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Decoherence is the process via which quantum superposition states are reduced to classical mixtures.
Decoherence has been predicted for relativistically accelerated quantum systems; however, examples to
date have involved restricting the detected field modes to particular regions of space-time. If the global state
over all space-time is measured, then unitarity returns and the decoherence is removed. Here, we study a
decoherence effect associated with accelerated systems that cannot be explained in this way. In particular,
we study a uniformly accelerated source of a quantum field state—a single-mode squeezer. Even though
the initial state of the field is vacuum (a pure state) and the interaction with the quantum source in the
accelerated frame is unitary, we find that the final state detected by inertial observers appears to be
decohered, i.e., in a mixed state. This unexpected result may indicate new directions in resolving
inconsistencies between relativity and quantum theory. We extend this result to a two-mode state and find
that entanglement is also decohered.
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I. INTRODUCTION

Unitary evolution is one of the fundamental assumptions
of quantum mechanics. An initial pure state of an isolated
quantum system always evolves into another pure state.
The situation is not as simple when we consider noninertial,
relativistic frames of reference. For example, the trans-
formation between the description of the quantum vacuum
state as seen by inertial observers and the description of the
same state by uniformly accelerated observers is not strictly
unitary. Nevertheless, it is still assumed that in transforming
between reference frames, pure states will always evolve to
pure states, provided that the entire space-time is included.
Consider inertial observers who constantly observe a

massless field prepared in the Minkowski vacuum state. By
definition, they will observe no particles. However, accord-
ing to the Unruh-Davies effect [1,2], a uniformly accel-
erating observer who constantly observes the same field
will see thermal radiation (Unruh radiation) and hence will
count particles. The vacuum state is pure, while a thermal
state is mixed, seemingly implying a nonunitary evolution.
The resolution is that a single accelerating observer is
restricted to a section of space-time called a Rindler wedge.

By introducing a second, mirror-image, accelerated observer,
we find that the thermal state can be purified into a two-mode
squeezed state [3–5], and unitarity is restored.
Because of the equivalence principle, there is a strong

relationship between gravity and acceleration [6]. The
analogous situation to Unruh radiation in curved space-
time is that of thermal radiation from black holes (Hawking
radiation) [7]. In this case, regaining unitarity is not
straightforward because the analogue of the mirror image
Rindler wedge lies behind the black hole event horizon and
so is inaccessible. Given that in the far future the black hole
is expected to completely evaporate, this leads to the black
hole information paradox [8]. In spite of many attempts
[9–13], a completely satisfactory resolution of this problem
has not been found [14,15].
In this paper, we consider quantum systems in flat space;

however, we set up the problem differently such that we
explicitly start and end with global, inertial observers. In
the intermediate region, we allow single-mode interactions
with an accelerated system. Our inertial observers use
“bucket” detectors to observe all frequencies. In contrast to
previous treatments, this model leads to exact, semiana-
lytical solutions. Unexpectedly, we find a decoherence
effect that only affects nonclassical quantum states and
appears even though the observer’s detection technique has
access to the entire space-time.
Consider the following situation. Alice produces coher-

ent states and sends them to Bob. Bob directly detects them
with a coarse-grained intensity detector which is sensitive
to a range of frequencies much larger than those contained
in the pulses. In principle, Bob can detect the intensity of
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the sent pulses with a precision given by the shot-noise (or
quantum-noise) variance. This idea is the basis of incoher-
ent optical communication. It is well known that if Alice
squeezes her coherent pulses, then Bob can detect the
intensity of the pulses with increased precision, which is
subshot noise. Here, we show that if Alice is accelerating
at a sufficient rate, it becomes impossible for her to send
pulses with non-negligible squeezing to Bob in this
scenario.
The specific problem we analyze is summarized by the

Penrose diagram [6] in Fig. 1. An object uniformly
accelerates in the right Rindler wedge (black curve).
Interactions with a massless scalar field are unitarily turned
on and off during its lifetime (shaded region) such that it
interacts with a single spatiotemporal mode in the accel-
erated (Rindler) coordinates. In the past null infinity I−, the
initial state of the field is set as the Minkowski vacuum. For
simplicity, we consider a 1þ 1 theory in which the right-
and left-moving fields are decoupled [16]. We assume the
right-moving field modes are unaffected by the accelerating
object. The output state of the left-moving field modes
in the future null infinity Iþ is detected by inertial,
Minkowski detectors. We ask whether the detected field
statistics are those of a pure state.
In the following section, we introduce our detection

model. In Sec. III, we introduce our source model and solve
for the detection statistics of a single-mode coherent state
(Sec. III A) and a squeezed state (Sec. III B). In Sec. III C,
we extend this picture to two-mode sources that entangle

right and left movers. In Sec. IV, we discuss the origin of
the decoherence effect, resolve the apparent paradox
between the unitary source and the mixed statistics, and
draw possible connections with black-hole physics.

