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When an amorphous material is strained beyond the point of yielding, it enters a state of continual
reconfiguration via dissipative, avalanchelike slip events that relieve built-up local stress. However, how the
statistics of such events depend on local interactions among the constituent units remains debated. To
address this we perform experiments on granular material in which we use particle shape to vary the
interactions systematically. Granular material, confined under constant pressure boundary conditions, is
uniaxially compressed while stress is measured and internal rearrangements are imaged with x rays. We
introduce volatility, a quantity from economic theory, as a powerful new tool to quantify the magnitude of
stress fluctuations, finding systematic, shape-dependent trends. In particular, packings of flatter, more
oblate shapes exhibit more catastrophic plastic deformation events and thus higher volatility, while rounder
and also prolate shapes produce lower volatility. For all 22 investigated shapes the magnitude s of
relaxation events is well fit by a truncated power-law distribution PðsÞ ∼ s−τ expð−s=s�Þ, as has been
proposed within the context of plasticity models. The power-law exponent τ for all shapes tested clusters
around τ ¼ 1.5, within experimental uncertainty covering the range 1.3–1.7. The shape independence of τ
and its compatibility with mean-field models indicate that the granularity of the system, but not particle
shape, modifies the stress redistribution after a slip event away from that of continuum elasticity.
Meanwhile, the characteristic maximum event size s� changes by 2 orders of magnitude and tracks the
shape dependence of volatility. Particle shape in granular materials is therefore a powerful new factor
influencing the distance at which an amorphous system operates from scale-free criticality. These
experimental results are not captured by current models and suggest a need to reexamine the mechanisms
driving mesoscale plastic deformation in amorphous systems.

DOI: 10.1103/PhysRevX.9.011014 Subject Areas: Condensed Matter Physics,
Materials Science, Soft Matter

I. INTRODUCTION

Earthquakes, magnetic avalanches in Barkhausen noise,
and sudden slip events during plastic deformation of a
granular material are examples of the complex dynamic
response of a many-component system that is driven at
fixed, slow rate. While individual events are unpredictable
from one to the next, the statistics relating event magnitude
and frequency exhibit remarkable similarity across a wide
range of amorphous systems and size scales, including
metallic glasses, emulsions, foams, granular materials, ice,
as well as metals and alloys [1–5]. A common reference
scenario for this dynamic response has been proximity to a

nonequilibrium critical point, resulting in intermittent
dynamics and power-law distributions for the event sizes.
The exponent τ of the power law describing the event

magnitude distribution is important, as it tells about the
mechanism leading to scale-free dynamics. Mean-field
models predict τ ¼ 3=2, independent of the details of the
interactions among the systems components [6]. Simulations
and experiments on plastic deformation of amorphous
systems currently lack consensus or precision as to whether
the exponent is indeed consistent with 3=2 or not [2,5,7–10].
On the modeling side, much of this can be traced

back to differences in which the stress redistribution after
a local plastic event is treated, i.e., to different treatments of
the mesoscale dynamics [11]. When a relaxing volume
element increases the stress on all neighboring elements,
as happens in the presence of shear bands in, e.g., bulk
metallic glasses and granular materials on larger scales, a
mean-field exponent τ ¼ 3=2 is found [12,13]. When,
instead, stress redistribution takes the form of a quadrupolar
kernel derived from Eshelby’s work for localized plastic
zones in elastic media [14], the exponent reduces to
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approximately τ ¼ 1.3 in three-dimensional systems in the
absence of slip localization [15,16].
On the experimental side, discerning between τ ¼ 1.3

and 1.5 requires several decades of events to be observed
and careful analysis [8,17,18]. Most importantly, exper-
imental investigation into the plasticity mechanisms oper-
ative at the mesoscale has been scarce due to the difficulty
of varying local interactions in systems whose constituent
units are atoms, molecules, or even bubbles. Here we show
how this can be achieved with a granular material by
changing the particle shape.
Granular materials present unique opportunities as

model systems for the study of amorphous plasticity
because their macroscopic scale allows for direct access
to the parameters that govern local stress transmission and
redistribution. The idea that particle shape is an important
driver in a granular material’s plastic behavior has been
pursued in simulations [19–21], but past experiments have
been either limited to two-dimensional systems [10,22,23]
or confined to spheres [2,24–27] or naturally occurring
soils and grains [28–31]. Our work takes advantage of 3D
printing in order to create particles whose shape-dependent
interactions with contacting neighbors can be tailored with
precision, while parameters such as the particles’ material
stiffness and their surface friction can be kept unchanged.
Specifically, by varying particle shape we are able to

