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The spreading of entanglement in out-of-equilibrium quantum systems is currently at the center of
intense interdisciplinary research efforts involving communities with interests ranging from holography to
quantum information. Here we provide a constructive and mathematically rigorous method to compute the
entanglement dynamics in a class of “maximally chaotic,” periodically driven, quantum spin chains.
Specifically, we consider the so-called “self-dual” kicked Ising chains initialized in a class of separable
states and devise a method to compute exactly the time evolution of the entanglement entropies of finite
blocks of spins in the thermodynamic limit. Remarkably, these exact results are obtained despite the
maximally chaotic models considered: Their spectral correlations are described by the circular orthogonal
ensemble of random matrices on all scales. Our results saturate the so-called “minimal cut” bound and are
in agreement with those found in the contexts of random unitary circuits with infinite-dimensional local
Hilbert space and conformal field theory. In particular, they agree with the expectations from both the
quasiparticle picture, which accounts for the entanglement spreading in integrable models, and the minimal
membrane picture, recently proposed to describe the entanglement growth in generic systems. Based on a
novel “duality-based” numerical method, we argue that our results describe the entanglement spreading
from any product state at the leading order in time when the model is nonintegrable.
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I. INTRODUCTION

Entanglement is arguably the most distinctive feature of
quantum mechanics. It generates special kinds of nonlocal
correlations which can be present in quantum states but
have no analogues in the classical realm. While its elusive
nature puzzled physicists for many years [1,2], it is
currently regarded as a powerful resource for advances
both in technological applications and in the theoretical
understanding of the physical world. In particular, it plays a
crucial role in the study of quantummany-body systems out
of equilibrium [3,4]. This is due to two main reasons. First,
the growth of entanglement during the nonequilibrium
dynamics measures the increasing complexity of a time-
evolving quantum state, with immediate implications on
the feasibility of tensor network simulations [5–9]. Second,
the evolution of the entanglement gives crucial information
on how equilibrium statistical mechanics emerges from
many-body quantum dynamics. Specifically, it is now

understood that the thermodynamic entropy of the statis-
tical ensemble describing local observables at infinite times
is a measure of the entanglement accumulated during the
time evolution [10–14].
Moreover, the very way in which the entanglement

spreads for finite times appears to be among the most
universal aspects of many-body dynamics. Consider for
instance an initial separable state, where none of the local
constituents is entangled with any other. Switching on
spatially local Hamiltonian interactions throughout the
system (a procedure called “global quench”), one finds
quite generally that the bipartite entanglement between a
large connected region of the system and the rest grows
linearly in time. This scenario has been observed in a large
number of analytical and numerical investigations [15–44]
and recently even in cold atomic experiments [45]. Known
exceptions to this empirical fact are systems exhibiting real-
space localization [16,46], confinement [47], and quenched
disorder creating weak links [48]. In particular, the loga-
rithmic spreading of entanglement in the presence of many-
body localization (MBL) [49] is one of the main defining
features of the MBL phase.
The linear growth of entanglement after a global quench

has been first observed in the context of (1þ 1)-
dimensional conformal field theory (CFT), where it has
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been explained in terms of an intuitive quasiparticle picture
[15]. The initial state, which is not an eigenstate of the
Hamiltonian, can be thought of as a collection of pairs of
oppositely moving quasiparticles. These, in the course of
time, spread the entanglement across the system in a similar
way as the one conceived in the historical gedanken
experiment by Einstein et al. [1]. In this picture, the
entanglement between two different portions of the system
is given by the number of pairs sharing a particle with
each portion. The same idea can be used to explain the
entanglement spreading in systems with stable quasiparti-
cle excitations, for instance, free [17] and interacting [26]
integrable models. It does not account, however, for the
linear growth of entanglement observed in systems with no
identifiable quasiparticle content such as generic interact-
ing systems [42–44] or holographic CFTs [33–36].
More recently, a fruitful avenue of research came from the

study of the so-called random quantum circuits [48,50–55],
where the dynamics is completely random in space, and the
only constraint is given by the locality of interactions. In this
case, the linear growth of entanglement can be explained
using a “minimal membrane” picture [50,53], which is
conjectured to apply, at least at the qualitative level, to
generic (nonintegrable) clean and noisy systems in any
spatial dimension. In essence, one quantifies the amount of
entanglement between two portions of the system by
measuring the surface of the minimal space-time membrane
separating the two portions. This picture has been analyti-
cally tested in certain limiting regimes of random quantum
circuits, specifically assuming that the Hilbert space dimen-
sion q per local constituent is large (q ≫ 1). Results are
available both when the dynamics are random also in time
[50,54] and when they are periodically driven [55]. No
analytical result, however, exists on entanglement dynamics
in specific nonintegrable models with local interactions and
small finite q or, in general, for clean systems.
In this paper, we fill this gap providing exact results

for the entanglement dynamics of quantum-chaotic spin
chains with two-dimensional local Hilbert space (q ¼ 2).
Specifically, we consider a family of Floquet-Ising chains
which undergo a transition between integrability and
ergodicity (or quantum chaos) by turning on a longitudinal
magnetic field. The latter may be either spatially homo-
geneous or arbitrarily spatially modulated. Note that the
nonintegrability of the model for nonvanishing longitudinal
magnetic fields has recently been proved by computing
exactly the spectral statistics [56]. We identify a class of
separable initial states, homogeneous or arbitrarily modu-
lated in space, from which the entanglement dynamics can
be computed exactly for any nondisjoint bipartition. These
results are of high significance for three main reasons.
(i) They provide an exact verification of both the linear
growth of entanglement and its relaxation to the thermo-
dynamic entropy in concrete quantum-chaotic models.
(ii) They provide a general method allowing one to obtain

exact results for the nonequilibrium dynamics of many-
body quantum systems even in the absence of integrability.
(iii) They are valid in both the integrable and the non-
integrable cases, allowing for a unified interpretation of the
entanglement spreading.
The paper is laid out as follows. In Sec. II we present the

model considered, define the protocol used to drive it out of
equilibrium, and introduce the entanglement measures of
interest. In Sec. III we present a comprehensive summary
and discussion of our results. In Sec. IV we explain the
duality mapping which is the key for our analytical
calculations. In Sec. V we identify the classes of initial
states leading to an exactly solvable entanglement dynam-
ics. In Sec. VI we sketch the main steps of the calculation.
In Sec. VII we present a thorough numerical analysis of the
entanglement spreading from generic separable initial
states and advocate that our exact results give the lead-
ing-order-in-time description of the nonintegrable case.
Finally, Sec. VIII contains our conclusions. A number of
technical points and proofs are reported in the appendixes.

II. MODEL, QUENCH PROTOCOL, AND
OBSERVABLES OF INTEREST

The main objective of this paper is to determine a
minimal quantum-chaotic model [57], with local inter-
actions and finite local Hilbert space, allowing for an exact
determination of the entanglement spreading. A candidate
emerging naturally in our quest is the so-called kicked Ising
model [58–60], which describes a classical Ising model in
the presence of a longitudinal magnetic field and periodi-
cally kicked with a transverse-magnetic field. This model is
quantum chaotic in the sense that its spectral statistics are
described by the circular orthogonal ensemble of random
matrices [61], but, as we recently proved [56], at some
specific points of its parameter space it allows for exact
calculations. This is because at these points called “self-
dual” points (see below), the system acquires a remarkable
algebraic structure making it a maximal scrambler with
local interactions.
To be more specific, let us introduce the Hamiltonian of

the kicked Ising model. Setting to 1 the time interval
between the kicks, we have

HKI½h; t� ¼ HI½h� þ
X∞

m¼−∞
δðt −mÞHK; ð1Þ

where δðtÞ is the Dirac δ function, and we define

HI½h�≡ J
XL
j¼1

σzjσ
z
jþ1 þ

XL
j¼1

hjσ
z
j; ð2Þ

HK ≡ b
XL
j¼1

σxj : ð3Þ
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In these equations, L is the volume of the system, the
matrices σaj with a ∈ fx; y; zg are the Pauli matrices at
position j, and we use periodic boundary conditions
adopting the notation convention σaLþ1 ≡ σa1 .
The parameters J and b are, respectively, the Ising

coupling and the transverse “kicking” field, while the
L-component vector h ¼ ðh1;…; hLÞ describes a position-
dependent longitudinal field. As anticipated before, in this
paper we consider some specific points in the parameter
space of the model. In particular, we focus on the self-dual
points specified by the condition

jJj ¼ jbj ¼ π

4
: ð4Þ

In Secs. IV–VI we explain how, at these points, a duality
symmetry of the model allows for an analytical treatment of
the entanglement dynamics. To be specific, from now on
we set

J ¼ π

4
; b ¼ −

π

4
; ð5Þ

but our results apply to all four combinations fulfilling
Eq. (4). The longitudinal magnetic fields h are instead
left arbitrary and are used to switch between the integrable
and the nonintegrable cases. Indeed, for h ¼ 0 the
Hamiltonian (1) is integrable (it can be mapped to a
problem of noninteracting fermions), while it is ergodic
(nonintegrable) for a generic choice of longitudinal fields.
In the latter case, the only symmetry of Eq. (1) is time
reversal. This is represented by the antiunitary operator T
defined by its action on the spin variables as follows:

σaj ↦ TσajT ¼ σa�j : ð6Þ

Here, ð·Þ� denotes the complex conjugation in the “com-
putational” basis composed by simultaneous eigenstates of
fσzjg for all j in f1; 2;…; Lg,

BL ¼ fjsi ¼ js1;…; sLi; sj ∈ f�1g∶σzjjsi ¼ sjjsig: ð7Þ

In this paper, we interchangeably use s ¼ þ1≡ ↑ and s ¼
−1≡ ↓ to designate the eigenvalues of Pauli matrices. We
stress that, as proven in Ref. [56], the self-dual kicked Ising
model is ergodic for any h ≠ 0. This means that, due to its
special structure, the model never displays Floquet MBL
[49,62,63]. Note that the special structure of the self-dual
model has recently been used to design a multiparty
entanglement generation algorithm [64].
The Floquet operator generated by Eq. (1) reads as

UKI½h� ¼ T exp

�
−i

Z
1

0

dtHKI½h; t�
�
¼ e−iHKe−iHI ½h�; ð8Þ

where T exp½·� denotes a time-ordered exponential.
The time evolution generated by Eq. (8) admits a

straightforward local two-qubit quantum circuit represen-
tation. This is observed by writing

e−iHI ½h� ¼
Y
j odd

e−iðπ=4Þσ
z
jσ

z
jþ1

Y
j even

e−iðπ=4Þσ
z
jσ

z
jþ1 : ð9Þ

To drive the system out of equilibrium, we consider a
global quantum quench protocol: We initialize the system
in the ground state of a short-range Hamiltonian and
suddenly, say, at t ¼ 0, we start evolving with Eq. (1).
In particular, here we consider the ground states jψθ;ϕi of
the following family of local noninteracting magnetization
Hamiltonians

Hθ;ϕ ¼ −
XL
j¼1

gjn⃗θj;ϕj
· σ⃗j; ð10Þ

where θ ¼ ðθ1;…; θLÞ and ϕ ¼ ðϕ1;…;ϕLÞ are L-
component vectors with components θj ∈ ½0; π� and
ϕj ∈ ½0; 2π�, while gj > 0 is arbitrary, and

n⃗θ;ϕ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ ð11Þ

is the radial unit vector in the three-dimensional space.
The ground states jψθ;ϕi of Eq. (10) are separable (i.e.,

they have zero entanglement): The spin at site j points in
the direction n⃗θj;ϕj

of its Bloch’s sphere. Namely, the states
jψθ;ϕi are explicitly written as

jψθ;ϕi ¼ ⊗
L

j¼1

�
cos

�
θj
2

�
j↑i þ sin

�
θj
2

�
eiϕj j↓i

�
: ð12Þ

After t periods of the Floquet evolution, the state of the
system then reads

jψθ;ϕðtÞi ¼ ðUKI½h�Þtjψθ;ϕi: ð13Þ

We stress that this protocol is constructive and simple
enough to be realizable experimentally, for instance, in the
context of cold atoms [65–67].
In this work, the dynamics of the system are charac-

terized by studying the time evolution of the entanglement
between a contiguous subset of N spins A ¼ f1; 2;…Ng
and the rest of the system; see Fig. 1. The entanglement is
encoded in the density matrix of the system reduced to the
subsystem A defined as

ρAðtÞ ¼ trHL−N
½jψθ;ϕðtÞihψθ;ϕðtÞj�; ð14Þ

where HL−N is the Hilbert space associated with the
complement Ac ¼ fN þ 1;…; Lg of A. The entanglement

content of ρAðtÞ is quantified by the Rényi entropies SðαÞA ðtÞ,
also called entanglement entropies. These are a one-
parameter family of functionals of ρAðtÞ defined as follows:
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SðαÞA ðtÞ ¼ 1

1 − α
log tr½ðρAðtÞÞα�; α > 0: ð15Þ

A particularly important member of this family is the von
Neumann entropy

SðvNÞA ðtÞ ¼ lim
α→1

SðαÞA ðtÞ ¼ − log tr½ρAðtÞ log ρAðtÞ�; ð16Þ

which is the most used measure of bipartite entanglement
for pure states [3].
In summary, in this paper we study the time evolution

generated by Eq. (1) of the Rényi entropies (15) for a
system initialized in the states jψθ;ϕi. As we see, our
analytical results apply in the thermodynamic limit L → ∞.
We stress that, in contrast with what we did elsewhere [56],
we do not introduce any averaging on the longitudinal
magnetic fields. The thermodynamic limit is taken for fixed
initial state and time-evolving Hamiltonian.

