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We study the yielding behavior of a model glass under cyclic athermal quasistatic deformation and at
finite rate and temperature, computationally, and show that yielding is characterized by the discontinuous
appearance of shear bands, whose width is about ten particle diameters at their initiation, in which the strain
gets localized. Strain localization is accompanied by a corresponding change in the energies and a decrease
in the density in the shear band. We show that the glass remains well annealed outside the shear band,
whereas the energies correspond to the highest possible energy minima at the given density within the shear
band. Diffusive motion of particles characterizing the yielded state are confined to the shear bands, whose
mean positions display movement over repeated cycles. Outside the shear band, particle motions are
subdiffusive but remain finite. Despite the discontinuous nature of their appearance, shear bands are
reversible in the sense that a reduction in the amplitude of cyclic deformation to values below yielding leads
to the healing and disappearance of the shear bands.
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I. INTRODUCTION

The mechanical response of amorphous solids to applied
stresses is of obvious importance in characterizing their
behavior. Beyond the elastic regime at small applied stresses,
such response is characterized by plastic deformations, and
beyond yielding, by flow. Considerations associated with
yielding are of relevance to awide range of phenomena, from
irreversible deformation and failure in atomic and molecular
glasses, such as metallic glasses, to the complex rheology of
soft materials such as foams, emulsions, colloidal suspen-
sions, and granular matter [1–5]. Although yielding and flow
may apparently be continuous and homogeneous for some
yield stress fluids, it is a sharp, discontinuous event at the
other end of the spectrum, as in brittle failure, characterized
by localization of strain and the formation of shear bands.
Systems and questions of interest range from the mechanical
properties of nanostructures to large-scale phenomena such
as mudslides and earthquakes [6–9]. Viewed as a non-
equilibrium transition in a driven system, the phenomena
associated with yielding have in recent years been inves-
tigated in a large number of studies experimentally, through

computer simulations, and the analysis of elastoplastic and
other models [10–36]. Many studies have focused on the
anisotropic interactions arising between localized plastic
events or STZs [21,37–42] and, in particular, how they
may influence strain localization.Yieldinghas been analyzed
through the application of STZ theory [3,18], described as a
critical transition in analogy with depinning of manifolds in
random media [17,23], discontinuous transition associated
with a spinodal [32–36,43–47], etc., and the relationship
between these descriptions is a subject of ongoing inves-
tigation (see, e.g., Refs. [35,36]). The role of the degree of
annealing in determining the nature of theyielding transition,
and in the formation and character of shear bands, has
increasingly been appreciated [13,31,35,36,48]. A particular
situation in which the role of annealing becomes manifest is
when an amorphous solid is subjected to oscillatory shear
deformation [8,24,26,31,49–53], a protocol that also reveals
transitions to irreversible states at large driving in other soft
matter systems, such as non-Brownian suspensions [14].
Under oscillatory or cyclic deformation of a glass, an
increasing degree of annealing is observed as the amplitude
of deformation is increased [31,49] (manifested by a decrease
in energy) until the yielding strain is reached. Beyond the
yielding strain, as described in detail below, the systemyields
through the formationof a shear band,withinwhich the strain
becomes largely localized.
The overall energy of the glass increases from the

yielding strain onwards. The width of the shear band
increases with an increase in the applied strain amplitude,
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but at any given amplitude, it reaches a steady-state value for
large numbers of cycles of deformation. However, since the
system becomes inhomogeneous, one may inquire about the
state of the glass within and outside the shear band. We
investigate these changes in the present work, employing
athermal quasistatic (AQS) deformation of a model glass,
and show that the mechanical response of a cyclically
deformed glass simultaneously displays features of aging
or annealing outside the shear band, and of rejuvenation
within. Results from athermal quasistatic deformation are
subject to the criticism that the resulting description of
mechanical response of amorphous solids is unrealistic, as
the method neglects inertial and thermal effects, and thus,
dynamic relaxation mechanisms that may be of relevance to
the phenomenon under study (see, e.g., Ref. [54]). Here, we
show convincingly that this is not the case for our results
regarding yielding. Finite-temperature and shear-rate simu-
lations display behavior that is qualitatively indistinguishable
from the behavior observed in AQS simulations.
In Sec. II, we describe themodelwe study and themethods

employed. In Sec. III, we give our results. In Sec. IV, we
discuss the conclusions and implications of the work
presented.

