ 0 state and the n ¼ −1
state can happen in twoways. One way is a free fermion transition
with a single gapless Dirac fermion as the critical theory. The
other way is through a strongly coupled non-Abelian gauge
theory, which we label SUð2Þ� þ NA

f ¼ 1. A very exciting
possibility is that the two 3þ 1-D conformal field theories are
dual to each other in the infrared limit. Unfortunately, this is not
likely the case. We argue that a possible IR theory is a single
Dirac fermion plus a topological field theory.
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anomalies associated with the 1-form symmetry.
Reference [59] obtained such a candidate IR theory
consisting of a single Dirac fermion plus a decoupled
Uð1Þ gauge theory in the Coulomb phase through super-
symmetry-breaking deformations from the Seiberg-Witten
theory. We propose a different candidate theory, which has
a single Dirac fermion plus a decoupled topological order
[143]. The possibility of a topologically ordered state was
also briefly mentioned in Ref. [59].

A. The IR Dirac fermion

Let us label the proposed gauge-invariant Dirac fermion
in the IR theory by Ψ. [The notation for the UV d.o.f. in the
SUð2Þ gauge theory is defined in Eq. (62).] The masslessΨ
theory describes a phase transition from the n ¼ 0 to the
n ¼ −1 state in the AIII class. Therefore, the Ψ fermion
should carry the following quantum number under the
global symmetry Uð1Þ × ZT

2 :

Uð1Þ∶ Ψ → eiθΨ; ð87Þ
ZT
2∶ Ψ → −γ0γ5Ψ†: ð88Þ

The “−” sign in the ZT
2 transformation has physical

consequences [83]. (Notice that no linear transformation
of the fermion field can change this sign.) The convention is
that a gapless Dirac fermion with the “þ” ZT

2 trans-
formation describes a phase transition from the n ¼ 0 to
the n ¼ 1 state in the AIII class. Correspondingly, a Dirac
fermion with the “−” ZT

2 transformation describes a
transition from the n ¼ 0 to the n ¼ −1 state.
By matching symmetry quantum numbers, the IR Dirac

fermion operator Ψ in terms of the UV d.o.f. is

Ψ ∼ ϵabcðiψ̄aψbÞðγ5ψcÞ − ϵabcðψ̄aiγ5ψbÞψc: ð89Þ
The right-hand side is an SUð2Þ gauge-singlet operator.
The global Uð1Þ quantum number obviously matches. The
ψ̄aψb is a Lorentz scalar, and ψ̄aiγ5ψb is a Lorentz
pseudoscalar. The reason for choosing this specific combi-
nation of the scalar and pseudoscalar in the mapping is
twofold. First, it is chosen to match the time-reversal
transformation of the Ψ fermion. Second, as we discuss
later, with such a combination, the single Dirac fermion
theory matches the ’t Hooft anomalies of the emergent
symmetries in the SUð2Þ gauge theory. Let us look at the
time-reversal symmetry first. We can check explicitly that
the Ψ in Eq. (89) satisfies the transformation in Eq. (88).
First of all, let us write down Ψ†:

Ψ† ∼ ϵabcð−iψ̄bψaÞðγ5ψ†
cÞ − ϵabcðiψ̄bγ5ψaÞψ†

c: ð90Þ
Recall that the time-reversal action on the ψ fermions is
ψ → γ0γ5ψ

†. Also notice that the scalar ψ̄ψ is invariant
under time reversal, while the pseudoscalar ψ̄iγ5ψ is odd
under time reversal. Therefore, the transformation of Ψ is

ZT
2∶ Ψ → ϵabcð−iψ̄bψaÞγ5γ0γ5ψ†

c − ϵabcð−ψ̄biγ5ψaÞγ0γ5ψ†
c

¼ −γ0γ5ðϵabcð−iψ̄bψaÞγ5ψ†
c − ϵabcðiψ̄bγ5ψaÞψ†

cÞ
¼ −γ0γ5Ψ†; ð91Þ

which is indeed what we want. We partially list the
gauge-invariant Lorentz scalar and spinor operators in
Appendix III.
Since the operator Ψ̄Ψ and

P
3
a¼1 ψ̄

aψa share the same
quantum numbers under all the global symmetries, they
will have finite overlap in the IR. The conjecture is thatΨ is
free in the IR. Therefore, the anomalous dimension for theP

3
a¼1 ψ̄

aψa operator should be zero. This result could be
checked in future numerical calculations.

B. Emergent symmetries and anomalies

For both the SUð2Þ� þ NA
f ¼ 1 theory and the Dirac

theory, the global G ¼ Uð1Þ × ZT
2 symmetry is a non-

anomalous symmetry of the system for all values of the
mass m. When the system is tuned to the critical point at
m ¼ 0, it has enlarged global symmetries. These emergent
symmetries usually have ’t Hooft anomalies. Coupling
these emergent symmetries to background gauge fields will
lead to an inconsistency in the theory that can be cured
[144] by regarding the theory as living at the boundary of a
higher-dimensional SPT phase. In this section, we compare
the emergent symmetries and their anomalies of the two
theories at their critical points.
For the massless SUð2Þ� þ NA

f ¼ 1 theory in the UV,
the emergent symmetry is G ¼ f½SUð2Þf × ZA

8 �=Z2g. The
SUð2Þf is a flavor rotation symmetry, and ZA

8 is a discrete
axial rotation. The meaning of these symmetries will be
clear in a moment. To understand these symmetries, let us
look at the theory in Eq. (62) without the gauge field aμ. We
can write down the Dirac fermions in the Weyl basis (we
use a different set of γ matrices than we used previously), in
which a single Dirac fermion can be written as two Weyl
fermions with different chiralities,

ψ ¼
�

ξ1

iσyξ†2

�
: ð92Þ

Here, ξ1 and ξ2 are both two-component left-handed Weyl
fermions. The iσyξ†2 is the particle-hole transformation of
ξ2, and it has the opposite chirality. We can decompose
our three Dirac fermions in Eq. (62) into six left-handed
Weyl fermions (after a particle-hole transformation). The
Lagrangian can be written as

L ¼ i
X3
a¼1

X2
α¼1

ξ†a;ασ̄μ∂μξa;α; σ̄μ ¼ f1;−σg: ð93Þ

The largest unitary symmetry on the system is Uð6Þ. Next,
we want to gauge the diagonal SUð2Þ subgroup of theUð6Þ
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symmetry. Since the fermions are in the spin-1 representa-
tion, the gauge rotations on the Weyl fermions are SOð3Þ
rotations,

SOð3Þg∶ ξi;α → Oijξj;α; with O ∈ SOð3Þ: ð94Þ

For convenience, we use SOð3Þg to denote the gauge group
in the following. [But keep in mind that eventually this is an
SUð2Þ gauge field because of the spin-1=2 spectator field.]
The Uð6Þ symmetry can be decomposed as Uð6Þ⊃
f½SUð3Þ×SUð2Þ×Uð1Þ�=Z3×Z2g⊃ f½SOð3Þg×SUð2Þ×
Uð1Þ�=Z2g. Therefore, the global symmetry left after gaug-
ing is naively f½SUð2Þ ×Uð1Þ�=Z2g. The SUð2Þ is a flavor
rotation; therefore, we denote it as SUð2Þf. Its action on the
Weyl fermions is

SUð2Þf∶ ξi;α → Uαβξi;β; with U ∈ SUð2Þ: ð95Þ

The six Weyl fermions form three fundamental representa-
tions of the SUð2Þf. The action of the Uð1Þ symmetry is

Uð1ÞA∶ ξi;α → eiϕξi;α: ð96Þ

Because of the particle-hole transformation on the ξi;2 fields,
this Uð1Þ rotation is the γ5 rotation of the original Dirac
fermion, which is usually called the axial rotation. We label
it as Uð1ÞA. The familiar charge Uð1Þ rotation of the Dirac
fermion is now the Sz rotation of SUð2Þf.
The Uð1ÞA suffers from chiral anomalies. It is explicitly

broken down to Z8 after considering the mixed anomalies
with SOð3Þg. This result is seen in the following anomaly
equations:

∂μjμ5 ¼ TrSOð3Þ

�
FSOð3Þ

2π
∧ FSOð3Þ

2π

�

¼ 4TrSUð2Þ

�
FSUð2Þ

2π
∧ FSUð2Þ

2π

�
; ð97Þ

Z
Y4

∂μjμ5 ¼ 2p1ðSOð3ÞÞ ¼ 8p1ðSUð2ÞÞ ∈ 8Z: ð98Þ

The first part of the equation is the standard Fujikawa
calculation for Abelian anomalies [81]. In the second part,
we use the relation between the Pontryagin classes in the
SOð3Þ and SUð2Þ groups. The Pontryagin class of SUð2Þ
counts the instanton number of the SUð2Þ gauge field and
takes its value in integers. The equation means the axial
charge will change by 8 if we insert an SUð2Þ instanton
configuration with winding number 1. Therefore, the axial
charge is only well defined up to 8. The Uð1ÞA is broken
down to ZA

8 .
Note that there is no mixed anomaly between SUð2Þf

and SOð3Þg. The divergence of the SUð2Þf current is

∂μj
μ
α ¼ 1

24π2
Tr

�
σα∂κϵ

κλμν

�
Aλ∂μAνþ

1

2
AλAμAν

��
¼ 0;

ð99Þ

where Aμ ¼
P

3
a¼1 A

a
μTa, Ta’s are SOð3Þ generators, and

σα’s are Pauli matrices. The anomaly equations are deter-
mined by calculating certain triangle loop diagrams
[81,145]. The essential part of the right-hand side of the
equation involves the trace of three symmetry generators. In
this case, it is clearly zero because the SOð3Þ generator and
the SUð2Þ generator act on different spaces. In the flavor
space, the trace of an SUð2Þ generator is zero. This result
tells us that the SUð2Þf is still a symmetry after gauging the
SOð3Þg. Thus, we see that the global symmetry for the
critical SUð2Þ�þNA

f¼1 theory is G¼f½SUð2Þf×ZA
8 �=Z2g.

In the infrared limit, it is possible that the Z8 symmetry is
dynamically enhanced to Uð1Þ. There are many examples
of such a phenomenon in 2þ 1-D deconfined quantum
critical points [4,19,146]. Though we cannot be sure that
this enlargement actually happens in our case, we are
encouraged by the matching of anomalies with the free
Dirac theory at its massless point [which has emergent
Uð2Þ ¼ f½SUð2Þ × Uð1Þ�=Z2g symmetry] discussed below
[147]. Henceforth, in talking about the free Dirac theory,
we simply treat the Z8 axial symmetry of the gauge theory
as though it is a Uð1Þ symmetry. A proper discussion of the
anomalies involving the Z8 without this simplification is
given in Ref. [59].
Now, let us consider the anomaly structure for G. First, we

discuss the t’ Hooft anomaly of SUð2Þf. The SUð2Þf itself
has no perturbative anomaly, but it has the global Witten
anomaly. The Witten anomaly is a Z2 anomaly [148] which
depends only on the parity of the number of SUð2Þf
fundamental Weyl fermions. Here, we have three SUð2Þf
fundamental Weyl fermions. Therefore, they carry the
SUð2Þ Witten anomaly. Dynamically gauging the SUð2Þf
symmetry will lead to a vanishing partition function.
The Z8 symmetry has a self–’t Hooft anomaly and mixed

anomalies with SUð2Þf and gravity. The anomaly is
summarized in the following equation:

∂μj
μ
A ¼ 3

�
fA
2π

∧ fA
2π

�
þ3

2
TrSUð2Þ

�FSUð2Þf
2π

∧FSUð2Þf
2π

�
−
6

8
σ:

ð100Þ

Next, we look at the IR Dirac fermion Ψ at its massless
point. In the Weyl basis, the Dirac theory reads

L ¼ i
X2
α¼1

η†ασ̄μ∂μηα; σ̄μ ¼ f1;−σg; ð101Þ

where η1 and η2 are both left-handed Weyl fermions.
According to our dictionary in Eq. (90), the η fermions
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can be written as composite operators from ξ fermions in
the SUð2Þ gauge theory.

η1 ∼ ϵabciðξa;2iσyξb;1Þξc;1;
η2 ∼ ϵabciðξa;1iσyξb;2Þξc;2: ð102Þ

The theory manifestly has GA ¼ f½SUð2Þf ×Uð1ÞA�=Z2g
symmetry. These symmetries are in one-to-one correspon-
dence with the emergent symmetries in the SUð2Þ�þNA

f¼1

theory if, as we assumed, the Z8 symmetry of the latter
theory is enhanced to Uð1Þ in the gapless sector of the
proposed IR theory. The SUð2Þf transformation is

SUð2Þf∶ ηα → Uαβηβ; with U ∈ SUð2Þ: ð103Þ

This transformation is consistent with the definition
in Eq. (102). From the definition, the η fermions carry
charge 3 under the axial Uð1ÞA symmetry in the SUð2Þ
gauge theory.

