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The temperature–magnetic field phase diagram of the mixed honeycomb-triangular lattice system
K2Mn3ðVO4Þ2CO3 is investigated by means of magnetization, heat-capacity, and neutron-scattering
measurements. The results indicate that triangular and honeycomb magnetic layers undergo sequential
magnetic orderings and act as nearly independent magnetic sublattices. The honeycomb sublattice orders at
about 85 K in a Neél-type antiferromagnetic structure, while the triangular sublattice displays two
consecutive ordered states at much lower temperatures, 3 and 2.2 K. The ground state of the triangular
sublattice consists of a planar “Y” magnetic structure that emerges from an intermediate collinear “up-up-
down” state. Applied magnetic fields parallel or perpendicular to the c axis induce exotic ordered phases
characterized by various spin-stacking sequences of triangular layers that yield bilayer, three-layer, or four-
layer magnetic superstructures. The observed superstructures cannot be explained in the framework of
quasiclassical theory based only on nearest-neighbor interlayer coupling and point towards the presence of
effective second-nearest-neighbor interactions mediated by fluctuations of the magnetic moments in the
honeycomb sublattice.
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I. INTRODUCTION

Field-induced magnetic states that occur in layered
triangular lattice antiferromagnets (TLAs) have been exten-
sively studied and discussed in the context of broken discrete
symmetries of the lattice and spin rotation in the plane
perpendicular to the applied field. It is widely recognized
that thermal and quantum fluctuations lift the degeneracy of
the classical spin configurations of the triangular antiferro-
magnetic Heisenberg model in a magnetic field. This well-
known realization of order by disorder [1] leads to specific
planar states: a “Y” state or 120° spin configuration with two
spins canting “up” and one pinned in a “down” direction,
a collinear “up-up-down” (uud) state, and a canted “2∶1”

phase that is an oblique version of the uud state [2–9]. These
planar spin configurations are sketched in Fig. 1. An easy-
axis anisotropy can also remove the degeneracy and stabilize
the same coplanar arrangements. The collinear uud state,
which gives one-third of the saturation magnetization
plateau at intermediate fields (M ¼ Ms=3), breaks the
discrete Z3 symmetry of the lattice. The canted planar Y
and 2∶1 states that involveSx-Sy spin components also break
the continuous Uð1Þ symmetry of spin rotations about the

FIG. 1. Planar spin configurations of a single-layer triangular
lattice antiferromagnet at 0 K and finite magnetic fields [4].
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field axis. The latter spin states with broken mixed sym-
metries Z3 ⊗ Uð1Þ can be viewed as magnetic supersolid
phases that combine superfluid properties with long-range
periodicity of solids, as proposed by Liu and Fisher [9,10].
Most of the existing theoretical studies of TLA assume

negligible interplanar interactions. However, the presence
of such a coupling, as expected in real materials, can cause
additional exotic field-induced phase transitions where the
relative spin orientations change between adjacent planes
to produce interesting magnetic superstructures. The spin-
stacking pattern is expected to dramatically depend on the
manner of stacking of neighboring layers which can be
either eclipsed (adjacent layers related by a simple trans-
lation perpendicular to the layer plane) or staggered (shifted
by certain in-plane lattice translation) near-neighbor planes.
The latter spin-stacking also enables frustrated out-of-plane
interactions. Possible magnetic structures of weakly coupled
eclipsed TLAs were discussed by Chubukov and Golosov
[4], Gekht and Bondarenko [5], and Yamamoto et al. [8].
Yet, most theoretical predictions remained unconfirmed due
to the limited number of good experimental realizations of
equilateral TLAs.
Some of the most-explored series of TLA compounds

are VX2 and ABX3, where A ¼ Cs, Rb, B ¼ Ni, Mn, Cu,
and X ¼ Cl, Br, I, as well as ACrO2, with A ¼ Li,
Cu, Ag, or Pd [11]. Unfortunately, these systems either
have interplanar interactions that are larger than the intra-
planar ones, or too strong intraplanar nearest-neighbor
coupling that makes the field-induced transitions inacces-
sible to the currently available magnetic fields at the
neutron-scattering facilities. Improvements in sample
synthesis techniques allowed in recent years the discovery
of new triangular systems with transitions at accessible
magnetic fields. Detailed temperature–magnetic field
(T-H) phase diagrams have been reported for several
S ¼ 5=2 TLA systems with planar (XY) anisotropy,
RbFeðMoO4Þ2 [12–15], and RbAg2Fe½VO4�2 [16], or with
weak easy-axis (Ising) anisotropy, Rb4MnðMoO4Þ3
[17,18]. Another exciting class of TLA that has recently
emerged is that of 6H perovskites Ba3 M0M00

2 O9 with
M0 ¼ Ni, Co, Mn, andM00 ¼ Nb, Sb, or Ta [19–32]. These
compounds can possess either easy-plane or easy-axis
anisotropies and adopt at low temperatures the expected
planar 120° magnetic structure. For all aforementioned
systems, experimental evidence for the three predicted
field-induced states, the Y, the one-third magnetization
plateau uud, and the 2∶1 canted configuration is found.
However, the lack of sufficiently large single-crystal
samples required for detailed neutron-scattering studies
has, in most of the cases, hindered the understanding of
the impact of interlayer coupling in the stabilization of
field-induced ordered phases.
The vanadate-carbonate system K2Mn3ðVO4Þ2CO3 has

been recently identified as a very promising prototype for
studying magnetic frustration [33,34]. Its structure shown

in Fig. 2 consists of alternately stacked triangular and
honeycomb magnetic layers. Previous macroscopic mea-
surements indicated complex physical properties with a
presumed Jahn-Teller transformation at about 80 K and two
successive magnetic phase transitions at about 3 and 2 K
into a weakly ferromagnetic ground state. It was inferred
that divalent Mn is present in a high-spin state (S ¼ 5=2) in
the octahedral environment of the honeycomb layer and a
low-spin state (S ¼ 1=2) in the trigonal bipyramidal co-
ordination of the Mn2þ ions occupying the triangular layer
[33]. The low-temperature magnetic transitions are attrib-
uted to the ordering of the S ¼ 5=2 ions of the honeycomb
lattice, while the S ¼ 1=2 triangular layers are thought to
remain paramagnetic. Subsequent first-principles density-
functional-theory-based analysis showed that, contrary to
the previous suggestion, both inequivalent Mn ions occu-
pying the two layers are in the high-spin S ¼ 5=2 state [34].
The calculations predict that both layers exhibit antiferro-
magnetic orders with vastly different strengths of magnetic
interactions. Intrigued by the richness of the magnetic
phase diagram featured by this material, we undertake a
comprehensive magnetization and neutron-scattering study
using high-quality single-crystal samples. Our study clari-
fies the magnetic ground states of two magnetic layers and
establishes that K2Mn3ðVO4Þ2CO3 represents an excellent
candidate TLA system for studying the effect of interplanar
interactions in field-induced states. Applied magnetic
fields induce new magnetic superstructures characterized
by various spin-stacking sequences of triangular layers.
Because the observed magnetic superstructures cannot be
explained by any existing theories based only on nearest-
neighbor interlayer coupling, they compel a closer look at
effective second-nearest-neighbor interactions mediated

FIG. 2. Polyhedral view of K2Mn3ðVO4Þ2CO3 crystal struc-
ture. The structure consists of alternate stacking of two types of
layered subsystems: a honeycomb layer made of edge-sharing
MnO6 octahedra and a triangular layer made of MnO5 trigonal
bipyramids linked by CO3 triangles. Projections along the c axis
of the two distinct layers are shown in the right panel.
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by fluctuations of the magnetic moments in the honeycomb
sublattice.