II. MODEL AND METHODS

We simulate the Kob-Andersen binary (80∶20) mixture
of 64 000 Lennard Jones particles at a reduced density of
ρ ¼ 1.2. Quadratic corrections are used to make the force
and the potential energy continuous at the cutoff
rc αβð¼ 2.5σαβÞ. The pairwise interactions are defined as

UαβðrÞ ¼ 4ϵαβ

��
σαβ
r

�
12

−
�
σαβ
r

�
6
�

þ 4ϵαβ

�
c0αβ þ c2αβ

�
r
σαβ

�
2
�
; rαβ < rcαβ;

¼ 0; otherwise:

Here, indices α; β ∈ fA;Bg refer to particle type, c0αβ and
c2αβ are chosen to ensure that the potential and its derivative
at rcαβ vanish at the cutoff, and interaction parameters,
defined with respect to the particles of type “A,” are
ϵAB=ϵAA ¼ 1.5, ϵBB=ϵAA ¼ 0.5, σAB=σAA ¼ 0.80, and
σBB=σAA ¼ 0.88. Energy and length are expressed through-
out in units of ϵAA and σAA, respectively. Initial samples are
generated by equilibrating the system at a high temperature
T ¼ 1 (in reduced units) using the Nosé-Hoover thermo-
stat. We perform cyclic deformation for the most part over a
range of amplitudes γmax above the yield strain amplitude
(γy ≈ 0.07, see Refs. [31,49]), from 0.07 to 0.11. We
consider as starting configurations either the energy mini-
mum structures (inherent structures) obtained from mini-
mizing high-temperature liquid configurations (T ¼ 1), or
previously cyclically deformed configurations at γmax ¼
0.07 and 0.08, which have reached a steady state. The shear

deformation is carried out using the AQS protocol, wherein
each deformation step by a small strain increment is
followed by energy minimization using the conjugate gra-
dient method. Samples are subjected to volume preserving
shear along thexz planeby incrementing strain by small steps
of dγxz (here, 2 × 10−4) via the coordinate transformation of
x0 ¼ xþ zd γxz, y0 ¼ y, z0 ¼ z. In addition to extensive AQS
simulations, we study the yielding behavior at finite temper-
atures and strain rate. The trajectories are evolved via the
SLLOD algorithm [55]. The applied strain γðtÞ is of the form
γðtÞ ¼ γmax sinðωtÞ, whereω is the frequency and γmax is the
amplitude of the strain. The strain rates _γ are reported at the
initial time of each cycle, i.e., _γ ¼ γmaxω. We deform the box
at a small strain rate _γðt ¼ 0Þ ¼ 5 × 10−5 and at temperature
T ¼ 0.1 and T ¼ :001, and study the yielding behavior. We
observe the formation of shear bands and estimate the
yielding strain amplitude in each case. The AQS and
SLLOD simulations are performed using LAMMPS [56].
Lees-Edwards periodic boundary conditions are employed
in both the energy calculation andminimization.We perform
cyclic shear deformation (0 → γmax → 0 → −γmax → 0)
repeatedly, until a steady state is achieved. As previously
described [31,49], the number of cycles needed to reach a
steady state rises steeply as γy is approached, but we do not
discuss this feature further here. For all the strain amplitudes
above γy studied, the steady-state configurations display
shear bands.
To characterize the shear bands, we divide the configu-

rations into slabs along the shear direction and compute
(a) the mean-squared displacement [MSDðzÞ] between
particle positions in a slab centered at z at strain γ ¼ 0
separated by a full cycle of strain, and (b) the average
energies of particles in each slab, UðzÞ, at the end of each
cycle (i.e., we consider stroboscopic configurations). For a
given cycle i, the MSD for the zth slab is written as