II. DETECTION OF THE STATE

The Minkowski detectors are modeled by the Hermitian
number operators, N̂k ¼ â†kâk, where âk (â†k) are the
Minkowski field annihilation (creation) operators for wave
number k. The frequencies Ω ¼ jkj are with respect to the
proper time of the inertial reference frame under consid-
eration (note we are using units for which c ¼ 1). The
excitation probability of an ideal, inertial, two-level system
of resonant frequency Ω, coupled weakly to the field, is
proportional to hN̂ki [17]. We can model a finite-bandwidth
detector via the operator N̂Δk ¼

R koþΔk
ko−Δk dkâ†kâk. If the

bandwidth of the detector is much larger than that of the
mode under consideration, then we can extend the limits of
integration to �∞ and thus define N̂ ¼ R

dkâ†kâk. Note
that, by definition, h0jN̂j0i ¼ 0 for the Minkowski vacuum
state j0i.
In order to characterize the state of a particular field

mode, we use homodyne tomography [18]. In homodyne
tomography, the Wigner function [17] of the state is
reconstructed from measurements of the moments of
quadrature amplitudes via homodyne detection. For
Gaussian states, it is sufficient to measure and analyze
only the first- and second-order moments [19]. In homo-
dyne detection [20], a weak signal field and a strong local
oscillator are coherently combined and measured with
broadband detection as discussed above. For simplicity
and to stay within the 1þ 1 scalar field paradigm, we
specifically use self-homodyne detection here. In self-
homodyne detection, the signal field is displaced by a
strong local oscillator directly, and the output field is
detected. Assume that the signal field mode operator is
â ¼ R

dkfðkÞâk and the local oscillator is a strong coherent
state jαi, prepared in the same field mode [characterized by
fðkÞ] with α a complex number, α ¼ jαjeiϕ, and jαj ≫ 1.
The photon number operator can be shown to be

N̂ðϕÞ ≈ jαj2 þ jαjX̂ðϕÞ; ð1Þ

where X̂ðϕÞ ¼ âe−iϕ þ â†eiϕ is the quadrature amplitude
of the signal field and a term not multiplied by jαj has been
neglected as it is much smaller than other terms. As a
reference, we can also consider the operator

N̂0 ≈ jαj2 þ jαjX̂v ð2Þ

representing the situation where the signal is not imposed,
so v̂ represents the mode when it is prepared in the vacuum
state. Hence, the average quadrature amplitude of the field
is given by

FIG. 1. Penrose diagram of Minkowski spacetime. Here, I0 is
the spatial infinity, I− and Iþ are the past and future infinities, and
I− and Iþ are the past and future null infinities. A uniformly
accelerated object follows the black worldline. Interactions
between the accelerated object and the field are localized in
Rindler time, represented by the shaded region.
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hX̂ðϕÞi ¼ hN̂ðϕÞi − hN̂0iffiffiffiffiffiffiffiffiffiffi
hN̂0i

q ; ð3Þ

where we have used hX̂vi ¼ 0. Its variance is given by

ðΔXðϕÞÞ2 ¼ ðΔNðϕÞÞ2
hN̂0i

: ð4Þ

For the Gaussian states considered here, this will be
sufficient to completely characterize them. We wish to
apply this technique to the output state from the interactions
between a uniformly accelerated object and the scalar field.
In order to match the mode shape of the local oscillator to
that of the output signal field, we assume that the local
oscillator is also imposed in the accelerated frame in a
matching mode to the signal.