II. EXPERIMENTAL DETAILS

Single crystals of K2Mn3ðVO4Þ2CO3 are grown using a
high-temperature hydrothermal technique. The chemicals
used in this synthesis are used as received, without further
purification: Mn2O3 (Alfa Aesar, 98%), V2O5 (Alfa Aesar,
99.6%), and K2CO3 (Alfa Aesar, 99.997%). In a typical
reaction, Mn2O3 and V2O5 are mixed in a 3∶2 molar ratio
with 0.8 mL of 5-M K2CO3 mineralizer, giving approx-
imately 0.4 g of reactants. Reactions are performed in silver
ampules with a diameter of 9.5 mm, with approximately a
70% fill of free volume. After loading the reactants and the
mineralizer, the ampoules are welded and loaded in a Tuttle
cold-seal-style autoclave and filled with distilled water at
80% of free volume to provide suitable counterpressure.
The autoclave is heated to 580°C for two weeks at a typical
pressure of 1.5 kbar. Brown hexagonal crystals are isolated
using suction filtration. The single-crystal specimens used
for physical properties’ characterization and neutron-
scattering experiments are physically examined and selected
under an optical microscope equipped with a polarizing
light attachment. The powder sample used for the powder
neutron-diffraction measurements is generated by grinding
crystals produced in the reaction described above.
Temperature- and field-dependent magnetic measure-

ments are carried out using a Quantum Design magnetic
property measurement system. The measurements are
carried out on a single-crystal specimen with the crystallo-
graphic c axis aligned either parallel or perpendicular to
the applied magnetic field. The temperature dependence of
static susceptibility [M=HðTÞ] is measured over a temper-
ature range of 2 to 700 K for applied fields μ0H ¼ 0.01 and
1 T. The isothermal magnetization measurements are
performed for fields up to 8 T. Additional isothermal
magnetization curves are recorded using a vibrating sample
magnetometer in magnetic fields up to 16 T, applied along
the c axis. Heat-capacity measurements are performed with
a physical property measurement system (PPMS, Quantum
Design) in zero and magnetic fields up to 6 T applied either
parallel or perpendicular to the crystal c axis.
Neutron-powder-diffraction measurements are carried

out using the HB2A high-resolution diffractometer at the
High Flux Isotope Reactor (HFIR) [35] using the 2.41-Å-
wavelength neutron beam. A powder sample with a total
mass of approximately 5 g is compacted in pellets, loaded
into a cylindrical aluminium can, and placed inside a
cryostat with a 3He insert. Data are collected at temper-
atures from 150 to 0.3 K. Single-crystal neutron-diffraction
measurements are performed at T ¼ 150 K using the
TOPAZ time-of-flight diffractometer at the Spallation
Neutron Source (SNS). The integrated Bragg intensities
are obtained using the 3D ellipsoidal Q-space integration
method and are corrected for background using MANTID

software [36]. Data reduction including Lorentz and
absorption corrections as well as spectrum, detector effi-
ciency, data scaling, and normalization are carried out with
the ANVRED3 [37] program.
Elastic-neutron-scattering measurements at temperatures

down to 1.6 K are performed at the fixed-incident-energy
(14.6 meV) HB1A triple-axis spectrometer at the HFIR,
and at the CORELLI [38] and HYSPEC [39] spectrometers
at the SNS. Two separate crystals with approximate
dimensions of 1 × 1 × 4 mm3 and 4 × 3 × 1 mm3 are used
for collecting data under magnetic fields applied parallel
and perpendicular to the c axis, respectively. At CORELLI,
white-beam Laue diffraction measurements are taken at
1.6 K, and selected magnetic fields up to 5 T are applied
along the c axis or [1, 1̄, 0]. For each field configuration, the
sample is rotated in steps of 3° over ranges of 60°. MANTID

software is utilized to carry out the Lorentz and spectrum
corrections, as well as to merge the full volume of the
scattering data [36]. At HYSPEC, the elastic measurements
are performed in applied magnetic fields up to 8 T using a
fixed incident energy Ei ¼ 15 meV and a Fermi chopper
frequency of 120 Hz. Measurements are concentrated over
narrow-range reciprocal lattice volumes centered around
the relevant magnetic reflections.
Inelastic-neutron-scattering (INS) measurements are per-

formed at the HYSPEC spectrometer operated with the
incident energies Ei ¼ 25 and 3.8 meV and the Fermi
chopper frequency of 360 Hz. For these measurements,
multiple single crystals are coaligned along the c axis,
while the in-plane directions are distributed in a quasiran-
dom manner to provide a total mass of about 0.3 g.
Structural and magnetic data refinements are carried

out with the FullProf Suite program [40]. Possible
magnetic structures models are explored by representation
analysis using the program SARAh [41] and by the
magnetic symmetry approach using the tools available
at the Bilbao Crystallographic Server [42]. The INS data
reduction and visualization are done with the MANTID and
DAVE [43] software packages. Spin-wave calculations are
performed using the linear spin-wave theory with the
program SpinW [44].
To reproduce experimental data, we perform classical

Monte Carlo simulations using a standard metropolis sam-
pling algorithm on the triangular lattice subsystem. The
simulations are performed on finite lattice of 12 × 12 × 4
unit cells (containing 1152 spins) with periodic boundary
conditions. Starting from a completely random and disor-
dered configuration, a spin system is annealeddown to a finite
temperature in a finite number of intermediate temperature
steps. Then, the magnetic field is increased up to 22 T with
300 intermediate-field points. At each temperature or field
step, the magnetization (M) and heat capacity (C) are
calculated by taking the ensemble average over the 2000
samples followed by thermalization sampling with adaptive
step size, while the static spin structure factor SðQÞ is
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calculated by Fourier transforming captured spin configura-
tions with the frequency of 500 samples. For better statistics,
all the measurements are averaged over 120 independent
simulations.

III. EXPERIMENTAL RESULTS
AND DISCUSSION

A. Crystal structure

The structural model of K2Mn3ðVO4Þ2CO3 proposed by
Yakubovich et al. [33] is confirmed by the refinements of
single-crystal neutron-diffraction data. The refined struc-
tural parameters, such as atomic coordinates and displace-
ment parameters along with selected bond lengths involving
the magnetic Mn atoms, are given in Table I. As previously
described, the structure consists of two types of Mn-O
layers alternating along the c axis of the hexagonal unit cell.
One layer consists of a honeycomb web made of edge-
sharing MnO6 octahedra, while the second consists of
MnO5 trigonal bipyramids that are linked together by
CO3 coplanar triangle groups to form an equilateral tri-
angular lattice. Each layer is composed by a single Mn
crystallographic site: The honeycomb is built of Mn1 ions
occupying 4f Wyckoff position of the P63=m space group,
and the triangular layer is defined by Mn2 ions located at
the 2a Wyckoff position. The Mn1 atoms are coupled via
double oxygen (O1) bridges and are spaced at about
3.006 Å apart. Inside the triangular layer, the interatomic
distance between neighboring Mn2 atoms is approximately
5.195 Å. There are twice as many Mn1 ions in the
honeycomb layer as compared to Mn2 located in the
triangular layer. The Mn2 ions are located exactly on top
or underneath the hollow center of the Mn1 honeycomb.
Considering that there are two layers of each type per unit
cell, the distance between two consecutive triangular layers
is about c=2 ¼ 11 Å, while that between the honeycomb

and triangular layer is c=4 ¼ 5.5 Å. The interlayer space is
occupied by Kþ cations and V5þO4 tetrahedra that share
oxygen vertices with manganese polyhedra. Because of the
nonmagnetic nature of V5þ cation, the magnetic interactions
between adjacent layers are expected to be subdominant
compared to the intralayer interactions. A perspective view
of the crystal structure and the two types of Mn-O layers are
depicted in Fig. 2.
It is instructive to compare here the structural properties

of our compound with other recently studied triangular
lattice systems, where Mn2þ magnetic ions adopt either
sixfold or fivefold oxygen coordinations. For instance, the
Rb4MnðMoO4Þ3 features Mn2þO5 polyhedra forming equi-
lateral triangular lattices separated by MoO4 tetrahedra,
with intralayer and interlayer distances between Mn2þ ions
of 6.099 Å and c=2 ¼ 11.856 Å, respectively [17].
In Ba3MnNb2O9, the Mn2þ ions have an octahedral
coordination and form triangular lattices with Mn-Mn
intralayer distance of 5.773 Å and interlayer distances
c ¼ 7.0852 Å [21].
The evolution with the temperature of the

K2Mn3ðVO4Þ2CO3 lattice parameters is investigated by
powder neutron-diffraction and single-crystal x-ray mea-
surements. A smooth temperature dependence is observed,
suggesting that no noticeable structural change takes place
down to 1.7 K. This observation appears to contradict the
earlier speculations in Ref. [33] of a Jahn-Teller distortion
taking place at around 80–100 K.