MSDðiÞðzÞ ¼ Pnzi
j¼1ðrziþ1;j − rzi;jÞ2=nzi , where nzi and frzig

represent the number of particles and their positions in the
zth slab of the stroboscopic configuration in the ith cycle,
respectively. Similarly, the slabwise energy can be defined

as UðiÞðz; iÞ ¼ Pnzi
j¼1 u

z
i;j=2n

z
i , where uzi;j is the interaction

energy of the jth particle in the zth slab. The cycle index
i is not indicated unless necessary. The profile of MSDðzÞ is
found to be well described by a Gaussian, MSDðzÞ ¼
MSDo exp ( − ðz − hziÞ2=2σ2), where hzi and σ represent
the mean position and width of the shear band, respectively.
In order to characterize properties within and outside the
shear band, we compute various partial (per particle)
averages (other than the slabwise averages defined above),
which we define here with the interaction energy as an
example: Partial averages are computed for the center of the
shear band [USBðσÞ], most of the shear band (within 3σ)
[USBð3σÞ], the rest of the system (outside 3σ) (Urest), the
slab of thickness σ farthest from the center of the shear band
[U0ðσÞ], and the global average value (U). In addition to the
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MSD and energy U, we also compute the average dis-
placement of particles per cycle, defined (for the full
system) as ΔrðiÞ ¼ P

N
j¼1 jriþ1;j − ri;jj=N, for cycle i,

and the mean-squared displacement with respect to a
reference configuration r0j for the A particles as hr2AiðiÞ ¼PNA

j¼1ðri;j − r0jÞ2=NA.

III. RESULTS

In Fig. 1, we report the characterization of the shear
band. We show configurations from the steady state for a
given strain amplitude, γmax ¼ 0.09. The color map is

based on the mean-squared displacement within a slab
between two consecutive strain cycles. Particles shown in
red move more than 0.2σ2AA (MSD values roughly within
hzi � σÞ. Figure 1(b) shows the MSDðzÞ profile of the
steady-state configuration,which clearly shows the existence
of strain localization or a shear band. The existence of a
shear band also gets reflected in the energyprofile of particles
vs the z coordinate [see Fig. 1(c)]; particles corresponding
to the band are likely to have higher energy compared to
the mean potential energy of the system. Figure 1(d)
shows the deviation from the affine strain in the displace-
ment profile between the stroboscopic configuration (γ ¼ 0)
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FIG. 1. (a) Snapshot of a configuration from the steady state for the strain amplitude γmax ¼ 0.09, with the color of the particle
indicating the mean-squared displacement (MSD) over a strain cycle. Highly mobile particles (MSD > 0.2 σ2AA) are colored in red,
whereas particles in blue move considerably less. This snapshot shows that particle displacements are highly spatially correlated,
forming a shear band. (b) MSDðzÞ is shown as a function of the coordinate z in the shear direction, along with a Gaussian fit. For our
analysis, we consider most mobile particles (within a width of 1σ) and most of the particles (within 3σ) in the shear band. (c) The
potential energy of mobile particles is seen to be higher than the mean potential energy represented by a horizontal line. The data
presented by black circles correspond to the 50th cycle of strain, whereas data shown in blue boxes are averaged over 20 cycles (from 30
to 50). (d) We plot the displacement profile [dx ¼ xðγ ¼ 0Þ − xðγmaxÞ], as a function of the coordinate in the gradient direction. The
deviation from the affine field suggests the presence of strain localization.
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and the corresponding sheared sample at strain γmax ¼ 0.09
indicating the localization of the strain in the steady
states.
We next consider a detailed analysis of the energies and

displacements as a function of accumulated strain γacc ≡
Ncycles × 4γmax for a range of strain amplitudes spanning
the yield strain amplitude. In Fig. 2, the potential energy U,
average displacement per cycle Δr and the density ρ of the
full system, as well as various subvolumes (within and
outside the shear band), are shown against γacc. The initial
sample corresponds, in each case, to an inherent structure
obtained from liquid configurations at high temperature
(T ¼ 1), roughly corresponding to the highest inherent
structure energy at fixed density, often referred to as the top
of the landscape. For the smaller amplitudes, the energy U
and displacements Δr decrease monotonically, indicating
considerable annealing, as previously observed [31]. For
larger amplitudes, the variation with γacc is nonmonotonic,
and the sharp upward changes (seen most markedly for
γmax ¼ 0.074) indicate the spontaneous onset of shear
banding (see Supplemental Material [57] for a movie that

demonstrates shear-band formation starting with a homo-
geneous state). Energy and Δr values shown as averages
within and outside the shear band for γmax ¼ 0.09 in
Figs. 2(c) and 2(d) reveal that the upward changes arise
within the shear band [USBð3σÞ and USBðσÞ, ΔrSBð3σÞ and
ΔrSBðσÞ], whereas outside [U0