III. INTERACTION WITH THE
ACCELERATED SOURCE

Interactions between uniformly accelerated objects
(Unruh-DeWitt detectors, mirrors, etc.) and quantum fields
have been studied for many years [21–24]. Recently, a
nonperturbative quantum circuit model was proposed to
investigate these interactions and calculate radiation from a
uniformly accelerated object [25]. Here, we generalize the
circuit model to include time-dependent interactions. The
relevant circuit is shown in Fig. 2. The circuit models
the interaction as a Heisenberg evolution of Unruh mode
operators [1] ĉω, d̂ω to Rindler operators b̂Lω, b̂

R
ω, then back

to Unruh operators. The Rindler operators represent the
natural modes that uniformly accelerated systems interact

with. The frequency ω is with respect to the proper time of
the accelerated observer. The Unruh operators are a useful
mathematical stepping stone between the accelerated and
inertial reference frames. The Minkowski modes âk that
represent our inertial detection scheme are then constructed
from the output Unruh modes—this final step is not
represented by a circuit.
The unitary operator Ûg acts only on the right Rindler

wedge operators b̂Rω and represents localized interactions
between the accelerated object and the scalar field. The
localization is characterized by the normalized wave packet
gðωÞ. In contrast to the time-independent case, the time-
dependent unitary Ûg mixes different Rindler frequency
modes. The relation between the Rindler modes b̂R0ω and b̂Rω
is [26]

b̂R0ω ¼ b̂Rω þ g�ðωÞðÛ†
gb̂

R
g Ûg − b̂Rg Þ; ð5Þ

where b̂Rg ≡ R
dωgðωÞb̂Rω is the localized mode operator

satisfying commutation relation ½b̂Rg ; b̂R†g � ¼ 1. We note that
½b̂Rω; b̂R†ω0 � ¼ ½b̂R0ω ; b̂R0†ω0 � ¼ δðω − ω0Þ, indicating that Eq. (5)
is a unitary interaction. Taking into account the relation
between Unruh modes and Rindler modes [25], which is
basically a two-mode squeezing, we obtain the input-output
relations for Unruh modes,

ĉ0ω ¼ ĉω þ g�ðωÞ cosh rωðÛ†
gb̂

R
g Ûg − b̂Rg Þ;

d̂0ω ¼ d̂ω − gðωÞ sinh rωðÛ†
gb̂

R†
g Ûg − b̂R†g Þ; ð6Þ

where the two-mode squeezing factor rω is defined as
tanh rω ¼ e−πω=a. In Eq. (6), the operator b̂Rg can be
explicitly expressed in terms of the input Unruh modes
ĉω and d̂ω. In the following, we use Ûg ¼ D̂gðαÞŜg, where
Ŝg creates the quantum signal we wish to analyze, while
D̂gðαÞ ¼ expðαb̂R†g − α�b̂Rg Þ produces the local oscillator
needed for the self-homodyne detection (Fig. 3). It is easy
to show that D̂†

gb̂
R
g D̂g ¼ b̂Rg þ α [20].

Finally, we require the input-output relations for
Minkowski modes. The transformation from Unruh modes
to Minkowski modes is [25]

FIG. 2. Circuit for a uniformly accelerated object. Rindler
modes in the right Rindler wedge interact with the object, which
is represented by the unitary operator Ûg, while Rindler modes in
the left Rindler wedge remain unaffected. The time-dependent
interactions mix different frequency Rindler modes.

(a) (b)

FIG. 3. Self-homodyne detection. (a) A signal unitary Ŝg
generates the quantum signals that we are going to analyze.
(b) A displacement is added after the signal unitary Ŝg to realize
homodyne detection. The mode shape of the displacement is
perfectly matched to that of the signal unitary.
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â0k ¼
Z

dωðAkωĉ0ω þ Bkωd̂
0
ωÞ; ð7Þ

where the Bogoliubov transformation coefficients are [16]