Uð1ÞA∶ ηα → ei3ϕηα: ð104Þ

This property is crucial for matching the anomalies with the
UV theory.
Now, we study the ’t Hooft anomalies of the emergent

symmetry. First, the SUð2Þf symmetry has the same global
Witten anomaly [148] because we have a single SUð2Þf
fundamental Weyl fermion. The anomalies associated with
Uð1ÞA are summarized in the following anomaly equation:

∂μj
μ
A ¼ 27

�
fA
2π

∧ fA
2π

�
þ 3

2
Trf

�FSUð2Þf
2π

∧ FSUð2Þf
2π

�
−
6

8
σ;

ð105Þ

where the coefficients 27 and 3 precisely come from the
fact that the Ψ fermions carry charge 3 under the axial
Uð1ÞA symmetry. This fact will match the anomalies in
Eq. (100) if we consider the discrete Z8 axial symmetry
instead of the Uð1ÞA. This result indicates that the low-
energy theory cannot be a simple Dirac fermion but needs
some additional sector that remembers that the Uð1ÞA is
broken down to Z8.

C. The 1-form symmetry anomalies and the
additional Z2 topological order

Thus far, we argued that the IR Dirac fermion Ψmatches
almost all the 0-form symmetry and anomalies in the UV
theory. Now, we focus on the 1-form ðZ2Þ1 symmetry of the
system in the infinitely massive spectator limit. The IR
Dirac fermion does not have the 1-form symmetry. As
shown in Ref. [59], this ðZ2Þ1 symmetry has mixed
anomalies with the Z8 and with gravity. Therefore, there

must be other d.o.f. in the IR that carry the 1-form
symmetry and its anomalies.
The anomalies involving the Z2 1-form symmetry have

two pieces according to Ref. [59]. The first part is a mixed
anomaly between the Z2 1-form symmetry and the ZA

8

discrete axial symmetry. Let us call this the type I anomaly.
The mixed anomaly means that dynamically gauging the
Z2 1-form symmetry will break the Z8 down to Z4 on a spin
manifold and Z2 on a nonspin manifold. Formally, we can
couple the system to a background 2-form Z2 gauge field B.
By definition, a symmetry operation on a quantum system
should preserve the partition function. However, in this
system, in the presence of the 2-form background gauge
fieldB, the partition function is no longer invariant underZ8

axial rotation. The kth element of Z8 axial rotation will shift
the partition function by a phase expfi½ðπkÞ=2� RY4 PðBÞg,
where PðBÞ is the Pontryagin square of B. On a spin
manifold,

R
Y4 PðBÞ is quantized as an even number [112].

Therefore, the Z8 is broken down to Z4 by the mixed
anomaly. On a nonspin manifold,

R
Y4 PðBÞ is an arbitrary

integer [112], and the axial symmetry is then broken down to
Z2. The second anomaly is more abstract. It is a mixed
anomaly between the Z2 1-form symmetry and geometry.
We call this the type II anomaly. This anomaly has the
following formal interpretation.We again couple the system
to a 2-form Z2 gauge field B. The 2-form gauge field is a Z2

gauge field, which means that a redefinition of the 2-form
gauge field, B → Bþ 2x, with x another 2-form Z2 gauge
field, should not change the partition function of the system.
However, in this theory, such a redefinition changes the
partition function by a factor exp½iπx ∪ wTY

2 �, which can be
−1 on a nonspin manifold.
It is useful for us to have a more concrete physical

picture for both types of anomalies. The type I anomaly in
the UV has the following physical interpretation. Let us
remind ourselves from Eq. (98) that the change of axial
charge is equal to 8 times the instanton number of the
SUð2Þ gauge field. Coupling the SUð2Þ gauge theory to the
Z2 2-form gauge field B is effectively turning the SUð2Þ
bundle into an SOð3Þ bundle, which has magnetic monop-
ole excitations. The instanton number for the SUð2Þ bundle
is quantized to be an integer. However, when we extend the
SUð2Þ bundle to the SOð3Þ bundle, we have new field
configurations involving the SOð3Þ monopoles, and the
quantization of the instanton number is changed. On spin
manifolds, the SOð3Þ instanton number is quantized as
half-integer. On nonspin manifolds, the smallest SOð3Þ
instanton number can be one quarter.
The 1=2 instanton event for the SOð3Þ bundle has the

following physical picture. We take two 2π magnetic flux
loops [149] initially separated in space and then move them
across each other to form a link [150,151]. This space-time
process produces the 1=2 instanton [152].
We can now give a physical description of the mixed

anomaly between Z8 and ðZ2Þ1. We assign an axial charge

ZHEN BI and T. SENTHIL PHYS. REV. X 9, 021034 (2019)

021034-24



of 4 to two 2πSOð3Þ flux loops that have linking number 1.
The instanton event changes this linking number and
hence breaks the Z8 to Z4. On a nonspin manifold, for
example CP2, there is an even smaller instanton event. It
can be roughly thought of as creating a self-linking of the
2πSOð3Þ magnetic flux.
The type II anomaly involves the second Stiefel-Whitney

class of the tangent bundle, which detects the spin structure
of the base manifold. This anomaly tells us that there is
an ambiguity on the quantum statistics of the 2πSOð3Þ
monopole. Below, we build on these physical character-
izations to augment the free Dirac theory with a gapped
sector that enables the matching of the 1-form anomalies.
Note that the extra anomalies discussed in this section

are of the discrete unitary symmetry Z8 × ðZ2Þ1. For
ordinary 0-form discrete unitary symmetries (at or above
2þ 1-D), it is known that their anomalies can always be
satisfied by a symmetry-preserving gapped topological
order [153]. Inspired by this idea, we ask if there can be
some symmetry-preserving [154] 3þ 1-D topological order
that captures the anomalies ofZ8 × ðZ2Þ1. Furthermore, note
that with anomalous 0-form symmetry, the charge particles
will be fractionalized into partons that carry projective
representations of the symmetry. Here, the anomalous Z2

1-form symmetry acts on loops. Thus, we are led to search
for a topological ordered state of matter that has “fraction-
alized” loop excitations. A short introduction and an
example of such a fractionalized loop phase are given in
Appendix F. Now, we describe a postulated topological
order that can match the anomalies associated with the
1-form symmetry. It has the following properties.
(1) It is a “loop-fractionalized” topological phase that

preserves the ðZ2Þ1 × Z8 symmetry.
(2) The specific theory is a Z2 gauge theory, where the

“microscopic” loops (we call them 2π-flux loops)
have fractionalized into two π-flux loops. The
physical manifestation of the ðZ2Þ1 is that the 2π-
flux loops are unbreakable.

(3) The Z2 gauge charge carries fermionic statistics.
(4) Two linked electric loops of the Z2 gauge theory

carry axial charge 16. These loops can unlink
dynamically as there are sources for the electric
loops. The linked loops are therefore mixed in with
the unlinked loops by the Hamiltonian. The ground-
state wave function contains all electric loop con-
figurations (linked or unlinked); hence, the state has
global Z16 symmetry.

(5) Each electric loop should be thought of as a ribbon.
A self-linked loop is assigned axial charge of 8.
Events in the theory that create a single such self-
linked loop will break the axial symmetry to Z8.

Now, let us explain why this topological order can match
the Z8 × ðZ2Þ1 anomalies. The Fermi statistics of electric
charge-1 objects ensures that the ðZ2Þ1 symmetry has the
right mixed anomaly with gravity. Gauging the ðZ2Þ1

symmetry introduces electric charge-1=2 particles. Since
the fusion result of two charge-1=2 particles must be the
charge-1 particle which is a fermion, these charge-1=2
particles have indefinite statistics. In contrast, in a strictly
3þ 1-D system, it should be possible to assign definite
statistics to these particles. This case is the manifestation of
the mixed anomaly between ðZ2Þ1 and geometry.
Introducing electric charge-1=2 particles into the theory

implies that the system must also allow strength-1=2
electric loops. These 1=2-strength electric loops can form
links. A link of two 1=2 electric loops will carry axial
charge 4. However, as there are sources for these loops, the
linking number can change dynamically. An event in which
two linked strength-1=2 electric loops is created changes
the axial charge by 4. This result breaks the axial symmetry
down to Z4. We also need to consider a single strength-1=2
loop that is self-linked. As a self-linked strength-1 loop is
assigned axial charge 8, a self-linked charge-1=2 loop
should be assigned axial charge 2. Dynamically, again, the
self-linking number can change as there are sources for the
loops. It follows that an event where a self-linked strength-
1=2 electric loop is created changes the axial charge by 2.
Therefore, the axial symmetry is broken down to Z2. These
results precisely match the mixed anomaly between ðZ2Þ1
and Z8 axial symmetry.
To recap, the proposed low-energy theory is a free

massless Dirac fermion augmented with the topologically
ordered state just described. What we have argued is that
this theory has the same global symmetries, the same local
operators, and the same anomalies as the SUð2Þ gauge
theory with an NA

f ¼ 1 adjoint Dirac fermion (and no
spectator fundamental scalar). Of course, we do not know if
the gauge theory really flows to the free Diracþ
topological theory, but we are encouraged by these checks.
Alternate possibilities have been discussed in Ref. [59].
Let us now introduce a finite mass for the spin-1=2

spectator fields in our UV theory. With a finite-mass
spectator, the Z2 1-form symmetry is explicitly broken.
Physically, this means that the 2π-flux loops can be broken
dynamically. The question is whether the Z2 topological
order we described is immediately destroyed dynamically
by a finite but large spectator mass. In our case, since the
topological order is in a fractionalized-loop phase, the
π-flux loops still cannot break, and they remain nontrivial
excitations in our system. Therefore, with a large but finite
spectator mass, the Z2 topological order is still stable.
If the low-energy theory of massless SUð2Þ þ NA

f ¼ 1
theory with finite spectator mass is indeed a free Dirac
fermion plus a decoupled Z2 topological order, then the
phase diagram of the theory will be as shown in Fig. 10.
Since the Z2 topological order is stable against small
perturbations, it will survive until a critical fermion mass
mc. The phase transition at m ¼ 0 occurs entirely in the
gapless free Dirac sector, and it describes the topological
phase transition between the n ¼ 0 and either n ¼ −1 or
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n ¼ 3 class AIII topological superconductors (depending
on the time-reversal properties of the spectators).

VII. DISCUSSION

From a condensed matter perspective, the main results in
this paper are the numerous examples of unusual quantum
critical phenomena. Here, we briefly describe some general
lessons we can learn.
(1) The possibility of multiple universality classes for

the same phase transition (of which we found many
examples) arises in many different contexts. As far
as we are aware, previous examples of this phe-
nomenon are known only in systems with quenched
randomness (for instance, the �J spin glass). An
important context is at heavy-electron quantum
critical points between a Fermi liquid and an anti-
ferromagnetic metal. The standard Moriya-Hertz-
Millis “spin-density-wave” theory for the onset of
antiferromagnetism in ametal has difficultieswith the
phenomenology observed in some systems.Alternate
theories invoke the idea of Kondo breakdown and
posit a distinct universality class. However, it has
never been very clear whether the resulting antifer-
romagnetic phase is necessarily sharply distinct from
the one obtained through the spin-density-wave
route. It is interesting, therefore, to contemplate that
the heavy-fermi-liquid–to–antiferromagnetic-metal
transition may admit (at least) two distinct univer-
sality classes between the same two phases.

(2) The existence of “unnecessary quantum critical
points” should be kept in mind when the question
of which two phases are separated by a quantum
critical point is posed in some condensed matter
system. The two phases may not actually be sharply
distinct.

(3) We found a number of examples of band-theory-
forbidden quantum critical points between band
insulators. These examples raise the general question
of what the criteria are—beyond free fermion
theory—for which transitions between free fermion

topological phases are allowed to be continuous.
Consider, for instance, integer quantum Hall tran-
sitions of electrons.At the free fermion level, it is well
known that the quantized values of both electrical and
thermal Hall conductivities will generically jump by
1 at a continuous transition. Is this still true in the
presence of interactions?

(4) Previous examples of deconfined quantum critical
points have been shown in 2þ 1-D systems (as far
as we are aware). It is encouraging that we have been
able to find a number of examples of this phenome-
non in 3þ 1-D, which furthermore have emergent
non-Abelian gauge fields at the critical point. All of
our examples describe transitions between gapped
short-range entangled phases (possibly distinguished
as SPT phases). It will be interesting to search for
other 3þ1-D examples—like in the Neel-valence
bond solid transition of 2þ1-D magnets—where a
Landau forbidden transition occurs between two
symmetry-broken Landau-allowed phases.

(5) Continuous phase transitions between SPT phases in
3þ 1-D have not been explored much (beyond free
fermion theory). The examples we have found and
the resulting novel phenomena should give impetus
to a systematic study of such transitions.