SBðσÞ, Urest, Δr0ðσÞ, Δrrest]
continued annealing is revealed by the monotonic decrease
of the energy and displacements. Figure 2(e) shows
densities within and outside the shear band, displaying a
densification outside the shear band, whereas within, the
density shows significant reduction.
We next show, in Fig. 3(i) the mean potential energy,

(ii) the width of the shear band, and (iii) the fraction of
particles within the shear band. In Fig. 3(a), we show the
mean potential energy of the total system as a function of
strain amplitude, which changes discontinuously across the
yielding amplitude. Such behavior has been described as
rejuvenation [31,49,58], but the energy values within and
outside the shear band make it clear that while the part
of the system within the shear band rejuvenates (attains
higher energies), the rest of the system continues to anneal.
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FIG. 2. (a) The potential energy per particle (U) of stroboscopic configurations and (b) averaged particle displacement (Δr) after one
deformation cycle as a function of accumulated strain (γacc) for various strain amplitude. For γmax < γy, the system remains annealed,
and the corresponding single-particle displacements are small. The nonmonotonic behavior at higher amplitudes arises from shear
banding. (c) The potential energy and (d) averaged particle displacement for (i) the center of the shear band [USBðσÞ& ΔrSBðσÞ], (ii) the
slab farthest away [U0ðσÞ& Δr0ðσÞ], (iii) most of the shear band [USBð3σÞ& ΔrSBð3σÞ], (iv) the rest of the system (Urest & Δrrest), and
(v) the entire system (U & Δr) as a function of accumulated strain. The system outside the shear band remains annealed even for large
strain amplitudes above the yielding amplitude. (e) The local density of the shear band decreases compared with the mean density of the
system.
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The jump in the mean potential energy is coincident with
the coming into existence of a shear band with finite width
(with core width 2σ ≈ 7.5σAA at the yielding strain).
Figure 3(b) shows the width of the shear band (σ) and
the fraction of particles within the shear band, underscoring
the discontinuous nature of the transition.
Figure 4(a) shows the mean position hzi of the shear band

for γmax ¼ 0.090. The mean position shows movement over
distances comparable to the dimensions of the simulated
system, lending credence to the characterization of the state
of the system above yielding as ergodic [49], which may be
doubted in the presence of shear banding. We calculate the
mean-squared displacements hr2Ai (for A types of species) in
the steady state for the entire system, σ, 3σ, and the slab of
thickness σ farthest from the shear band, for a range of strain
amplitudes. The inset in Fig. 4(a) shows the variation in the
width of the shear with accumulated strain. Once the shear
band is formed, the width of the band does not vary
significantly over the long simulations, providing clear
evidence of the stability of the shear band under cyclic shear
deformation.As shown in Fig. 4(b), data for the entire system
and the shear band show diffusive behavior, whereas for the
slab of thickness σ farthest from the shear band (annealed
region), the behavior is subdiffusive. The diffusion coeffi-
cients (DA) estimated from the fit function, hr2AiðγaccÞ ¼
DAγacc, and shown in Fig. 4(c) indicate that the diffusion
coefficients changediscontinuously fromzero to a finitevalue
across theyielding transition, consistentlywith the findings in
Ref. [52]. Such discontinuous behavior is also seen in the
behavior of hΔri, for which [Fig. 4(d)] a decomposition into
values within and outside the shear band shows that the
discontinuity arises from the emergence of the shear band.
Figure 5 shows results obtained when cyclic shear