Akω¼B�
kω¼

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sinhðπω=aÞp
2π

ffiffiffiffiffiffi
ωk

p Γð1− iω=aÞ
�
k
a

�
iω=a

: ð8Þ

The total Minkowski particle number operator is
obtained by using Eq. (7),

N̂ ¼
Z

dk
Z

dω1

Z
dω2ðA�

kω1
ĉ0†ω1

þ B�
kω1

d̂0†ω1
Þ

× ðAkω2
ĉ0ω2

þ Bkω2
d̂0ω2

Þ

¼
Z

dωðĉ0†ω ĉ0ω þ d̂0†ω d̂
0
ωÞ; ð9Þ

where we have used
R
dkAkωA�

kω0 ¼ δðω − ω0Þ andR
dkAkωAkω0 ¼ 0. The square of the total particle number

operator is

N̂2 ¼
Z

dω1

Z
dω2ðĉ0†ω1

ĉ0ω1
ĉ0†ω2

ĉ0ω2
þ d̂0†ω1

d̂0ω1
d̂0†ω2

d̂0ω2

þ ĉ0†ω1
ĉ0ω1

d̂0†ω2
d̂0ω2

þ d̂0†ω1
d̂0ω1

ĉ0†ω2
ĉ0ω2

Þ: ð10Þ

A full computation of the vacuum expectation value of N̂2

is straightforward but usually tedious. However, when the
amplitude of displacement is large (jαj ≫ 1), it is adequate
to only keep terms of order jαj4 and jαj2 as per the
approximation leading to Eqs. (3) and (4).

A. Classical signals

We first consider preparing a classical signal on the
accelerated mode. In particular, we generate a classical
signal by displacing the Rindler mode b̂Rg with an amplitude
β. This produces a coherent state, the “most classical”
quantum state. The operator that creates this signal is
Ŝg ¼ D̂gðβÞ, with jβj ≪ jαj. The expectation value and
variance of the quadrature amplitudes as observed by the
inertial detectors are

XβðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ic þ Is

p
ðβe−iϕ þ β�eiϕÞ;

VβðϕÞ ¼ 1; ð11Þ

where Ic ¼
R
dωjgðωÞj2 cosh2 rω and I s ¼

R
dωjgðωÞj2

sinh2 rω. Equation (11) characterizes a pure coherent state.
Therefore, displacing a Rindler mode generates a coherent
state with amplitude ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ic þ Is
p Þβ as viewed by an inertial

observer. As expected, the overall evolution is from a pure
state to a pure state.

B. Quantum signals

A more interesting scenario is that a uniformly accel-
erated single-mode squeezer squeezes the thermal state in
the right Rindler wedge. The single-mode squeezing
operator Ŝ1ðrÞ is defined as [20]

Ŝ1ðrÞ ¼ exp

�
r
2
ðb̂R†g Þ2 − r

2
ðb̂Rg Þ2

�
; ð12Þ

where r is the squeezing factor and is assumed to be real.
The operator that creates quantum signals is Ŝg ¼ Ŝ1ðrÞ
so that the unitary Ûg ¼ D̂gðαÞŜ1ðrÞ. By substituting this
unitary into Eq. (6), one can derive the input-output
relations for Unruh modes, which are then substituted into
Eqs. (9) and (10) to calculate the vacuum expectation value
of the Minkowski particle number and the square of the
particle number (see Appendix for details). We find that the
expectation value of the quadrature amplitude is zero, and
the variance is

VðϕÞ¼ coshð2rÞþ4IcðIc−1Þðcosh2r−2coshrþ1Þ
þ2sinhr½ð2Ic−1Þ2coshr−4IcðIc−1Þ�cosð2ϕÞ:

ð13Þ

The maximum and minimum variances are obtained when
ϕ ¼ 0 and ϕ ¼ π=2, respectively:

Vmax ¼ e2r þ 4IcðIc − 1Þðer − 1Þ2;
Vmin ¼ e−2r þ 4IcðIc − 1Þðe−r − 1Þ2: ð14Þ

It is evident from Eqs. (13) and (14) that noises are added
onto the variance of the original single-mode squeezed
state. The amount of additional noises depends on the
squeezing factor r and Ic. A question of particular interest
is whether the final state is a pure state. For Gaussian states,
the criterion for purity is that the product of maximum and
minimum variances is unity [20]. From Eq. (14), we find
the product of the maximum and minimum variances is

VmaxVmin ¼ 1þ 16IcðIc − 1Þðcosh r − 1Þ cosh r
þ 64I2

cðIc − 1Þ2ðcosh r − 1Þ2: ð15Þ

We can see that the product is always greater than 1 unless
r ¼ 0 or Ic ¼ 1. This is our main result. Unexpectedly, the
inertial observer sees a decoherence effect that, in general,
causes the initial pure state to display mixed state statistics.
The case of r ¼ 0 means that the accelerated object does