III. OUTLINE OF THE RESULTS

Our main result consists in finding two specific but
physically interesting subclasses of the states (12) for
which the time evolution of all Rényi entropies in the
thermodynamic limit can be found exactly for any con-
figuration of magnetic fields fhjg and subsystem size N.
These special classes of states are defined as

T ¼ fjψ ðπ=2Þ1;ϕi; ϕj ∈ ½0; 2π�g; ð17Þ

L ¼ fjψ θ̄;ϕi; θ̄j ∈ f0; πgg; ð18Þ

where 1 denotes a vector of length L with all entries
equal to 1 [68]. We, respectively, name them “transverse
separating states” and “longitudinal separating states,”
while we generically call “separating state” a state belong-
ing to either T or L. These states are called “transverse”
and “longitudinal” because they are, respectively, eigen-
states of the operators cosϕjσ

x
j þ sinϕjσ

y
j and σ

z
j for all j’s.

Therefore, they can be thought of as configurations of a
magnet where the spins lie on the x-y plane (“transverse
plane”) or along the z axis (“longitudinal axis”). The
adjective “separating” refers to their key mathematical
property, and it is thoroughly explained in Sec. V. We
stress that the property of being separating is more
restrictive that being just separable: All the states jψθ;ϕi
are separable but only a subset of them are separating.
Specific instances of separating states, which are most
relevant from the experimental point of view, are the

ground states of the two parts in the Floquet protocol.
For example, when J > 0 and jhjj < J, the ground state of
HI is jψπ1;0i ∈ L, while when b > 0, the ground state of
HK is jψ ðπ=2Þ1;π1i ∈ T .
To simplify the analysis of the results, it is useful to note

that the time evolution of the states in L can be related to
that of those in T . This is easily seen by means of the
following identity

jψ θ̄;ϕð1Þi ¼ UKI½h�jψ θ̄;ϕi ≃ jψ ðπ=2Þ1;θ̄−ðπ=2Þ1i; ð19Þ

where ≃ denotes equality up to a global phase. This identity
is proven by observing that, since the states in L are
eigenstates of σzj, they are also eigenstates of HI½h�.
Therefore, the application of e−iHI ½h� changes only jψ θ̄;ϕi
by a global phase. Moreover, an explicit calculation shows
that

e−iHK jψ θ̄;ϕi ≃ jψ ðπ=2Þ1;θ̄−ðπ=2Þ1i: ð20Þ

Equation (19) means that the first time step of evolution for
states in L keeps them in a separable form, and hence does
not change the entanglement but turns them into states in
T . An immediate consequence of Eq. (19) is

jψ θ̄;ϕðtÞi ≃ jψ ðπ=2Þ1;θ̄−ðπ=2Þ1ðt − 1Þi; t ≥ 1: ð21Þ

Considering the entanglement entropy, we then have

SðαÞA ðtÞjθ̄;ϕ ¼ SðαÞA ½maxðt − 1; 0Þ�jðπ=2Þ1;θ̄−ðπ=2Þ1; t ≥ 0;

ð22Þ

where we explicitly report the initial-state dependence and

use SðαÞA ð0Þ ¼ 0. By virtue of this simple argument, we can
restrict our attention to the states in T , and the time
evolution of the entropy for the states in L is found
using Eq. (22).
The time evolution of entanglement entropies from states

in T (in the thermodynamic limit) can be explicitly
determined by means of the “duality method” developed
in Secs. IV–VI. The result reads as

lim
L→∞

SðαÞA ðtÞ ¼ minð2t; NÞ log 2: ð23Þ

This result is indisputably remarkable: When evolving from
separating states, all entanglement entropies take the same
universal form independent of the fields hj and details of
the initial states. In particular, at fixed N, the entanglement
entropies display a linear growth in time up to a nonanalytic
saturation point where they become constant; see Fig. 2.
The independence on α of the result means that the spectra
of the reduced density matrices ρAðtÞ are flat. In other

FIG. 1. The partition of the spin chain considered in the
calculation of the entanglement.
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words, the reduced density matrices have exactly 2minð2t;NÞ

eigenvalues equal to 2−minð2t;NÞ while the others vanish.
A form like Eq. (23) for the evolution of the entangle-

ment entropies has been found in a number of different
physical settings, both in closed and periodically driven
systems. Examples range from conformal invariant systems
[15,33], to nonintegrable closed systems [43], from random
in time [50–52], to periodically driven [55] random unitary
circuits. As opposed to all these cases, however, our result
does not hold only at the leading order for large t and N. It
holds with no corrections for any t andN. This gives further
evidence for the special status of the self-dual kicked Ising
model as a minimal solvable model for quantum chaos.
Another interesting feature of our result is that it

saturates the “minimal cut” bound [34]. The bound states
that, when evolving from a product state,

SðαÞA ðtÞ ≤ lmin log q; ∀ α; ð24Þ

where q is the dimension of the local Hilbert space (2 in our
case), and lmin is the minimal number of links intersected
by a cut separating the region A from the rest of the system
in a local quantum-circuit representation of Ut

KI . The fact
that the bound is saturated means that entanglement spreads
with the maximal possible speed allowed by the range of
the Hamiltonian and the dimension of the local Hilbert
space. This fact can be seen in a more physical way by
noting that Eq. (23) implies that, for t ≤ N=2, at each time
step two more spins of the block A become maximally
entangled with the rest of the system. Following Ref. [33],
this phenomenon can be pictured as an entanglement wave
propagating into the block A from the two boundaries. The
fact that our exact result (23) saturates the bound (24) also
means that it agrees with the “minimal membrane” picture
recently put forward in Ref. [50], where a coarse-grained
version of the minimal cut has been proposed to describe
the leading-order-in-time features of the entanglement
dynamics in generic systems. Interestingly, however, our

system also contains an integrable point, namely, h ¼ 0. At
this point, our result agrees with the quasiparticle picture of
Ref. [15], because in our case, all quasiparticles move
at the same maximal speed (jvj ¼ 1). We note that, at the
integrable point, the result (23) has also been found in
Ref. [69] for the evolution of the von Neumann entangle-
ment from the separating state jψ ðπ=2Þ1;0i.
If the initial state is not separating, the problem is not

amenable to an analytical treatment. In Sec. VII, however,
performing a thorough numerical analysis, we argue that
the entanglement spreading from all the states (12) is still
described by Eq. (23) at the leading order in time, provided
that the system is away from the integrable point h ¼ 0.
Note that this conjecture is physically very reasonable:
Since the system is quantum ergodic, it is natural to expect
the entanglement entropies to eventually become state
independent. On the contrary, in the integrable case, our
numerical results are consistent with

lim
L→∞

SðαÞA ðtÞ ¼ minð2t; NÞSðαÞθ;ϕ; ð25Þ

where SðαÞθ;ϕ ≤ log 2 is an initial-state-dependent constant. In
the numerical analysis that leads to these results, a crucial
role is played by a duality-based numerical approach (see
Sec. VII) that allows us to treat the system in the infinite
volume limit. Supplemented with some analytical informa-
tion, it can reach t ¼ 17 Floquet periods of evolution even
in cases where the entanglement grows at the maximal
speed. Even if based on the “duality method,” this approach
does not rely on the special algebraic structure arising at the
self-dual points (4), and it is applicable in the whole
parameter space of the kicked Ising model.
Another marked difference between the integrable and

nonintegrable case is observed when the system is confined
in a finite volume L. Indeed, in this setting the integrable
system displays finite-size-related recurrences when t ∼ L,
while these recurrences are absent (or at least negligible) in
the nonintegrable case. These results, respectively, agree
with the predictions of the quasiparticle and the minimal
membrane pictures and are also consistent with the
numerical analysis of the entanglement spreading in the
kicked Ising model carried out in Ref. [44].

IV. DUALITY MAPPING FOR THE
ENTANGLEMENT ENTROPIES

In Ref. [70], the authors pointed out that the traces of
integer powers of the Floquet operator (8) enjoy a useful
space-time “duality symmetry,” which can be demonstrated
as follows. First, note that

tr½ðUKI½h�Þt�; t ∈ N ð26Þ

can be represented as a partition function of a classical Ising
model on a t × L lattice, where UKI½h� acts as transfer

FIG. 2. Plot of the exact result of all Rényi entropies given by
Eq. (23) for the θ ¼ π=2 case. The expressions for θ ¼ 0 are
delayed by one period.
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matrix in time; see Fig. 3 for a pictorial representation and
Appendix A for the explicit expression. Second, observe
that, due to the short-range nature of the couplings in
Eqs. (2) and (3), the same quantity can also be written in
terms of a transfer matrix defined on a lattice of t sites and
propagating in space (see Appendix A). Namely, we have

tr½ðUKI½h�Þt� ¼ tr½ŨKI½h11̃� � � � ŨKI½hL1̃��; ð27Þ

where “tilded” bold symbols denote vectors of t compo-
nents, in particular,

1̃ ¼ ð1;…; 1Þ|fflfflfflfflffl{zfflfflfflfflffl}
t

ð28Þ

has all entries equal to 1, and ŨKI½h̃� is the transfer matrix in
space, also called the “dual” transfer matrix. It turns out that
ŨKI½h̃� has the same form as the Floquet operator (8) [with
L replaced by t in Eqs. (2) and (3)] where the longitudinal
magnetic field vector is given by h̃, while Ising coupling J̃
and the transverse field b̃ are given by the following
functions of J and b∶

J̃ ¼ −
π

4
−
i
2
log tan b; ð29Þ

b̃ ¼ −
π

4
−
i
2
log tan J: ð30Þ

Since J̃ and b̃ are generically complex, the transfer matrix
ŨKI½h̃� is generically not unitary. The dual couplings

become real only when the model is at one of the self-
dual points (4).
In Ref. [56], we showed that such a duality symmetry

can be used to compute nontrivial observables, considering
the example of the disorder-averaged spectral form factor.
In that case, even if the quantity cannot be written in terms
of a transfer matrix in time, it can still be written in terms of
a transfer matrix in space. This allowed us to perform an
analytical calculation. The unitarity of the matrix ŨKI½h̃�,
however, proved itself to be a necessary requirement for the
analytical approach to be feasible. This clarifies the special
status of the self-dual points (4): They are the only points of
the parameter space where this duality mapping leads to an
analytic solution.
Here we develop a similar duality mapping for the

calculation of the entanglement entropies, or, more pre-
cisely, of the traces of integer powers of the reduced density
matrix ρAðtÞ. We see that also tr½ðρAðtÞÞn� can be written as
the trace of a power of an appropriate transfer matrix in
time. In Secs. V and VI, we then show that, at the self-dual
points and for the special initial states (17) and (18), such a
trace can be analytically evaluated.
Considering tr½ðρAðtÞÞn� and using the definitions (13)

and (14), we find

tr½ðρAðtÞÞn�
¼

X
faig;fbig

hψθ;ϕjðUKI½h�Þ−tja1;b2iha1;b1jðUKI½h�Þtjψθ;ϕi

×hψθ;ϕjðUKI½h�Þ−tja2;b3iha2;b2jðUKI½h�Þtjψθ;ϕi
..
.