B. Macroscopic magnetic behavior

The temperature dependence of magnetic susceptibility
(χ ¼ M=H) measured with a magnetic field applied along
and perpendicular the c axis is shown in Fig. 3. In this
figure, we choose to plot the temperature axis in a
logarithmic scale to increase the visibility of the magnetic

TABLE I. Refined structural parameters and selected bond distances of K2Mn3ðVO4Þ2CO3 from single-crystal
neutron-diffraction data collected at T ¼ 150 K.

Atom Wyckoff x y z Ueq

K 4f 1=3 2=3 0.6578(1) 0.0144(4)
Mn1 4f 1=3 2=3 0.0046(1) 0.0081(3)
Mn2 2a 0 0 1=4 0.0092(5)
V 4e 0 0 0.0800(4) 0.0057
C 2c 1=3 2=3 1=4 0.0070(3)
O1 12i 0.3210(1) 0.3098(1) 0.0550(1) 0.0080(1)
O2 4e 0 0 0.1552(1) 0.0138(3)
O3 6h 0.0682(1) 0.6255(1) 1=4 0.0133(3)

Mn1—O1 ð×3Þ∶ 2.1444ð6Þ Å; Mn2—O2 ð×2Þ∶ 2.1234ð8Þ Å
Mn1—O1 ð×3Þ∶ 2.1912ð7Þ Å; Mn2—O3 ð×3Þ∶ 2.1452ð7Þ Å
Mn1—Mn1 ð×3Þ∶ 3.006ð1Þ Å; Mn2—Mn2 ð×6Þ∶ 5.195ð1Þ Å
Space group: P63=m, a ¼ b ¼ 5.1959ð3Þ Å, c ¼ 22.405ð2Þ Å
Rf ¼ 0.051, χ2 ¼ 2.04
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phase transitions that occur over a large temperature
interval. A first magnetic transition near TN1 ≈ 85 K is
revealed by a subtle drop in the susceptibility curve
measured with field applied along the c direction. A second
magnetic order transition is discernible as a rise of the H⃗kc
susceptibility at TN2 ≈ 3 K. This transition is immediately
followed by a third transition, which appears as a kink in
the susceptibility curve at TN3 ≈ 2.2 K. The large differ-
ence between the TN1 and TN2 ordering temperatures
denotes that the honeycomb and triangular magnetic layers
possess magnetic interactions of completely different
energy scales and act as nearly independent magnetic
sublattices.
The low-temperature region of the zero-field heat-capacity

data together with magnetic susceptibility data correspond-
ing to two different magnetic field orientations H⃗kc and
H⃗⊥c are displayed in Fig. 4. The two successive magnetic
transitions at approximately 3 and 2.2 K can be clearly seen

in heat-capacity data (cP) as two distinguishable λ-shaped
peaks. One can also notice in Fig. 4 that the magnetic
susceptibility exhibits significant anisotropic behavior.
When the field is applied parallel to the c axis, the
susceptibility undergoes changes at both TN2 and TN3

transitions. However, when the field is applied perpendi-
cular to the c axis, only the lower transition near 2.2 K (TN3)
is visible. This behavior is indicative of a spin canting taking
place at the lowest temperature.
The inversemagnetic susceptibility is shown in the inset of

Fig. 3 along with fits using the Curie-Weiss model [χ ¼ χ0þ
C=ðT − ΘCWÞ]. The 1=χ data show two linear regimes: one
for the temperature range 200 to 700 K where all spins are
paramagnetic and a second at lower temperatures ranging
from 10 to 50 K. For the high-temperature range, the Curie-
Weiss fit yields aCurie constantC ¼ 4.44 cm3=mol-Mn=K,
a Weiss temperature of −215K, and a temperature-
independent term χ0 ¼ −0.000 27 cm3=mol-Mn. The neg-
ative experimental value of χ0 can be attributed to the
diamagnetic background from the sample holder, as the core
diamagnetism correction is estimated to be about an order of
magnitude smaller that the obtained value. The negative
Weiss temperatures indicate dominant antiferromagnetic
interactions. The obtained effective moment 5.95μB=Mn is
very close to that expected forS¼5=2Mn2þ, g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SðSþ 1Þp ¼
5.91μB=Mn, suggesting thatMn ions have the same spin state
in both honeycomb and triangular planes. A Curie-Weiss fit
performed using a constrained χ0 ¼ 0 yields a slightly lower
effective moment 5.72μB=Mn and ΘCW ¼ −188 K. Note
that a previous study [33] reported much smaller values
for both the effective moment (2.75μB=Mn) and the
Curie-Weiss temperature (−114 K), which were likely
caused by an overestimation of the temperature-independent
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susceptibility term. Although the temperature interval of the
second Curie-Weiss regime 10 K < T < 50 K is too narrow
for extractingdefinite information, theCurie-Weiss fit yields a
Weiss temperature of about −19 K and Curie constant
1.62 cm3=mol-Mn=K. One could remark that this Curie
constant represents about 36% of the value obtained for
the high temperatures, and it correlates reasonably well with
the 1=3 fraction of spins located in the triangular layer. This
finding suggests that the honeycomb and triangular layers act
as nearly independent magnetic sublattices.
The isothermal magnetization curves measured at

selected temperatures ranging from 2 to 300 K are shown
in Fig. 5. Magnetization data are taken for magnetic fields
up to 16 T applied along the c axis and up to 8 T for fields
applied perpendicular to the c axis. In agreement with the
previous report [33], the magnetization curve measured with
H⃗kc at T ¼ 2 K exhibits a plateau at about 4.5 T, followed
by a sharp upturn at approximately 7 T. Another steplike
transition is observed near 11 Tand then a tendency towards
saturation as the field approaches 16 T. The magnetization
value of the plateau state (approximately 0.55μB=Mn)
appears to correspond to about 1=9 of the total saturation
value of Mn2þ moments (MS ¼ gS ¼ 5μB), or 1=3 of the
saturation value of Mn2þ moments located in the triangular
layers. The magnetization plateau value labeled as 1=3MST
is marked by a dashed line in Fig. 5. We note that the
saturation of magnetization of the triangular layers MST ¼
1.66μB=Mn is found to be reached at a magnetic field of

about 14.3 T. At T ¼ 4 K, the plateaulike state in the μ0H⃗kc
magnetization curve is no longer present, suggesting that
this is related to the low-temperature ordering states
observed below 3 K (TN2). On the other hand, the 11-T
steplike transition persists up to 50 K, appearing to be
related to the higher-temperature ordered state that emerges
at TN1 ≈ 85 K. There is no apparent rational number
correlation between the magnetization value corresponding
to this transition and the total saturation value MS. In
contrast to the magnetization curve measured with H⃗kc, the
curve measured with H⃗⊥c shows a smooth increase with
increasing the magnetic field up to the highest measured
value of 8 T.
Heat-capacity measurements in applied magnetic fields

are carried out to construct the T-H phase diagram around
the two low-temperature magnetic transitions. The results
are summarized in Fig. 6. For the field oriented along the
c-axis direction, the TN3 magnetic transition shifts quickly
towards lower temperatures with increasing the magnetic
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magnetic phase diagram deduced from heat-capacity data. For
H⃗kc denoted by solid symbols, the lowest transition (TN3) shifts
to lower temperatures with increasing the magnetic field, while
the TN2 transition displays a domelike shape. For H⃗⊥c repre-
sented by open symbols, the TN3 transition evolves into two
distinct transitions (TN3 and T�

N3), while the TN2 transition
increases slightly.
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field, while the intermediate transition TN2 extends first
to higher temperatures and then diminishes to define a
domelike shape with the tip at approximately μ0H ¼ 4 T
and 3.75 K. The transition points for H⃗kc are represented
by filled symbols in Fig. 6(c). It is also interesting that the
heat-capacity peak corresponding to the intermediate tran-
sition displays a dramatic increase in intensity as the field
increases to 4 T, after which it remains relatively flat. This
H⃗kc phase diagram is reminiscent of that of a triangular
lattice antiferromagnet with weak easy-axis anisotropy, and
it is strikingly similar to that observed for Rb4MnðMoO4Þ3
[17] and Ba3MnNb2O9 [21].
Upon applying the magnetic field perpendicular to the

c axis the heat-capacity peak corresponding to the TN2

transition shifts only slightly to higher temperatures,
whereas the peak denoting the TN3 transition splits into
two components that display dome-shaped profiles as a
function of the magnetic field. The higher-temperature
component that emerges from the zero-field heat-capacity
peak labeled as T�

N3 in Fig. 6, is much broader and reduced
in amplitude. The phase diagram for this field direction is
unexpectedly more complicated than that observed in other
triangular lattice antiferromagnets.