deformation is applied to differently prepared initial samples

for a range of amplitudes above and below the yielding
amplitude. In addition to the inherent structures obtained
from the liquid at T ¼ 1.0, which we have discussed so far,
we consider as initial configurations the steady-state con-
figurations obtained at strain amplitude γmax ¼ 0.08 (which
are shear banded) and at strain amplitude γmax ¼ 0.07
(well-annealed samples below the yielding point).
Figures 5(a)–5(c) show results for an initially shear banded
sample (prepared at γmax ¼ 0.08) subjected to cyclic defor-
mation for a range of amplitudes above and below the
yielding amplitude. The energies as a function of accumu-
lated strain γacc are shown inFig. 5(a).When γmax is below the
yielding amplitude, the shear band is gradually annealed out,
and the system achieves energies that are lower than those
obtainedwhen inherent structures from the high-temperature
liquid at T ¼ 1 are used as initial configurations [see
Fig. 5(b)]. This result is clearly demonstrated in Fig. 5(c)
through MSDðzÞ shown at different numbers of cycles,
which reveal that the amplitude of the MSD gradually
diminishes and becomes negligible. In other words, by
performing cyclic deformation at an amplitude below yield-
ing, even an initially shear banded state reaches a final state
that is homogeneous and well annealed. On the other hand,
when a sample annealed at γmax ¼ 0.07 is subjected to larger
amplitude strain, it shear bands (for γmax ≥ 0.074), as seen
from the energies shown in Figs. 5(d) and 5(e), with the
energies outside the shear band decreasing with increasing
strain amplitude. The fraction of particles within the shear
band and the thickness are independent of the initial sample
[see Fig. 5(f)], demonstrating that a unique steady state is
reached regardless of initial conditions, dependent only on
the strain amplitude (moregenerally, parameters determining
the cyclic deformation protocol), with the discontinuous
appearance of shear bands in all cases.

0.02 0.04 0.06 0.08 0.1 0.12
γ

–7.00

–6.98

–6.96

–6.94

–6.92

–6.90

–6.88

–6.86

E
ne

rg
y

U
SB

(
U  (

σ)
σ)

U

max

U
IS

(T = 1)

0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

in
 s

he
ar

 b
an

d 
X

SB

X
SB

0.04 0.06 0.08 0.1 0.12
γ

max

0

1

2

3

4

5

6

Sh
ea

r 
ba

nd
 w

id
th

 σ

σ (width)

From liquid

(a) (b)
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We finally show, in Fig. 6, the behavior of glass
configurations when sheared at finite temperatures and
strain rates. We study two temperatures, T ¼ 0.001, and
T ¼ 0.1, the latter temperature being a third of the
previously estimated ideal glass transition temperature
for the studied system. As in the case of AQS, for small
amplitudes, we observe that the glasses are annealed to
lower energies, with the degree of annealing, as well as the
number of cycles needed to reach the steady-state values,
increasing with increasing strain amplitude. We perform up
to 400 cycles of deformation for T ¼ 0.001, and 600 cycles
for T ¼ 0.1. A discontinuous jump in the energies is
observed above a strain amplitude, which we identify as
the yielding strain amplitude γy, which we find to be