×hψθ;ϕjðUKI½h�Þ−tjan;b1ihan;bnjðUKI½h�Þtjψθ;ϕi; ð31Þ

where jai; bji ¼ jaii ⊗ jbji, jaii ∈ BN , jbii ∈ BL−N , for
i; j ∈ f1; 2;…; ng. Here we denote by Bj the computa-
tional basis of

Hj ¼ ðC2Þ⊗j: ð32Þ

An explicit expression of Bj is obtained replacing L by j in
the expression (7).
Equation (31) allows one to interpret the trace of the nth

power of the reduced density matrix as the partition
function of a classical statistical mechanical model on a
multisheeted two-dimensional lattice; see Fig. 4 for a
pictorial representation in the case n ¼ 3. To see it more
explicitly, we consider a single “building block”

ha; bjðUKI½h�Þtjψθ;ϕi; ð33Þ

and show that it is equivalent to the partition function of a
classical Ising model (with complex weights) on a t × L
lattice with periodic boundary conditions in space and fixed
boundary conditions in time. This is seen in two steps.

FIG. 3. Pictorial representation of the duality relation (27)
fulfilled by the Floquet operator (8). Traces of powers of the
Floquet operator correspond to the partition function of a classical
Ising model on a t × L lattice. The column-to-column transfer
matrix is given by UKI ½h�, while the row-to-row transfer matrix
between the (j − 1)th, and the jth row is given by ŨKI½hj1̃�. Note
that self-duality condition implies that both transfer matrices are
unitary.
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First, we insert t resolutions of the identity operator in the
basis (7) into Eq. (33), obtaining

ha; bjðUKI½h�Þtjψθ;ϕi ¼
X
fsτg

Yt−1
τ¼1

hsτþ1jUKI½h�jsτi

×ha; bjUKI½h�jstihs1jψθ;ϕi: ð34Þ

Then we evaluate the matrix elements

hsjψθ;ϕi ¼
YL
j¼1

½cosðθj=2Þδsj;1 þ sinðθj=2Þeiϕjδsj;−1� ð35Þ

and

hsjUKI½h�jri ¼
�
i
2

�ðL=2Þ
exp

�
−
iπ
4

XL
j¼1

sjrj

�

× exp

�
−

iπ
4

XL
j¼1

rjrjþ1 − i
XL
j¼1

hjrj

�
: ð36Þ

Here, to find the last equation, we set rLþ1 ¼ r1 and we use
the identity

hsjeiðπ=4Þσx jri ¼
ffiffiffi
i
2

r
exp

�
−i

π

4
sr
�
; s; r ∈ f�1g ð37Þ

to treat the “kick” part of the Floquet operator UKI½h�.
Putting them all together, we have

ha; bjðUKI½h�Þtjψθ;ϕi

¼
�
i
2

�ðtLÞ=2X
fsτ;jg

exp

�
−
iπ
4

Xt

τ¼1

XL
j¼1

sτ;jsτ;jþ1 −
iπ
4

Xt−1
τ¼1

XL
j¼1

sτ;jsτþ1;j − i
Xt

τ¼1

XL
j¼1

hjsτ;j

�

× exp

�
−
iπ
4

XN
j¼1

st;jaj −
iπ
4

XL
j¼Nþ1

st;jbj−N

�YL
j¼1

½cosðθj=2Þδs1;j;1 þ sinðθj=2Þeiϕjδs1;j;−1�; ð38Þ

which, as promised, is the partition function of the classical Ising model on a two-dimensional cylinder.
Representing in this way each of the 2n building blocks in Eq. (31) and summing over faj; bjg, one connects together the

2n different cylinders obtaining the announced multisheeted lattice. Explicitly, we have

trf½ρAðtÞ�ng ¼ 1

2nLt

X
fsν;τ;jg

exp

�
−i

XL
j¼1

X2n
ν¼1

sgnðn − νÞ
�Xt

τ¼1

�
π

4
sν;τ;jsν;τ;jþ1 þ hjsν;τ;j

�
þ
Xt−1
τ¼1

π

4
sν;τ;jsν;τþ1;j

��

×
Yn
ν¼1

�YN
j¼1

ð1þ sν;t;jsνþn;t;jÞ
YL

j¼Nþ1

ð1þ sν;t;jsnþ1þmod ðν−2;nÞ;t;jÞ
	

×
Y2n
ν¼1

YL
j¼1

ðcosðθj=2Þδsν;1;j;1 þ sinðθj=2Þeiϕjsgnðn−νÞδsν;1;j;−1Þ; ð39Þ

where sgnðxÞ is the sign function [we adopt the convention sgnð0Þ ¼ 1], modðm; nÞ ¼ mmod n is the mod function, and we
introduce a new index ν ∈ f1; 2;…; 2ng such that strings sν;τ with ν ≤ n belong to the terms in Eq. (31) with forward time
evolution, while those with ν > n belong to the terms in Eq. (31) with backward time evolution.

FIG. 4. Schematic representation of tr½ðρAðtÞÞ3� according to
the expression (31). The six different cylinders corresponding
to the partition functions (38) are schematically represented as
rectangles. The spin subchains A and Ac connected with the
colored belts share identical spin configurations.
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The second line of Eq. (39) is obtained by explicitly summing over faig and fbig with the help of the identity

X
a∈f�1g

exp

�
−i

π

4
aðs − rÞ

�
¼ 1þ sr; s; r ∈ f�1g: ð40Þ

We see that this line forces the configurations of spins in the subchains A and Ac on the edges of different cylinders to be the
same. These “frozen” configurations are represented by colored strips in Fig. 4.
To proceed, it is useful to introduce the tensor product space H⊗2n

t composed of 2n copies of Ht, which is the space
where the dual Floquet operator ŨKI½h̃� acts. More formally,

H⊗2n
t ¼ Ht ⊗ � � � ⊗ Ht

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{2n

≅ H2nt: ð41Þ

Then, we define the operators T θ;ϕ½h� and Rθ;ϕ½h� on H⊗2n
t through their matrix elements in the computational basis

hfsν;τgjT θ;ϕ½h�jfrν;τgi ¼
1

2ðt−1Þn
exp

�
−i

X2n
ν¼1

sgnðn − νÞ
�Xt

τ¼1

�
π

4
sν;τrν;τ þ hjsν;τ

�
þ
Xt−1
τ¼1

π

4
sν;τsν;τþ1

��

×
Yn
ν¼1

�
1þ sν;tsνþn;t

2

�Y2n
ν¼1

ðcosðθ=2Þδsν;1;1 þ sinðθ=2Þeiϕ sgnðn−νÞδsν;1;−1Þ ð42Þ

and

hfsν;τgjRθ;ϕ½h�jfrν;τgi ¼
1

2ðt−1Þn
exp

�
−i

X2n
ν¼1

sgnðn − νÞ
�Xt

τ¼1

�
π

4
sν;τrν;τ þ hjsν;τ

�
þ
Xt−1
τ¼1

π

4
sν;τsν;τþ1

��

×
Yn
ν¼1

�
1þ sν;tsnþ1þmodðν−2;nÞ;t

2

�Y2n
ν¼1

ðcosðθ=2Þδsν;1;1 þ sinðθ=2Þeiϕ sgnðn−νÞδsν;1;−1Þ; ð43Þ

where the first subscript labels spin variables in the different
copies of Ht composing H⊗2n

t .
Using the above matrix elements, it is immediate

to see that the expression (39) can directly be rewritten
as a trace (on H⊗2n

t ) of products of T θ;ϕ½h� and Rθ;ϕ½h�,
namely,

tr½ðρAðtÞÞn� ¼ tr

��YN
j¼1

T θj;ϕj
½hj�

�� YL
j¼Nþ1

Rθj;ϕj
½hj�

��
;

ð44Þ
where we define on ordered product of noncommuting
operators fOjg as

Yb
j¼a

Oj ¼
�
Oa;…;Ob if a ≤ b;

1 if a > b:
ð45Þ

The rewriting achieved by Eq. (44) is pictorially repre-
sented in Fig. 5, again in the case n ¼ 3.
In an upcoming analysis, it will be useful to think of

H⊗2n
t as a tensor product of two copies of Hnt, grouping

together the first and the last n copies of Ht; see Fig. 6.
Namely, we write each element of the basis of H⊗2n

t in the
following way:

jfsa;τg1≤a≤2n1≤τ≤t i ¼ jfsa;τg1≤a≤n1≤τ≤t i ⊗ jfsa;τgn<a≤2n
1≤τ≤t i: ð46Þ

We call these two copies of Hnt the “positive-time” and
“negative-time” spaces, respectively, as the components of
T θ;ϕ½h� and Rθ;ϕ½h� acting on those spaces come from terms
in Eq. (31) propagating forward and backward in time,
respectively.
It is useful to note that T θ;ϕ½h� and Rθ;ϕ½h� are the same

up to a cyclic permutation of the copies of Ht composing
the negative-time space (i.e., a cyclic permutation of the
second row of Fig. 6), namely,

Rθ;ϕ½h� ¼ PTθ;ϕ½h�P†; ð47Þ

where we define
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P ¼ 1 ⊗
Yn
ν¼1

Yt
τ¼1

Pðν;τÞ;ðν−1;τÞ: ð48Þ

Here, Pðν;τÞ;ðν−1;τÞ is an elementary transposition

Pðν;τÞ;ðν0;τ0Þ ¼
1

2
1þ 1

2

X
a∈fx;y;zg

σaν;τσ
a
ν0;τ0 ð49Þ

with ν; ν0 ∈ f1;…; ng and τ; τ0 ∈ f1;…; tg. The matrix
σaν;τ acts as the Pauli matrix σa, a ∈ fx; y; zg, at the site
τ ¼ 1;…; t of the νth copy of Ht in Hnt, i.e.,

½σaν;τ; σbν0;τ0 � ¼ 2iδν;ν0δτ;τ0εabcσcν;τ; σa0;τ ≡ σan;τ: ð50Þ

Note that the property Pðν;τÞ;ðμ;σÞ¼P−1
ðν;τÞ;ðμ;σÞ implies

P†¼P−1.
Writing Eq. (42) in matrix form, we have that the transfer

matrix is a simple tensor product of single-copy transfer
matrices

T θ;ϕ½h� ¼
Yn
ν¼1

T ðνÞ
θ;ϕ½h�: ð51Þ

The matrix T ðνÞ
θ;ϕ½h� acts nontrivially only on the νth copy of

Ht in both the positive-time and negative-time spaces (νth
column of Fig. 6), and it is explicitly written as

T ðνÞ
θ;ϕ½h� ¼ Bz

ν;1½θ� · Gz
ν;t · U

ðνÞ
ϕ ½h�; ð52Þ

where we introduce the Hermitian matrix Ba
ν;τ½θ�, the

projector Ga
ν;τ, and the unitary matrix UðνÞ

ϕ ½h� defined as
follows:

Ba
ν;τ½θ�≡ 2½cosðθ=2ÞPa;þ

ν;τ þ sinðθ=2ÞPa;−
ν;τ �⊗2; ð53Þ

Ga
ν;τ ≡ 1

2
ð1þ σaν;τ ⊗ σaν;τÞ; ð54Þ

UðνÞ
ϕ ½h�≡Uν;ϕe−ihM

z
νeiðπ=4ÞMx

ν ⊗U�
ν;ϕe

ihMz
νe−iðπ=4ÞMx

ν ; ð55Þ
and finally,

Uν;ϕ ≡ exp

�
−
iπ
4

Xt−1
τ¼1

σzν;τσ
z
ν;τþ1 − i

ϕ

2
σzν;1

�
; ð56Þ

Ma
ν ≡

Xt

τ¼1

σaν;τ; ð57Þ

Pa;�
ν;τ ≡ 1

2
ð1� σaν;τÞ: ð58Þ

Note that since

½T ðνÞ
θ;ϕ½h�; T ðμÞ

θ;ϕ½h�� ¼ 0; μ; ν ∈ f1;…; ng; ð59Þ
the order in the product (51) is irrelevant.
Putting everything together, we have

SðnÞA ðtÞ ¼ 1

1 − n
log tr

��YN
j¼1

T θj;ϕj
½hj�

�
P

×

� YL
j¼Nþ1

T θj;ϕj
½hj�

�
P†

�
: ð60Þ

This equation accomplishes the duality mapping of the
entanglement entropies: We write the entanglement entro-
pies in terms of the trace of products of an appropriate
transfer matrix in space.