From a high-energy perspective, one of our results is to
provide an interpretation of some massless gauge theories
as quantum critical points. We saw that, even when the
gauge theory is IR-free, it has an interesting place in the
phase diagram as a deconfined quantum critical point.
Perhaps the most interesting aspect (for quantum field
theorists) is our discussion of the possible duality of the
SUð2Þ gauge theory with a massless Nf ¼ 1 adjoint
(Dirac) fermion (and a massive fundamental boson) to a
free massless Dirac fermion with an additional decoupled
topological field theory. It will be interesting to scrutinize
this possibility through numerical studies of the gauge
theory.
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APPENDIX A: INSTANTON NUMBER

By definition, a Yang-Mills instanton is a solution of the
classical Euclidean equations of motion with finite action.
To find solutions with finite action, we require that the field
strength tends to zero at infinity sufficiently fast. Hence, the
gauge field asymptotically approaches a pure gauge. All
pure-gauge configurations, namely, A ¼ U−1dU, at infinity
are classified by

π3ðGÞ ¼ Z; ðA1Þ

which is characterized by an integer number, the instanton
number. First, consider gauge configurations on R4, which
become pure gauge at asymptotic infinity. Given a group G,
the instanton number of any such gauge configuration
on R4 is an integer multiple of a minimal positive number.
This minimal instanton corresponds to the generator of
π3ðGÞ ¼ Z. It is customary in the literature to normalize
this minimal instanton so that it has instanton number 1. If
G has a discrete Z2 subgroup, since π2ðZ2Þ ¼ π3ðZ2Þ ¼
Z1, we have

π3ðG=Z2Þ ¼ π3ðGÞ; ðA2Þ

which indicates that G=Z2 and G share the same generator
for instantons. For any non-Abelian group G, an instanton
of minimal charge can be obtained by embedding a
minimal instanton of SUð2Þ through an appropriate iso-
morphism SUð2Þ → G, which is obtained by picking a sub-
SUð2Þ algebra generated by a long root in the Lie algebra of
G. For continuous group G, the instanton number can be
calculated from an integral of a local density,

lG ¼ cR

Z
Y4

TrR

�
F
2π

∧ F
2π

�
; ðA3Þ

where R denotes a specific representation we can freely
choose, and the coefficient cR is chosen to make sure
that lG ¼ 1 for the minimal instanton configuration.
Particularly, cR can be determined by embedding the
minimal SUð2Þ instanton into G and evaluating the
expression above. If we use adjoint representation in
Eq. (A3), the normalization coefficient cR will only depend
on the Lie algebra of G but not the global structure of the
group [155]. Therefore, the formula gives the same result for
G and G=Z2, namely, lG ¼ lG=Z2

. All the instanton numbers
we used in the main text are normalized in this way.
Now, let us discuss the relation between the Pontryagin

classes and the instanton numbers of SUðNÞ, SOðNÞ, and
SpðNÞ groups. The first Pontryagin class of a group G is
defined with its fundamental representation as follows:

p1ðGÞ ¼
1

2

Z
Y4

trf

�
F
2π

∧ F
2π

�
: ðA4Þ

For the SUð2Þ group, we get exactly 1 from Eq. (A4)
if we plug in the minimal instanton configuration.
This result indicates that the first Pontryagin class is equal
to the instanton number for the SUð2Þ group, namely,
p1(SUð2Þ) ¼ lSUð2Þ. This is a starting point. Now, consider
the SUðNÞ and SpðNÞ groups. The minimal instanton
number is achieved by embedding the minimal SUð2Þ
instanton configuration in the upper-left corner in the gauge
configuration as follows:

Aμ ¼
�
ASUð2Þ
μ 0

0 0

�
: ðA5Þ

It is obvious that we will get 1 if plug this into Eq. (A4).
Therefore, for SUðNÞ and SpðNÞ, the first Pontryagin class
is equal to their instanton number.

p1(SUðNÞ) ¼ lSUðNÞ; ðA6Þ

p1(SpðNÞ) ¼ lSpðNÞ: ðA7Þ

The case for the Pontryagin class of the SOðNÞ group is a
little complicated. It is defined as having the same form in
Eq. (A4) normalized with the vector representation of
SOðNÞ. For SOð3Þ, we can only embed the SUð2Þ
instanton configuration into the SOð3Þ gauge configura-
tions using the SUð2Þ adjoint representation. Because of
this embedding, for a minimal SUð2Þ instanton configu-
ration, p1(SOð3Þ) is actually equal to 4. Hence, p1(SOð3Þ)
is equal to 4 times the instanton number,

p1ðSOð3ÞÞ ¼ 1

2

Z
Y4

trSOð3Þ

�
F
2π

∧ F
2π

�

¼ 4
1

2

Z
Y4

trSUð2Þ

�
F
2π

∧ F
2π

�

¼ 4lSUð2Þ ¼ 4lSOð3Þ: ðA8Þ

The embedding for SOðNÞ with N > 3 is different.
We make use of the fact that SOðNÞ ⊃ SOð4Þ ¼
SUð2Þ × SUð2Þ=Z2, and we embed the SUð2Þ instanton
configuration into one of the SUð2Þ subgroups of SOð4Þ.
With this embedding, it is easy to verify that p1(SOðNÞ) is
equal to 2 if we put in a minimal instanton configuration.
Therefore,

p1(SOðN > 3Þ) ¼ 2lSOðNÞ: ðA9Þ

The θ angle of 3þ 1-D gauge theories is usually defined
so that a configuration of instanton number 1 contributes to
the Euclidean action by the phase expðiθÞ.
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APPENDIX B: A 2+ 1D EXAMPLE
OF UNNECESSARY CONTINUOUS

PHASE TRANSITION

In the same spirit as the 3d examples, let us give an
example in 2d. We consider the trivial-to-topological phase
transition of the p� ip superconductor system with Z2 ×
ZT
2 symmetry. The low-energy Hamiltonian near the phase

transition is as follows:

H×1 ¼
Z

d2xχTði∂xσ
10 þ i∂yσ

30 þmσ23Þχ; ðB1Þ

where the Z2 symmetry, Z2∶χ → σ03χ, is the relative
fermion parity symmetry of the two layers. Time-reversal
symmetry, T ∶χ → iσ21χ, exchanges the � layers. The two
symmetries together only admit the mass term in Eq. (B4),
which guarantees that there is a generic phase transition
described by free Majorana fermions in the bulk. The edge
of the system consists of helical Majorana modes described
by the following equation:

Hedge ¼
Z

dxχTði∂xσ
3Þχ: ðB2Þ

The Z2 and time-reversal transformations are

Z2∶ χ → σ3χ; ZT
2∶ χ → iσ2χ: ðB3Þ

We can introduce a mass term on the boundary mbχ
Tσ2χ,

which breaks both Z2 and ZT
2 symmetries but preserves a

different time-reversal symmetry Z̃T
2∶χ → −σ1χ (which is

the original ZT
2 transformation followed by the Z2 trans-

formation). The domain wall of the Z2-breaking mass term

traps a Majorana zero mode, labeled by γ. The Z̃T
2

symmetry will not change the domain-wall background,
and it just acts trivially on the zero modes, namely,

Z̃T
2∶γ → γ.
Now let us consider eight copies of the same system and

impose an SOð7Þ symmetry that rotates these eight copies
in the spinor representation. This symmetry only allows a
uniform mass term. The low-energy theory near the phase
transition is as follows:

H×8 ¼
Z

d2x
X8
i¼1

χTi ði∂xσ
10 þ i∂yσ

30 þmσ23Þχi: ðB4Þ

Whenm is tuned from negative to positive, the system goes
through a continuous phase transition described by bulk-
free Majorana fermions. This transition is stable against
small interactions. Our goal now is to show that the m < 0
and m > 0 phases are in fact the same phase. We can
always regularize the system such that the m < 0 phase is
trivial. In the m > 0 phase, the natural edge state has eight

copies of helical Majorana modes with Z2 × ZT
2 × SOð7Þ

symmetry. We argue that the boundary modes can be
gapped out while preserving all the symmetries, which
indicates that the m > 0 phase is actually topologically
trivial.
To this end, we first break the Z2 and ZT

2 symmetry on the
edge by adding mb

P
8
i¼1 χ

T
i σ

2χi. Then, we proliferate
the topological defects of this order parameter, namely,
the domain walls, to restore a symmetric gapped edge. Since
there are zero modes residing at the domain wall of the order
parameter, we have to be careful about their condensation.
The domain wall must have a single gapped ground state,
and it has to be symmetric under the combined Z̃T

2 symmetry.
This result can be precisely achieved by the SOð7Þ-invariant
Fidkowski-Kitaev interaction. Therefore, with this interac-
tion, we can safely condense the domain wall to get a
symmetric gapped edge state. Thus, the m > 0 phase is
topologically trivial. The phase diagram of the system is
similar to the previous cases as shown in Fig. 6.

APPENDIX C: FERMION ZERO MODES AND
TIME-REVERSAL TRANSFORMATIONS

In this Appendix, we consider a 2þ 1-D Dirac fermion
in a 2π-flux background and solve the zero-mode wave
function. Then, we consider the time-reversal transforma-
tion on the zero mode.
Let us first write down the Hamiltonian for the 2þ 1-D

Dirac fermion on a flat two-dimensional plane with a
background gauge field,

H¼ψ†(ði∂x−AxÞσxþði∂y−AyÞσz)ψ ¼ψ†Dψ ; ðC1Þ

where we take the Landau gauge Ax ¼ 0, Ay ¼ Bx. Notice
that this is equivalent to the spherical geometry since the
flat plane can be viewed as the infinite radius limit of the
sphere. The time-reversal transformation for the fermion
fields is

ZT
2∶ ψ → iσyψ†: ðC2Þ

In component form, the time-reversal action is

ZT
2∶ ψ1 → ψ†

2; ψ2 → −ψ†
1: ðC3Þ

This time-reversal transformation will flip the electric
charge of the Dirac fermions but keep the magnetic flux
background invariant. Therefore, it is meaningful to discuss
the time-reversal transformation of the zero modes trapped
in the flux background.
Consider the Dirac equation

Dψ ¼ (i∂xσ
x þ ði∂y − BxÞσz)ψ ¼ εψ : ðC4Þ

The usual trick to solve the Dirac equation is to square the
Dirac operator to get
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(p2
x þ ðpy − BxÞ2 þ Bσy)ψ ¼ ε2ψ : ðC5Þ

The spectrum for ε2 is (in the unit with ℏ ¼ c ¼ 1)

ε2 ¼ jBjð2nþ 1Þ − jBj; n ∈ Z: ðC6Þ

Notice that the zero-mode wave function depends on the
sign of magnetic field B. Consequentially, the time-reversal
transformations on the zero modes are different for�B. For
B > 0, the zero-mode operator is

fþ ¼ ðψ1 − iψ2Þϕ0ðpy; xÞ; ðC7Þ

while for B < 0, the zero-mode operator is

f− ¼ ðψ1 þ iψ2Þϕ0ðpy; xÞ; ðC8Þ

where ϕ0ðpy; xÞ is the wave function for the ground state of
a harmonic oscillator.
Thus, we find that the time-reversal transformations for

the zero modes are

ZT
2∶ fþ → ðψ†

2 − iψ†
1Þϕ�

0ðpy; xÞ ¼ −if†þ ðC9Þ

f− → ðψ†
2 þ iψ†

1Þϕ�
0ðpy; xÞ ¼ if†−: ðC10Þ

APPENDIX D: BAND-THEORY-FORBIDDEN
QUANTUM CRITICALITY BETWEEN TWO
BAND INSULATORS: A SIMPLE EXAMPLE

A system of free fermions can be in a gapped ground
state. Such distinct states in any given system are labeled by
topological invariants. Within free fermion theory, there are
rules on what kinds of continuous phase transitions can
occur between these distinct phases. Roughly speaking, the
topological invariant jumps by the smallest possible
amount in order for a direct second-order transition to
be possible. The best-known example is in a system of
fermions with charge-1 under a global Uð1Þ symmetry in
two space dimensions. Gapped free fermion ground states
show an integer quantum Hall effect characterized by a
quantized electrical Hall conductivity σxy ¼ n ∈ Z and a
quantized thermal Hall conductivity κxy ¼ c̄½ðπ2k2BTÞ=3�
with c̄ ¼ n. These distinct phases can be realized within
band theory by fully filling a band with Chern number n. In
the absence of any other symmetries [156], within free
fermion theory, continuous phase transitions between these
distinct phases are possible if and only if n jumps by 1.
Can such rules be violated in the presence of inter-

actions? The classification of the gapped phases can itself,
of course, be changed by interactions, but here we are
interested in the phenomenon of band-theory-forbidden
quantum criticality between band-allowed phases. For the
standard integer quantum Hall system discussed above, it is

not known to us if the rule Δn ¼ 1 survives the inclusion of
interactions. However, a closely related system provides us
with a simple example where interactions modify an
analogous band-theory rule.
Consider a system with two species of fermions—

denoted ψ and χ—in two space dimensions. We assume
that there is a global Uð1Þ symmetry under which ψ has
charge 1 and χ is neutral. Within free fermion theory,
gapped ground states of this system are now characterized
by a pair of integers ðn;mÞ. The electrical Hall conductivity
is σxy ¼ n, while the thermal Hall conductivity is
κxy ¼ c̄½ðπ2k2BTÞ=3�, with c̄ ¼ ðm=2Þ. Compared to the
standard integer quantum Hall system, the presence of the
additional neutral fermion means that c̄ can take any
multiple of half-integer value and is not tied to σxy.
Within free fermion theory, a generic continuous transition
between these phases satisfies the following rules:
(i) Δn ¼ 1;Δm ¼ 2 or (ii) Δn ¼ 0, Δm ¼ 1. The former
can be understood as a quantum Hall transition of the ψ
fermion, and the latter as a transition of the χ fermion.
Now, we show that this rule can be violated in the

presence of short-ranged interactions that preserve the
global Uð1Þ symmetry. Imagine an interaction such that
the charged fermion forms a three-body bound state
(a “cluston” [157]), ψ3 ∼ ψψψ . A cluston integer quantum
Hall state [157] is then clearly possible with σxy ¼ 9k, and
c̄ ¼ k with k ∈ Z. In this system, where both charged and
neutral fermions are present, such a cluston integer quan-
tum Hall state can also be accessed within free fermion
theory: It corresponds to n ¼ 9k;m ¼ 2k. Now, consider a
cluston integer quantum Hall transition, which can be
second order so long as Δk ¼ 1. This case corresponds
to Δn ¼ 9;Δm ¼ 2, which violates the band-theory rules
discussed in the previous paragraph, even though both
phases are band allowed. The critical theory has gapless
clustons, but the ψ , χ particles are gapped.