change the manner with which particle surfaces meet to
support stress, whether by edges, corners, or surfaces with
different radii of curvature. Shape also drives where on
each particle contacts are likely to occur, leading to
different proportions of body forces versus torques.
Finally, the resistance particles feel toward reconfiguration
along rotational and translational degrees of freedom
changes with particle shape (e.g., a flat disk would rather

slide than rotate out of plane, and this preference strength-
ens as the aspect ratio of disks becomes larger). In these
ways and others, how stresses are passed around at the
microscale is modifiable through shape to a degree impos-
sible in other plasticity experiments. Granular materials
composed of different particle shapes are therefore a
powerful new system with which to study 3D plasticity
at the mesoscale.
To initiate plastic deformations, we perform uniaxial

compression on columns composed of several thousand
copies of a chosen particle shape, randomly packed inside
an elastic sleeve and subjected to a fixed confining
pressure [Fig. 1(a)]. As the applied strain is increased
beyond an initial loading phase, the packing yields and
eventually enters a regime referred to in soil mechanics as
the critical state [32]. In this regime the stress has leveled
off and fluctuates around a mean value as the packing
restructures via nonaffine, dissipative particle rearrange-
ments. After each of these reconfigurations, the material
has locally self-healed and the column can load up again
[Fig. 1(b)].
We focus on mesoscale dynamics, where the length scale

of the system is an order of magnitude larger than a
characteristic rearrangement event (Fig. 2), but small
enough to inhibit shear banding. When amorphous metal
nanopillars are made at the mesoscale (∼100 nm in width),
homogeneous deformation takes the place of shear locali-
zation and the result is a stronger material with desirable
ductility [33,34]. We are able to study the same physics at
the centimeter scale, easily keeping the size of the granular
column in the range of 10–100 particle diameters, but with
the added capabilities of modifying the constituent particles
of the system and directly imaging the individual rear-
rangement events with x rays. Additionally, the mesoscale

(a)

conf

(b)

FIG. 1. Triaxial compression into the plastic regime. (a) A 10-cm-tall, 5-cm-diameter packing of icosahedra in a rubber membrane and
evacuated to σconf ¼ 20 kPa before uniaxial stress q is applied. (b) Raw stress-strain data for a single run each for the five particle shapes
shown on the right (see Table I for shape definitions). All data in this paper are from the range ϵ ¼ ½0.1; 0.2�. Insets: Magnified portions
of the compression data for (left to right) the 3:1 disk, sphere, andm ¼ 4 supercube particles show the same sudden stress drops, though
at different stress scales.
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is precisely where amorphous plasticity theory struggles: in
larger systems shear banding is thought to make mean-field
approaches valid (τ ¼ 1.5), while in smaller systems with-
out shear banding correlations can arise from Eshelby stress
redistribution and lead to τ ∼ 1.3. As a result, mesoscale
granular systems without shear bands offer an excellent test
bed for studying the intermittent dynamics of plastic
deformation in amorphous materials.
Figure 1(b) shows representative data from 5 of the 22

different particle types investigated (see Table I). As the
applied strain is ramped up, both gradual stress variations
and sudden stress drops due to near instantaneous relax-
ation events are found. Note the widely differing magnitude
and character of the fluctuations around the average stress
level, despite the fact that all samples were prepared and
measured under identical conditions.
In order to quantify the magnitude of sudden stress

fluctuations, we introduce a measure borrowed from finan-
cial mathematics which quantifies the spread of fractional
changes that occur in a time series. This measure, volatility,
is model independent and is particularly useful in compar-
ing broadly distributed fluctuations in data with different or
changing baselines [35]. Importantly, it sidesteps the issue
faced in many plasticity experiments, of accurately locating

andmeasuring the magnitude of stress drops [18,36], giving
a robust method to quantify the jerkiness of plasticity data
across experiments and even across systems. Plotting
volatility versus the angle of internal friction, a measure
of a granular material’s shear strength [32], then enables us
to extract trends in theway particle geometry correlates with
strength and fluctuations in the plastic regime.
Similar to what has been reported for other plastically

deforming systems [2,5], we find that the shape of the
distribution DðsÞ of normalized drop magnitudes s is well
fit, for all 22 particle shapes tested, by a truncated power
law, DðsÞ ∼ s−τ expð−s=s�Þ. While the power-law expo-
nent τ is found to always lie in a small neighborhood
around 1.5, the cutoff stress scale s� is highly shape
dependent. We discuss the general implications of this
behavior in light of recent simulations and mesoscale
plasticity models [11] and also the opportunities this opens
up for designing specific stress responses with granular
materials in the regime beyond yielding.