FIG. 6. Pictorial representation of the arrangement of the dual
quantum spin degrees of freedom adopted in the tensor product
space H⊗2n

t .

FIG. 5. Schematic depiction of tr½ðρAðtÞÞ3�written according to Eq. (44). Positive and negative time sheets are, respectively, on the left
and on the right. Vertices connected by the colored lines are coupled by the transfer matrices, in analogy with Fig. 4. Blue-shaded
horizontal planes denote the spatial transfer matrices, specifically, the operator T θ;ϕ½h� for the physical sites corresponding to the block A
of N spins and the operator Rθ;ϕ½h� ¼ PT θ;ϕ½h�P† for the sites corresponding to L − N spins in Ac.
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Before continuing with the evaluation of Eq. (60), two
comments are in order. First, we note that the mapping
described can be performed also when J and b in Eqs. (2)
and (3) do not fulfill the self-duality condition (4). For
generic J and b, we obtain that the entropy is still given by
Eq. (60), but the transfer matrix T θ;ϕ½h� is modified in two

ways. (i) The matrix UðνÞ
ϕ ½h� is not unitary anymore. The

Ising coupling in Eq. (56) replaced by J̃ [cf. Eq. (29)] and
the transverse fields in Eq. (55) (the coefficients of iMx

ν in
the positive and negative time copy) are, respectively,
replaced by b̃ and b̃� [cf. Eq. (30)]. (ii) The projector
Gz
ν;t in Eq. (60) is replaced by

cos ½bðσzν;t ⊗ 1 − 1 ⊗ σzν;tÞ�: ð61Þ

As we see in the next section, these changes are enough to
hinder the analytical evaluation of Eq. (60); however, the
duality approach can still be useful for perturbative calcu-
lations or numerical approaches (see Sec. VII).
We also observe that when the initial state is in the class

L [cf. Eq. (18)], namely, when

θj ¼ θ̄j ∈ f0; πg; j ∈ f1; 2;…; Lg; ð62Þ

the expression (60) can be further simplified by effectively
reducing the dimension of the space where the trace acts.
This is explicitly shown in Appendix B. The final result is
again of the form (60) with the replacement

T θ̄j;ϕj
½hj� ↦ T̄ π=2;θ̄j−π=2½hj�;
P ↦ P̄: ð63Þ

Here the barred operators have exactly the same form as the
nonbarred ones [respectively, Eqs. (51) and (48)] but act on
H⊗2n

t−1 instead of H⊗2n
t . Note that this is nothing but a

restatement of property (22).

V. SEPARATING STATES

Our goal is to use Eq. (60) to determine SðnÞA ðtÞ in the
thermodynamic limit. To do that, however, we need some
information on the Jordan normal form of the matrix
T θ;ϕ½h�. Indeed, since the matrix is not normal, it is not
guaranteed to be (and it is generically not) diagonalizable.
As we prove in Appendix C, the forms (51) and (52) of

the transfer matrix have some simple but useful conse-
quences on its Jordan normal form. Specifically, we have
Property 1: The following facts hold
(i) jλjj ≤ λmax ≡ ð1þ j cos θjÞn, ∀ λj ∈ Spec½T θ;ϕ½h��.
(ii) If an eigenvalue λ of T θ;ϕ½h� fulfills jλj ¼ λmax, then

(a) λ has trivial Jordan blocks (its geometric and
algebraic multiplicities coincide).

(b) the associated left eigenvector hAj satisfies

hAj
Yn
ν¼1

Bz
ν;1½θ� ¼ λmaxhAj; ð64Þ

hAj
Yn
ν¼1

Gz
ν;t ¼ hAj; ð65Þ

hAj
Yn
ν¼1

UðνÞ
ϕ ½h� ¼ eiαhAj; α ∈ R; ð66Þ

where Spec½A� denotes the spectrum of the matrix A.
Property 1 introduces the crucial simplification of this

work. If the maximal eigenvalues of T θ;ϕ½h� saturate the
bounds at point (i), the problem of finding the maximal
eigenvalues of the transfer matrix is separated into three
much easier ones consisting of finding eigenvalues and
eigenvectors of simple Hermitian and unitary matrices.
The bound at point (i), however, cannot be always

saturated. To see this, let us consider some constraints
on the structure of the matrix T θ;ϕ½h� coming from the
identity (44). These are most easily found by considering
the translational-invariant case

hj ¼ h; θj ¼ θ; ϕj ¼ ϕ; ∀ j: ð67Þ
Setting N ¼ 0 in Eq. (44), we have

tr½ðT θ;ϕ½h�ÞL� ¼ tr½ðρðtÞÞn� ¼ 1; ∀ L; n; ð68Þ

where in the second step we use that the state (13) is pure.
This relation implies that the eigenvalues of T θ;ϕ½h� are all 0
but one, which is equal to 1. Moreover, the Jordan block
corresponding to the eigenvalue 1 is one dimensional,
while the eigenvalue 0 might have (and does have) a highly
nontrivial Jordan structure. More formally,

ðC1Þ Spec½T θ;ϕ½h�� ¼ f0; 1g:
ðC2Þ The geometric multiplicity

of the eigenvalue 1 is 1: ð69Þ

From the conditions (69), it follows that the bound at point
(i) of Property 1 can be saturated only when λmax ¼ 1. Note
that the cases for which λmax ¼ 1 include θ ¼ π=2, but also
θ ¼ 0; π. Indeed, in the latter case the matrix T θ;ϕ½h� can be
replaced by T̄π=2;π=2−θ½h� [see Eq. (63) and Appendix B]. In
other words, the requirement λmax ¼ 1 selects the two
classes of states T and L introduced in Sec. III. This
clarifies the meaning of their name. We call them “sepa-
rating” states because if the initial state is one of them, the
problem of finding the maximal eigenvalues of the transfer
matrix (and the corresponding eigenvectors) can be sepa-
rated. In the upcoming section, we explicitly solve the
separated problem (64)–(66) for λmax ¼ 1, and, inciden-
tally, we also verify that it has no solution for λmax ≠ 1.

BRUNO BERTINI, PAVEL KOS, and TOMAŽ PROSEN PHYS. REV. X 9, 021033 (2019)

021033-10



Finally, we note that away from the self-dual points (4),
the conditions (69) still hold and a property similar to
Property 1 is still valid. In that case, however, the bound can
never be saturated and no separation can be performed. This
makes the problem analytically intractable, at least in an
exact fashion.

VI. ENTANGLEMENT SPREADING FROM
SEPARATING STATES

Here we explicitly solve the entanglement evolution
from separating states. In particular, in Sec. VI A we solve
the separated problem (64)–(66) for λmax ¼ 1, and in
Sec. VI B we evaluate Eq. (60). To be concrete, we focus
on the initial states in the class T , and the result for the
states in the class L is obtained using Eq. (22).

A. Maximal eigenvalues of the transfer matrix

Our strategy is to determine the maximal eigenvalues of
Tπ=2;ϕ½h� and the associated eigenvectors by searching for
all the vectors fulfilling Eqs. (64)–(66) with λmax ¼ 1. To
simplify our analysis, we make two observations. First, we
note that

Bz
ν;1 ½π=2� ¼ 1 ⊗ 1; ð70Þ

so that Eq. (64) becomes trivial. Second, we note that all

Gz
ν;t and UðνÞ

ϕ commute for different ν’s, so we can look for
simultaneous eigenvectors. The problem is then reduced to
finding all vectors hAj fulfilling

hAjGz
ν;t ¼ hAj; ð71Þ

hAjUðνÞ
ϕ ¼hAjeiαν ; αν∈R; ∀ ν∈f1;…;ng: ð72Þ

To solve these equations, it is convenient to
introduce the following one-to-one vector-to-operator map-
ping (cf. Ref. [56]) hAj ↔ A,

hAj ¼
X
k;m

hmjAjkihkj ⊗ hmj�; ð73Þ

where fhkjg is a basis of Hnt, and ð·Þ� denotes complex
conjugation in the computational basis Bnt, such that

hkj�O�jmi� ¼ hkjOjmi� ð74Þ

for any operator O. Using the mapping (73), Eqs. (71) and
(72) are directly rewritten in operatorial form as follows:

σzν;tA ¼ Aσzν;t; ð75Þ

Uν;ϕe−ihM
z
νeiðπ=4ÞMx

νA¼eiανAUν;ϕe−ihM
z
νeiðπ=4ÞMx

ν ; ð76Þ

for some αν ∈ R and all ν ∈ f1;…; ng. In this formulation,
our goal is to find all independent linear operators A over

Hnt solving the commutation relations (75) and (76). As we
show in Appendix D, these commutation relations are
equivalent to

Aσaν;τ ¼ σaν;τA ð77Þ

for all a ∈ fx; y; zg, τ ∈ f1;…; tg, ν ∈ f1;…; ng. Namely,
they are equivalent to requiring that A commutes with the
entire algebra of observables inHnt. Since the latter algbera
is irreducible, Shur’s lemma implies that the unique (up to
multiplicative factors) solution to Eq. (77) is given by

A ¼ 1 and αν ¼ 0: ð78Þ
We then find that the eigenvalue of T π=2;ϕ½h� with maximal
magnitude is 1 and corresponds to the unique left eigenvector

h1j ¼ 1

2nt=2

X
fsν;τg

hfsν;τgj ⊗ hfsν;τgj; ð79Þ

where we use the computational basis, omit complex con-
jugation as the basis is real, andwe include the normalization
factor

ffiffiffiffiffiffiffiffiffi
tr½1�p ¼ 2nt=2. Note that the unique right eigenvector

ofT π=2;ϕ½h� associatedwith λ ¼ 1 is given by j1i ¼ ðh1jÞ†, as
it can be directly verified.
We also observe that since we just proved that Eqs. (65)

and (66) have hAj ¼ h1j as the only solution, and, moreover,

h1j
Yn
ν¼1

Bz
ν;1½θ� ≠ λmaxh1j; θ ≠ π=2; ð80Þ

the separated problem (64)–(66) has no solution for
θ ≠ π=2.

B. Entanglement dynamics

Our next step is to use the eigenvectors determined above
to compute the entanglement dynamics. First, we note that
the eigenvector j1i is independent of ϕ and h. Moreover,
j1i is orthogonal to all left generalized eigenvectors
corresponding to the eigenvalues 0 of T π=2;ϕ½h� for all ϕ
and h. These two facts imply

lim
L→∞

SðnÞA ðtÞ ¼ 1

1 − n
log

�
hΨj

�YN
j¼1

Tπ=2;ϕj
½hj�

�
jΨi

�
; ð81Þ

where we introduce

jΨi≡ P†j1i; hΨj≡ ðjΨiÞ† ¼ h1jP: ð82Þ

The relation (81) can be used to find the slope of the linear
growth of the entanglement entropy. Indeed, taking N to
infinity we have

lim
N→∞

lim
L→∞

SðnÞA ðtÞ ¼ 2

1 − n
log jhΨj1ij ¼ 2t log 2: ð83Þ
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The simple structure of T π=2;ϕ½h�, however, allows us to
progress further and evaluate Eq. (81) exactly for each N.
This can be done by making use of the following

remarkable identity

hΨj
�YN

j¼1

T π=2;ϕj
½hj�

�
jΨi

¼ hΨj
Yn
ν¼1

� YbN=2c−1

τ¼0

½Gz
ν;t−τGx

ν;t−τ�½Gz
ν;t−bN=2c�modðN;2Þ

�
jΨi;

∀ ϕj; hj; ð84Þ
where b·c denotes the floor function. Here we adopt the
convention

Ga
ν;τ ¼ 1; τ ≤ 0; ð85Þ

and, to lighten the notation, from now on we assume that a
product

Q � � � picks only a single factor on its right unless
several terms are grouped within a square bracket ½� � ��.
The identity (84) is proven in Appendix F using the

explicit form of Tπ=2;ϕ½h�, and the following useful proper-
ties of the state (82)

Yn
ν¼1

Oν ⊗ O�
νjΨi ¼ jΨi; ð86Þ

hΨj
Yn
ν¼1

Oν ⊗ O�
ν ¼ hΨj; ð87Þ

whereOν acts nontrivially as the unitary operatorO only on
the νth copy of Ht in Hnt, i.e.,