C. Zero-field magnetic order

1. Magnetic order of the honeycomb sublattice

Powder and single-crystal neutron-diffraction data col-
lected below TN1 reveal additional scattering at low-angle
reflections of the type (1, 0, L ¼ 2n). The evolution of the
powder-diffraction pattern across this first magnetic tran-
sition is shown in Fig. 7. Magnetic structure models
compatible with the space group P63=m and the propaga-
tion vector k ¼ ð0; 0; 0Þ are explored using both the
magnetic symmetry approach using the MAXMAGN pro-
gram [42] and the representation analysis with the program
SARAh [41]. Among the four possible maximal magnetic

space groups, the P603=m (#176.145) is the only one that
fits well all observed magnetic intensities. The magnetic
structure at intermediate temperatures 3 K ≤ T ≤ 85 K
consists of a Neél-type antiferromagnetic order character-
ized by antiparallel alignment of nearest-neighbor Mn1
moments in the honeycomb layer. The magnetic moments
at the Mn2 sites of the triangular layer remain disordered.
The Mn1 moments are oriented parallel to the c axis, and
the antiferromagnetic honeycomb layers are stacked ferro-
magnetically along the c-axis direction. The refined ampli-
tude of the static moment is 2.9ð1ÞμB at 50 K, and it
converges to 5.0ð1ÞμB at 1.7 K. The magnetic structure is
depicted in Fig. 8. The magnetic moment orientation for
each atomic position is explicitly given in Table II. It is
worth noting that the Néel-type antiferromagnetic (AFM)
ground state of the honeycomb lattice is susceptible
to undergo a spin-flop transition for a magnetic field
applied parallel to the c axis [45]. Thus, the steplike
anomaly observed at about 11 T in the isothermal mag-
netization measurements can be interpreted as a spin-flop
transition.

FIG. 7. Contour plot of the evolution of the neutron-powder-
diffraction patterns recorded on cooling from 110 to 50 K. The
data reveal the appearance of magnetic Bragg reflections of the
type (1, 0, L ¼ 2n) corresponding to the long-range magnetic
ordering of the Mn1 ions occupying the honeycomb layers.

FIG. 8. Magnetic structure for the temperature range 3 K ≤
T ≤ 85 K defined by a Neél-type antiferromagnetic arrangement
of Mn1 moments in the honeycomb layer, while the Mn2 in
triangular layers remains paramagnetic. The ordered moments are
aligned along the c direction. The successive antiferromagnetic
planes are stacked ferromagnetically. The right panel displays a
projection of the structure along the c axis, emphasizing the
location of paramagnetic Mn2 site on top or underneath the zero
molecular field created by the six surrounding Mn1 ordered
moments.

TABLE II. Magnetic structure configuration of
K2Mn3ðVO4Þ2CO3 for the temperature range 3 K ≤ T ≤ 85 K
described by k ¼ ð0; 0; 0Þ and the magnetic space group P603=m.

Atom (x, y, z) (ma, mb, mc)

Mn1 [1=3, 2=3, 0.004 60(5)] (0, 0, mc)
[1=3, 2=3, 0.4954(5)] (0, 0, mc)

[2=3, 1=3, −0.004 60ð5Þ] (0, 0, −mc)
[2=3, 1=3, 0.504 60(5)] (0, 0, −mc)

Mn2 (0, 0, 1=4) (0, 0, 0)
(0, 0, 3=4) (0, 0, 0)
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2. Magnetic order of the triangular sublattice

A new set of magnetic reflections with propagation
vector k ¼ ð1

3
; 1
3
; 0Þ appears upon cooling below approx-

imately 3.2 K. The temperature evolution of the (1
3
, 1
3
, 1)

peak intensity is shown in Fig. 9. The observed transition
point agrees well with TN2 obtained from macroscopic
measurements. Furthermore, a kink in the order-parameter
curve is observed near 2.2 K that matches the position of
the second peak at TN3 in the heat-capacity data. No change
in intensity of the k ¼ ð0; 0; 0Þ-type magnetic peaks
associated with the ordering of Mn1 honeycomb sublattice
is observed to occur at these low temperatures. The spin
reorientation suggested by the static susceptibility data to
take place at TN3 is best captured by following the
temperature dependence of the ratio between the (1

3
, 1
3
, 1)

and (1
3
, 1
3
, 3) peak intensities shown in the inset of Fig. 9. It is

noticeable that the (1
3
, 1
3
, 3) exhibits a larger gain in intensity

below 2.2 K. Considering that only the moment component
perpendicular to the momentum transfer Q contributes to
the magnetic intensities, the abrupt change in the relative
intensity gain indicates that some magnetic moments are
rotating away from the c axis. A rough estimate of the
canting angle Θ ¼ 54ð5Þ° is obtained from the intensities
ratio at T ¼ 1.7 K.
The new satellite peaks associated with the wave vector

k ¼ ð1
3
; 1
3
; 0Þ that develop below 3 K are attributed to the

long-range magnetic ordering of the manganese atoms

(Mn2) in the triangular layer. The neutron-scattering data
are well described by a magnetic structure with the static
magnetic moments pointing along the c axis and ampli-
tudes which follow the k-wave-vector modulation such as
mi ¼ m0ℜ½cosð2πk · ri þ ϕÞ� [46]. Here,m0 represents the
amplitude of the ordered moment in the zeroth cell, and ϕ is
a phase factor. The moment distribution for a phase ϕ ¼ 0
along the a axis is m0, −m0=2, −m0=2, while for a choice
of ϕ ¼ π=2, the sequence becomes 0, −

ffiffiffi

3
p

=2m0,
ffiffiffi

3
p

=2m0.
The moments are thus fully compensated inside the plane.
Furthermore, the selection rule L ¼ 2nþ 1 indicates that
successive triangular layers are stacked antiferromagneti-
cally along the c direction. It is important to realize that we
are discussing the ordering of the static moment. Other
possible disordered or strongly fluctuating magnetic com-
ponents that may exist do not contribute to the Bragg
intensities. The only possibility to obtain a uniform
amplitude across all Mn2 magnetic sites is if an additional
k ¼ ð0; 0; 0Þ component would be present. This is impor-
tant to understand, since most publications refer to this
intermediate state, which is specific to the triangular lattice
systems with weak easy-axis anisotropy, as the uud phase,
without any further description of its single-k or double-k
character. In our case, the lack of k ¼ ð0; 0; 0Þ contribution
(and, thus, of net magnetization) is obvious from the
magnetization measurements. Furthermore, a careful meas-
urement of the temperature evolution of the (1,0,1) reflec-
tion across the two low-temperature transitions shown in
Fig. 9 indicates no additional magnetic scattering, as one
would expect from an uncompensated magnetic compo-
nent. Our amplitude modulated uud (single-k) magnetic
structure can be described by the magnetic space group
P603=m in a 3 × 3 × 1 magnetic supercell. Within this
expanded unit cell, there are three nonequivalent magnetic
sites (Mn2i, i ¼ 1, 2, 3) that follow the modulation
imposed by the kwave vector. Note that the same magnetic
space group can be used to describe a uniform uud
double-k structure. The proposed magnetic structure model
for the Mn2 site in the temperature range 2.2 K ≤ T ≤ 3 K
is shown in Fig. 10(a), and the site-specific orientation of
magnetic moments is given in Table III. In Fig. 10, we omit
the Mn1 honeycomb layers that preserve the same spin
arrangement as shown in Fig. 8.
As evidenced by the order-parameter curve in Fig. 9, an

in-plane spin component develops below 2.2 K resulting in
a canting of the ordered moment away from the c direction.
The in-plane spin component exhibits a modulation in
amplitude in accord to k ¼ ð1