γy ¼ 0.05 for T ¼ 0.1 and γy ¼ 0.07 for T ¼ 0.001.
Figures 6(a) and 6(b) show that the energies (U) vs γmax
decrease with increasing γmax below γy and increase above
the yield amplitude for both temperatures, T ¼ 0.1 and
T ¼ 0.001. Since the energies continue to decrease for the
number of cycles studied for amplitudes below yielding,
the asymptomatic energies [Uð∞Þ] are obtained by fitting
to a stretched exponential function of the form UðnÞ ¼
(Uð0Þ −Uð∞Þ)e−ðn=n�Þβ þ Uð∞Þ, where n� is the number
of cycles to reach a steady state and Uð∞Þ is the limiting
value of the energy. Above yielding, the steady-state values
are reached within the length of our simulations and
are reported. The snapshots in Figs. 6(a) and 6(b) show
that the yielding is associated with the discontinuous
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total system, showing discontinuous change across the yielding point. The inset shows the same data on a semilog scale. (d) The steady-state
values ofΔr for the total system (hΔri), shear band [hΔrSBðσÞi], and the slab of thickness σ farthest away from the shear band [hΔr0ðσÞi],
plotted against applied strain amplitudes. The hΔri of the full system and the shear band change in a discontinuous manner across the
yielding amplitude. Note that the Δr values outside show continuous variation with values below the yielding amplitude.
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FIG. 5. (a,d) Initial samples from the steady state from γmax ¼ 0.08 [(a), shear banded] and from γmax ¼ 0.07 [(b), annealed sample]
are deformed for a range of amplitudes across the yielding point. The potential energy per particle (U) of stroboscopic configurations as
a function of accumulated strain (γacc) for various strain amplitude is shown. (b,e) Average energies for below and above the yield
amplitude of the sample with initial configurations from steady states at strain amplitudes 0.08 and 0.07. Below the yield amplitude
(< γy), the initial shear band anneals out [e.g., sample from 0.08 amplitude, as seen in (c)], leading to energies below those obtained with
inherent structures from the high-temperature liquid at T ¼ 1 as initial configurations (red triangles shown as reference). Above
yielding, energies within and outside the shear band are different. (c) MSDðzÞ along the z direction at different cycles showing the
annealing out of the shear band. The inset shows the amplitude MSDo for the shear band vs accumulated strain. (f) The fraction of
particles in the shear band and the width of the shear band remains independent of the initial sample.
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FIG. 6. (a,b) Evolution of the potential energy as a function of the number of strain cycles at a fixed temperature (a) T ¼ 0.1 and
(b) T ¼ 0.001 at the shear rate (_γ ¼ 5 × 10−5) implemented via SLLOD [55]. Following earlier analysis [31], we identify the location of
minimum energy to be the yield strain amplitude γy, and we find γy ¼ 0.05 (for T ¼ 0.1) and γy ¼ 0.07 (for T ¼ 0.001) to within the
precision of our sampling of strain amplitudes. Insets show the asymptomatic (γmax < γy) and steady-state (γmax > γy) values of the
potential energy. (a) Snapshots are shown of configurations from the 600th cycle for the strain amplitude γmax ¼ 0.05 and γmax ¼ 0.055,
T ¼ 0.1. (b) Snapshots are shown of configurations from the 400th cycle for the strain amplitude γmax ¼ 0.07 and γmax ¼ 0.075,
T ¼ 0.001. The color of the particle is based on the MSD over a strain cycle. These snapshots reveal that, above the yielding strain
amplitude, particle displacements are highly spatially correlated, very similarly to findings from AQS simulations.
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appearance of a shear band. For the smaller strain ampli-
tudes (≤ γy), the particle displacements during a cycle are
not spatially correlated, but for amplitudes above the yield
(> γy), they are, which leads to the formation of shear
bands. These results are indistinguishable from the ones
from AQS simulations in broad qualitative features. Some
details, such as the temperature dependence of γy, vary and
are highly interesting to investigate in future work.

IV. DISCUSSION

In summary, we have investigated strain localization and
formation of shear bands accompanying yielding in glasses
subjected to cyclic shear deformation, both using the
athermal quasistatical protocol and at finite shear rate
and temperature. The qualitative features of the yielding
and strain localization obtained from AQS, and finite-
temperature, shear-rate simulations are indistinguishable.
However, we find that the location of the yielding transition
is temperature dependent. The strain rate and temperature
dependence of the yielding transition are important issues,
which will be addressed in future work in more detail.
Shear bands with a thickness of several atomic diameters

emerge discontinuously when the yielding amplitude of
deformation is exceeded, consistently with, and illustrating,
the descriptions of yielding as a discontinuous transition for
well-annealed glasses [13,29,31–36]. Under cyclic defor-
mation at small amplitudes, the energy of the homogeneous
glasses evolves towards lower energies with repeated
cycles; i.e., it anneals. Yielding constitutes a point of
instability, where it is no longer possible to anneal the
system homogeneously, and part of the system attains
higher energy structures, which carry the excess strain that
cannot be accommodated by increased annealing of the
glasses. Even at amplitudes beyond yield, a large fraction of
the system continues to exhibit annealing, a condition that
has been analyzed to be associated with the formation of
shear bands. Thus, shear-banded structures simultaneously
show features of rejuvenation (inside the shear band) and
annealing or aging (outside the shear band). Homogeneous,
or shear-banded, structures result as stable steady-state
structures that are governed by the conditions of cyclic
driving, regardless of the initial state from which they are
prepared. We thus find the remarkable feature that initially
shear-banded configurations, when subjected to cyclic
deformation at amplitudes smaller than the yield amplitude
γy, attain a homogeneous state, with the healing out of the
shear bands.
Experiments employing cyclic deformation to probe