nothing, so the output state is the Minkowski vacuum. Note
that Ic can be approximated as Ic ≈ e2πω0=a=ðe2πω0=a − 1Þ
when gðωÞ is a very-narrow-bandwidth wave packet
with central frequency ω0. When 2πω0=a → ∞, Ic → 1,
so Vmin → e−2r and Vmax → e2r. This corresponds to a
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single-mode squeezed vacuum state, which is pure. The
above limit could happen in two cases. The first is that
the central frequency ω0 is fixed while a → 0. This means
the single-mode squeezer tends to be static in an inertial
frame. It thus produces the standard single-mode squeezed
vacuum state. The second case is that a is fixed and finite,
while ω0 → ∞. It is well known that a uniformly accel-
erated observer experiences a thermal radiation with
temperature TU ¼ ½a=ð2πÞ� in the Minkowski vacuum
[1]. The spectral distribution of the thermal radiation
follows Plank’s law, which exponentially decays in the
high-frequency limit. Or equivalently, the high-frequency
tail of a thermal state looks almost like a vacuum.
Therefore, the single-mode squeezer that squeezes the
high-frequency tail of the Unruh radiation produces a
squeezed vacuum state. Overall, when the Unruh effect
is not significant, a uniformly accelerated single-mode
squeezer produces the standard single-mode squeezed
vacuum state. Otherwise, the product of the maximum
and minimum variances is greater than 1, indicating that the
output state is mixed.
As the Unruh effect in the Rindler frame becomes more

pronounced, the decoherence in the Minkowski frame
becomes stronger. Eventually, squeezing disappears and
the final state becomes classical in the sense that coherent

state superpositions are removed, and the state becomes
decomposable into a mixture of coherent states. Figure 4
shows an example of the phase-space representation of the
quadrature amplitude. In the narrow-bandwidth limit, we
use the approximate relation between Ic and ω0 to find the
distribution of minimum quadrature variance in terms of r
and ω0, as shown in Fig. 5. A critical curve, which is
determined by

2πω0

a
¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cothðr=2Þp þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cothðr=2Þp

− 1

�
; ð16Þ

separates the squeezing region and no-squeezing region.
When r → ∞, 2πω0=a → 2 lnð ffiffiffi

2
p þ 1Þ ≈ 1.763. Below

this value, one can always make the output state classical
by increasing the single-mode squeezing factor r. Put
another way, as claimed in the Introduction, for a suffi-
ciently small value of ½ð2πω0Þ=a�, it becomes impossible to
produce any significant squeezing of the intensity fluctua-
tions detected by the inertial observer.

C. Entanglement results

We generalize the above calculation to a uniformly
accelerated two-mode squeezer in the right Rindler wedge
that couples the left-moving and right-moving Rindler
modes. The two-mode squeezing operator is defined as [17]

Ŝ2ðrÞ ¼ expfrðb̂R†1g b̂R†2g − b̂R1gb̂
R
2gÞg; ð17Þ

where the subscripts “1” and “2” represent the left-moving
and right-moving modes, respectively. Here, r is the
squeezing factor and is assumed to be real. The output
field includes the left-moving and right-moving parts. To
have full information about the output state, one needs to

Ic = 1.1 r = 0.5 Ic = 1.3 r = 0.5

Ic = 1.6 r = 0.5 Ic = 1.9 r = 0.5

FIG. 4. Phase-space representation of quadrature in the final
state. The red dashed circle represents the vacuum shot noise, and
the blue shaded ellipse represents the quadrature variance of the
output state. For a fixed single-mode squeezing factor (r ¼ 0.5),
the minimum quadrature variance is below the vacuum shot noise
for small Ic, indicating that the output state is a squeezed state.
While for large enough Ic, the minimum quadrature variance
surpasses the vacuum shot noise, showing that squeezing is
destroyed.

FIG. 5. Distribution of minimum quadrature variance of the
output state as a function of single-mode squeezing factor r and
the central frequency ω0 in the narrow-bandwidth limit. A critical
curve along which Vmin ¼ 1.0 separates the squeezing region and
no-squeezing region. In the squeezing region, Vmin < 1.0, while
in the no-squeezing region, Vmin > 1.0.
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measure the states of the left-moving and right-moving
modes, as well as the correlations between them.
We add two displacements, with amplitudes α1 ¼

jα1jeiϕ1 and α2 ¼ jα2jeiϕ2 , after the two-mode squeezer
in order to perform homodyne detection, the former for
the left-moving mode and the latter for the right-moving
mode. We find that the expectation values of the quadrature
amplitudes X̂1ðϕ1Þ and X̂2ðϕ2Þ are zero. The covariance
matrix [19] of the output state is