Oν ¼ 1⊗ðν−1Þ
Ht

⊗ O ⊗ 1⊗ðn−νÞ
Ht

: ð88Þ

These properties are proven in Appendix E.
A striking consequence of Eq. (84) is that the entangle-

ment entropies evolving from separating states are com-
pletely independent of the configuration of longitudinal
magnetic fields fhjg and of the initial-state angles fϕjg.
For instance, this means that the same result is obtained in
the integrable and in the nonintegrable case, with or without
disorder.
The evaluation of the rhs of Eq. (84) is now straightfor-

ward. First, we note that in the computational basis (46) of
H⊗2n

t we have

hfs0ν;τgj⊗ hfr0ν;τgj
Yn
ν¼1

� YbN=2c−1

τ¼0

½Gz
ν;t−τGx

ν;t−τ�½Gz
ν;t−bN=2c�modðN;2Þ

�
jfsν;τgi⊗ jfrν;τgi

¼

8>>><
>>>:

1

2nbN=2c
Yn
ν¼1

� Yt−bN=2c

τ¼0

½δr0ν;τrν;τ δs0ν;τsν;τ �½δsν;t−bN=2c;rν;t−bN=2c �modðN;2Þ Yt
τ¼t−bN=2cþ1

½δsν;τrν;τ δs0ν;τ;r0ν;τ �
�

bN
2
c< t;

1

2nt

Yn
ν¼1

Yt
τ¼1

½δsν;τ;rν;τ δs0ν;τ;r0ν;τ � bN
2
c ≥ t;

ð89Þ

where the matrix elements of Gx
ν;τ and Gz

ν;τ are computed by repeated use of

hs0j ⊗ hr0j1jsi ⊗ jri ¼ δs;s0δr;r0 ;

hs0j ⊗ hr0j 1
2
ð1þ σz ⊗ σzÞjsi ⊗ jri ¼ δs;s0δr;r0δs;r ¼ δs;s0δs;rδs0;r0 ;

hs0j ⊗ hr0j 1
2
ð1þ σz ⊗ σzÞ 1

2
ð1þ σx ⊗ σxÞjsi ⊗ jri ¼ 1

2
δs;rδs0;r0 ; s; r; s0; r0 ∈ f�1g: ð90Þ

Then, we plug Eq. (89) into the rhs of Eq. (84). For t > bN=2c, we find

hΨj
Yn
ν¼1

� YbN=2c−1

τ¼0

½Gz
ν;t−τGx

ν;t−τ�½Gz
ν;t−bN=2c�modðN;2Þ

�
jΨi

¼ 1

2nbN=2cþnt

X
fsν;τg

X
fs0ν;τg

Yn
ν¼1

� Yt−bN=2c

τ¼1

½δs0νþ1;τsνþ1;τ
δs0ν;τsν;τ �½δsν;t−bN=2c;sνþ1;t−bN=2c �modðN;2Þ Yt

τ¼t−bN=2cþ1

½δsν;τsνþ1;τ
δs0ν;τ;s0νþ1;τ

�
�

¼ 1

2nbN=2cþnt

� X
fsν;τgτ<t−bN=2c

1

�� X
fsν;t−bN=2cg

½δsν;t−bN=2c;sνþ1;t−bN=2c �modðN;2Þ
��X

fs1;τgτ>t−bN=2c
1

�
2

¼ 1

2nbN=2cþnt
2nðt−bN=2c−1Þ2n−ðn−1ÞmodðN;2Þ22bN=2c ¼ 2Nð1−nÞ: ð91Þ
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Proceeding analogously for t ≤ bN=2c, we have

hΨj
YbN=2c−1

τ¼0

½Gz
ν;t−τGx

ν;t−τ�½Gz
ν;t−bN=2c�modðN;2ÞjΨi ¼ 22tð1−nÞ:

ð92Þ

Therefore, we finally obtain that for initial states in the class

T , all entanglement entropies SðnÞA ðtÞ with n ¼ 2; 3;… are
exactly given by Eq. (23). This, however, implies that

Spec½ρAðtÞ� ¼ f2−minð2t;NÞ; 0g; ð93Þ

where 2−minð2t;NÞ has multiplicity 2minð2t;NÞ, while 0 has
multiplicity 2N−minð2t;NÞ. As a consequence, the result (23)

holds for all SðαÞA ðtÞ with any real positive α.

VII. ENTANGLEMENT SPREADING FROM
GENERIC STATES

The exact results derived in the previous sections have
three remarkable features. (i) The entropies do not depend
at all on the longitudinal magnetic fields. In particular, they
are not affected by whether or not the system is integrable.
(ii) The entropies grow at the maximal speed allowed by the
range of the Hamiltonian and the dimension of the local
Hilbert space [they saturate the minimal cut bound (24)].
(iii) At each fixed time t, all entanglement entropies
coincide, signaling a flat entanglement spectrum, i.e., that
all nonzero eigenvalues of the density matrix reduced to the
block A are equal.
It is interesting to wonder whether these are general

features of the entanglement spreading in the self-dual
kicked Ising chain or, instead, if they are special properties
of separating initial states. In other words, it is interesting to
ask whether the entanglement dynamics from separating
states is an exceptional case or, even though special, it can
be used to model the generic behavior. To this aim, in this
section we consider the entanglement spreading from
generic product states (12) which are not separating. In
this case, as we point out above, we are unable to address
the problem in a fully analytical fashion and we resort to a
numerical analysis.
From the physical point of view, it is easy to see that the

most convenient time regimes to examine possible mod-
ifications of the features (i)–(iii) are very different. Indeed,
for h ≠ 0 the system is ergodic, and any finite subsystem is
expected to relax to the infinite-temperature state irrespec-
tive of the initial conditions. This means all entropies are
expected to saturate to the universal value N log 2. On the
other hand, for h ¼ 0 the system is integrable, and finite
subsystems relax to generalized Gibbs ensembles [71,72].
We then expect the stationary values of the entropies to
retain some memory of the initial configuration. To high-
light the difference between integrable and nonintegrable

systems, it is then convenient to focus on the “saturation
regime” t ∼ N, where the entropies become stationary. The
generic relaxation to the infinite-temperature state, how-
ever, also means that to see some dependence of the
entanglement spectrum on h, or on the initial state, one
has to stay away from the saturation regime and focus on
the “growth regime” t ≪ N. The latter is obviously also the
regime of interest to study variations in the speed of
entanglement growth.
The saturation regime can be easily accessed by a

“direct” numerical approach. Namely, we consider a finite
volume L and determine the time-evolving state by means
of the efficient time-propagation algorithm described in the
Supplemental Material of Ref. [56]. The entanglement
entropies are found by computing and diagonalizing the
reduced density matrices ρAðtÞ [cf. Eq. (14)] and using
Eq. (15). Note that a similar numerical analysis, in the case
of the von Neumann entropy, has been performed
in Ref. [44].
Some representative examples of our results are reported

in Fig. 7. First of all, we see that the qualitative behavior of
the entanglement entropies is the same as that for separating
states, both in the homogeneous (translationally invariant)
and in the inhomogeneous case. The entropy grows in an
approximately linear fashion until it saturates to a value
proportional to the subsystem size. There is, however, a
clear qualitative difference emerging between the inte-
grable case and the generic one: In the generic case, the
entropies always saturate to N log 2 (minus the expected
correction due to a finite N=L [43,73,74]), while this does
not happen at the integrable point. In particular, in the inset

of Fig. 8, we report the evolution of Sð2ÞA ðtÞ for several
homogeneous nonseparating initial states evolving under
the integrable kicked Ising Hamiltonian. We see that, in
contrast to the generic case, the saturation values depend on
the initial state.
Interestingly, the evolution of the entropies shows very

different finite-size effects in the integrable and nonintegr-
able cases. In the former case, the entropies start to decrease
at times larger than ðL − NÞ=2, while in the latter case, they
remain constant once they reach the saturation values.
These behaviors, respectively, agree with the predictions of
the quasiparticle and the minimal-membrane picture.
Indeed, for L > 2N the surface of the membrane is not
affected by the system being finite. On the contrary, the
quasiparticle picture predicts oscillations of the entropies
due to quasiparticles traversing the entire system and going
back to their initial positions. In particular, if the initial state
is homogeneous, using that in our case the quasiparticles
have all unit speed (and taking, for convenience, L even),
we find that the quasiparticle-picture prediction is L=2
periodic and, for t ∈ f0; 1;…; L=2g, it reads as

SðαÞA ðtÞ ¼ min ð2t; L − 2t; NÞSðαÞθ;ϕ; ð94Þ
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where SðαÞθ;ϕ ≤ log 2 is a (N- and L-independent) constant.
This prediction holds in the asymptotic limit t; N → ∞with
fixed t=N, but, as shown in the main panel of Fig. 8, it is in
fair agreement with our numerical results already for

N ¼ 11. Note that, even if the system is free, SðαÞθ;ϕ cannot
be generically computed analytically. Indeed, for generic
values of θ and ϕ, the states are not Gaussian in terms of the
time-evolving fermions, and this makes the problem
analytically untreatable. Moreover, since the dispersion
is linear, the usual arguments about Gaussification do not
apply [75,76]. Interestingly, not even separating states are
always Gaussian: Transverse separating states are Gaussian
only for ϕj ¼ 0; π [77].
A natural question is what happens to the finite-size

oscillations when the integrability is weakly broken? This
is investigated in Fig. 9, which compares the behavior of
the von Neumann entropy [cf. Eq. (16)] for increasing
values of the (homogeneous) longitudinal magnetic field.
We see that the finite-size oscillations become damped and
disappear at large enough times. This can be interpreted as
a sign of the decay of the quasiparticles. Consistently, the

FIG. 7. The second Rényi entropy for a kicked Ising system of L ¼ 30 spins evolving from “tilted” initial states (12). Top and bottom
two panels have, respectively, N ¼ 9 and N ¼ 13. The two panels on the left report results for translational-invariant initial states. The
blue and green curves correspond, respectively, to transverse and longitudinal separating states [cf. Eqs. (17) and (18)]. Other curves
correspond to the initial state θj ¼ ϕj ¼ 1 and different magnetic fields as indicated in the legend. The two panels on the right
correspond to the maximally disordered cases, where the spins at each site point in a random direction, and the magnetic fields hj are
either random (purple) or zero (yellow). In the cases with random parameters, we show the average values for a sample of eight
realizations using a continuous line and indicate a standard deviation of one realization by a shaded area.

FIG. 8. Time evolution of the second Rényi entropy for a
subsystem of N ¼ 11 spins in a kicked Ising system of L ¼ 30 at
the integrable point h ¼ 0 for different translationally invariant
initial states. The main panel shows the rescaled curves, which are
close to Eq. (94) (black dashed line) given by the quasiparticle
picture. In the inset, we show the nonrescaled version, where it is
apparent that the saturation value depends on the initial state.
Note a recurrence after the time t ¼ 10, consistent with the
quasiparticle picture.
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decay speed increases with the magnitude of the longi-
tudinal magnetic field. Moreover, for any fixed h ≠ 0, the
peaks are observed to decay when the volume of the system
increases.
Finally, we note that Fig. 7 also contains some informa-

tion on the speed of entanglement growth. Indeed, we see
that the time evolution of the entropies depends (although
weakly for h ≠ 0) on the configuration of magnetic fields,
indicating that the feature (ii) is lost at short times. It is,
however, very hard to make any definitive statement based
on Fig. 7. The direct numerical approach allows us to
access the linear growth regime only for very short times,
and it is impossible to exclude that (ii) remains as an
asymptotic feature of the entanglement dynamics. A similar
argument holds regarding the entanglement spectrum.
A useful way to circumvent this problem is offered by

the expression for the Rényi entropies resulting from the
duality mapping, namely, Eq. (60) (a similar duality-based
approach has also been proposed in the context of tensor
networks [78]). This expression becomes particularly
convenient in the translational-invariant case

hj ¼ h; θj ¼ θ; ϕj ¼ ϕ; ∀ j: ð95Þ

Indeed, in this case one can use the general constraints (69)
to take analytically the limit of infinite L and N and focus
on the growth regime. Specifically, for n ¼ 2; 3;…, we find

lim
N→∞

lim
L→∞

SðnÞA ðtÞ ¼ 2

1 − n
log





 hMLjPjMRi
hMLjMRi





; ð96Þ

where hMLj and jMRi are, respectively, the left and right
eigenstates of T θ;ϕ½h� corresponding to the eigenvalue 1.
The constraints (69) imply that these vectors exist and are
unique. Note that the simplification (96) cannot be generi-
cally performed in the inhomogeneous case, since transfer

matrices with different h, θ, and ϕ have different left and
right eigenvectors.
The numerical evaluation of Eq. (96) is achieved in two

steps. First, one has to determine the left and right eigen-
vectors and then evaluate the matrix element. Finding
eigenvectors is particularly convenient due to the tensor
product structure of the transfer matrix [cf. (51)]. Indeed,
we can search eigenvectors of the form

jMRi ¼ ⊗
n

ν¼1
jARi; hMLj ¼ ⊗

n

ν¼1
hALj; ð97Þ

where jARi; jALi ∈ Ht ⊗ Ht. In the notation of Fig. 6,
this means that we can effectively work in the Hilbert
space of the νth copy in both the positive-time and
negative-time spaces (corresponding to the νth column
of Fig. 6). The eigenvectors are efficiently determined by
means of a simple “power method”: One starts from a
random vector and finds jARi by repeated application of