II. EXPERIMENTAL DETAILS

Table I lists the particle shapes used in our experiments.
All particles were 3D printed from UV-cured hard

FIG. 2. Localized slips revealed by x-ray videography. Stress-strain data (left) for representative particle shapes, with numbered
vertical bars that indicate the strains at which the x-ray data shown on the right were taken. Subtracting successive x-ray frames reveals
the particle rearrangements that cause sudden stress drops in qðϵÞ. We show this explicitly for the first labeled stress drop event, where 1a
and 1b are the raw x-ray frames subtracted to obtain difference image 1. The dark horizontal band at the top of each x-ray difference
image reflects the top plate’s motion during compression. For a sense of scale, the dark blue regions in the difference images for events 5
and 10 each correspond to a single particle shifting position by roughly a particle diameter. For clarity, the shaded bars in the stress-strain
curves are plotted 5 times wider than the strain window captured by a single x-ray frame. The x-ray images for events 2–10 are all shown
at the same scale, enabling direct comparison.
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plastic (Young’s modulus Emat ∼ 1 GPa) using an Objet
Connex350 printer with resolution 30 μm. Each particle’s
volume was 22.5 mm3, except for the corner particles, a
shape composed of three adjoined cubes making the volume
67.5 mm3. Except for the strain rate dependence data
below, we controlled for surface properties of the particles
by using only particle sets fresh out of the 3D printer.
For each experiment, about 5000 particles (a third of

that for the corner particles) were poured randomly into a
0.6-mm-thick, 5.0-cm-diameter latex membrane to form a
column with aspect ratio 2∶1 [height to diameter; Fig. 1(a)].
A pump evacuated the interior of the column to apply an
isotropic confining pressure σconf ¼ 20 kPa across the
membrane. At fixed σconf uniaxial compression tests were
performed on an Instron 5800 series materials tester under
strain-controlled loading conditions. The majority of the
data presented here were taken with _ϵ ¼ 8 × 10−4 s−1

(0.05 min−1), where the strain ϵ is the fractional axial
displacement relative to the uncompressed column height.
The loading mode in compression experiments

depends on α, the ratio of the stiffness of the measurement
apparatus to that of the sample [37]. The loading mode
dictates how the apparatus responds immediately after
a relaxation event. In order to fully resolve individual
stress drops of all sizes, large apparatus stiffness (α ≫ 1,
strain control) and sufficiently slow compression (_ϵ → 0,

quasistatic limit) are required [38]. In our experiments,
α ≈ 3 × 106 Nm−1=3 × 105 Nm−1 ¼ 10. A feature of this
large α limit is clearly seen in Fig. 1(b) as the nonlinear
recharge of stress after events, which shows how the
granular packing is reloading. This differs from typical
stick-slip experiments, where α < 1 and the reloading is
linear. The distinction is important: in the stick-slip case,
the apparatus compresses during stick and surges forward
into the sample during slip, using its own stored energy to
fuel plastic events. In the large α limit, plastic events run
on the energy stored in the sample and thus the measured
stress drops are more transparent indicators of the internal
rearrangement process.
Data were taken at a rate of 40/s with 0.01 N precision,

corresponding to 5 Pa in stress. At least five independent
compressions were performed per particle shape in
Figs. 3–6; i.e., between each run the particles were poured
out before starting the process again. Some of the slow
compressions in Fig. 7 were run only three times. All data
discussed in this paper are from strains in the critical state past
yielding, operationally associated here with 0.1 ≤ ϵ ≤ 0.2.
Without additional processing beyond a simple threshold

on the first derivative of the stress data, identification of
small stress drops that occur during a recharge event will be
missed or skewed to artificially smaller magnitudes. To
avoid this, we pass the first derivative of the stress data
Δq=Δϵ through a high-pass filter to remove baseline drift,
similar to the method used in Ref. [18] to correct for low
time resolution data. Specifically, we subtract from Δq=Δϵ
a Gaussian-smoothed version of itself, where the strain
scale of the smoothing is the approximate duration of an
event. An artifact of the filtering is that it lessens the
magnitude of all events by an amount equal to the
Gaussian-smoothed version of the event; however, this is
reversible since all drops in these experiments last the same
amount of time—the 50 ms the apparatus takes to respond.
The entire event-finding method was benchmarked with
synthetic time series data mimicking those in Fig. 1(b)
where the drop magnitudes were already known.
To obtain information on the spatial extent of structural