V ¼

0
BBB@

A 0 B 0

0 A 0 −B
B 0 A 0

0 −B 0 A

1
CCCA; ð18Þ

where

A ¼ ð2Ic − 1Þ2 coshð2rÞ − 4IcðIc − 1Þð2 cosh r − 1Þ;
B ¼ 2 sinh r½ð2Ic − 1Þ2 cosh r − 4IcðIc − 1Þ�: ð19Þ

From the covariance matrix (18), one can derive the
logarithmic negativity as [19]

EN ¼ max½0;− log2ðν̃−Þ�; ð20Þ

where ν̃− is the smallest symplectic eigenvalue of the
partially transposed state,

ν̃− ¼ e−2r þ 4IcðIc − 1Þðe−r − 1Þ2: ð21Þ

When ν̃− < 1 (EN > 0), there exists entanglement between
the left-moving and right-moving modes; when ν̃− ≥ 1
(EN ¼ 0), the left-moving and right-moving modes are not
entangled. When Ic ¼ 1, the covariance matrix [Eq. (18)]

is that of a pure two-mode squeezed state and the
entanglement [Eq. (21)] is maximized. However, when
Ic > 1, the covariance matrix becomes decohered (mixed)
and the entanglement drops, eventually disappearing.
Figure 6 shows the logarithmic negativity as a function
of the squeezing factor r and the central frequency ω0 in
the narrow-bandwidth limit. The critical curve ν̃− ¼ 1,
dividing the entanglement and no-entanglement regions, is
determined by Eq. (16).

IV. CONCLUSION

The decoherence effect we describe here is a previously
unnoticed consequence of the transformation from the
bipartite Hilbert space of the Rindler and Unruh modes
to the single Hilbert space of the Minkowski modes. Notice
that in Eq. (9), any direct phase relationship between the
left and right Unruh modes is lost in the construction of the
Minkowski number operator. This means that interactions
that lead to entanglement between the left and right Unruh
modes, as occurs with the accelerated squeezer and the
entangler, will, in general, appear as decoherence with
respect to measurements by inertial observers. In contrast,
coherent state signals do not produce Unruh mode entan-
glement, so no decoherence is observed for such signals.
We note that it is quite standard for the LO to be sent

from the source as a phase or mode reference along with the
signal. In direct communication scenarios, the local oscil-
lator (i.e., the coherent amplitude) is mixed with the signal
from the start (self-homodyne). In principle, the LO could
be sent separately from the signal, and the inertial observer
could carry out its own homodyne by mixing the LO with
the signal locally. However, in the accelerated case, this
only works if the phase relationship between the LO and
the signal (established by Alice) is maintained by Bob.
If Bob introduces his own Minkowski phase shift (by
producing a delay between the LO and signal), then the
measurement result will be scrambled, and even coherent
states will look mixed. Thus, in order to see pure coherent
state signals in a practical scenario, Alice and Bob should
employ the self-homodyne approach for their communi-
cation. Surprisingly, this technique then fails to see pure
state statistics when nonclassical (squeezed) states are used.
We have shown that single- and two-mode unitary

squeezing operations in an accelerated frame are, in
general, detected as decohered states by inertial observers.
As we noted in the Introduction, the standard Unruh effect
can be purified if a mirror-image accelerated observer is
introduced. Here, we find that a mirror-image accelerated
source is required to purify the state detected by the
inertial observer. In particular, for the narrow-band case,
if the mirror-image source displaces the state by γ ¼
2f½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IcðIc − 1Þp �=ð2Ic − 1Þgα�, in phase with the original
accelerated source, then the inertial detectors will see pure
states in both the squeezer and entangler cases. Details of
this calculation are given in the Appendix.

FIG. 6. Logarithmic negativity of the output state as a function
of the squeezing factor r and the central frequency ω0 in the
narrow-bandwidth limit.
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We believe the decoherence effect has significance for
understanding quantum effects in gravitational systems.
For example, our system can be viewed as a toy model for
the creation and eventual evaporation of a black hole. We
begin in the far past in a pure Minkowski vacuum state
before the formation of the black hole. In the intermediate
epoch, accelerated observers, representing observers close
to the black hole, interact with the field modes. Finally, in
the far future, the black hole has evaporated, leaving flat
space; however, the field remains in a mixed state with
respect to inertial observers. This may indicate a new
direction for understanding the black-hole information
paradox.
The discovered decoherence effect could, in principle, be

used to detect and measure the acceleration between inertial
and accelerated observers. However, the accelerations
required to generate this decoherence effect are well
beyond those that can be physically produced in the lab.
On the other hand, such accelerations occur naturally in
many regions of the Universe. In addition, the equivalence
between acceleration and time-dependent effects [27] may
enable laboratory tests, especially at microwave frequen-
cies [28]. We also note that simulation of these effects using
optical squeezing is possible with current technology and
would allow an experimental investigation of analogues to
the decoherence effect described here that may be of

interest in their own right from a quantum information
point of view.
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APPENDIX A: DERIVATION OF THE VARIANCE
IN SINGLE-MODE SQUEEZING CASE