yielding in soft glasses (emulsions [24] and colloidal
suspensions [25,59]) observe a sudden onset of yielding,
which is consistent with our observations. However, these
works appear to have different statements to make regard-
ing plastic arrangements accompanying the yielding tran-
sition. In Refs. [24,25], based on estimates of a correlation
length for rearranging particles (or sizes of clusters of

rearranging particles), it is argued that such a correlation
length is maximum at the yielding transition. On the other
hand, Ref. [59] reports that, while there are virtually no
irreversible rearrangements below yielding, a substantial
population of plastic arrangements is found above. The
observations in Ref. [59] are consistent with our own
observations, analyzed in detail in Ref. [31] and here; we
see no large-scale avalanches below yielding, whereas we
find system-spanning avalanches above. Although we do
not compute a correlation length or size of correlated events
as in Refs. [24,25], the observations reported in
Refs. [24,25] below yielding are puzzling since, in the
steady state, there are in fact very few plastic rearrange-
ments. A possible resolution is that below yielding, in the
transient regime, rearrangement events take place that are
larger and relax more slowly for strain amplitudes that are
closer to (but smaller than) the yielding amplitude. Thus,
for any fixed observation time, one would find a larger size
of rearrangements for cyclic deformations with amplitude
closer to the yield amplitude. We illustrate this in Fig. 7,
where we show the energy drops during avalanches as a
function of cycles of deformation.
Experimental results for uniformly sheared colloidal

glasses [60] have been interpreted in terms of coupling
of strain to concentration (or density). But direct evidence
for such coupling is lacking. In our work, we observe that
strain localization is accompanied by a reduction in the
local density and thus supports the possibility of such a
coupling playing a role in yielding. This observation needs
to be explored further in order to make further contact with
the analysis mentioned above. An attempt was made in
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FIG. 7. The total energy drop during a plastic rearrangement
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0 to γmax) is computed for energy minima obtained at T ¼ 1.0,
N ¼ 64 000, as a way of characterizing the size of rearrangement
events, as a function of the accumulated strain, for a range of
strain amplitudes. The results show that the rearrangement events
relax to their asymptotic values more slowly as the yield strain
amplitude is approached, and at any value of the accumulated
strain, they are larger for strain amplitudes that are closer to the
yielding strain amplitude.
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Ref. [48], using computer simulations, to correlate the
presence of shear banding with the spatial variation of
structure in the sheared systems. The results indicate an
anticorrelation with local strain rates with the prevalence of
well-packed structure, which is entirely consistent with
findings here.
It has been discussed in interpreting experimental

results concerning soft glassy materials (see, e.g.,
Refs. [4,61]) that shear banding in glasses involves a
competition between aging and rejuvenation. But direct
evidence, experimental or otherwise, has not been avail-
able so far. To our knowledge, our work offers the first
concrete evidence in this regard. A number of model
calculations and simulations [51,62–66] have sought to
understand strain localization in terms of a competition
between rates of relaxation or aging, and rejuvenation
arising from flow. These studies, mostly in the context of
uniform shear (but also cyclic shear [51]), implicitly or
explicitly assume that the consequence of shear deforma-
tion is the rejuvenation of the glasses, whereas aging may
arise from thermally induced, activated relaxation. While
these effects may have validity up to a point, a key
observation arising from our work is that shear deforma-
tion alone leads to annealing, both below and above
yielding. This is strikingly so for cyclic deformation,
but our observations also have implications for annealing
effects under uniform deformation. Thus, our results
suggest that the nature of the aging and rejuvenation
mechanisms in modeling shear banding should be exam-
ined (if not at a phenomenological level, certainly with
regard to investigating microscopic origins) keeping in
mind that shear deformation can not only lead to reju-
venation but also annealing. In comparing our results with
other investigations, however, a distinction that needs to
be kept in mind is that the persistent shear banding that is
analyzed in most of the mentioned studies is the saturation
of the width of the shear band to a finite value as shear
strain increases arbitrarily, under flow conditions. In
contrast, the stable shear bands that we observe are at a
fixed strain amplitude, and their widths do increase as the
strain amplitude is increased. The present results do not
permit us to address whether the shear bands we observe
will grow to arbitrarily large widths as the strain amplitude
increases to large values [66]. Analyzing this question,
along with the role of finite temperatures and shear rates,
is an obvious, important direction for future work.
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