rearrangements, x-ray radiographs were taken with an
Orthoscan C-arm fluoroscope at fixed intervals (2 s on,
1.5 s off) during several of the compression tests. Thesewere
run at a lower strain rate (_ϵ ¼ 8 × 10−5 s−1) to accommodate
the 2 s image acquisition time. Successive x-ray frameswere
differenced to subtract off slow global deformations of the
packing and highlight sudden localized particle rearrange-
ments. The slow compression rate nicely separated these
timescales, enhancing the difference images.

III. RESULTS AND DISCUSSION

A. Shape-dependent features of plastic deformation

The wide range of stress fluctuation behavior that
emerges from varying particle shape is immediately

TABLE I. Particle shapes. A triangular bipyramid is two
tetrahedra joined face to face. A supercube surface is defined
by jxjm þ jyjm þ jzjm ¼ Rm, with m ¼ 2 corresponding to a
sphere and m ¼ ∞ a cube. A divot cube has a right pyramid
removed from each face such that edges sharpen from 90° to 71°.
A lens particle is the union of two spherical caps with polar angle
γ; a lens particle with γ ¼ 90° is therefore a sphere. The angle β is
the aperture of a cone particle; the tip of the cone is removed to
prevent puncture of the latex membrane, so the more precise
shape is a frustum with r1=r2 ¼ 5. A corner is three adjoined
cube particles.

Shape Symbol Shape Symbol

Sphere Lens, γ ¼ 75°

Tetrahedron Lens, γ ¼ 60°

Triangular bipyramid Lens, γ ¼ 52.5°

Cube Lens, γ ¼ 45°

Octahedron Cone, β ¼ 45°

Dodecahedron Disk, D=t ¼ 1.5

Icosahedron Disk, D=t ¼ 3

Supercube, m ¼ 3 Disk, D=t ¼ 4

Supercube, m ¼ 4 Disk, D=t ¼ 4.5

Divot cube Corner

Hemisphere Prolate ellipsoid, 2.5∶1∶1
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apparent in the raw stress-strain data [Fig. 1(b)]. Under
compression all packings plastically “flow,” but with very,
and often surprisingly, different character. For example,
with disk-shaped particles the behavior is strikingly inter-
mittent, while triangular bipyramids with their sharp
corners exhibit much smaller stress variations. The smaller
fluctuations (e.g., for the spheres) appear comparatively
smooth and continuous when plotted on the same scale as
those of the disks [main panel of Fig. 1(b)], but on closer
inspection can be as abrupt (see insets). X-ray imaging
links the stress drops to particle movements, as shown in
Fig. 2 for a selection of typical behaviors: small events are
tied to the sudden movement of a single particle, clearly
visible in events 5 and 10, while slightly larger drops may
involve the rearrangement of a handful of particles in a
local neighborhood, as seen in events 3 and 8. The most
significant stress drops accompany restructuring that spans
the column, as in events 2, 4, and 7. Interestingly, the
rearrangements appear to be less localized than what would
be expected in a shear transformation picture of plastic
deformation [39]. For instance, events 3 and 9 seem to
involve 2–3 particles each, separated by several particle
lengths where nothing moved noticeably. Such distributed
local failure events are more in line with mesoscale models
[15,16] and mean-field treatments of granular plasticity
[12] where elastic interactions are taken to be long-ranged.
To quantify and compare the degree by which stress-

strain data as in Fig. 1(b) exhibit sudden jumps, we require
a measure that is independent of the often large differences
in mean stress, that can encapsulate the extremely wide
range of observed fluctuation magnitudes, and that can
ignore slowly drifting stress baselines. To this end we use
the standard deviation of the logarithm of fractional
changes, termed the volatility in the Black-Scholes model
for price evolution [35]. It provides a dimensionless,
baseline-independent measure of the rate of change of a
discretized time series. Treating the stress data as a series
qi, where each “time” step i corresponds to an applied
strain value, we define the instantaneous “return”:

Ri ¼ lnðqi=qi−1Þ: ð1Þ

The volatility of the series is the sample standard deviation
of R, given by

V ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N − 1

X

N

i

ðRi − R̄Þ2
v

u

u

t ; ð2Þ

with N the number of strain intervals in the data set and A
a constant to correct for the effect of data resolution.
Finer resolution yields smaller fractional changes in q
and therefore a smaller value for V if not corrected. We
“annualize,” as done in finance, with the constant A equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵwin=Δϵ
p

, the square root of the number of data points

taken in a strain window ϵwin relevant for analysis. For our
data, the strain interval Δϵ between measurements qi−1 and
qi is set by the sampling rate of the apparatus and strain rate
of compression. To capture the mix of fluctuation behaviors
in data as in Fig. 1(b), we chose ϵwin ¼ 0.01.
Whereas poor time resolution can interfere with the

measurement of avalanche distributions, the assumptions
underlying the calculation of volatility are actually more
applicable when the data acquisition timescale is slower
than the timescale of a stress drop (but faster than the
timescale separating drops). Specifically, the annualization
rescaling relies on jumps in the time series being uncorre-
lated, which is invalid if the sampling rate is high enough
to capture several data points during a stress drop. The
model-independent nature of volatility and its applicability
to low-resolution data make it a broadly applicable tool for
quantifying the jerkiness of time series data. Additionally,
to a first-order approximation, the return Ri ∼ Δqi=qi is the
fractional change between time steps, so the volatility can
be interpreted as a spread in the fractional changes over the
annualization time interval. In other words, a volatility
value of 10−2 means stress fluctuations are on the scale of
1% of the average stress in each ϵwin ¼ 0.01 strain interval.
Parenthetically, the volatility values for many common
stock market indices fall in the neighborhood of 10%,
a comparable value to that of many of the more volatile
shapes shown in Fig. 3.
In Fig. 3, we correlate the volatility V with the average

shear strength of the granular packing, as measured by the
angle of internal friction ψ . This angle arises from the

FIG. 3. Plastic deformation phase space. The jerkiness of the
plastic regime and the shear strength are mapped out by plotting
the annualized plastic volatility V versus the angle of internal
friction ψ . Cross bars for each particle shape are the standard
deviation of V and ψ across runs.
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Mohr-Coulomb failure criterion in soil mechanics, and in
Ref. [32] is defined for cohesionless grains through

sinψ ¼ σ3 − σ1
σ3 þ σ1

¼ q̄
q̄þ 2σconf

: ð3Þ

Here, σ3 and σ1 are the largest and smallest principal stress
components, equal to q̄þ σconf and σconf , respectively, and
q̄ is the average deviatoric stress in the critical state.
Extracting q̄ from measurements of qðϵÞ involves subtlety
if stress drops become so large that they correspond to a
sizable fraction of the stress plateau reached in the critical
state: in these cases a simple average of qðϵÞ tends to lie
below this plateau stress and underestimates the stress
needed for plastic deformation. To account for this, we
instead define the plastic stress as the average of all of the
stress values immediately preceding a stress drop, similar to
what was done in Ref. [25].
Figure 3 reveals several trends. Packings composed of

spheres offer the least resistance to shear and thus exhibit
low ψ as well as low volatility. As ψ increases, the region of
nearly spherical particles splits into two branches, one
containing more platy and oblate shapes and one containing
more angular and prolate ones. These branches differ by
more than an order of magnitude in V at large ψ . As the set
of lens-shaped particles demonstrates, both volatility and
angle of internal friction are increased quickly when the
lenses become more oblate. Disks follow a similar trend
with increasing ψ and V as their aspect ratio (diameter to
height) increases.
Packings of platonic solids get stronger as the number of

particle faces decreases from icosahedra to tetrahedra and
as particle corners and edges become more pronounced.
However, they generally exhibit quiescent deformation
with V values not much larger than those of spheres.
Cubes are the exception, with a roughly fourfold enhance-
ment in V, providing a first hint about the relative
importance of edges and faces. We explored this by altering
the cubes: while rounding the edges into supercubes drops
ψ and fusing three cubes into a corner-shaped particle with
larger faces and longer edges increases ψ , neither has a
significant effect on V. On the other hand, while indenting
flat cube faces by creating divots enhances ψ slightly
(presumably due to the sharper edges), it significantly
reduces V, all the way down to the level of spheres.
These findings suggest the presence of competing

factors: while shape anisotropy (oblate or prolate) as well
as sharp edges or corners are all seen to enhance ψ , they do
not predict V. Instead, V appears to be more dependent on
the degree to which particle contacts involve surfaces with
large radius of curvature, such as faces rather than edges.
This depends not only on the existence of faces but also on
the frequency of face-face contacts. With the divot cubes
we eliminated flat cube faces, while tetrahedra, a shape
with large flat faces, is an example of a case where the