In the single-mode squeezing case, the unitary is taken
to be Ûg ¼ D̂gðαÞŜ1ðrÞ. By substituting this unitary into
Eq. (6), one can derive the input-output relations for Unruh
modes,

ĉ0ω ¼ ĉω þ g�ðωÞ cosh rω½b̂Rg ðcosh r − 1Þ þ b̂R†g sinh rþ α�;
d̂0ω ¼ d̂ω − gðωÞ sinh rω½b̂R†g ðcosh r − 1Þ þ b̂Rg sinh rþ α��:

ðA1Þ

The localized Rindler operator b̂Rg can be expressed in terms
of the input Unruh operators by using the transformations
between the Rindler and Unruh modes. Equation (A1)
becomes

ĉ0ω ¼ ĉω þ g�ðωÞ cosh rω
�
ðcosh r − 1Þ

Z
dω0gðω0Þðĉω0 cosh rω0 þ d̂†ω0 sinh rω0 Þ

þ sinh r
Z

dω0g�ðω0Þðĉ†ω0 cosh rω0 þ d̂ω0 sinh rω0 Þ þ α

�
;

d̂0ω ¼ d̂ω − gðωÞ sinh rω
�
ðcosh r − 1Þ

Z
dω0g�ðω0Þðĉ†ω0 cosh rω0 þ d̂ω0 sinh rω0 Þ

þ sinh r
Z

dω0gðω0Þðĉω0 cosh rω0 þ d̂†ω0 sinh rω0 Þ þ α�
�
: ðA2Þ

It is now straightforward to calculate the vacuum expect-
ation values of the product of two output Unruh operators:

h0jĉ0†ω ĉ0ω0 j0i ¼ gðωÞg�ðω0Þ cosh rω cosh rω0 ðEc þ jαj2Þ;
h0jd̂0†ω d̂0ω0 j0i ¼ g�ðωÞgðω0Þ sinh rω sinh rω0 ðEd þ jαj2Þ;
h0jĉ0ωĉ0ω0 j0i ¼ g�ðωÞg�ðω0Þ cosh rω cosh rω0 ðEcc þ α2Þ;
h0jd̂0ωd̂0ω0 j0i ¼ gðωÞgðω0Þ sinh rω sinh rω0 ðEdd þ α�2Þ;
h0jĉ0ωd̂0ω0 j0i ¼ g�ðωÞgðω0Þ cosh rω sinh rω0 ðEcd − jαj2Þ;
h0jĉ0†ω d̂0ω0 j0i ¼ gðωÞgðω0Þ cosh rω sinh rω0 ðĒcd − α�2Þ;

ðA3Þ
where

Ec ¼ Isðcosh r − 1Þ2 þ Ic sinh2 r;

Ed ¼ Icðcosh r − 1Þ2 þ Is sinh2 r;

Ecc ¼ sinh r½ðIc þ I sÞðcosh r − 1Þ þ 1�;
Edd ¼ sinh r½ðIc þ I sÞðcosh r − 1Þ − 1�;
Ecd ¼ − cosh rðcosh r − 1ÞðIc þ IsÞ;
Ēcd ¼ − sinh rðcosh r − 1ÞðIc þ I sÞ: ðA4Þ

Other vacuum expectation values are either zero or complex
conjugates of the ones above. From Eqs. (9) and (10), the
vacuum expectation value of the total Minkowski particle
number is
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h0jN̂j0i ¼ jαj2ðIc þ IsÞ þ ðIcEc þ IsEdÞ; ðA5Þ
and the variance of the total Minkowski particle number is