APPENDIX E: A 2+ 1-D BOSONIC MOTT
INSULATOR TO Z2 TOPOLOGICAL

ORDER TRANSITION

Here, we provide another example of a continuous phase
transition in which modifying the properties of a gapped
spectator field changes the nearby phase but not the
universality class of the transition. We consider a transition
from a 2þ 1-D bosonic Mott insulator to a Z2 topologi-
cal order.
Consider a bosonic system in a Mott insulating phase.

The physical bosons b are gapped. We assume the system
has a time-reversal symmetry T , and the physical bosons are
Kramer’s singlets. Now, consider partons of the physical
boson. We decompose the physical boson into two bosonic
partons, which we call the e particles. This fractionalization
introduces a Z2 gauge field, and the e particles carry Z2

gauge charge 1. The Z2 gauge field also has π-flux

ADVENTURE IN TOPOLOGICAL PHASE TRANSITIONS IN … PHYS. REV. X 9, 021034 (2019)

021034-29



excitations, which we label as the m particle. The e and m
particles have mutual Berry’s phase π. The Mott insulating
phase is the confined phase of the Z2 gauge field. The Z2

confined phase can be viewed as a condensed phase of them
particles.
Let us imagine that, by tuning some parameter, we can

drive the system through a deconfinement transition to a Z2

topological order. We can view the deconfinement tran-
sition as the proliferation of the vortices of the m-particle
condensation. The transition is in the Ising universality
class. After the transition, the m particle is gapped, and the
Z2 gauge field is deconfined. The resultant phase has a Z2

topological order. Throughout the transition, the e particle
remains gapped and does not participate in the low-energy
theory. We can view them as the massive spectator fields in
our system. Since the system has time-reversal symmetry,
there are actually different classes of Z2 topological orders
distinguished by their time-reversal properties. These are
called SET orders. In our case, the time-reversal properties
of the spectator e particle precisely determine which SET
state we get for the deconfined phase. There are two
choices. One is the e particle, which is a Kramer’s singlet.
In this case, the resultant deconfined phase is a vanilla Z2

topological order, which we can label as e0m0, meaning
that both e andm are Kramer’s singlets. The other choice is
that the e particle actually carries a Kramer’s doublet [158].
In this case, we get a nontrivial symmetry-enriched Z2

topological order labeled by eTm0. Note that eTm0 and
e0m0 are distinct phases if the system preserves the time-
reversal symmetry. However, since the e particle remains
gapped during the transition, it cannot change the univer-
sality class of the transition.

APPENDIX F: FRACTIONALIZING LOOPS

Consider a quantum system with a Hilbert space of
unoriented loops in 3þ 1-D. In this Appendix, we briefly
describe phases of such a system where the loops have
“fractionalized.” Loop fractionalization played an impor-
tant role in the topological order discussed in Sec. VI.
We can think of the system of unoriented loops as pure

Z2 gauge theory, i.e., without any matter. Formally, such a
system has a global Z2 1-form symmetry [denoted ðZ2Þ1]
associated with the unbreakable unoriented loops. There
are some obvious phases of this loop system. First, there is
a phase in which the loops have line tension, and there are
no other excitations. This phase is the confined phase of the
pure Z2 gauge theory. The 1-form ðZ2Þ1 symmetry remains
unbroken in this phase. Second, there is a distinct phase
where the loops have zero line tension, and the pure Z2

gauge theory is in its deconfined phase. Then, ðZ2Þ1 is
spontaneously broken.
Here, we are interested in a different kind of phase where

the microscopic loops (denoted strength-1) are tensionful
but have fractionalized into other loops. In other words,
the 1-form global symmetry has been fractionalized.

We describe a simple example of such a loop-fractionalized
phase where there are two kinds of excitations:
(1) A strength-1=2 loop with line tension. Two strength-

1=2 loops fuse into a single microscopic strength-1
loop.

(2) A point-particle excitation that braids with the π
phase with the fractionalized strength-1=2 loop.

This excitation structure is that of an emergent decon-
fined Z2 gauge theory (not to be confused with the
microscopic pure Z2 gauge theory). Let us explicitly
construct this phase. To this end, we begin by first
considering a Uð1Þ gauge theory with a ðZ2Þ1 symmetry.
This theory has a gapless photon, gapped electric charges
E, gapped magnetic charges M, and their bound states.
Now, assume that all particles with odd magnetic charge are
thrown out of the Uð1Þ gauge theory. Then, odd strength
magnetic loops cannot end, and there is an exact ðZ2Þ1
symmetry. This symmetry is broken spontaneously in the
Uð1Þ gauge theory (the odd strength magnetic loops are
tensionless). Consider now a Higgs transition obtained by
condensing the basicE particle.Allmagnetic flux loops then
have line tension, andweget the “trivial” phase of loopswith
unbroken ðZ2Þ1. If instead we consider a Higgs transition
obtained by condensing E2 without condensing E, we get a
Z2 gauge theory where E survives as the Z2 gauge charge.
We also get strength-1=2 magnetic flux loops with line
tension, which braid with the π phase with the Z2 gauge
charge. Of course, strength-1 magnetic loops also have line
tension and cannot break. We identify them with the
microscopic loops. This state preserves ðZ2Þ1 and is exactly
the loop-fractionalized phase described above [159].
An effective field theory for this loop-fractionalized

phase is readily written down. Consider the Lagrangian

L ¼ 1

π
β ∧ dαþ 1

2π
B ∧ dα; ðF1Þ

where α is a 1-form dynamical gauge field, and β is a
2-form dynamical gauge field. Note that B is a 2-form
background gauge field that couples to the global ðZ2Þ1
symmetry. The first term is the standard “BF” theory
description of Z2 gauge theory. It dictates that the strings
that are charged under β are seen as the π flux of the α.
These strings are the tensionful loops of the Z2 gauge
theory. The “microscopic” loops that couple to B, however,
have 2π flux of α. Thus, this action correctly captures the
loop-fractionalized phase described above.

APPENDIX G: THE SUð2Þ+NA
f

THEORY WITH NA
f ∈ 2Z

In this Appendix, we provide generalizations of the
previous fermionic, deconfined, quantum critical points in
Sec. IV.We extend theSUð2ÞþNA

f theories to evenN
A
f cases.

Let us consider an SUð2Þ gauge theory coupled to
NA

f ¼ 2 flavors of adjoint Dirac fermions. The 3þ 1-D
Lagrangian of this theory is
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LSUð2Þ
Adj2 ¼

X2
i¼1

iψ̄ iγμð∂μ − aαμTαÞψ i −mψ̄ iψ i þ � � � : ðG1Þ

Analytically, this theory is expected to be inside the
conformal window [88,90]. Numerically, it is found that
the infrared limit for the m ¼ 0 theory is consistent with a
conformal field theory [89]. We want to understand what
phase transition this theory describes. To be more precise,
we content ourselves with determining the topological
distinction between the phases with the two signs of m,
assuming large jmj. We do not attempt to answer the
question of whether there are other intermediate phases at
small jmj. Accordingly, whenever we talk about the
massive theory below, we implicitly mean the theory at
large jmj. If we tune m to be nonzero, the fermions are
gapped. As usual, we can regularize the theory such that,
for m < 0, integrating out the massive fermion generates
zero Θ angle for the SUð2Þ gauge theory, in which case the
theory will enter a confined phase in the low-energy limit.
For m > 0, the massive fermions contribute an 8πΘ angle
for the SUð2Þ gauge fields. Since the Θ term is 2π periodic,
the SUð2Þ gauge theory will again be confined in the
infrared limit. The question is, what is the nature of the
gapped phases for m < 0 and m > 0? The two states can
only differ in their topological aspects. They can be
different SPT states of certain global symmetry.
For general massm, the global symmetry of the theory is

G ¼ SOð4Þ × ZT
2 . The time-reversal symmetry transforma-

tion is, as usual,

ZT
2∶ ψ → γ0γ5ψ

†; ðG2Þ

where we suppress the flavor and gauge indices. To see the
SOð4Þ symmetry, we decompose the two flavors of Dirac
fermions into four flavors of Majorana fermions. The
SOð4Þ symmetry is then a flavor rotation between the four
Majorana fermions. Since the SUð2Þ adjoint representation
is a real representation, the SOð4Þ × ZT

2 symmetry com-
mutes with the gauge group. This symmetry is not
anomalous, and it is an exact symmetry for any m.
Let us first discuss the classification of interacting

fermion SPT with SOð4Þ × ZT
2 symmetry. In the free

fermion limit, the 3þ 1-D fermion SPT classification is
Z. The root state for this class is four copies of topological
superconductors with ZT

2 symmetry (DIII class), where the
SOð4Þ rotates among the four copies. The typical surface
theory of such a root state is four copies of gapless
Majorana fermions. In the free fermion limit, since the
DIII class is Z classified, the classification of SOð4Þ × ZT

2

SPT is Z as well. With an interaction, the classification
becomes Z4 × Z2. The Z2 part corresponds to the pure ZT

2

SPT state labeled by its anomalous surface Z2 topological
order efmf, which only appears in the interacting system
and has no free fermion correspondence. The free fermionZ

classification is reduced to Z4 by the interaction (which is
different from the oddNf case). The reason for this result is as
follows. The pure time-reversal anomaly on the 2þ 1-D
surface is Z16 classified, which means that multiples of
16 copies of 2þ 1-D Majorana fermions are time-reversal
anomaly-free. Therefore, we need at least four copies of the
root state to cancel the time-reversal anomaly on the surface.
Next, we need to consider the mixed anomaly between
SOð4Þ and ZT

2 . This anomaly is related to the generalized
parity anomaly. According to Ref. [128], by considering
the system on a general unorientable manifold, the surface
theory of four copies of the root states will be free from the
mixed anomaly between SOð4Þ and ZT

2 symmetry.
Physically, this means that the SOð4Þ monopole in the
3þ 1-D bulk carries a trivial time-reversal quantum number.
Combining the two constraints, we conclude that the
interaction classification reduced from the free fermion states
is Z4. We can also see this from a surface argument. Let us
take four copies of the root states. The boundary theory
consists of 16 copies ofMajorana fermions. The 16Majorana
fermions form four copies of vector representations under
SOð4Þ. The question is whether we can gap them out
while preserving the SOð4Þ × ZT

2 symmetry. We can group
the 16 Majorana fermions into eight Dirac fermions and
assume there is an extra Uð1Þe symmetry for the Dirac
fermions, which we will eventually explicitly break.
The Dirac fermion has two indices, an SOð4Þ vector index
v ¼ 1, 2, 3, 4 and another flavor index i ¼ 1, 2.

H×4 ¼
X2
i¼1

X4
v¼1

ψ†
i;vði∂xσ

x þ i∂yσ
zÞψ i;v: ðG3Þ

The symmetry transformations are

Uð1Þe∶ ψ i;v → eiθψ i;v; ðG4Þ

ZT
2∶ ψ i;v → iσyψ†

i;v; ðG5Þ

SOð4Þ∶ ψ i;v → Ov;wψ i;w; O ∈ SOð4Þ: ðG6Þ

Now, we introduce a superconducting order parameter
just as in Eq. (61). This term breaks both Uð1Þe and ZT

2

but preserves a combination of ZT
2 and Uðπ=2Þ rotation.