packing structure does not favor face-face contacts [40].
Interestingly, the contacting areas do not have to be flat:
increasing the radius of curvature at the contact enhances V.
This is demonstrated by the set of lenses and also by
comparing hemispheres with cones. The latter two shapes
have very similar ψ yet differ in the radius of curvature at
contact, which mimics the trend in V.
In Fig. 3, the angle of internal friction ψ is a property of

the packing as a whole. We can relate ψ more directly to the
geometry of individual particles as shown in Fig. 4, where
we plot ψ as a function of the inverse particle sphericity
Ψ−1. Sphericity is a measure of the compactness of a shape
relative to a sphere (whose Ψ ¼ 1). As the data indicate,
Ψ−1 correlates reasonably well with ψ , as would other
single-parameter shape descriptors, such as particle round-
ness [28] or isoperimetric quotient [41], highlighting the
particles’ resistance to rotation as the dominant driver in a
granular packing’s shear strength [30].

B. Stress fluctuation statistics

We now turn to the statistics for individual stress drops
Δq. In Fig. 5, we show the distribution DðsÞ of normalized
drop magnitudes s ¼ Δq=q̄ for a selection of the particle
shapes tested. Here q̄ is the average deviatoric stress in
the critical state as discussed above within the context
of Eq. (3). A first observation from Fig. 5 is that all
distributions have roughly similar shape, with decreasing
probability for increasing stress drop size and a cutoff
beyond some maximum drop size. The lower end of the
accessible range of s in these distributions is given by the
experimental noise floor, while the upper end corresponds
to catastrophic events with drop magnitudes that are a
significant fraction of the average stress.

FIG. 4. Shear strength versus deviations from a sphere. The
angle of internal friction data from Fig. 3 are plotted against the
inverse of sphericity. As a measure of the compactness, sphericity
is calculated as the ratio of a particle’s surface area to that of a
sphere with the same volume.
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To extract more detailed, shape-dependent information,
the distributions DðsÞ were fitted numerically with maxi-
mum likelihood estimation [17] to a truncated power law
DðsÞ ∼ s−τ expð−s=s�Þ, as used in Ref. [2]. Uncertainties
on the two fit parameters, the power-law exponent τ and the
cutoff or characteristic stress scale s�, were estimated using
the nonparametric bootstrap method [42] with 1000 resam-
plings of the data. The drop distributions for some particle
shapes, such as the spheres, have very small s� and thus no
significant power-law portion associated with DðsÞ, which
means they could be well fit by a simple exponential.
Others, such as for the flatter disks and lenses, have
significantly larger s� and offer nearly three decades in
the scale-free part of their drop magnitude distribution,
yielding a remarkably wide range from which one can
extract the power-law exponent.
The best-fit values for τ and s� are shown as black points

in Fig. 6, along with the surrounding regions of uncertainty.
These regions are the 1σ and 2σ ellipses for Gaussian fits to
the bootstrap points in ðτ; log s�Þ space.

As with plotting V against ψ in Fig. 3, a plot of s� versus
τ reveals trends for different particle shapes. More oblate
shapes are seen to result in larger s�, which means that
compared to other shapes they can generate collapse-
recovery events that involve a larger fraction of the average
stress. However, s� does not correlate with a packing’s
shear strength, as seen from the similarly low s� values for
spheres and bipyramids, shapes with very different ψ (see
Fig. 3). The cubes, supercubes, and divot cubes are all
located near each other in Fig. 6, indicating that these shape
variations do not have a major effect on the shape of DðsÞ,
although there is a small shift in s� that is similar to the
trend seen with volatility V.
An important point that emerges from Fig. 6 is that s�,

the characteristic stress scale for the largest events, varies
over 2 orders of magnitude while the ratio of system
volume to particle volume remains fixed (except for minor
variations in packing fraction). This clearly demonstrates
that s� is not tied to system size. In fact, since in our
experiments there are on the order of 102 particles within a