3
; 1
3
; 0Þ. The natural tendency

toward a uniform static moment magnitude for all sites is
fulfilled by the development of in-plane components only
on the two sites with reduced mc static moments. This spin
configuration can be realized by considering an offset
between phase factors ϕ of the two moment components
mc and mab of π=2. Ideally, this produces a 120° spin
configuration in the plane containing the c axis and is
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FIG. 9. Temperature dependence of (1
3
, 1

3
, 1) magnetic peak

intensity revealing the long-range magnetic order of Mn2 ions on
the triangular layer at TN2 ≈ 3.2 K followed by a spin reorienta-
tion at TN3 ≈ 2.2 K. The absence of magnetic scattering con-
tribution to the (1,0,1) reflection across the two low-temperature
transitions suggests that the intermediate magnetic order consists
of a collinear up-up-down structure with modulated amplitude
(see text for details). The inset displays the temperature depend-
ence of the ratio of the intensities (1

3
, 1
3
, 1) and (1

3
, 1
3
, 3). The larger

gain in intensity of (1
3
, 1
3
, 3) below TN3 demonstrates that magnetic

moments are rotating away from the c axis to produce a Y-type
spin structure.
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known in the literature as the planar Y-canted structure.
Similar to the intermediate phase, the successive Mn2
triangular layers remain aligned antiparallel with respect
to each other. This low-temperature ordered state inherits the
broken lattice symmetry while also breaking the spin-rota-
tional symmetry within the ab plane and thus can be viewed
as a magnetic analogue to a supersolid state [9,10]. The
magnetic structure can be described using the monoclinic
magnetic subgroup P201 (#4.9) operating on a 3 × 3 × 1

magnetic supercell. We note that the in-plane spin compo-
nent can align along any direction, and, experimentally, this
cannot be uniquely determined. For fitting the single-crystal
neutron data, we select a model where the spins form an
ideal 120° structure in the (1,1,0) plane. The refined
magnitude of the static moment is 3.7ð2ÞμB, significantly

smaller than that expected for spin S ¼ 5=2. A similar
reduced ordered moment of about 3.9ð5ÞμB was reported for
the S ¼ 5=2 TLA system RbFeðMoO4Þ2 [12]. One pos-
sibility is that the static moment does not reach full saturation
at the measured temperature of 1.7 K, but it could also be
that the geometrical frustration is causing strong quantum
fluctuations. The magnetic moment arrangement in this
canted structural model for the temperatures below 2.2 K
is summarized in Table III and illustrated in Fig. 10(b).

D. Spin-wave excitations

1. Magnetic excitation spectrum
of the honeycomb sublattice

Inelastic neutron-scattering measurements performed with
the incident energyEi ¼ 25 meV reveal a well-defined spin-
wave branch emerging from the (1,0,0) magnetic peak and
extending to an energy transfer of approximately 22meV [see
Fig. 11(a)]. There is nodiscernable dispersion along thec axis
indicating very weak coupling between magnetic layers. As
visible in Fig. 11(b), the two-dimensional correlations are
evidenced by rods of scattering along the [0, 0,L] direction in

FIG. 10. (a) Three-sublattice static magnetic order of Mn2
atoms (inside the triangular layer) in the intermediate temperature
2.2 K ≤ T ≤ 3 K. The magnetic moments are aligned parallel to
the c axis in an up-up-down configuration. The moment ampli-
tude follows the k¼ð1

3
;1
3
;0Þ modulation, mi¼m0ℜ½cosð2πk·riÞ�,

resulting in a fully compensated magnetization inside the plane.
Successive triangular layers are stacked in an antiparallel manner.
The honeycomb layers maintain the AFM structure shown in
Fig. 8 but are omitted for clarity. A view along the c axis of a
three-sublattice collinear magnetic order is shown in the right
panel. (b) Three-sublattice magnetic structure below 2.2 K. Two
of Mn2 atoms develop in-plane (ab ordered) spin components to
form a planar canted Y-type structure, where moments are rotated
by about 120° between neighboring sites. The structure remains
bilayer with the moments of adjacent layers being antiparallel to
each other. The right panel of the figure displays the projection of
the spin structure on the ab basal plane.

TABLE III. Magnetic spin configuration of the Mn2 site for the
temperature range 2.2 K ≤ T ≤ 3 K and below 2.2 K described
by k ¼ ð1

3
; 1
3
; 0Þ and magnetic space groups P603=m and P201,

respectively. The atomic coordinates (x0, y0, z0) are defined for the
3 × 3 × 1 magnetic supercell. In the expanded lattice, there are
three nonequivalent magnetic sites and moments projections in
the ab plane and c direction follow the modulation imposed by a
kwave vector (as described in the text). We constrain the moment
directions to form an ideal 120° structure with the in-plane
projection mabk½1; 1; 0� direction. The refined magnitude of the
static moment m0 at 1.7 K is 3.7ð2ÞμB.

2.2 K ≤ T ≤ 3 K T < 2.2 K
P603=m P201

Atom (x0, y0, z0) (ma, mb, mc) (ma, mb, mc)

Mn21 (0, 0, 1=4) (0, 0, m0=2) (m0=2, −m0=2, m0=2)
(0, 2=3, 3=4) (0, 0, −m0=2) (m0=2, −m0=2, −m0=2)

(1=3, 1=3, 3=4) (0, 0, −m0=2) (m0=2, −m0=2, −m0=2)
(1=3, 2=3, 1=4) (0, 0, m0=2) (m0=2,−m0=2, m0=2)
(2=3, 0, 3=4) (0, 0, −m0=2) (m0=2, −m0=2, −m0=2)

(2=3, 1=3, 1=4) (0, 0, m0=2) (m0=2, −m0=2, m0=2)

Mn22 (0, 0, 3=4) (0, 0, −m0=2) (−m0=2, m0=2, −m0=2)
(0, 2=3, 1=4) (0, 0, m0=2) (−m0=2, m0=2, m0=2)

(1=3, 1=3, 1=4) (0, 0, m0=2) (−m0=2, m0=2, m0=2)
(1=3, 2=3, 3=4) (0, 0, −m0=2) (−m0=2, m0=2, −m0=2)
(2=3, 0, 1=4) (0, 0, m0=2) (−m0=2, m0=2, m0=2)
(2=3, 1=3, 3/4) (0, 0, −m0=2) (−m0=2, m0=2, −m0=2)

Mn23 (0, 1=3, 1=4) (0, 0, −m0) (0, 0, −m0)
(0, 1=3, 3=4) (0, 0, m0) (0, 0, m0)
(1=3, 0, 1=4) (0, 0, −m0) (0, 0, −m0)
(1=3, 0, 3=4) (0, 0, m0) (0, 0, m0)

(2=3, 2=3, 1=4) (0, 0, −m0) (0, 0, −m0)
(2=3, 2=3, 3=4) (0, 0, m0) (0, 0, m0)
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the contour plot of the reciprocal lattice plane corresponding
to the energy-transfer range 6–10 meV. The scattering
intensity alongQ follows the decay expected for themagnetic
form factor of the Mn2þ magnetic ion. As we describe in
Sec. II, the sample used for these measurements is relatively
small (0̃.3 g) and consists of coaligned crystals only along the
c-axis direction with random in-plane orientation. This
limitation negatively impacts the data quality and the amount
of information that can be extracted from them. Thus, certain
assumptions which simplify the analysis must be made.
Excitations from a honeycomb lattice are typically described
by using aHeisenbergmodel that includes first-, second-, and
third-neighbor in-plane exchange interactions (J1, J2, J3), an
exchange interaction between planes Jc, and an anisotropy
term Dh [47–49]. Based on our experimental resolution, we
can estimate that the interplane couplingJc and the anisotropy
are 2 orders of magnitude smaller than the in-plane exchange
interactions. The J3 is not expected to have a significant
contribution and is beyond our ability to determine with the
available data. The strength of nearest-neighbor exchange
interaction can be estimated from the Curie-Weiss temper-
ature (ΘCW ¼ −215 K), J1 ¼ 3kB ΘCW=ζSðSþ 1Þ [50].