Consider the π vortex of the superconductor order
parameter. It carries eight Majorana zero modes labeled
by χi;v. We can combine them into four complex zero
modes, fv ¼ χ1;v þ iχ2;v. We can write down an SOð4Þ-
invariant four-fermion interaction of the form Hint ¼
−Vðf†1f†2f†3f†4 þ H:c:Þ [118]. This interaction leads to an
SOð4Þ symmetric ground state jψvi¼ ðj0iþf†1f

†
2f

†
3f

†
4j0iÞ=ffiffiffi

2
p

and a gapped spectrum for the vortex core. Now, we can
condense the π vortices and restore the Uð1Þe and ZT

2

symmetry. The resultant surface state is a trivial gapped
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symmetric state under Uð1Þe × SOð4Þ × ZT
2 symmetry. We

can then turn on a small explicitUð1Þe breaking term. Since
the surface is now trivially gapped, it is stable against any
small perturbation. Thus, we proved that the surface of four
copies of the root states can be trivially gapped while
preserving the SOð4Þ × ZT

2 symmetry, which is equivalent
to saying that the bulk state is topologically trivial.
Next, we want to determine which SPT state the m > 0

phase falls into. We can always regularize the system such
that the m < 0 phase is the trivial class of the SPT states
under this global symmetry. To detect the topological
properties of the m > 0 phase, we can derive the topo-
logical response for the background SOð4Þ gauge field on
an orientable manifold,

Stopo ¼ i
π

2

�
p1ðASOð12ÞÞ − 12

8
σ

�

¼ i
π

2

�
3p1ðASOð4ÞÞ þ 4p1ðaSOð3ÞÞ − 6

4
σ

�

¼ i3π

�
1

2
p1ðASOð4ÞÞ − 1

4
σ

�
þ i2πp1ðaSOð3ÞÞ ðG7Þ

¼ i3π

�
SSOð4Þ
Θ −

x
4
σ

�
: ðG8Þ

This nontrivial response theory tells us that the m > 0 state
is indeed a nontrivial SPT protected by the SOð4Þ × ZT

2

symmetry.
As before, to understand the theory, we need to introduce

the spin-1=2 spectator field. Let us take the simplest case
where the spectator is a scalar under SOð4Þ and a singlet
under ZT

2 as in Eq. (69). In this case, we can do similar
surface analysis as in the previous sections to understand
the m > 0 phase. The natural surface state of the m > 0
system is SUð2Þ QCD3, with two flavors of adjoint
massless Dirac fermions. We can condense the trivial
spectator boson to Higgs out the SUð2Þ gauge field. The
surface state results in six physical Dirac fermions or 12
physical Majorana fermions with identical time-reversal-
symmetry transformation. This state corresponds to n ¼
3 ∼ −1 in the Z4 classification.
Now, if the spectator is a scalar under SOð4Þ and a

Kramers doublet under ZT
2 transforming as in Eq. (76), we

can run a similar argument as in Sec. IV. Condensation of
the spectator field will not break the physical time-reversal
symmetry. The system will be invariant under a gauge-
equivalent time-reversal transformation Z̃T

2 as in Eq. (77).
Since the gauge transformations also change the time-
reversal transformation on the adjoint fermions as in
Eq. (78), the resulting state is now n¼−2þ1¼−1∼3
in the Z4 classification.
Notice that, in this case, the topological index of the

m > 0 phase actually does not depend on the two choices
of the spectator fields. This case is indeed consistent with

the bulk analysis. We show that, in this case, the neutral
SOð3Þ monopole in the bulk is a Kramers singlet boson.
Therefore, the two choices of the spectator fields do not
have different surface time-reversal anomalies. For the zero
modes in the SOð3Þ monopole, we consider the system
with a spherical geometry and set the background SOð3Þ
gauge field such that there is 2π magnetic flux coming out
of the sphere along the z direction in the flavor space. For
the m > 0 phase, the surface theory hosts gapless Dirac
fermions, which contribute zero modes for the monopole
configuration. Let us write down the surface state:

L
NA

f¼2

surf ¼
X2
i¼1

iψ̄þ;iγμð∂μ − iazμÞψþ;i

þ
X2
i¼1

iψ̄−;iγμð∂μ þ iazμÞψ−;i

þ
X2
i¼1

iψ̄0;iγμ∂μψ0;i: ðG9Þ

Here, we see that there are three classes of Dirac fermions
that carry �1 and 0 gauge charge under azμ, respectively.
Each class has two flavors. For each class, we can
decompose the two Dirac fermions into four Majorana
fermions, and they form a vector representation of the
global SOð4Þ symmetry. Now, let us consider the zero
modes in the 2π flux. There are, in total, four complex zero
modes labeled by fþ;1; fþ;2; f−;1; f−;2. The � denote the
gauge charge that they carry. The Hilbert space spanned by
these zero modes has 16 states. It is very easy to spot
which states are gauge invariant but a little difficult to
construct an SOð4Þ scalar. To start, let us consider the four
states constructed fromfþ;1 and fþ;2. They can begroup into
two classes: fj0i;f†þ;1f

†
þ;2j0ig and ff†þ;1j0i;f†þ;2j0ig. These

two sets of states form the left- and right-handed spinor
representations of the SOð4Þ group [160]. We know that, for
SOð4Þ, two left or two right spinors can be combined
into an SOð4Þ scalar [161]. Therefore, combining two left-
or right-handed spinors from the fþ sector and the f− sector,
we can form such a gauge neutral and SOð4Þ singlet state,
for example, ðf†þ;1f

†
−;2−f

†
þ;2f

†
−;1Þj0i. Under time-reversal

transformation,ZT
2∶j0i→f†þ;1f

†
þ;2f

†
−;1f

†
−;2j0i; f�;i→∓if†�;i,

this state returns to its original form.Therefore, thegauge and
global neutral SOð3Þ monopole is a Kramers singlet boson.
This result corresponds to a trivial m particle for the surface
Z2 topological order,which indicates that it is not anomalous.
Hence, the two spectator choices make no difference on the
topological index of the m > 0 phase.
The above analysis also suggests a possible duality

between the 3þ 1-D SUð2Þ þ NA
f ¼ 2 theory and two

free Dirac fermions with SOð4Þ × ZT
2 symmetry, as they

both describe the continuous phase transition between the
n ¼ 0 and n ¼ −1 SPT states in this symmetry class.
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However, we will leave to a future study an analysis of the
emergent symmetries and anomalies of the gauge theory.
For even NA

f > 2, the global symmetry of the system is
SOð2NA

f Þ × ZT
2 , and the interacting fermionic SPT classi-

fication is the same as the NA
f ¼ 2 case. The SUð2Þ þ NA

f

theory is also a theory of a quantum phase transition
between n ¼ 0 and n ¼ −1 SPT states in this symmetry
class. However, in this case, the gauge theory is free in the
infrared limit. Therefore, we can tell with confidence that it
is distinct from the phase transition theory in the free
fermion setting. Thus, these theories provide other exam-
ples of multiple universality classes for the same phase
transition.

APPENDIX H: THE SUð2Þ+NA
f

THEORY WITH NA
f ∈ Z+ 1

2

The reason for NA
f being half-integer is that we consider,

instead of Dirac fermions, Majorana fermions. Since the
adjoint representation of SUð2Þ is a real representation, we
can easily generalize the theory to Majorana fermions.
We thus consider 2NA

f ¼ 2kþ 1 (k ∈ Z) flavors of SUð2Þ
adjoint Majorana fermions whose 3þ 1-D action can be
written as

LSUð2Þ
AdjMaj ¼

X2kþ1

i¼1

iχTi γμð∂μ − aαμTαÞχi −mχ̄iχi þ � � � : ðH1Þ

(We still assume massive spin-1=2 spectator fields in the
spectrum of our system.) The massless theory with NA

f ¼ 3
2

or k ¼ 1 is inside the conformal window of adjoint SUð2Þ
gauge theory. For NA

f > 2 or k > 2, the massless theory
flows to the free fixed point in the infrared.
Let us first discuss the dynamical properties of the

massive phase. As before, the m < 0 phase can be
regularized to have a trivial Θ angle for the SUð2Þ gauge
theory, and it enters a confined phase at low energy. On the
m > 0 side, the Θ angle for SUð2Þ is 4kπ þ 2π, which is
also trivial because it is a multiple of 2π. Therefore, the
m > 0 side also enters a confined phase. As in all the
other examples before, the two phases are not distinguished
by their dynamical properties but by their topological
properties.
The global symmetry in this system is SOð2kþ 1Þ × ZT

2 .
The fermion SPT classification for this symmetry is
Z16 × Z2. The Z2 part is the efmf state protected by
ZT
2 only. The Z16 part descends from the free fermion

classification. The root state includes 2kþ 1 copies of the
topological superconductor in the DIII class. The 2kþ 1
copies form a vector representation of SOð2kþ 1Þ. Since
the time-reversal anomaly for the DIII class is Z16 fold and
2kþ 1 is coprime with 16, we need at least 16 root states to
cancel the time-reversal anomaly on the surface. For 16
copies of the root states, there is also no mixed anomaly

between SOð2kþ 1Þ and ZT
2 . (Using the argument in the

previous section, the mixed anomaly is fourfold periodic.)
Therefore, 16 is the minimal number of copies of the root
states for an anomaly-free surface. Hence, the interaction-
reduced classification is Z16.
Let us now discuss the nature of the m > 0 phase. We

can derive the topological response theory for the back-
ground SOð2kþ 1Þ gauge field on the m > 0 side on an
orientable manifold,

Stopo ¼ i
π

2

�
p1ðASOð3ð2kþ1ÞÞÞ − 3ð2kþ 1Þ

8
σ

�

¼ i
π

2

�
3p1ðASOð2kþ1ÞÞ þ ð2kþ 1Þp1ðaSOð3ÞÞ

−
3ð2kþ 1Þ

8
σ

�

¼ i3π

�
1

2
p1ðASOð2kþ1ÞÞ − 2kþ 1

16
σ

�

þ iπð4kþ 2Þp1ðaSUð2ÞÞ ðH2Þ

¼ i3π

�
SSOð2kþ1Þ
Θ −

2kþ 1

16
σ

�
: ðH3Þ

Here, we use the fact that for both choices of spectator field
on an orientable manifold, the gauge bundle must satisfy
w2ðSOð3ÞÞ ¼ 0 mod 2, which means the gauge bundle is a
pure SUð2Þ bundle. This response theory, while not
revealing all the information about the m > 0 phase, does
tell us that the m > 0 phase is topologically nontrivial. We
still need to determine in which SPT the m > 0 phase is.
We find that the nature of the m > 0 phase depends on

the properties of the spectator field. Assuming a spectator
boson that is a SOð2kþ 1Þ scalar and time-reversal singlet
as in Eq. (69), the topological index for the m > 0 phase is
the n ¼ 3 state in the Z16 classification. For the other case
of a time-reversal doublet spectator as in Eq. (76), the
topological index is n ¼ −1. The arguments for these
results are straightforward generalizations of surface argu-
ments in Sec. IV. We note that the difference between the
two cases is the n ¼ 4 state, which is not the eTmT state in
this situation. (The eTmT state would correspond to the
n ¼ 8 state in the Z16 classification.)
The time-reversal singlet spectator case gives us

another example of a band-theory-forbidden continuous
transition between band-theory-allowed insulating states.
For the time-reversal doublet spectator case, with k ¼ 1 or
NA

f ¼ 3
2
, the massless SUð2Þ þ NA

f ¼ 3
2
theory is a strongly

coupled conformal field theory in the gauge-theory descrip-
tion. For k > 1 or NA

f > 2, the massless SUð2Þ þ NA
f

theory is free in the infrared. This theory is clearly different
from 2kþ 1 free massless Majorana fermions. However,
both theories describe the same n ¼ 0 to n ¼ −1 transition.
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Therefore, this provides more examples for multiversality
classes.
A summary of all the results for the three NA

f series is
tabulated in Table I.