T ðνÞ
θ;ϕ½h�. The left eigenvector hALj is then determined by

using jALi ¼ e−iðπ=8ÞMx
1 ⊗ eiðπ=8ÞMx

1 jARi. Proceeding in this
way, the eigenvector can be determined in Oðtm22tÞ
operations, where m is the number of iterations of the
power method [79].
The form (97) is also convenient for evaluating the

matrix element in Eq. (96). Indeed, after a straightforward
calculation, we find

lim
N→∞

lim
L→∞

SðnÞA ðtÞ ¼ 2

1 − n
log

tr½ðA†
RALÞn�

½trðA†
RALÞ�n

; ð98Þ

where AL;R are the 2t × 2t matrices corresponding to the
vectors hAR;Lj through the vector-to-operator mapping (73)
(performed for n ¼ 1). Note that for transverse separating
initial states, we have

AR ¼ AL ∝ 1; ð99Þ

but for generic initial states, these matrices become non-
trivial. The rhs of Eq. (98) can be numerically evaluated for
integer n ≥ 2, whereas Rényi entropies with more general
index α > 0 can be found by analytically continuing
Eq. (98) in n and diagonalizing A†

RAL numerically to
compute the powers. Evaluating Eq. (98) has complexity
∝ 23t and is the bottleneck of the numerical procedure,
meaning that we are able to reach up to tmax ¼ 17.
We stress that, since the constraints (69) hold also away

from the self-dual points, this procedure can be used to
study the entanglement spreading in the entire parameter
space of the kicked Ising model. Note that close enough to
the self-dual points (and to separating initial states) an
analytical perturbative analysis is also possible. These
aspects, however, go beyond the scope of the present
manuscript and will be investigated in the course of future

FIG. 9. The von Neumann entropy [cf. Eq. (16)] for a
subsystem of N ¼ 9 spins in a kicked Ising system of L ¼ 30
evolving from the separating state with θi ¼ π=2 and ϕi ¼ 0 for
different values of the longitudinal magnetic field.
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research. Here we focus on the self-dual points (5) and use
this duality-based numerical approach to effectively inves-
tigate the fate of the features (ii) and (iii) when the system is
initialized in a generic state (12).
Representative examples of our numerical results are

reported in Figs. 10 and 11. We see that, consistent with the
results in Fig. 7, at short times both (ii) and (iii) are violated.
The entropies grow in an approximately linear fashion, but
the slope appears to depend on the initial state and on the
longitudinal magnetic field h (see Fig. 10). Moreover,
different Rényi entropies have different slopes (see
Fig. 11). Crucially, however, a more refined analysis
suggests that these deviations vanish for large times. To
show this, we proceed as follows. First, we introduce the
“instantaneous” slopes

ΔSðαÞA ðt − 1=2Þ≡ SðαÞA ðtÞ − SðαÞA ðt − 1Þ: ð100Þ

Computing these quantities numerically, we observe that
they become linear functions of 1=t for large enough times.
We then perform a linear fit in 1=t and extrapolate the result
to t ¼ ∞. In the integrable case, this procedure gives results
consistent with the quasiparticle picture prediction
[cf. Eq. (94)], namely,

ΔSðαÞA ð∞Þjh¼0 ¼ 2SðαÞθ;ϕ ≤ 2 log 2: ð101Þ

Instead, in the nonintegrable case the results are consistent
with

ΔSðαÞA ð∞Þjh≠0 ¼ 2 log 2: ð102Þ

This behavior is observed for any initial state (12), for any
nonvanishing longitudinal magnetic field, and for any
Rényi index α, as we demonstrate in the insets of
Figs. 10 and 11. The only seemingly exceptional cases
are observed when the system is very close to the integrable
point (see, e.g., the red curve in the inset of Fig. 10). This is,
however, straightforwardly explained as a prethermaliza-
tion effect [80–82]. For small enough longitudinal fields,
there is an initial transient before the quasiparticles decay in
which the observables follow the integrable predictions.
After this transient, however, the entropies are expected to
follow the nonintegrable curves, reaching the asymptotic
value (102) for the slope. For instance, this is consistent
with the behavior of the red curve in the inset of Fig. 10.

Interestingly, since SðαÞθ;ϕ ¼ log 2 for separating states, this
effect is not observed in our exact result (23). From the
physical point of view, (102) is very natural. Since the
system is ergodic, the initial-state dependence is washed
away at large enough times, and the entropies behave as if
they would be evolving from separating states. We stress
that, since we are dealing with a Floquet system with no
local conservation laws, the entanglement spreading is
expected to be totally independent of the initial state: It
should not depend even on its energy which is not
conserved during the time evolution. As expected, this
does not happen in the integrable case.
In conclusion, the numerical results presented in this

section support the following general picture. The evolution
of the entanglement entropies from a generic initial state
(12) in the thermodynamic limit differs from that from

FIG. 10. The second Rényi entropy for a kicked Ising system
evolving from “tilted” initial states (12) in the thermodynamic
limit. The colored lines correspond to nonseparating initial states
(we take ϕ ¼ θ, with θ and h specified in the legend) and are
determined numerically evaluating Eq. (98), while the gray
dashed lines report, for comparison, the result from separating

states. The inset shows the instantaneous slope ΔSð2ÞA ðtÞ
[cf. Eq. (100)] as a function of 1=t. The points are computed
by evaluating Eq. (98), while the lines are a linear fit of the last
two points.

FIG. 11. Time evolution of different Rényi entropies in a kicked
Ising system with longitudinal magnetic field h ¼ −0.6 in the
thermodynamic limit. The initial state is of the form (12) with
θ ¼ ϕ ¼ 1. The colored lines correspond to Renyi indices n ¼ 1,
2, 3, 4 and are determined numerically evaluating Eq. (98), while
the gray dashed line reports, for comparison, the result from
separating states. The inset shows the instantaneous slope

ΔSðnÞA ðtÞ [cf. Eq. (100)] as a function of 1=t. The points are
computed by evaluating Eq. (98), while the lines are linear
extrapolations from the last two data points.
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separating states [cf. Eq. (23)] and depends explicitly on the
initial state, the longitudinal magnetic fields, and the Rényi
numbers. In the scaling limit t; N → ∞; however, all these
dependences are washed away: The entropies collapse to
the prediction (23) if the system is nonintegrable and to the
thermodynamic limit of Eq. (94) if the system is integrable.
In other words, our exact result (23) serves as an asymptotic
description of the entanglement spreading in the non-
integrable kicked Ising model. This picture is also sup-
ported by the numerical results of Ref. [44], which found
that the evolution of the von Neumann entropy averaged
over all separable initial states is consistent with Eq. (23).
Finally, we remark that this section also demonstrates that
extracting universal information on the behavior of the
entanglement entropies from the numerics is extremely
hard, especially in the ergodic case where the entanglement
growth is exceptionally fast. This highlights even more the
practical importance of our exact result (23).

VIII. CONCLUSIONS

We develop a constructive and mathematically rigorous
approach for computing the dynamics of bipartite entan-
glement in a class of “maximally scrambling,” locally
interacting, chaotic spin chains. Specifically, we consider
the so-called self-dual kicked Ising spin chains, where the
integrability is broken by switching on an external longi-
tudinal magnetic field. We prepare the system in a class of
ground states of simple local Hamiltonians and determine
exactly the dynamics of all Rényi entropies of finite blocks
of spins of arbitrary size. The results presented are non-
perturbative, no kind of averaging is involved, and, most
importantly, they hold in the presence of longitudinal
magnetic fields with arbitrary spatial dependence. It is
remarkable that such an explicit exact calculation can be
performed for a specific nonintegrable many-body system.
Our result shows that in the thermodynamic limit, the

Rényi entropies of finite blocks of spins are independent of
the longitudinal magnetic field at all times. Moreover, they
obey universal scaling laws that can be predicted both by
means of the quasiparticle picture of Ref. [15], put forward
for integrable models, and of the minimal membrane
picture of Ref. [50] propounded for generic systems.
Using our novel rigorous approach, we also develop

a numerical procedure for studying the entangle-
ment spreading from generic product initial states. A
thorough numerical analysis suggests that, away from
the integrable point, our exact result continues to describe
the entanglement spreading at the leading order in time.
On the contrary, in the integrable case, the entangle-
ment production is generically renormalized by an
initial-state-dependent multiplicative coefficient. Further

qualitative differences between the integrable and the
nonintegrable case emerge for finite systems. In particular,
we show numerically that there are recurrences in the
integrable case, which are absent in the nonintegrable one.
We stress that these differences are correctly accounted for
by the quasiparticle and minimal membrane pictures, which
disagree for finite sizes.
Our analytical method can be used to highlight

qualitative differences in the entanglement spreading of
integrable and nonintegrable systems directly in the
thermodynamic limit. To do that, one could follow
Refs. [35,36] and consider the bipartite entanglement of
disjoint blocks. Our preliminary results suggest that the
scaling forms produced in the two cases are indeed different
and, respectively, agree with the predictions of quasiparticle
and membrane pictures. Another possible direction is to
perturb the kicked Ising spin chains away from the self-dual
points, where the predictions of the two pictures disagree
also for the entanglement of a single block. This could be
tested within our approach by using perturbation theory.
More generally, we expect that our method will allow for

explicit calculations similar to the ones presented also for
other measures of correlations and dynamical complexity,
such as operator space entanglement entropy and out-of-
time order correlators.
Finally, we believe that the remarkable algebraic struc-

ture unveiled in this work paves the way for the determi-
nation of a new class of exactly solvable, maximally chaotic
models. Elements of this class can serve as minimal models
for characterizing the nonequilibrium dynamics in generic
systems.
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APPENDIX A: DUALITY OF TRACES

Here we explicitly demonstrate the duality relation (27).
Writing tr½ðUKI½h�Þt� in the computational basis BL
[cf. Eq. (7)], we have
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tr½ðUKI½h�Þt� ¼
X
fsτg

hs1jUKI½h�jstihstjUKI½h�jst−1i � � � hs2jUKI½h�js1i

¼
�
sin 2b
2i

�ðLtÞ=2X
fsτ;jg

�
exp

�
−iJ̃

XL
j¼1

s1;jst;j − iJ
XL
j¼1

st;jst;jþ1 − i
XL
j¼1

hjst;j

�

× exp

�
−iJ̃

XL
j¼1

st;jst−1;j − iJ
XL
j¼1

st−1;jst−1;jþ1 − i
XL
j¼1

hjst−1;j

�

..

.

×exp
�
−iJ̃

XL
j¼1

s2;js1;j − iJ
XL
j¼1

s1;js1;jþ1 − i
XL
j¼1

hjs1;j

�	
: ðA1Þ

Here, sτ;Lþj ≡ sτ;j, and in the second step we use the identity

hsje−ibσx jri ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
sin 2b
2i

r
exp ½−iJ̃sr�; s; r ∈ f�1g; ðA2Þ

where

J̃ ¼ −
π

4
−
i
2
log tan b: ðA3Þ

This expression can be thought of as the partition function of a two-dimensional Ising model with complex couplings on
an L × t periodic lattice. In other words, the rhs of Eq. (A1) is proportional to the partition function of a classical statistical
mechanical model with configuration energy given by

E½fsτ;jg; h� ¼ −
Xt

τ¼1

XL
j¼1

ðiJsτ;jsτ;jþ1 þ iJ̃sτ;jsτþ1;j þ ihjsτ;jÞ: ðA4Þ

Reorganizing the sum on the rhs of Eq. (A1), we also have

tr½ðUKI½h�Þt� ¼
�
sin 2b
2i

�½ðLtÞ=2�X
fsτ;jg

�
exp

�
−iJ̃

Xt

τ¼1

sτ;1sτþ1;1 − iJ
Xt

τ¼1

sτ;1sτ;L − i
Xt

τ¼1

h1sτ;1

�

× exp
�
−iJ̃

Xt

τ¼1

sτ;2sτþ1;2 − iJ
Xt

τ¼1

sτ;1sτ;2 − i
Xt

τ¼1

h2sτ;2

�

..