Considering the number of nearest neighbor ζ ¼ 3 and the
spin value S ¼ 5=2, one obtains J1 ¼ 2.1ð3Þ meV. Fixing
the J1 value, the measured inelastic spectrum can be well
reproduced by using an additional second-neighbor exchange
J2 ¼ −0.3ð1Þ meV. The ratio between the J1 and J2 is
consistentwith that expected for aNéel-typemagnetic ground
state in a honeycomb lattice [47,48].
In the absence of a measurable spin-wave excitation gap,

the magnitude of the axial anisotropy term Dh responsible
for the spin alignment along the c axis can be obtained from
the value of the field-induced transition observed near 11 T.
For a honeycomb lattice ordered in a Néel-type AFM
magnetic structure, a spin-flip transition is expected to
occur at a field HSF ¼ 2S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dhð3J1 −DhÞ
p

=gμB. This spin-
flip-field value yields an anisotropy Dh of approximately
0.010(2) meV. The calculated spin-wave excitation spec-
trum using the aforementioned exchange parameters over
an averaged in-plane momentum transfer is shown in
Fig. 11(c). Our estimates show that the dipole-dipole
interaction can present an important contribution to the
uniaxial anisotropy of Mn2þ (S ¼ 5=2) ions in the honey-
comb layer. The intralayer and interlayer distances, 3.01

FIG. 11. (a) Energy-momentum slice of the inelastic neutron-scattering data measured with Ei ¼ 25 meV at the HYSPEC
spectrometer. A spin-wave branch emerges from the (1,0,0) magnetic peak and extends to an energy transfer of approximately
22 meV. (b) Contour plot of the (H, 0, L) reciprocal plane for energy transfer integrated between 6 and 10 meV. The rod of scattering
along the [0, 0, L] direction indicates very weak coupling between magnetic layers. (c) Calculated spin-wave spectrum using a
Heisenberg model that includes first- and second-neighbor in-plane exchange interactions [J1 ¼ 1.55 meV, J2 ¼ −0.45ð3Þ meV] in the
S ¼ 5=2 honeycomb lattice. (d) Low-energy magnetic excitations that develop around the magnetic peaks at (1=3, 1=3, 1) and (2=3, 2=3,
1). (e) 2D slice of momentum space corresponding to energy-transfer range 0.2–0.3 meV revealing the quasi-two-dimensional character
of the excitations. (f) The calculated spin-wave spectrum of S ¼ 5=2 triangular lattice Heisenberg antiferromagnet characterized by
nearest-neighbor exchange interactions (J ¼ 0.08 meV) and an easy-axis anisotropy (Dt ¼ 0.03 meV). The spectrum is averaged over
all in-plane Q directions to reproduce the experimental conditions.
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and 5.5 Å, yield an anisotropy comparable in magnitude
(10−2 meV) to those observed and calculated for the
classical antiferromagnets MnO [51,52] and MnF2
[53,54], where the nearest-neighbor distances are about
3.1 and 3.3 Å, respectively.

2. Magnetic excitation spectrum
of the triangular sublattice

The T ¼ 1.7 K inelastic data contain additional low-
energy magnetic excitations that are due to cooperative flu-
ctuations of magnetically ordered spins in the triangular
layer. As shown in Fig. 11(d), spin-wave excitations develop
around the magnetic Bragg peak positions (1

3
, 1

3
, 1) and

(2
3
, 2
3
, 1) and have a bandwidth of approximately 0.8 meV.

The quasi-two-dimensional character of the excitations
is revealed by the rodlike scattering along the [0, 0, L]
direction in the 2D slice plot of momentum space
corresponding to the energy-transfer range 0.2–0.3 meV
displayed in Fig. 11(e). Keeping in mind that only one-
third of the magnetic ions occupy the triangular layer,
it is not surprising that the INS data quality of these low-
energy excitations is even more affected by the small
sample mass and its random in-plane orientation. In addi-
tion, a diffusive quasielastic component seems to overlap
with the spin waves, accounting for some of the missing
ordered moment. Such a diffuse scattering was previously
observed in other triangular systems and was attributed
to uncorrelated trimers that can survive well below
the ordering temperature [55]. Nonetheless, from the band-
width of the spin-wave spectrum, one can estimate the
value of a nearest-neighbor exchange interaction (J) as
approximately 0.08(1) meV. As we point out in the previous
sections, the magnetic behavior observed from the tri-
angular layer suggests the existence of a weak easy-axis
anisotropy (Dt). The energy gap expected from such an
anisotropy cannot be resolved in our INS data. However, one
can determine the value of Dt from its relationship to the

two-step transition temperatures Dt ≈ J ðTN2 − TN3Þ=TN2

or from the saturation magnetic field of the triangular
magnetic sublattice HS ¼ ð9J − 2DtÞS=gμB ¼ 14.3 T [3].
The estimated value of the axial anisotropy is Dt ≈
0.028ð2Þ meV, which is nearly twice as large than that in
the honeycomb layerDh ≈ 0.010ð2Þ meV. Considering that
the interatomic distance forMn ions located in the triangular
layer is much larger, approximately 5.2 Å, a much smaller
dipolar contribution of the order of 10−3 meV is estimated
for this site. It therefore appears that the Dt magnetic
anisotropy is mainly due to higher-order terms in the
interplay between crystalline-field and spin-orbit couplings
and covalency effects, as demonstrated for other 3d5 systems
[56–58]. For instance, spin-orbit-coupling effects were
shown to produce an anisotropy D of about 0.06 meV in
Mn2þWO4 [59]. One shall also stress that the trigonal
bipyramidal coordination of Mn2þ in the triangular layer
is anticipated to induce a stronger spin-orbit-induced
anisotropy than the more-regular octahedral environment
of the magnetic ions in the honeycomb layer [60]. The
calculated in-plane averaged spin-wave spectrum using
the estimated J and Dt parameters is shown in Fig. 11(f).
The inelastic magnetic spectrum of the intermediate ordered
state uud is also measured at 2.8 K, and it shows no
discernible change with respect to that observed at the base
temperature.

E. Field-induced magnetic phases
in triangular sublattice

The effect of applied magnetic fields on the magnetic
order of K2Mn3ðVO4Þ2CO3 is studied using the CORELLI
and HYSPEC instruments for fields up to 8 T. For such
magnetic fields, only the triangular magnetic layer shows a
notable magnetic response. Figure 12 shows the evolution
of the elastic scattering in the (H,H,L) reciprocal plane for
the magnetic fields of 0, 0.5, and 5 T applied along the
c-axis direction. The data reveal changes in intensity of
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FIG. 12. (a)–(c) Evolution of scattering intensity in the (H, H, L) reciprocal plane for different magnetic fields applied along the
c direction. Data demonstrate the development of strong structured diffuse scattering intensity along the L direction. (d) Cut along the
diffuse scattering at the (2

3
, 2
3
, L) position revealing prominent peaks centered at L ¼ 0, �0.5, �1, and �1.5.
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satellite magnetic peaks associated with the propagation
vector k ¼ ð1

3
; 1
3
; 0Þ, as well as the development of strong

diffuse scattering intensity along the L direction. The
diffuse scattering becomes progressively stronger with
increasing field and has a well-structured profile. A cut
along the L direction of the diffuse scattering with
prominent peaks at L ¼ 0,�0.5,�1, and�1.5 is displayed
in Fig. 12(d) and 13. A more thorough survey of the field
effect on the intensities of (1

3
, 1
3
, 0) and (1

3
, 1
3
, 1) magnetic

Bragg peaks is carried out using the HYSPEC instrument
and is shown in Fig. 14. One can observe an immediate
increase in intensity of the (1

3
, 1
3
, 0) peak as the field is raised

above zero. Furthermore, the (1
3
, 1

3
, 1) peak’s intensity

undergoes a slight decrease with a minimum near 1.5 T,
followed by a recovery with a local maximum at about
5.5 T, and then a strong decrease to a nearly complete
disappearance at the highest measured field μ0H ¼ 8 T.
The profile of the field dependence reveals the existence of
at least four different spin configurations before reaching
saturation.
When the magnetic field is applied along the [1, 1̄, 0]

direction, the evolution of magnetic peaks is strikingly
different. Representative slices of the (H, H, L) reciprocal
plane obtained at fields of 0, 1.5, 3.5, and 5 T are presented
in Fig. 15. The 1.5-T data reveal the appearance of well-
defined (1