APPENDIX I: AN SUð4Þ GENERALIZATION

In this Appendix, we explore a generalization with a
different gauge group. To make things simple, let us restrict
our attention to only one flavor of adjoint Dirac fermion.
Let us consider 3þ 1-D SUð4Þ gauge theory coupled to
one flavor of adjoint fermion. The adjoint Dirac fermion
has 15 components. The Lagrangian is written as follows:

LSUð4Þ
adj ¼ iψ̄γμð∂μ − aaμTaÞψ −mψ̄ψ þ � � � ; ðI1Þ

where Ta’s, the generators of the SUð4Þ group, are 15 × 15
matrices. The infrared limit of the massless theory is still
unclear. Let us assume it is inside the conformal window
for the moment.
We first consider the dynamical properties of the massive

phases. For m < 0, the fermions are massive, and we can
integrate them out. We choose a regularization such that the
Θ angle for the SUð4Þ gauge theory is 0. The SUð4Þ gauge
theory enters a confined phase at low energy. With this
regularization, we can calculate the Θ angle of the SUð4Þ
gauge theory for the m > 0 phase as follows [162]:

LSUð4Þ
Θ ¼ π

2
TrA

FA

2π
∧ FA

2π
¼ 8π

�
1

2
Trf

Ff

2π
∧ Ff

2π

�
: ðI2Þ

The Θ angle is 8π, which is equivalent to being trivial
because of the 2π periodicity. Therefore, the SUð4Þ gauge
theory on the m > 0 side is also confined. Next, we discuss
the topological difference between the two massive phases.
First, let us identify the symmetries. The 0-form global

symmetry of the theory is Uð1Þ × ZT
2 [163]. The time

reversal and Uð1Þ transformation are the same as the AIII
class in Eqs. (81) and (82). The global symmetry commutes
with the SUð4Þ gauge group. We also assume a massive
bosonic spectator z that carries an SUð4Þ fundamental
representation. This breaks the 1-form Z4 center symmetry
in the system. There are clearly gauge-invariant fermions in

the system such as ðz†TazÞψa. Therefore, the massless
theory describes a critical point in a fermionic system.
Let us consider the case where the spectator is neutral

under global Uð1Þ and a singlet under time-reversal trans-
formation:

Uð1Þ∶ z → z; ZT
2∶ z → z�: ðI3Þ

We note that the T 2 ¼ �1 is meaningless in this case for
the spectator boson. We can redefine the time-reversal
transformation to be Z̃T

2∶z → eiπ=2z�, where the phase
rotation is an element of the center of the SUð4Þ gauge
group. This gauge-equivalent time reversal has T 2 ¼ −1
for the spectator boson. We also notice that the adjoint
fermion has identical time-reversal transformation for Z̃T

2

and ZT
2 .

Let us regularize the m < 0 phase such that it is in the
topologically trivial state. Then, consider the m > 0 phase.
We again consider the surface state of the system to
determine the topological properties of the system. The
natural surface state of the system is 2þ 1-D QCD of the
SUð4Þ gauge theory coupled to one adjoint fermion. On
the surface, we can condense the spectator field, which
Higgses the SUð4Þ gauge field completely while preserving
the Uð1Þ × ZT

2 symmetry. The 15 Dirac fermions in the
SUð4Þ adjoint fermion become physical fermions with
identical Uð1Þ × ZT

2 transformations. Therefore, this state
has a topological index in the AIII class, n ¼ 15 ∼ −1. Thus,
in the large-mass limit, we either get a trivial insulator or the
simplest topological superconductor. Study of the small-
mass limit within this framework may reveal interesting
possible evolutions between these two familiar phases.
However, we will leave this to future work.

APPENDIX J: LOCAL OPERATORS IN THE
ADJOINT SUð2Þ GAUGE THEORY

In this Appendix, we list the gauge-invariant operators of
the SUð2Þ gauge theory with one adjoint Dirac fermion (the
theory discussed in Sec. V). We organize these local
operators according to their quantum numbers under the
Lorentz group and the emergent global symmetry group.
We only list Lorentz scalars (Table II) and spinors
(Table III) composed of the adjoint fermions ψa and gluon

TABLE I. A summary for SUð2Þ þ NA
f theory with general NA

f . The global symmetry associated with the system
is SOð2NA

f Þ × ZT
2 . The SPT classification depends on the NA

f . The last two rows show the topological index for the
m > 0 phase for both choices of the spectator field. In all cases, η ¼ 0, so we do not include it in the table.

NA
f Zþ 1

2
2Zþ 1 2Z

Symmetry G SOð2Zþ 1Þ × ZT
2 SOð4Zþ 2Þ × ZT

2 SOð4ZÞ × ZT
2

fSPT classification Z16 × Z2 Z8 × Z2 Z4 × Z2

T 2 ¼ 1 spectator n ¼ 3 n ¼ 3 n ¼ 3 ∼ −1
T 2 ¼ −1 spectator n ¼ −1 n ¼ −1 n ¼ −1 ∼ 3
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fields Fa
μν (up to the product of three operators). This list

may be useful for future numerical studies to identify the
low-energy Dirac fermion. As a reminder, the time-reversal
transformations (CT , to be more precise) on the Weyl
fermions and the gluon fields are as follows:

CT ∶ ξ1 → ϵξ2; ξ2 → ϵξ1 with ϵ ¼ iσy; ðJ1Þ

CT ∶ Fa
μν → sμsνFa

μν where sμ ¼ ðþ;−;−;−Þ: ðJ2Þ
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Bond-Solid Transition on the Honeycomb Lattice: Evi-
dence for Deconfined Criticality, Phys. Rev. Lett. 111,
087203 (2013).

[34] S. Pujari, F. Alet, and K. Damle, Transitions to Valence-
Bond Solid Order in a Honeycomb Lattice Antiferromag-
net, Phys. Rev. B 91, 104411 (2015).

[35] A. Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M.
Somoza, 3D Loop Models and the CPn−1 Sigma Model,
Phys. Rev. Lett. 107, 110601 (2011).

[36] S. D. Geraedts and O. I. Motrunich, Monte Carlo Study of
a uð1Þ × uð1Þ System with π-Statistical Interaction, Phys.
Rev. B 85, 045114 (2012).

[37] J. D’Emidio and R. K. Kaul, First-Order Superfluid to
Valence-Bond Solid Phase Transitions in Easy-Plane
SUðnÞMagnets for Smalln, Phys.Rev.B 93, 054406 (2016).

[38] J. D’Emidio and R. K. Kaul, New Easy-Plane CPN−1

Fixed Points, Phys. Rev. Lett. 118, 187202 (2017).
[39] R. K. Kaul, Spin Nematics, Valence-Bond Solids, and Spin

Liquids in SOðnÞ Quantum Spin Models on the Triangular
Lattice, Phys. Rev. Lett. 115, 157202 (2015).

[40] T. Grover and A. Vishwanath, Quantum Phase Transition
between Integer Quantum Hall States of Bosons, Phys.
Rev. B 87, 045129 (2013).

[41] Y.-M. Lu and D.-H. Lee, Quantum Phase Transitions
between Bosonic Symmetry-Protected Topological Phases
in Two Dimensions: Emergent QED3 and Anyon Super-
fluid, Phys. Rev. B 89, 195143 (2014).

[42] A. Vishwanath and T. Senthil, Physics of Three-
Dimensional Bosonic Topological Insulators: Surface-
Deconfined Criticality and Quantized Magnetoelectric
Effect, Phys. Rev. X 3, 011016 (2013).

[43] K. Slagle, Y.-Z. You, and C. Xu, Exotic Quantum Phase
Transitions of Strongly Interacting Topological Insulators,
Phys. Rev. B 91, 115121 (2015).

[44] Y.-Z. You, Z. Bi, D. Mao, and C. Xu, Quantum Phase
Transitions between Bosonic Symmetry-Protected Topo-
logical States without Sign Problem: Nonlinear Sigma
Model with a Topological Term, Phys. Rev. B 93, 125101
(2016).

[45] Y. Q. Qin, Y.-Y. He, Y.-Z. You, Z.-Y. Lu, A. Sen, A. W.
Sandvik, C. Xu, and Z. Y. Meng, Duality between the
Deconfined Quantum-Critical Point and the Bosonic
Topological Transition, Phys. Rev. X 7, 031052 (2017).

[46] Y.-Y. He, H.-Q. Wu, Y.-Z. You, C. Xu, Z. Y. Meng, and
Z.-Y. Lu, Bona Fide Interaction-Driven Topological

ZHEN BI and T. SENTHIL PHYS. REV. X 9, 021034 (2019)

021034-36

https://doi.org/10.1126/science.aad5007
https://doi.org/10.1088/1742-5468/2008/02/P02009
https://doi.org/10.1088/1742-5468/2008/02/P02009
https://doi.org/10.1103/PhysRevLett.101.050405
https://doi.org/10.1103/PhysRevLett.101.050405
https://doi.org/10.1103/PhysRevB.88.195140
https://doi.org/10.1103/PhysRevB.92.184413
https://doi.org/10.1103/PhysRevLett.89.247201
https://doi.org/10.1103/PhysRevB.82.174428
https://doi.org/10.1103/PhysRevLett.95.036402
https://doi.org/10.1103/PhysRevX.7.031051
https://doi.org/10.1103/PhysRevB.80.180414
https://doi.org/10.1103/PhysRevB.80.180414
https://doi.org/10.1103/PhysRevB.88.220408
https://doi.org/10.1103/PhysRevB.82.155139
https://doi.org/10.1103/PhysRevB.82.155139
https://doi.org/10.1103/PhysRevX.5.041048
https://doi.org/10.1103/PhysRevX.5.041048
https://doi.org/10.1103/PhysRevLett.115.267203
https://doi.org/10.1103/PhysRevLett.115.267203
https://doi.org/10.1103/PhysRevB.80.045112
https://doi.org/10.1103/PhysRevLett.101.167205
https://doi.org/10.1103/PhysRevLett.101.167205
https://doi.org/10.1103/PhysRevB.82.014429
https://doi.org/10.1103/PhysRevB.82.014429
https://doi.org/10.1103/PhysRevB.74.064405
https://doi.org/10.1103/PhysRevX.8.011012
https://doi.org/10.1103/PhysRevX.8.011012
https://doi.org/10.1103/PhysRevLett.120.115702
https://doi.org/10.1103/PhysRevLett.120.115702
https://doi.org/10.1103/PhysRevB.97.195115
https://doi.org/10.1103/PhysRevB.96.205113
https://doi.org/10.1103/PhysRevLett.111.087203
https://doi.org/10.1103/PhysRevLett.111.087203
https://doi.org/10.1103/PhysRevB.91.104411
https://doi.org/10.1103/PhysRevLett.107.110601
https://doi.org/10.1103/PhysRevB.85.045114
https://doi.org/10.1103/PhysRevB.85.045114
https://doi.org/10.1103/PhysRevB.93.054406
https://doi.org/10.1103/PhysRevLett.118.187202
https://doi.org/10.1103/PhysRevLett.115.157202
https://doi.org/10.1103/PhysRevB.87.045129
https://doi.org/10.1103/PhysRevB.87.045129
https://doi.org/10.1103/PhysRevB.89.195143
https://doi.org/10.1103/PhysRevX.3.011016
https://doi.org/10.1103/PhysRevB.91.115121
https://doi.org/10.1103/PhysRevB.93.125101
https://doi.org/10.1103/PhysRevB.93.125101
https://doi.org/10.1103/PhysRevX.7.031052


Phase Transition in Correlated Symmetry-Protected Topo-
logical States, Phys. Rev. B 93, 115150 (2016).

[47] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Symmetry
Protected Topological Orders and the Group Cohomology
of Their Symmetry Group, Phys. Rev. B 87, 155114 (2013).

[48] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Symmetry-
Protected Topological Orders in Interacting Bosonic
Systems, Science 338, 1604 (2012).

[49] A. Kitaev, Periodic Table for Topological Insulators and
Superconductors, AIP Conf. Proc. 1134, 22 (2009).

[50] S. Ryu, A. P. Schnyder, A. Furusaki, and A.W.W. Ludwig,
Topological Insulators and Superconductors: Tenfold Way
and Dimensional Hierarchy, New J. Phys. 12, 065010
(2010).

[51] Z. Bi, A. Rasmussen, K. Slagle, and C. Xu, Classification
and Description of Bosonic Symmetry Protected Topo-
logical Phases with Semiclassical Nonlinear Sigma Mod-
els, Phys. Rev. B 91, 134404 (2015).

[52] C. Wang, A. C. Potter, and T. Senthil, Classification of
Interacting Electronic Topological Insulators in Three
Dimensions, Science 343, 629 (2014).

[53] T. Senthil, Symmetry-Protected Topological Phases of
Quantum Matter, Annu. Rev. Condens. Matter Phys. 6,
299 (2015), https://doi.org/10.1146/annurev-conmatphys-
031214-014740.

[54] P. Putrov, J. Wang, and S.-T. Yau, Braiding Statistics and
Link Invariants of Bosonic/Fermionic Topological Quan-
tum Matter in 2þ 1 and 3þ 1 Dimensions, Ann. Phys.
(Amsterdam) 384, 254 (2017).

[55] N. Seiberg, T. Senthil, C. Wang, and E. Witten, A Duality
Web in 2þ 1 Dimensions and Condensed Matter Physics,
Ann. Phys. (Amsterdam) 374, 395 (2016).

[56] C. Xu and Y.-Z. You, Self-Dual Quantum Electrodynamics
as Boundary State of the Three-Dimensional Bosonic
Topological Insulator, Phys. Rev. B 92, 220416(R)
(2015).

[57] A. Karch and D. Tong, Particle-Vortex Duality from 3D
Bosonization, Phys. Rev. X 6, 031043 (2016).