.

×exp

�
−iJ̃

Xt

τ¼1

sτ;Lsτþ1;L − iJ
Xt

τ¼1

sτ;Lsτ;L−1 − i
Xt

τ¼1

hLsτ;L

�	
; ðA5Þ

where we define stþτ;j ≡ sτ;j. Using again the identity (A2), we finally find

tr½ðUKI½h�Þt� ¼ tr

�
ŨKI½h11̃� � � � ŨKI½hL1̃�

�
; ðA6Þ

where the “tilded” bold symbols denote vectors of t components, and we introduce the dual transfer matrix

ŨKI½h̃� ¼ e−iH̃Ke−iH̃I ½h̃�; ðA7Þ
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with

H̃I½h̃�≡ J̃
Xt

j¼1

σzjσ
z
jþ1 þ

Xt

j¼1

hjσ
z
j; H̃K ≡ b̃

Xt

j¼1

σxj : ðA8Þ

APPENDIX B: SIMPLIFIED TRANSFER MATRIX FOR LONGITUDINAL SEPARATING STATES

When the initial state is in the class L [cf. Eq. (18)], namely, when

θj ¼ θ̄j ≡ ð1þ sjÞπ=2; sj ∈ f−1; 1g; j ∈ f1; 2;…; Lg; ðB1Þ

the form (60) can be simplified by effectively reducing the dimension of the space where the trace acts. To see this, we note
that in this case Bz

ν;1½θ� becomes proportional to a projector

Bz
ν;1½ð1þ sjÞπ=2� ¼ 2P

z;sj
ν;1 ⊗ P

z;sj
ν;1 ; ðB2Þ

so that we have

tr

��YN
j¼1

T θ̄j;ϕj
½hj�

�
P

� YL
j¼Nþ1

T θ̄j;ϕj
½hj�

�
P†

�

¼ 2Lntr

�YL
j¼1

Yn
ν¼1

P
z;sj
ν;1 e

iðπ=4Þσxν;1 ⊗ P
z;sj
ν;1 e

−iðπ=4Þσxν;1
�
tr

��YN
j¼1

T̄ π=2;θ̄j−π=2½hj�
�
P̄

� YL
j¼Nþ1

T̄π=2;θ̄j−π=2½hj�
�
P̄†

�
; ðB3Þ

where we introduce

P̄≡ 1 ⊗
Yn
ν¼1

Yt
τ¼2

Pðν;τÞ;ðν−1;τÞ; ðB4Þ

T̄ θ;ϕ½h�≡ Bz
ν;2½θ� · Gz

ν;t · Ūϕ½h�: ðB5Þ

Here the matrix ŪðνÞ
ϕ ½h� is defined as

ŪðνÞ
ϕ ½h�≡ ðŪν;ϕ ⊗ Ū�

ν;ϕÞ · ðe−ihM̄
z
ν ⊗ eihM̄

z
νÞ · ðeiðπ=4ÞM̄x

ν ⊗ e−iðπ=4ÞM̄x
νÞ; ðB6Þ

and the barred operators read as

Ūν;ϕ ≡ exp

�
−
iπ
4

Xt−1
τ¼2

σzν;τσ
z
ν;τþ1 − i

ϕ

2
σzν;2

�
; M̄a

ν ≡
Xt

τ¼2

σaν;τ: ðB7Þ

So, they have the same form as Eqs. (56) and (57), but at fixed ν they act nontrivially only in the spaceHt−1 composed of the
last t − 1 sites of Ht. In other words, T̄ θ;s½h� has the same form as T θ;s½h� but acts on H⊗2n

t−1 instead of H⊗2n
t . We stress that

the trace operations in expression (B3) and below are taken in the subspaces where the operators act nontrivially, for
example, for the barred operators in H⊗2n

t−1 ≅ H2nðt−1Þ. Noting

2Lntr

�YL
j¼1

Yn
ν¼1

P
z;sj
ν;1 e

iðπ=4Þσxν;1 ⊗ P
z;sj
ν;1 e

−iðπ=4Þσxν;1
�
¼ 2Ln





tr
�YL
j¼1

½Pz;sj
1;1 e

iðπ=4Þσx
1;1 �

�




2n

¼ 1; ∀ sj ∈ f−1;þ1g; ðB8Þ

we finally find
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SðnÞA ðtÞ ¼ 1

1 − n
log tr

��YN
j¼1

T̄ ðπ=2Þ;θ̄j−ðπ=2Þ½hj�
�
P̄

� YL
j¼Nþ1

T̄ ðπ=2Þ;θ̄j−ðπ=2Þ½hj�
�
P̄†

�
: ðB9Þ

Therefore, we see that in this case the entropies are given by an expression of the form (60), with θj ¼ π=2 and
ϕj ¼ ðπ=2Þsj but with matrices acting onH⊗2n

t−1 instead ofH⊗2n
t . Note that for θj ¼ θ̄j, the states (12) do not depend on ϕi,

and this independence is correctly reflected in Eq. (B9).

APPENDIX C: PROOF OF PROPERTY 1

In this Appendix, we provide the proof of Property 1.
Proof.—For each state hAj, we have

hAjT θ;ϕ½h�T †
θ;ϕ½h�jAi ¼ hAj

Yn
ν¼1

Bz
ν;1½θ�

Yn
ν¼1

Gz
ν;t

Yn
ν¼1

Bz
ν;1½θ�jAi ≤ hAj

Yn
ν¼1

Bz
ν;1½θ�2jAi; ðC1Þ

where we use that Gz
ν;t is a projector, so its expectation value on a normalized state is smaller or equal to 1. Expanding

Bz
ν;1½θ�2, we then have

hAjT θ;ϕ½h�T†
θ;ϕ½h�jAi ≤ 4nhAj

Yn
ν¼1

½cos4ðθ=2ÞPz;þ
ν;1 ⊗ Pz;þ

ν;1 þ sin2ðθ=2Þ cos2ðθ=2ÞPz;−
ν;1 ⊗ Pz;þ

ν;1

þ sin2ðθ=2Þ cos2ðθ=2ÞPz;þ
ν;1 ⊗ Pz;−

ν;1 þ sin4ðθ=2ÞPz;−
ν;1 ⊗ Pz;−

ν;1 �jAi: ðC2Þ

Since Pz;�
ν;1 ⊗ Pz;�

ν;1 are orthogonal projectors, we have

hAjT θ;ϕ½h�T †
θ;ϕ½h�jAi ≤ 4nmax½sin4nðθ=2Þ; cos4nðθ=2Þ�: ðC3Þ

In particular, choosing hAj to be the left eigenstate of T θ;ϕ½h� corresponding to the eigenvalue λ, we have

jλj ≤ 2n max½sin2nðθ=2Þ; cos2nðθ=2Þ� ¼ ð1þ j cos θjÞn ¼ λmax; ðC4Þ

which proves the first part of the claim.
To prove the point (ii a), we proceed by reductio ad

absurdum. Suppose that the Jordan block of λ is nontrivial:
Let hAj be the eigenvector associated with λ, and let hBj be
the first generalized eigenvector. As it is always possible,
we choose hBj to be normalized and orthogonal to hAj
(which is also normalized). We then have

hBjT θ;ϕ½h� ¼ λhBj þ xhAj; x ≠ 0: ðC5Þ

This relation implies

hBjT θ;ϕ½h�T †
θ;ϕ½h�jBi ¼ jλmaxj2 þ jxj2; ðC6Þ

which is impossible because it contradicts Eq. (C3). Point
(ii b) follows by noting that in order to have the equality
sign in Eq. (C3), we must have

hAj
Yn
ν¼1

Bz
ν;1½θ� ¼ λmaxhAj; ðC7Þ

hAj
Yn
ν¼1

Gz
ν;t ¼ hAj: ðC8Þ

Using now that hAj is a left eigenvector of T θ;ϕ½h�, we have
Eq. (66). This concludes the proof. □

APPENDIX D: SIMPLIFIED COMMUTATION
RELATIONS

In this Appendix, we prove the following property.
Property 2: The commutation relations (75) and (76)

imply

Aσaν;τ ¼ σaν;τA; ∀ a ∈ fx; y; zg;
τ ∈ f1;…; tg; ν ∈ f1;…; ng: ðD1Þ
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Proof.—First of all, we note that multiplying Eq. (76) on
the left and on the right by e−iðπ=4ÞMx

νeihM
z
νU†

ν;ϕ we have

Ae−iðπ=4ÞMx
νeihM

z
νU†

ν;ϕ ¼ eiανe−iðπ=4ÞMx
νeihM

z
νU†

ν;ϕA;

αν ∈ R; ∀ ν ∈ f1;…; ng: ðD2Þ

Using the conditions (75), (76), and (D2), we see that A
commutes with

e−iðπ=4ÞMx
νeihM

z
νU†

ν;ϕσ
z
ν;tUν;ϕe−ihM

z
νeiðπ=4ÞMx

ν

¼ e−iðπ=4ÞMx
νσzν;teiðπ=4ÞM

x
ν ¼ −σyν;t: ðD3Þ

Indeed, we have

Ae−iðπ=4ÞMx
νeihM

z
νU†

ν;ϕσ
z
ν;tUν;ϕe−ihM

z
νeiðπ=4ÞMx

ν

¼ eiανe−iðπ=4ÞMx
νeihM

z
νU†

ν;ϕAσ
z
ν;tUν;ϕe−ihM

z
νeiðπ=4ÞMx

ν

¼ eiανe−iðπ=4ÞMx
νeihM

z
νU†

ν;ϕσ
z
ν;tAUν;ϕe−ihM

z
νeiðπ=4ÞMx

ν

¼ e−iðπ=4ÞMx
νeihM

z
νU†

ν;ϕσ
z
ν;tUν;ϕe−ihM

z
νeiðπ=4ÞMx

νA; ðD4Þ

where in the first step we use Eq. (D2), in the second
Eq. (76), and in the third Eq. (75). Using Eq. (75), we then
have that A also commutes with

−iσyν;tσzν;t ¼ σxν;t: ðD5Þ

We then have

½A;σaν;t� ¼ 0; ∀ a ∈ fx; y; zg; ν ∈ f1;…; ng: ðD6Þ

Using Eqs. (D6), (76), and (D2), we can then conclude the
proof by induction.
We prove that if

½A; σaν;τ� ¼ 0; ∀ a ∈ fx; y; zg;
τ ∈ fτ̄ þ 1; τ̄ þ 2;…; tg; ðD7Þ

then

½A; σaν;τ̄� ¼ 0; ∀ a ∈ fx; y; zg; ðD8Þ

and then proceeding by induction in τ̄ ¼ t − 1;…; 1. The
basis of the induction is given by Eq. (D6), so we just need
to prove the inductive step. Assuming Eq. (D7) and
proceeding as in Eq. (D4), we can show that A commutes
also with

Uν;ϕe−ihM
z
νeiðπ=4ÞMx

ν

� Yt
τ¼τ̄þ1

σxν;τ

�
e−iðπ=4ÞMx

νeihM
z
νU†

ν;ϕ ¼
� Yt

τ¼τ̄þ1

−iσzν;τ−1σzν;τei2hσ
z
ν;τ σxν;τ

�
¼ −it−τ̄σzν;τ̄σzν;t

� Yt
j¼τ̄þ1

ei2hσ
z
ν;τ σxν;τ

�
:

ðD9Þ

The inductive hypothesis (D7) then implies

½A; σzν;τ̄� ¼ 0: ðD10Þ

Reasoning now as in Eq. (D4), we then have that A also
commutes with

e−iðπ=4ÞMx
νeihM

z
νU†

ν;ϕσ
z
ν;τ̄Uν;ϕe−ihM

z
νeiðπ=4ÞMx

ν

¼ e−iðπ=4ÞMx
νσzν;τ̄e

iðπ=4ÞMx
ν ¼ −σyν;τ̄; ðD11Þ

e−iðπ=4ÞMx
νeihM

z
νU†

ν;ϕσ
z
ν;τ̄Uν;ϕe−ihM

z
νeiðπ=4ÞMx

νσzν;τ̄

¼ e−iðπ=4ÞMx
νσzν;τ̄e

iðπ=4ÞMx
νσzν;τ̄ ¼ −iσxν;τ̄: ðD12Þ

So, we have

½A; σaν;τ� ¼ 0; a ∈ fx; y; zg;
τ ∈ f1;…; tg; ν ∈ f1;…; ng: ðD13Þ

This concludes the proof. □

APPENDIX E: PROOF OF EQS. (86) AND (87)