3
, 1
3
, 0) and (2

3
, 2
3
, 0) magnetic peaks and no diffuse

scattering along the L direction. At 3.5 T, the magnetic
peaks appear to relocate along the L direction to a slightly
incommensurate lattice vector ξ ¼ 0.654ð1Þ. As the mag-
netic field is ramped up to 5 T, the magnetic phase recovers
its commensurate state with k ¼ ð1

3
; 1
3
; 0Þ. The order-

parameter profiles of the commensurate and incommensu-
rate magnetic states as a function of the field at 1.7 K are
shown in Fig. 16. One can see that the incommensurate
phase forms at about 2 Tand disappears near 4.5 T. There is
no detectable change in the incommensurability for this
field range. Above 4.5 T, the commensurate (1

3
, 1
3
, 1) peak

reappears but does not recover all its intensity and exhibits
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FIG. 13. Description of neutron-diffraction data using a mixture
of bilayer phase AB and four-layer phases with (a) ABBA and
(b) ABCB spin-stacking sequence. The calculated intensities at
Bragg peak positions are indicated by red columns.
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a slow decrease with increasing the field. The phase
diagram revealed by neutron-scattering measurement sheds
light on the origin of the split into two components of
the heat-capacity low-temperature peak presented in Fig. 6.
It is plausible that the heat-capacity peak at T�

N3 is related
to the commensurate-incommensurate phase transition.
The intermediate-field incommensurate state appears to
be stable only over a finite temperature range, which
suggests that thermal fluctuations play a key role in its
formation.
Based on the recorded integrated intensities, models of

the magnetic structures corresponding to each stage of
the H⃗kc or H⃗⊥c phase diagrams are constructed. The
available models are further scrutinized by considering the
results of Monte Carlo simulations performed on a spin
Hamiltonian of a TLA described using the determined
nearest-neighbor exchange coupling (J ¼ 0.08 meV) and
easy-axis anisotropy (Dt ¼ 0.028 meV), as well as an
approximate weak interlayer coupling Jz1 ¼ 0.005 meV.
The calculated magnetization curves for T ¼ 0 and 1.7 K,
along with the predicted magnetic configurations at 0 K are
presented in Fig. 17. The zero-field heat-capacity curve
shown in the inset of Fig. 17 reproduces the two successive
magnetic transitions at low temperatures, while the calcu-
lated isothermal magnetization curve captures the exper-
imental data very well.
The appearance of L ¼ even reflections in the neutron

data suggests the change in the spin-stacking sequence
between triangular layers, with part of the spins tending
to align parallel to each other. Therefore, in the low-field
regime of μ0H⃗kc, the Y magnetic configurations of the
adjacent triangular layers are no longer compensating each
other as in the zero-field structure but follow the field

direction to produce a net magnetization along the c axis.
The determined low-field magnetic structure is shown in
Figs. 17(a) and 18(i). It consists of two triangular layers as
the chemical crystal structure, with the stacked spins
rotated by approximately 2π=3 relative one to another.
Upon further increasing the magnetic field, the spins in
each layer are continuously rotating to arrange parallel to
the c axis into a 1=3 MST plateau state uud. This collinear
configuration is displayed in Fig. 18(ii). Note that such an
ordered state has a double-k nature, as k ¼ ð0; 0; 0Þ
contribution adds to the zero-field k ¼ ð1

3
; 1
3
; 0Þ. Because

of the geometrical degeneracy, there are three possible
magnetic configurations for each triangular layer—uud,
udu, or duu—that we refer to in the following as A, B, and
C magnetic layers. These magnetic configurations are
presented in Fig. 19. The existence of stacking disorder
of the neighboring layers is apparent in the presence of the
structured diffuse scattering along the L direction. The
relative intensities at the (1

3
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3
, L) peak positions for L ¼ 0,
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peak intensities at T ¼ 1.7 K mapping out the phase diagram for
H⃗k½1; 1̄; 0�. One observes that the intermediate incommensurate
phase separating two other field-induced commensurate states
begins at about 2 T and disappears near 4.5. The dashed line is a
guide to the eye.

FIG. 17. Calculated magnetization curves for H⃗kc (a) and H⃗⊥c
(b) from a triangular magnetic lattice characterized by the NN
exchange interaction and easy-axis anisotropy determined ex-
perimentally. Temperature effect on the magnetization plateau is
shown by comparing the T ¼ 0 K (black curve) with T ¼ 1.7 K
(red curve) calculations. The inset shows the computed zero-field
heat-capacity curve that reproduces well the observed successive
transitions 2.2 and 3 K. Predicted field-induced bilayer spin states
from our classical Monte Carlo simulations are sketched along
the magnetization curves, with the planar ac structures of the
adjacent layers plotted on top of each other.
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1, and 0.5 can be explained by an admixture of two
magnetic polytypes: the bilayer AB and a four-layer
superstructure ABBA. The phase ratio of the two observed
polytypes at T ¼ 1.7 K is found to be nearly 4∶1. We note
that the ABBA stacking model appears to give a better
description of our neutron-diffraction data than the other
possible four-layer ABCB model. A comparison of the two
four-layer models is shown in Fig. 13. Figure 18 displays
only the dominant AB bilayer magnetic polytype. While the
spin-stacking disorder could be explained by the presence
of small structural imperfections in the crystal, the
four-layer polytype is indicative of the presence of sec-
ond-nearest-neighbor interlayer interactions. This is very
surprising since the separation between second-nearest-
neighbor triangular layers is very large (approximately
22.4 Å), while each Mn atom is located in a zero molecular
field of the adjacent honeycomb sublattice. As presented
in Fig. 19, a bilayer structure is expected for AFM
nearest-neighbor interlayer coupling (Jz1) and FM sec-
ond-nearest-neighbor interlayer interaction (Jz2). In con-
trast, a four-layer superstructure ABBA is only possible for
FM nearest-neighbor interlayer interaction (Jz1) weaker
than twice the second-nearest-neighbor interlayer interac-
tion (2jJz2j > jJz1j). The competing second-nearest-
neighbor interlayer couplings across 22 Å can be explained
only by an order-by-disorder mechanism, or dipolar cou-
pling. However, the estimated dipole-dipole interaction for

22 Å is very small, of order of 10−4 meV. Furthermore, the
sign and magnitude of the effective interlayer coupling
induced by dipole-dipole interaction does not depend on
the strength of the magnetic field. Therefore, we are
suggesting that order-by-disorder mediated by nearly gap-
less magnons may be the source of this interlayer coupling.
The experimental restraints prevent us from carrying out a
measurement below 1.7 K to determine if the disorder and
polytypes’ mixing ratio exhibits any temperature depend-
ence. This is expected if thermal and quantum fluctuations
are involved in the effective interlayer coupling via the
order-from-disorder mechanism (effective interaction medi-
ated by fluctuations of the magnetic moments in the
honeycomb sublattice) [61]. The interlayer coupling
induced by the bare exchange interaction between the
adjacent triangular and honeycomb layers and mediated
by gaplessmagnons decays as a power law: 1=d3 [61].Given
the very small value of themagnon gap (due to the small spin
anisotropy), this coupling is expected to remain relevant
over multiple magnetic layers. The potential of quantum
fluctuations to generate interlayer coupling via the mecha-
nism of order from disorder has so far been considered for
the case of the body-centered tetragonal lattice [62,63], but
our experimental observations raise the possibility that a
similar mechanism can occur in triangular layers mediated
by a honeycomb lattice. We recall that in our system the Mn
ions at the triangular layer are located exactly on top or