[58] P.-S. Hsin and N. Seiberg, Level/Rank Duality and Chern-
Simons-Matter Theories, J. High Energy Phys. 09 (2016)
095.

[59] C. Córdova and T. T. Dumitrescu, Candidate Phases for
SU(2) Adjoint QCD4 with Two Flavors from N ¼ 2

Supersymmetric Yang-Mills Theory, arXiv:1806.09592.
[60] M.M. Anber and E. Poppitz, Two-Flavor Adjoint QCD,

Phys. Rev. D 98, 034026 (2018).
[61] J. Gomis, Z. Komargodski, and N. Seiberg, Phases of

Adjoint QCD3 and Dualities, SciPost Phys. 5, 007 (2018).
[62] J. Terning,Modern Supersymmetry: Dynamics and Duality

(Clarendon, Oxford, 2006), p. 324.
[63] M. E. Peskin, Mandelstam-’t Hooft Duality in Abelian

Lattice Models, Ann. Phys. (N.Y.) 113, 122 (1978).
[64] C. Dasgupta and B. I. Halperin, Phase Transition in a

Lattice Model of Superconductivity, Phys. Rev. Lett. 47,
1556 (1981).

[65] M. P. A. Fisher and D. H. Lee, Correspondence between
Two-Dimensional Bosons and a Bulk Superconductor in a
Magnetic Field, Phys. Rev. B 39, 2756 (1989).

[66] D. T. Son, Is the Composite Fermion a Dirac Particle?,
Phys. Rev. X 5, 031027 (2015).

[67] C. Wang and T. Senthil, Dual Dirac Liquid on the Surface
of the Electron Topological Insulator, Phys. Rev. X 5,
041031 (2015).

[68] M. A. Metlitski and A. Vishwanath, Particle-Vortex Dual-
ity of Two-Dimensional Dirac Fermion from Electric-
Magnetic Duality of Three-Dimensional Topological
Insulators, Phys. Rev. B 93, 245151 (2016).

[69] S. Jain, S. Minwalla, and S. Yokoyama, Chern Simons
Duality with a Fundamental Boson and Fermion, J. High
Energy Phys. 11 (2013) 037.

[70] G. Gur-Ari and R. Yacoby, Three Dimensional Bosoniza-
tion from Supersymmetry, J. High Energy Phys. 11 (2015)
013.

[71] O. Aharony, Baryons, Monopoles and Dualities in Chern-
Simons-Matter Theories, J. High Energy Phys. 02 (2016)
093.

[72] K. Jensen, A Master Bosonization Duality, J. High Energy
Phys. 01 (2018) 031.

[73] K. Jensen and A. Karch, Embedding Three-Dimensional
Bosonization Dualities into String Theory, J. High Energy
Phys. 12 (2017) 031.

[74] K. Jensen and A. Karch, Bosonizing Three-Dimensional
Quiver Gauge Theories, J. High Energy Phys. 11 (2017)
018.

[75] A. Karch, B. Robinson, and D. Tong, More Abelian
Dualities in 2þ 1 Dimensions, J. High Energy Phys. 01
(2017) 017.

[76] A. Karch, D. Tong, and C. Turner, Mirror Symmetry and
Bosonization in 2D and 3D, J. High Energy Phys. (2018)
059.

[77] K. Aitken, A. Baumgartner, and A. Karch, Novel 3D
Bosonic Dualities from Bosonization and Holography, J.
High Energy Phys. 09 (2018) 003.

[78] F. Benini, Three-Dimensional Dualities with Bosons and
Fermions, J. High Energy Phys. 02 (2018) 068.

[79] D. Radicevic, D. Tong, and C. Turner, Non-Abelian 3D
Bosonization and Quantum Hall States, J. High Energy
Phys. 12 (2016) 067.

[80] Physically, this is a device that enables us to keep track of
the fact that all physical fields with odd charge under A are
fermionic. Formally, if we try to formulate this theory on
an arbitrary, compact, oriented space-time manifold, a
Spinc connection is like a Uð1Þ gauge field but with a
modified flux quantization condition. Specifically, a Spinc
connection satisfies the following condition,

R ½F=ð2πÞ� ¼
ðwTY4

2 =2Þ mod 1, where F is the field strength for the Uð1Þ
gauge bundle, wTY4

2 is the second Stiefel-Whitney class for
the tangent bundle [81], and the integral is taken over an
arbitrary, oriented 2-cycle.

[81] M. Nakahara, Geometry, Topology and Physics (2003).
[82] This choice can always be made by suitable UV regulation

of the theory.
[83] E. Witten, Fermion Path Integrals and Topological

Phases, Rev. Mod. Phys. 88, 035001 (2016).
[84] This point of view is natural from a condensed matter

perspective but may be unfamiliar to some high-energy
theorists. We find it insightful to view the gauge theory this
way. Note, in particular, that the fermionic matter fields, as
well as the gauge fields themselves, should be regarded as
emerging from these UV “local” bosons.

ADVENTURE IN TOPOLOGICAL PHASE TRANSITIONS IN … PHYS. REV. X 9, 021034 (2019)

021034-37

https://doi.org/10.1103/PhysRevB.93.115150
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1126/science.1227224
https://doi.org/10.1063/1.3149495
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/PhysRevB.91.134404
https://doi.org/10.1126/science.1243326
https://doi.org/10.1146/annurev-conmatphys-031214-014740
https://doi.org/10.1146/annurev-conmatphys-031214-014740
https://doi.org/10.1146/annurev-conmatphys-031214-014740
https://doi.org/10.1146/annurev-conmatphys-031214-014740
https://doi.org/10.1146/annurev-conmatphys-031214-014740
https://doi.org/10.1146/annurev-conmatphys-031214-014740
https://doi.org/10.1016/j.aop.2017.06.019
https://doi.org/10.1016/j.aop.2017.06.019
https://doi.org/10.1016/j.aop.2016.08.007
https://doi.org/10.1103/PhysRevB.92.220416
https://doi.org/10.1103/PhysRevB.92.220416
https://doi.org/10.1103/PhysRevX.6.031043
https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.1007/JHEP09(2016)095
http://arXiv.org/abs/1806.09592
https://doi.org/10.1103/PhysRevD.98.034026
https://doi.org/10.21468/SciPostPhys.5.1.007
https://doi.org/10.1016/0003-4916(78)90252-X
https://doi.org/10.1103/PhysRevLett.47.1556
https://doi.org/10.1103/PhysRevLett.47.1556
https://doi.org/10.1103/PhysRevB.39.2756
https://doi.org/10.1103/PhysRevX.5.031027
https://doi.org/10.1103/PhysRevX.5.041031
https://doi.org/10.1103/PhysRevX.5.041031
https://doi.org/10.1103/PhysRevB.93.245151
https://doi.org/10.1007/JHEP11(2013)037
https://doi.org/10.1007/JHEP11(2013)037
https://doi.org/10.1007/JHEP11(2015)013
https://doi.org/10.1007/JHEP11(2015)013
https://doi.org/10.1007/JHEP02(2016)093
https://doi.org/10.1007/JHEP02(2016)093
https://doi.org/10.1007/JHEP01(2018)031
https://doi.org/10.1007/JHEP01(2018)031
https://doi.org/10.1007/JHEP12(2017)031
https://doi.org/10.1007/JHEP12(2017)031
https://doi.org/10.1007/JHEP11(2017)018
https://doi.org/10.1007/JHEP11(2017)018
https://doi.org/10.1007/JHEP01(2017)017
https://doi.org/10.1007/JHEP01(2017)017
https://doi.org/10.1007/JHEP07(2018)059
https://doi.org/10.1007/JHEP07(2018)059
https://doi.org/10.1007/JHEP09(2018)003
https://doi.org/10.1007/JHEP09(2018)003
https://doi.org/10.1007/JHEP02(2018)068
https://doi.org/10.1007/JHEP12(2016)067
https://doi.org/10.1007/JHEP12(2016)067
https://doi.org/10.1103/RevModPhys.88.035001


[85] Throughout this paper, Nf counts the number of Dirac
fermions. In the literature, however, sometimes Nf is used
to denote the number of Weyl fermions.

[86] W. E. Caswell, Asymptotic Behavior of Non-Abelian
Gauge Theories to Two-Loop Order, Phys. Rev. Lett.
33, 244 (1974).

[87] T. Banks and A. Zaks, On the Phase Structure of Vector-
like Gauge Theories with Massless Fermions, Nucl. Phys.
B196, 189 (1982).

[88] T. Karavirta, J. Rantaharju, K. Rummukainen, and K.
Tuominen, Determining the Conformal Window: SU(2)
Gauge Theory with nf ¼ 4, 6 and 10 Fermion Flavours, J.
High Energy Phys. 05 (2012) 003.

[89] A. Athenodorou, E. Bennett, G. Bergner, and B. Lucini,
Infrared Regime of SU(2) with One Adjoint Dirac Flavor,
Phys. Rev. D 91, 114508 (2015).

[90] J. Rantaharju, T. Rantalaiho, K. Rummukainen, and K.
Tuominen, Running Coupling in SU(2) Gauge Theory
with Two Adjoint Fermions, Phys. Rev. D 93, 094509
(2016).

[91] T. A. Ryttov and R. Shrock, Higher-Loop Corrections to
the Infrared Evolution of a Gauge Theory with Fermions,
Phys. Rev. D 83, 056011 (2011).

[92] R. Shrock, Higher-Loop Structural Properties of the β
Function in Asymptotically Free Vectorial Gauge
Theories, Phys. Rev. D 87, 105005 (2013).

[93] F. Sannino, Conformal Windows of spð2nÞ and soðnÞ
Gauge Theories, Phys. Rev. D 79, 096007 (2009).

[94] M. Mojaza, Aspects of Conformal Gauge Theories, Master
Thesis, Syddansk University (2011).

[95] Our notation is Spð1Þ ≅ SUð2Þ, PSpðNÞ ¼ SpðNÞ=Z2.
[96] The precise value of y is readily determined by matching

the RG flow for the gauge coupling at the m ¼ 0 fixed
point with that of the pure gauge theory.

[97] In this case, we expect that since the fixed point appears at
relatively weak coupling, introducing a nonzero bare mass
will still drive the system to a confined phase. In other
words, there is no intermediate phase that appears for small
bare mass. This assumption is reasonable for theories in the
conformal window that are “close” to the free fixed point.
Later, when we consider the gauge theory with light adjoint
fermions, we see that this assumption fails for theories far
away from the perturbative regime.

[98] A formal but very useful description is to say that the
SUð2Þ gauge theory with only adjoint matter but no
fundamental matter has a global Z2 1-form symmetry
[denoted ðZ2Þ1]. Of course, a microscopic condensed
matter system of fermions has no such 1-form symmetry.
Therefore, we allow for an explicit breaking of the ðZ2Þ1
symmetry by including the massive gauge spin-1=2 scalar.

[99] From a formal point of view, this corresponds to how to
define the theory on nonorientable manifolds.

[100] C. Wang and T. Senthil, Interacting Fermionic Topologi-
cal Insulators/Superconductors in Three Dimensions,
Phys. Rev. B 89, 195124 (2014).

[101] Y.-Z. You and C. Xu, Symmetry-Protected Topological
States of Interacting Fermions and Bosons, Phys. Rev. B
90, 245120 (2014).

[102] A somewhat similar duality in 2þ 1-D was proposed [61]
recently for SUð2Þ gauge theory with Nf ¼ 1=2 adjoint

fermions (i.e., with a single Majorana fermion in the
adjoint representation). The IR theory was argued to
consist of a free massless Majorana fermion augmented
with a decoupled topological theory.

[103] Recently, the possibility of saturation of discrete mixed
1-form and 0-form anomalies by topological field
theories through symmetry extension methods was dis-
cussed in Ref. [104]. Nonetheless, the most general
criterions for such anomaly matching are not conclusive
yet.

[104] Z. Wan and J. Wang, Adjoint QCD4, Deconfined Critical
Phenomena, Symmetry-Enriched Topological Quantum
Field Theory, and Higher Symmetry Extension, Phys.
Rev. D 99, 065013 (2019).

[105] Z. Wan and J. Wang, Non-Abelian Gauge Theories, Sigma
Models, Higher Anomalies, Symmetries, and Cobordisms,
arXiv:1812.11967.

[106] Z. Wan and J. Wang, New Higher Anomalies, SU(N) Yang-
Mills Gauge Theory and CPN−1 Sigma Model,
arXiv:1812.11968.

[107] From a formal point of view, despite the presence
of fermionic matter fields, this theory can be defined
on nonspin manifolds by choosing gauge bundles
in ½SUð2Þg × Spinð4Þ�=Z2. On a nonspin manifold, we
require w2ðSOð3ÞgÞ ¼ w2ðTY4Þ mod 2, where the left
side is the second Stiefel-Whitney class of the SOð3Þ
gauge bundle and the right side is the second Stiefel-
Whitney class of the tangent bundle TY4 of the 4-
manifold Y4. Because the theory can be defined in this
way on a nonspin manifold without imposing any
conditions on bundles for the background gauge field,
this is an alternate way to see that the theory describes a
physical system of bosons.