Let us start by proving Eq. (86). First, we note

Yn
ν¼1

Oν ⊗ O�
νj1i ¼ j1i: ðE1Þ

This is explicitly proven as follows:

Yn
ν¼1

Oν ⊗ O�
νj1i ¼

1

2nt=2

X
k;m;m0

hmj
Yn
ν¼1

Oνjkihm0j

×
Yn
ν¼1

Oνjki�jmi ⊗ jm0i�

¼ 1

2nt=2

X
m;m0

hmj
Yn
ν¼1

OνO
†
νjm0ijmi ⊗ jm0i�

¼ 1

2nt=2

X
m

jmi ⊗ jmi� ¼ j1i: ðE2Þ
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Here we use Eq. (74) and the fact thatOν is unitary. Second,
we observe that from the definition of Oν, it directly
follows

P

�Yn
ν¼1

Oν ⊗ O�
ν

�
P† ¼

Yn
ν¼1

Oν ⊗ O�
ν: ðE3Þ

Combining Eqs. (E3) and (E1), we then have

Yn
ν¼1

Oν ⊗ O�
νjΨi ¼

Yn
ν¼1

Oν ⊗ O�
νPj1i

¼ P
Yn
ν¼1

Oν ⊗ O�
νj1i ¼ jΨi: ðE4Þ

So, we proved Eq. (86) for anyOν acting nontrivially as the
unitary operator O only on the νth copy of Ht in Hnt. The
relation (87) follows immediately by taking the adjoint of

Yn
ν¼1

O†
ν ⊗ O†�

νjΨi ¼ jΨi: ðE5Þ

APPENDIX F: PROOF OF PROPERTY (84)

In this Appendix, we prove Eq. (84).
Proof.—Defining

Jν;τ ¼ exp½−i π
4
σzν;τþ1σ

z
ν;τ� ⊗ exp½i π

4
σzν;τþ1σ

z
ν;τ�;

τ ∈ f1;…; t − 1g; Jν;τ ¼ 1; τ ≤ 0; ðF1Þ

Zh
ν;τ ¼ exp½−ihσzν;τ� ⊗ exp½ihσzν;τ�;
τ ∈ f1;…; tg; Zh

ν;τ ¼ 1; τ ≤ 0; ðF2Þ

Xν;τ ¼ exp

�
i
π

4
σxν;τ

�
⊗ exp

�
−i

π

4
σxν;τ

�
; τ ∈ f1;…; tg;

Xν;τ ¼ 1; τ ≤ 0; ðF3Þ

we can rewrite the lhs of Eq. (84) as follows:

hΨj
YN
j¼1

T π
2
;ϕj
½hj�jΨi

¼ hΨj
Yn
ν¼1

�YN
j¼1

�
Gz
ν;tZ

ϕj=2
ν;1

Yt−1
τ¼1

Jν;τ
Yt
τ¼1

Z
hj
ν;τ

Yt
τ¼1

Xν;τ

��
jΨi:

ðF4Þ

To simplify this expression, we proceed as follows. First,
we commute every possible Jν;τ;Zν;τ;Xν;τ to the left by
using the following commutation relations

Jν;τZh
ν;τ0 ¼ Zh

ν;τ0Jν;τ; ∀ τ; τ0; ðF5Þ

Jν;τXν;τ0 ¼ Xν;τ0Jν;τ; τ0 ≠ τ; τ þ 1; ðF6Þ

Xν;τZh
ν;τ0 ¼ Zh

ν;τ0Xν;τ; τ0 ≠ τ; ðF7Þ

Jν;τG
z
ν;τ0 ¼ Gz

ν;τ0Jν;τ; ∀ τ0; τ; ðF8Þ

Zh
ν;τG

z
ν;τ0 ¼ Gz

ν;τ0Z
h
ν;τ; ∀ τ0; τ; ðF9Þ

Xν;τG
z
ν;τ0 ¼ Gz

ν;τ0Xν;τ; τ0 ≠ τ: ðF10Þ

Then we use

hΨj
Yn
ν¼1

Jν;τ ¼ hΨj; ðF11Þ

hΨj
Yn
ν¼1

Xν;τ0 ¼ hΨj; ðF12Þ

hΨj
Yn
ν¼1

Zh
ν;τ0 ¼ hΨj; ðF13Þ

which follow from Eq. (86). Finally, using also

Yn
ν¼1

Jν;τjΨi ¼ jΨi; ðF14Þ

Yn
ν¼1

Xν;τ0 jΨi ¼ jΨi; ðF15Þ

Yn
ν¼1

Zh
ν;τ0 jΨi ¼ jΨi; ðF16Þ

following from Eq. (87), on the rightmost term in the
product over j we find

hΨj
YN
j¼1

T π
4
;ϕj
½hj�jΨi ¼ hΨj

Yn
ν¼1

�YN−1

j¼1

Aν;j

�
jΨi; ðF17Þ

where we define

Aν;j¼Gz
ν;t

Yt−1
τ¼t−jþ1

Jν;τ
Yt

τ¼t−jþ2

Z̃
hj;ϕj
ν;τ

Yt
τ¼t−jþ1

Xν;τG
z
ν;t; ðF18Þ

Z̃h;ϕ
ν;τ ¼ Zhþðϕ=2Þδτ;1

ν;τ : ðF19Þ

Using
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Gz
ν;τXν;τGz

ν;τ ¼ Gz
ν;τ

�
Gx
ν;τ þ

i
2
½σxν;τ ⊗ 1 − 1 ⊗ σxν;τ�

�
Gz
ν;τ

¼ Gz
ν;τ

�
Gz
ν;τGx

ν;τ þ
i
4
½1 − σzν;τ ⊗ σzν;τ�½σxν;τ ⊗ 1 − 1 ⊗ σxν;τ�

�
¼ Gz

ν;τGx
ν;τGz

ν;τ ¼ Gz
ν;τGx

ν;τ; ðF20Þ

we can rewrite Eq. (F18) as follows:

Aν;j ¼ Gz
ν;tJν;t−1Gx

ν;t

Yt−2
τ¼t−jþ1

Jν;τ
Yt−1

τ¼t−jþ2

Z̃
hj;ϕj
ν;τ

Yt−1
τ¼t−jþ1

Xν;τ: ðF21Þ

We now make use the following lemma proven in Appendix F 1 to simplify the products of the Aν;j’s
Lemma 1.

Aν;1 � � � Aν;2n ¼ Jν;t−1
Yn−1
j¼0

½Gz
ν;t−jG

x
ν;t−j�Gz

ν;t−nXν;t−n

Y2n−2
j¼n

� Yt−2nþj

τ¼t−1−j
Jν;τ

Yt−2nþj

τ¼t−j
Z̃

hjþ2;ϕjþ2
ν;τ

Yt−2nþjþ1

τ¼t−1−j
Xν;τ

�
; ðF22Þ

Aν;1 � � �Aν;2nþ1 ¼ Jν;t−1
Yn
j¼0

½Gz
ν;t−jG

x
ν;t−j�

Y2n−1
j¼n

� Yt−2n−1þj

τ¼t−1−j
Jν;τ

Yt−2nþj−1

τ¼t−j
Z̃

hjþ2;ϕjþ2
ν;τ

Yt−2nþj

τ¼t−1−j
Xν;τ

�
; n ≥ 1: ðF23Þ

Using now Eqs. (F11) and (F14)–(F16), we have

hΨj
YN
j¼1

Tπ=4;ϕj
½hj�jΨi ¼ hΨj

Yn
ν¼1

� YbN=2c−1

j¼0

½Gz
ν;t−jG

x
ν;t−j�½Gz

ν;t−bN=2c�mod ðN;2Þ
�
jΨi; ðF24Þ

which concludes the proof. □

1. Proof of Lemma 1

Here we prove Lemma 1.
Proof.—We proceed by induction in the number of terms in the products of the Aν;j’s. First, we establish the basis. We

begin by computing

Aν;1Aν;2 ¼ Gz
ν;tJν;t−1Gx

ν;tG
z
ν;tJν;t−1Gx

ν;tXν;t−1 ¼ Jν;t−1G
z
ν;tGx

ν;tG
z
ν;t−1Xν;t−1; ðF25Þ

where we use

Gz
ν;τGx

ν;τJν;τ−1Gx
ν;τ ¼ Gz

ν;τGx
ν;τ

�
Gz
ν;τ−1 þ

i
2
½σzν;τ−1 ⊗ σzν;τ − σzν;τ ⊗ σzν;τ−1�

�
Gx
ν;t

¼ Gz
ν;τGx

ν;τ

�
Gx
ν;τG

z
ν;τ−1 þ

i
4
½1 − σxν;τ ⊗ σxν;τ�½σzν;τ−1 ⊗ σzν;τ − σzν;τ ⊗ σzν;τ−1�

�
¼ Gz

ν;τGx
ν;τG

z
ν;τ−1: ðF26Þ

We see that Eq. (F25) agrees with Eq. (F22) for n ¼ 1. We then compute

Aν;1Aν;2Aν;3 ¼ Gz
ν;tJν;t−1Gx

ν;tG
z
ν;tJν;t−1Gx

ν;tXν;t−1G
z
ν;tJν;t−1Gx

ν;tJν;t−2Z̃
h3;ϕ3

ν;t−1Xν;t−2Xν;t−1

¼ Jν;t−1G
z
ν;tGx

ν;tG
z
ν;t−1Xν;t−1G

z
ν;tJν;t−1Gx

ν;tJν;t−2Z̃
h3;ϕ3

ν;t−1Xν;t−2Xν;t−1

¼ Jν;t−1G
z
ν;tGx

ν;tG
z
ν;t−1Xν;t−1G

z
ν;t−1Jν;t−2Z̃

h3;ϕ3

ν;t−1Xν;t−2Xν;t−1

¼ Jν;t−1G
z
ν;tGx

ν;tG
z
ν;t−1G

x
ν;t−1Jν;t−2Z̃

h3;ϕ3

ν;t−1Xν;t−2Xν;t−1

¼ Jν;t−1G
z
ν;tGx

ν;tG
z
ν;t−1G

x
ν;t−1Jν;t−2Xν;t−2Xν;t−1: ðF27Þ

In the last step, we use
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Gz
ν;τZ̃

h;ϕ
ν;τ ¼ Gz

ν;τ: ðF28Þ

Since Eq. (F27) agrees with Eq. (F23) for n ¼ 1, we successfully establish the basis for the inductive procedure. To
conclude, we need to prove that

(i) if Eq. (F22) holds for n, then Eq. (F23) holds for n;
(ii) if Eq. (F23) holds for n, then Eq. (F22) holds for nþ 1.

Let us prove (i). Assuming Eq. (F22), we have

Aν;1 � � � Aν;2nAν;2nþ1 ¼ Jν;t−1
Yn−1
j¼0

½Gz
ν;t−jG

x
ν;t−j�Gz

ν;t−nXν;t−n

Y2n−2
j¼n

� Yt−2nþj

τ¼t−1−j
Jν;τ

Yt−2nþj

τ¼t−j
Z̃

hjþ2;ϕjþ2
ν;τ

Yt−2nþjþ1

τ¼t−1−j
Xν;τ

�
;

× Gz
ν;tJν;t−1Gx

ν;t

Yt−2
τ¼t−2n

Jν;τ
Yt−1
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where we use that Gx
ν;t commutes with all the terms on the first line to bring it close to Jν;t−1. Then we employ Eq. (F26).

Moving the projector Gz
ν;t−1 on the second line to the left and using multiple times Eqs. (F20) and (F26), we have
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which is exactly Eq. (F23). Let us now prove (ii). Assuming Eq. (F23), we have
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where we again use that Gx
ν;t commutes with all the terms on the first line to bring it close to Jν;t−1 and employ Eq. (F26).

Moving now the projector Gz
ν;t−1 on the second line to the left and using Eqs. (F20) and (F26), we have
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which is exactly Eq. (F22) for nþ 1. This concludes the proof. □
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