FIG. 5. Stress drop magnitude distributions. The drop distributions were fit by maximum likelihood estimation to a truncated power
law of the form DðsÞ ∼ s−τ expð−s=s�Þ. The values cited for the uncertainty on τ are 2σ for the marginal distribution, and only the best-
fit value of s� is listed. All plots are over the same range. Data points are binned logarithmically (blue) after fitting (black). The
distributions are organized by (from left to right) the first column containing spheres, simple deviations from a sphere, and tetrahedra, the
second column cubes and simple deviations from a cube, the third column the lens family, and the fourth column the disk family.
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column cross section (fewer for the oblate shapes since they
tend to settle and preferentially pack horizontally), a cutoff
s� between 10−2 and 10−1, as seen in Figs. 5 and 6, is of the
same order as if a single particle went from load-bearing
member of the packing to unstressed rattler.
From this alone we can infer that the power-law regime

in DðsÞ is not due to large cascades of many-particle
reconfigurations. Indeed, our x-ray imaging confirms that
the vast majority of the measured stress drops corresponds
to detectable shifts in the position of no more than a couple
particles (Fig. 2). This suggests partial slips at the particle
contacts, which relax only a portion of the supported force,
as the elementary components of the scale-free cascades
constituting stress drops, similar in nature to the partial
stress drops thought to occur during earthquakes [43] and
the partial stress drops incorporated in some mesoscale
models [12].
In light of the view that many plastically deforming

systems, including granular materials, operate near a non-
equilibrium critical phase transition [12,44], the value of s�
increases with proximity to the critical point. The clear
shape dependence shown in Fig. 6 indicates, then, that by
varying particle shape we are able to create granular
packings which plastically deform further from or closer
to the point in system space where stress drop cascades are
entirely scale free and correlations span the system.
Regarding the exponent τ, clean trends are harder to

isolate. Given the fit uncertainties, most shapes have τ in
the range 1.3–1.7 and would be compatible with a value of
1.5. Recent mesoscale plasticity models have focused on
the kernel used to describe stress redistribution after local
yielding. The kernel used in Ref. [12] resembles sandpile

models where stress is offloaded isotropically to all
neighbors, which lends itself to mean-field treatment and
a value of τ equal to 3=2. Lin et al. showed [15] that a
modified kernel of quadrupolar form, found by Eshelby
to be the response of an elastic continuum to localized
relaxation [14], leads to τ ≈ 1.3 in three dimensions. A
tensorial approach to more accurately represent three-
dimensional stress and strain, also using a quadrupolar
kernel, observed τ ¼ 1.28 in simulations across a wide
range of loading conditions [16]. That the τ observed in the
present experiments less closely matches the τ for models
with a quadrupolar stress redistribution might indicate
either that there is some effective degree of incipient shear
banding in the experiments (though no fully formed shear
bands were observed in any trials) or that the mesoscale
granular characteristics of the aggregate material in our
system do not reflect the continuum elastic response
encapsulated by a quadrupolar kernel.
The strain rate of compression has been shown to affect

relaxation event magnitude distributions. Compression that
is too rapid leads to event consolidation, which can be real
[45] or can be artificial due to poor data resolution [18]. In
either case small events are missed and large events swell,
leading to smaller power-law exponents τ. On the other
extreme, when relaxation is present, compression of sys-
tems that is too slow can lead to dynamics that resemble
self-organized criticality and have larger exponents τ [46].
Only the first, effects of rapid compression, are clearly
observed in Fig. 7. Here we show the measured τ for the
3∶1 aspect ratio disks and the 45° lenses across more than
2 orders of magnitude in strain rate _ϵ. The exponent τ is
found to be independent of strain rate up until a rate of

FIG. 6. Parameter space for the truncated power-law fits to
DðsÞ. The dotted (solid) ellipses around each best fit ðτ; s�Þ are
the 1σ (2σ) confidence regions as determined by the nonpara-
metric bootstrap method.

s

FIG. 7. Strain rate dependence of τ. Uncertainties are calculated
as before with the bootstrap method. The gray region contains the
points which were taken at the same strain rate as the rest of the
paper, _ϵ ¼ 8 × 10−4. These points for both particle shapes and
the _ϵ ¼ 3 × 10−4 data for the lenses are offset slightly to display
multiple sets of runs taken at the same strain rate.

MURPHY, DAHMEN, and JAEGER PHYS. REV. X 9, 011014 (2019)

011014-8



compression faster than the _ϵ ¼ 8 × 10−4 used in the data
of Figs. 3–6. The decrease in τ for both particle shapes
happens when the compression is fast enough that the event
duration timescale, independent of _ϵ, is roughly half the
timescale between events, a timescale which goes as 1=_ϵ.
Indeed, the rate of detectable events for the 3∶1 disks is
about 5 times higher than for the 45° lenses, shown in Fig. 8
and qualitatively in the raw data of Fig. 1(b). This factor of
about 5 matches the difference in strain rates at which τ
drops for each of these particle shapes in Fig. 7.