[108] D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg,
Theta, Time Reversal and Temperature, J. High Energy
Phys. (2017) 091.

[109] M. Guo, P. Putrov, and J. Wang, Time Reversal,
SUðnÞ Yang-Mills and Cobordisms: Interacting Topologi-
cal Superconductors/Insulators and Quantum Spin
Liquids in 3+1D, Ann. Phys. (Amsterdam) 394, 244
(2018).

[110] This symmetry is usually denoted as CT symmetry in the
literature because, in the Dirac fermion representation, the
ZT
2 symmetry also flips the charge. The theory is also

invariant with the usual time-reversal symmetry T and
parity symmetry P. However, these two symmetries are not
relevant to our constructions.

[111] A. Kapustin and R. Thorngren, Topological Field Theory
on a Lattice, Discrete Theta-Angles and Confinement,
Adv. Theor. Math. Phys. 18, 1233 (2014).

[112] O. Aharony, N. Seiberg, and Y. Tachikawa, Reading
between the Lines of Four-Dimensional Gauge Theories,
J. High Energy Phys. (2013) 115.

[113] We thank Nathan Seiberg for a crucial discussion that
directed us to the results of this section.

[114] For more details, see, e.g., the Appendix in Ref. [115].
[115] M. Cheng, Microscopic Theory of Surface Topological

Order for Topological Crystalline Superconductors, Phys.
Rev. Lett. 120, 036801 (2018).

ZHEN BI and T. SENTHIL PHYS. REV. X 9, 021034 (2019)

021034-38

https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1007/JHEP05(2012)003
https://doi.org/10.1007/JHEP05(2012)003
https://doi.org/10.1103/PhysRevD.91.114508
https://doi.org/10.1103/PhysRevD.93.094509
https://doi.org/10.1103/PhysRevD.93.094509
https://doi.org/10.1103/PhysRevD.83.056011
https://doi.org/10.1103/PhysRevD.87.105005
https://doi.org/10.1103/PhysRevD.79.096007
https://doi.org/10.1103/PhysRevB.89.195124
https://doi.org/10.1103/PhysRevB.90.245120
https://doi.org/10.1103/PhysRevB.90.245120
https://doi.org/10.1103/PhysRevD.99.065013
https://doi.org/10.1103/PhysRevD.99.065013
http://arXiv.org/abs/1812.11967
http://arXiv.org/abs/1812.11968
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1016/j.aop.2018.04.025
https://doi.org/10.1016/j.aop.2018.04.025
https://doi.org/10.4310/ATMP.2014.v18.n5.a4
https://doi.org/10.1007/JHEP08(2013)115
https://doi.org/10.1103/PhysRevLett.120.036801
https://doi.org/10.1103/PhysRevLett.120.036801


[116] J. L. Cardy, Is There a c Theorem in Four-Dimensions?,
Phys. Lett. B 215, 749 (1988).

[117] The end point of the critical line may also be an interesting
critical point, which may be related to the phenomenon of
symmetric mass generation in 2þ 1-D [118].

[118] Y.-Z. You, Y.-C. He, C. Xu, and A. Vishwanath, Symmetric
Fermion Mass Generation as Deconfined Quantum Criti-
cality, Phys. Rev. X 8, 011026 (2018).

[119] A. Kitaev, Homotopy-Theoretic Approach to SPT Phases
in Action: z16 Classification of Three-Dimensional Super-
conductors (2015).

[120] L. Fidkowski, X. Chen, and A. Vishwanath, Non-Abelian
Topological Order on the Surface of a 3D Topological
Superconductor from an Exactly Solved Model, Phys. Rev.
X 3, 041016 (2013).

[121] L. Fu and C. L. Kane, Superconducting Proximity
Effect and Majorana Fermions at the Surface of a
Topological Insulator, Phys. Rev. Lett. 100, 096407
(2008).

[122] L. Fidkowski and A. Kitaev, Effects of Interactions on the
Topological Classification of Free Fermion Systems, Phys.
Rev. B 81, 134509 (2010).

[123] This symmetry is usually denoted as CT symmetry in the
literature because it also involves a particle-hole trans-
formation.

[124] As written in Eq. (62), the theory also has the usual time-
reversal symmetry T , which does not flip the Uð1Þ charge,
as well as the parity symmetry P. In this construction, the
T and P symmetries are not important.

[125] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
Generalized Global Symmetries, J. High Energy Phys.
15 (2015) 172.

[126] Integrating out the fermion will generate an SOð3Þ Θ angle
at 6π, and the Θ angle is 12π once we restrict ourselves to
the SUð2Þ gauge bundle.

[127] C. Wang and T. Senthil, Boson Topological Insulators: A
Window into Highly Entangled Quantum Phases, Phys.
Rev. B 87, 235122 (2013).

[128] E. Witten, The “Parity” Anomaly on an Unorientable
Manifold, Phys. Rev. B 94, 195150 (2016).

[129] Note that wTY
1 ¼1 mod 2 only on a nonorientable

manifold.
[130] Y.-Z. You, Z. Bi, A. Rasmussen, M. Cheng, and C. Xu,

Bridging Fermionic and Bosonic Short Range Entangled
States, New J. Phys. 17, 075010 (2015).

[131] M. A. Metlitski, S-Duality of Uð1Þ Gauge Theory
with θ ¼ π on Non-orientable Manifolds: Applications
to Topological Insulators and Superconductors, arXiv:
1510.05663.

[132] A. Kapustin, Symmetry Protected Topological Phases,
Anomalies, and Cobordisms: Beyond Group Cohomology,
arXiv:1403.1467.

[133] A. Kapustin, Bosonic Topological Insulators and Para-
magnets: A View from Cobordisms, arXiv:1404.6659.

[134] This ZT
2 transformation commutes with the SUð2Þ gauge

rotation.
[135] This Z̃T

2 transformation does not commute with the SUð2Þ
gauge transformation. However, it commutes with the
SOð6Þ global symmetry.

[136] One would think that, because of the gauge transformation,
the T 2 of the spectator is actually meaningless. This is true
if we only have a spin-1=2 boson in our theory. However,
we also have adjoint fermion matter with fixed time-
reversal transformation. The T 2 for the spectator has a
physical implication in this case.

[137] X. Chen, Y.-M. Lu, and A. Vishwanath, Symmetry-Pro-
tected Topological Phases from Decorated Domain Walls,
Nat. Commun. 5, 3507 (2014).

[138] M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, Bosonic
Topological Insulator in Three Dimensions and the Stat-
istical Witten Effect, Phys. Rev. B 88, 035131 (2013).

[139] L. Zou, C. Wang, and T. Senthil, Symmetry Enriched U(1)
Quantum Spin Liquids, Phys. Rev. B 97, 195126 (2018).

[140] We add a star as a reminder that the theory has a specific
choice of spectator field.

[141] An example of such low-energy candidate theories, a CP1

state with confinement and chiral symmetry breaking, is
discussed in Ref. [59].

[142] N. Seiberg and E. Witten, Electric-Magnetic Duality,
Monopole Condensation, and Confinement in n ¼ 2 Super-
symmetric Yang-Mills Theory, Nucl. Phys.B426, 19 (1994).

[143] An easy consistency check is the a theorem. As we
introduced in Eqs. (54) and (55), the quantity a is a
universal property of every 4D CFT. It is known that a is a
monotonic decreasing function under renormalization
group flow, namely, aUV > aIR [116]. The UV theory
for the SUð2Þ þ NA

f ¼ 1 theory is free SUð2Þ Yang-Mills
theory with three decoupled free Dirac fermions. For free
theories, we know the simple formula for the a value.
Therefore, the UV value of a for the adjoint SUð2Þ theory
is aUV ¼ 3 × 11þ 62 × ð22 − 1Þ ¼ 219, which is indeed
larger than the a value of a single Dirac fermion,
aDirac ¼ 11. Hence, our proposed IR theory is consistent
with the a-theorem conjecture.

[144] From a formal point of view, we extend the background
gauge fields but not the dynamical d.o.f. to the higher-
dimensional bulk. The difference between two different
such extensions is described by a topological action in
terms of these background gauge fields. The boundary
theory by itself is not gauge invariant, but its combination
with the bulk action is gauge invariant.

[145] V. P. Nair, Quantum Field Theory: A Modern Perspective
(Springer, New York, 2005), p. 557.

[146] Y. Q. Qin, Y.-Y. He, Y.-Z. You, Z.-Y. Lu, A. Sen, A. W.
Sandvik, C. Xu, and Z. Y. Meng, Duality between the
Deconfined Quantum-Critical Point and the Bosonic
Topological Transition, Phys. Rev. X 7, 031052 (2017).

[147] However, we also need to postulate an additional decoupled
gapped sector in which there is no such dynamical enhance-
ment. Nevertheless, as the free Dirac sector is decoupled,
we can ask about the realization of the Z8 on this
gapless sector. The more correct assumption then is that
the Z8 is dynamically enhanced to Uð1Þ in this decoupled
sector.

[148] E. Witten, An SU(2) Anomaly, Phys. Lett. B 117, 324
(1982).

[149] The normalization is that the magnetic flux coming out of a
single SOð3Þ monopole is 2π.

ADVENTURE IN TOPOLOGICAL PHASE TRANSITIONS IN … PHYS. REV. X 9, 021034 (2019)

021034-39

https://doi.org/10.1016/0370-2693(88)90054-8
https://doi.org/10.1103/PhysRevX.8.011026
https://doi.org/10.1103/PhysRevX.3.041016
https://doi.org/10.1103/PhysRevX.3.041016
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevB.81.134509
https://doi.org/10.1103/PhysRevB.81.134509
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1103/PhysRevB.87.235122
https://doi.org/10.1103/PhysRevB.87.235122
https://doi.org/10.1103/PhysRevB.94.195150
https://doi.org/10.1088/1367-2630/17/7/075010
http://arXiv.org/abs/1510.05663
http://arXiv.org/abs/1510.05663
http://arXiv.org/abs/1403.1467
http://arXiv.org/abs/1404.6659
https://doi.org/10.1038/ncomms4507
https://doi.org/10.1103/PhysRevB.88.035131
https://doi.org/10.1103/PhysRevB.97.195126
https://doi.org/10.1016/0550-3213(94)90124-4
https://doi.org/10.1103/PhysRevX.7.031052
https://doi.org/10.1016/0370-2693(82)90728-6
https://doi.org/10.1016/0370-2693(82)90728-6


[150] Y. Gu and X.-L. Qi, Axion Field Theory Approach and the
Classification of Interacting Topological Superconduc-
tors, arXiv:1512.04919.

[151] Notice that this event is not allowed in the pure SUð2Þ
bundle because the minimal flux unit is twice that of the
SOð3Þ bundle.

[152] In practice, we can take the first part of Eq. (97) involving
the SOð3Þ gauge field and then restrict it to a Uð1Þ
subgroup. Inserting a space-time event as described here,
the result of the integral will be 4 instead of 8.

[153] J. Wang, X.-G. Wen, and E. Witten, Symmetric Gapped
Interfaces of SPT and SET States: Systematic Construc-
tions, Phys. Rev. X 8, 031048 (2018).

[154] Preserving the 1-form symmetry means the “physical”
loops are tensionful.

[155] We thank Yuji Tachikawa for clarifying this point in a
private conversation.

[156] Lattice translation may or may not be present, and this
makes no difference for this discussion.

[157] C. Wang, Bound States of Three Fermions Forming
Symmetry-Protected Topological Phases, Phys. Rev. B
91, 245124 (2015).

[158] We can fractionalize the boson as b ∼ ðe1∂xe2 − e2∂xe1Þ.
The time-reversal transformation on the e’s is T ∶e →
iσye.

[159] An alternate construction of the same phase is to start
with a standard deconfined Z4 gauge theory and throw
out all particles with odd Z4 charge. This construction
builds a ðZ2Þ1 symmetry into the theory associated with the
Z4-flux loop with even flux. This loop does not braid
nontrivially with any other excitation and has line tension.
However, it is fractionalized into two odd flux loops, which
themselves braid with phase π with the particle with even
Z4 charge.

[160] In general, for 2n Majorana zero modes, they form a
vector representation of an SOð2nÞ group, and they host
2n-dimensional Hilbert space. This Hilbert space can
always be decomposed into left- and right-handed spinor
representations of the SOð2nÞ symmetry.

[161] This is true for all SOð4ZÞ groups.
[162] We have used the fact that, for the SUðNÞ group,

TrATaTb ¼ Nδab and TrfTaTb ¼ 1
2
δab.

[163] We can check this in an explicit way. The 15 components
of the Dirac fermion, by decomposing into Majorana
fermions, can have at most SOð30Þ flavor symmetries.
We can explicitly check that there is only one generator in
SOð30Þ that commutes with all the SUð4Þ generators in the
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