FIG. 18. Models of the static magnetic orders induced by magnetic fields applied parallel to c (i)–(iv) and along [1, 1̄, 0] (i’)–(iv’) as
determined from neutron-diffraction data. The figure presents only the dominant bilayer structure, but the (i)–(iii) states are susceptible
to spin-stacking disorder and four-layer superstructure formation as described in the text. A three-layer stacking sequence (ii’) is found
for the in-plane field orientation where the moments form a nearly orthogonal configuration and are permuting orientations across the
three layers.
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underneath the hollow center of the Mn honeycomb lattice.
It is worth noting that evidence of two nonequivalent
modulations with L ¼ 0 and 0.5 and underlaying disorder
has been also reported in the staggered three-layer TLA
compound LiCrO2 [64].
At magnetic fields above 5.5 T, the collinear state starts

to evolve towards an oblique 2∶1 structure, as shown in
Fig. 18(iii). As the field increases, themagneticmoment that
is pointing opposite the field direction is continuously
rotating to align with the field. In the absence of neutron
data for fields larger than 8 T, we use classical Monte Carlo
simulations to define the magnetic state. The calculations
indicate that themoments are passed through a cantedV spin
configuration before the full saturation (MS), as shown in
Fig. 18(iv). The field-induced magnetic configurations
within the layer are consistent with the theoretical predic-
tions and with those observed in similar triangular systems.
The dominant bilayer magnetic orders found at low and
intermediate fields are consistent with the configurations
predicted by Gekht and Bondarenko for weakly coupled
triangular antiferromagnets [5]. However, the presence of
multiple magnetic polytypes including the four-layer super-
structure is indicative of more complicated interlayer cou-
pling and calls for more thorough theoretical investigations.
In the case of the field applied perpendicular to the

c axis along the [1, 1̄, 0] direction, the low-field magnetic
structure can be looked at as a distortion of the zero-field
Y structure where the two canted spins are rotating towards
the field direction. This reorientation does not alter the
lattice periodicity along the c direction, and the magnetic
structure remains bilayer up to about 2 T. The low-field
magnetic structure that describes well the low-field
(0 < μ0H ≤ 2 T) neutron data is shown in Fig. 18(i’).
The rotation of the spins continues until they reach a nearly

orthogonal arrangement, at about 2 T, with one spin
pointing along the in-plane field direction and the other
two aligned nearly parallel to the c axis (i.e., up-right-down
or urd magnetic structure). Similar to the plateau case
described by the A, B, and C configurations (Fig. 19), any
permutation of the three spin orientations is possible for such
an orthogonal model. Our diffraction data clearly indicate
that a three-layer superstructure is stabilized at intermediate
fields between approximately 2 and 4.5 T. This super-
structure is shown in Fig. 18(ii’). The stacked spins are
alternating their orientations across the three layers as udr,
rud, and dru, equivalent to an ABC configuration that
becomes stable when both the nearest neighbor and second
nearest neighbor are antiferromagnetic. There is, however,
a small incommensurability of the modulation along the
c axis [k ¼ ð1

3
; 1
3
; 0.654Þ], and therefore, the spin orienta-

tions undergo slight undulations around the ideal directions.
This incommensurability could arise from a competition
between nearest-neighbor and second-nearest-neighbor
interlayer interactions. It is interesting to point out that
the c-axis modulation of the magnetic order appears to be
locked in to a constant value for the entire range
(2 < μ0H < 4.5 T), despite the fact that the magnetization
curve shows a uniform increase suggesting a continuum
rotation of the spins towards the field direction. It is also
important to note that no stacking disorder is observed,
which indicates that this intermediate-field incommensurate
magnetic phase is well stabilized. Our classical Monte Carlo
simulation, which accounts only for a weak nearest-neighbor
interlayer exchange, predicts for this intermediate-field range
only a bilayer spin arrangement in the form of udr-rud [see
Fig. 17(b)]. Considering the stability of the three-layer phase
over a finite temperature interval, one may infer that the
second-nearest-neighbor interlayer coupling is strengthened
by quantum-mechanical coupling via the order-by-disorder
mechanism [1,61–63]. Upon increasing the magnetic field
above 4.5 T, the magnetic structure recovers its original
bilayer form, with a tilted variant of the udr-rud configu-
ration labeled as W illustrated in Fig. 18(iii’). Our
Monte Carlo calculation predicts that before saturation the
spins may experience an additional change in the stacking
pattern as drawn in Figs. 17(b) and 18(iv’).

IV. SUMMARY

The structural and magnetic properties of the vanadate-
carbonate K2Mn3ðVO4Þ2CO3 are studied by means of
magnetization, specific heat, and neutron-scattering mea-
surements. The structure consists of an alternate stacking
of honeycomb and triangular layers made of edge-sharing
MnO6 octahedra and MnO5 trigonal bipyramids, respec-
tively. Contrary to what was previously reported in
Ref. [33] and in agreement with the first-principles calcu-
lations of Ref. [34], we find that both layers consist of
Mn2þ in a high-spin state. The two magnetic layers act
as nearly independent magnetic sublattices with magnetic

FIG. 19. The three possible plateau state configurations
due to geometric degeneracy of triangular layer: A (uud), B
(udu), or C (duu). The spin-stacking sequence of the successive
triangular layer is determined by the nature (AFM or FM)
and relative strengths of nearest-neighbor (NN) (Jz1) and
second-nearest-neighbor (NNN) (Jz2) interlayer interactions.
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interactions of completely different energy scales. The
honeycomb magnetic sublattice orders at about 85 K in
a Neél-type AFM magnetic structure, with the Mn
moments oriented parallel to the c axis. This AFM state
produces a zero molecular field on Mn atoms located in the
triangular sublattice, which order magnetically in two steps
at much lower temperatures. The analysis of neutron-
diffraction data shows that the first transition at approx-
imately 3 K is to an amplitude-modulated AFM collinear
uud magnetic structure described by a propagation vector
k ¼ ð1

3
; 1
3
; 0Þ. The second magnetic transition at 2.2 K

corresponds to the development of in-plane spin compo-
nents that leads to the formation of a canted Y magnetic
structure in a plane containing the c axis. Successive
triangular layers are aligned antiferromagnetically along
the c direction. Magnetization measurements performed
under applied magnetic fields reveal a 1=3 magnetization
plateau and a saturation near 14.3 T of the triangular
sublattice, and a spin-flop reorientation of the honeycomb
sublattice at about 11 T. On the basis of these field-induced
transitions, the axial magnetic anisotropy of the octahe-
drally coordinated Mn ions in the honeycomb lattice is
estimated to be 0.010(2) meV, while the anisotropy in the
pentagonal-bipyramidal environment of the triangular lat-
tice is found to be appreciably larger, about 0.028(2) meV.
Inelastic scattering measurements reveal spin-wave excita-
tions with a strong two-dimensional character. The exci-
tation branch associated with the honeycomb ordered state
is described by using a Heisenberg model that includes
first-neighbor J1 ¼ 2.1ð3Þ meV and second-neighbor J2 ¼
−0.3ð1Þ meV in-plane exchange interactions. On the other
hand, the spin-wave spectrum of the triangular sublattice
yields an estimate of the nearest-neighbor exchange inter-
action value of 0.08(1) meV. The determined exchange
interactions are used for Monte Carlo simulations to obtain
the temperature–magnetic field phase diagram. A system-
atic neutron-diffraction study for applied magnetic field
along the c axis reveals that the triangular magnetic lattice
undergoes at least four intermediate magnetic phases before
reaching saturation. These phases are generally consistent
with the previous theoretical predictions for TLA and with
our Monte Carlo simulations and include the canted Y,
collinear uud, canted 2∶1, and V in-layer spin configura-
tions. Nevertheless, some discrepancies are identified with
regard to the spin-stacking sequence of neighboring layers.
A stacking disorder and a mixture of bilayer and four-layer
magnetic polytypes is revealed by the presence of highly
structured magnetic diffuse scattering along the L direction.
An applied magnetic field perpendicular to the c axis is
also found to produce at intermediate fields a novel
magnetic state that exhibits a three-layer periodicity along
the c direction. In the three-layer structure, the spins are
alternating orientations in a quasiorthogonal arrangement
with two perpendicular and one parallel to the field
direction. The appearance of such magnetic superstructures

indicates that at finite temperature and intermediate fields
the second-nearest-neighbor interlayer interactions cannot
be ignored and may become instrumental in generating new
magnetic orderings. This finding raises the possibility that
subtle thermal and quantum fluctuations may generate
effective interlayer tunneling between the triangular layers
separated by honeycomb lattices. Furthermore, the forma-
tion of multiple spin-stacking sequences in a single material
is very remarkable since each superstructure requires
different types (AFM or FM) and different relative
strengths of the interlayer nearest-neighbor and second-
nearest-neighbor interactions. We hope that our findings
will stimulate further theoretical studies and launch new
considerations of field-induced magnetic phase diagrams in
weakly coupled triangular lattices.
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