IV. CONCLUSIONS

Our results demonstrate that deviations from spherical
shape can have profound consequences on the character of
stress fluctuations in plastically deforming granular sys-
tems at the mesoscale. For extracting shape-dependent
trends in a model-free manner, we show that correlating
a particle shape’s propensity for generating large fluctua-
tions (volatility) with its ability to resist shear (angle
of internal friction) provides a powerful new tool
(Fig. 3). This allows us to identify classes of shapes that
differ in volatility by more than 1 order of magnitude
despite providing similar resistance to shear. Specifically,
large volatility V is found in particle types that form
amorphous packing configurations where nearest-neighbor
contacts tend to involve surfaces with large radius of
curvature. Other features, such as sharp edges or corners,
appear to be more important for enhancing the shear
resistance. This is exemplified by the striking contrast
between oblate lenses and flat disks (large V) on one hand
and tetrahedra (small V) on the other.
The cutoff event sizes s� that set the upper limit of the

stress drop distributions for different particle types are also
found to vary significantly (Fig. 6). As a comparison of
Figs. 3 and 6 shows, trends in s� roughly mirror those in V,
again highlighting the importance of face over edge contacts.
Furthermore, with s� values for most particle shapes below
10−1, the fractional stress changes are small: given that there
are on the order of 100 particles within a horizontal slice of
the column, s� ≈ 0.1 corresponds to complete loss of contact
between no more than just a few particles. Supported by
qualitative results from x-ray imaging, this suggests that the
fluctuation statistics are dominated, in terms of frequency,
by cascades of partial stress drop “microslips,” which only
occasionally build into larger reorganization events involv-
ing groups of particles which shift significantly. Such
microslips allow for small shifts in the relative particle
positions across a contact, thereby changing the magnitude
of the transmitted force without necessarily breaking the
contact. In this context, platy, oblate particles provide contact
geometries well suited to accommodate many microslip
events during a given relaxation event, which justifies their
large V and s� values.
The values of the power-law exponents τ we extracted

from the stress drop distributions pose an intriguing problem

for the current state of modeling for general amorphous
plasticity. On the one hand, while the values are consistent
with a mean-field treatment of amorphous plasticity, which
predicts τ ¼ 3=2, we did not observe the accompanying
shear localization (band formation) that would have been
expected. On the other hand, while our results are less
compatible with τ ≈ 1.3 from models based on continuum
elasticity with Eshelby’s quadrupolar kernel, such a kernel
arguably provides a more realistic description of the stress
redistribution compared to isotropic mean-field approaches.
The fact that particle shape can change s� by over 2

orders of magnitude demonstrates the significant role of
shape in setting the local interactions between constituent
units and introduces a new means of controlling the
distance a plastically deforming amorphous system oper-
ates from criticality. Taken together with the results for τ,
these considerations imply a need to reexamine the mes-
oscale mechanisms driving amorphous plasticity. In this
regard the map of τ and s� values in Fig. 6 can provide
benchmark data for evaluating models.
Finally, our results also provide new insights for design

applications of granular materials. Evolutionary algorithms
have been employed to find optimal shapes for packing
density [47,48] and strain-stiffening behavior [49]; the
material parameters which can benefit most from shape
optimization are clearly the ones for which particle shape
plays a large role. The sensitive dependence of plasticity
behavior on particle shape shown in this work therefore
reveals the shear strength and stress fluctuation magnitude
to be especially amenable to optimization. Figure 3 shows
that with particle shape the two can be tailored independ-
ently of one another. This opens the door for designed
granular materials which enhance desirable properties such
as self-healing capabilities, where failure events occur but
the packing reforms and structural integrity remains, and
energy dissipation.
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APPENDIX: EVENT COUNT

The rate of detectable events varies by up to a factor
of 6 across shapes even when s� is approximately equal
(Fig. 8). As mentioned in the description of Fig. 7, when
the timescale between events becomes comparable to the
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timescale of each event, the strain rate of compression
is fast enough that τ of the drop magnitude distribution
becomes distorted to smaller values.
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[20] E. Azéma, N. Estrada, and F. Radjaï, Nonlinear Effects of
Particle Shape Angularity in Sheared Granular Media,
Phys. Rev. E 86, 041301 (2012).
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