ðΔNÞ2 ¼ h0jN̂2j0i − h0jN̂j0i2
¼ jαj2½ðIc þ IsÞ þ 2ðI2

cEc þ I2
sEdÞ

þ 2I2
cEcc cosð2ϕÞ þ 2I2

sEdd cosð2ϕÞ
− 4IcIsEcd − 4IcI sĒcd cosð2ϕÞ�; ðA6Þ

where ϕ is the displacement phase. In the homodyne
detection, normalizing the variance of the particle number
using the strength of the local oscillator gives the variance
of the quadrature amplitude [20]. Here, the strength of the
local oscillator is ∼jαj2ðIc þ I sÞ, so the variance of the
quadrature amplitude is

VðϕÞ ¼ ðΔNÞ2
jαj2ðIcþIsÞ

¼ coshð2rÞþ 4IcðIc− 1Þðcosh2r− 2coshrþ 1Þ
þ 2sinhr½ð2Ic− 1Þ2 coshr− 4IcðIc− 1Þ�cosð2ϕÞ:

ðA7Þ

APPENDIX B: UNIFORMLY ACCELERATED
TWO-MODE SQUEEZER

For a massless scalar field, the left-moving and right-
moving Rindler modes are decoupled. We consider a
uniformly accelerated two-mode squeezer in the right
Rindler wedge that couples the left-moving and right-moving
Rindler modes. Entanglement between the left-moving and
right-moving Rindler modes might be created by the

accelerated two-mode squeezer. One question of particular
interest is, given that entanglement has been created as viewed
by uniformly accelerated observers, whether entanglement
between left-moving and right-moving fields exists as
observed by inertial observers.
The unitary characterizing the uniformly accelerated

two-mode squeezer is given by Eq. (17). Similar to the
case of the uniformly accelerated single-mode squeezer,
two uniformly accelerated displacements, D̂1ðα1Þ and
D̂2ðα2Þ, are introduced to realize the homodyne detection,
where α1 ¼ jα1jeiϕ1 and α2 ¼ jα2jeiϕ2 . The relevant circuit
is shown in Fig. 7. The two local oscillators are used to
detect the left-moving and right-moving fields, as well as
the correlations between them. In this Appendix, we derive
the covariance matrix for the output state of the uniformly
accelerated two-mode squeezer.
The input-output relations for the circuit in Fig. 7 can be

derived straightforwardly. By further using the relations
between the Rindler operators and Unruh operators [25],
we can derive the input-output relations for the Unruh
operators:

ĉ01ω ¼ ĉ1ω þ g�ðωÞ cosh rω
�
ðcosh r − 1Þ

Z
dω0gðω0Þðĉ1ω0 cosh rω0 þ d̂†

1ω0 sinh rω0 Þ

þ sinh r
Z

dω0g�ðω0Þðĉ†
2ω0 cosh rω0 þ d̂2ω0 sinh rω0 Þ þ α1

�
;

d̂01ω ¼ d̂1ω − gðωÞ sinh rω
�
ðcosh r − 1Þ

Z
dω0g�ðω0Þðĉ†

1ω0 cosh rω0 þ d̂1ω0 sinh rω0 Þ

þ sinh r
Z

dω0gðω0Þðĉ2ω0 cosh rω0 þ d̂†
2ω0 sinh rω0 Þ þ α�1

�
;

ĉ02ω ¼ ĉ2ω þ g�ðωÞ cosh rω
�
ðcosh r − 1Þ

Z
dω0gðω0Þðĉ2ω0 cosh rω0 þ d̂†

2ω0 sinh rω0 Þ

þ sinh r
Z

dω0g�ðω0Þðĉ†
1ω0 cosh rω0 þ d̂1ω0 sinh rω0 Þ þ α2

�
;

d̂02ω ¼ d̂2ω − gðωÞ sinh rω
�
ðcosh r − 1Þ

Z
dω0g�ðω0Þðĉ†

2ω0 cosh rω0 þ d̂2ω0 sinh rω0 Þ

þ sinh r
Z

dω0gðω0Þðĉ1ω0 cosh rω0 þ d̂†
1ω0 sinh rω0 Þ þ α�2

�
: ðB1Þ

FIG. 7. A uniformly accelerated two-mode squeezer and the
scheme of self-homodyne detection.

DAIQIN SU and TIMOTHY C. RALPH PHYS. REV. X 9, 011007 (2019)

011007-8



It is then straightforward to calculate the vacuum expect-
ation values of the products of two output Unruh operators.
For the left-moving operators, we have

h0jĉ0†1ωĉ01ω0 j0i ¼ gðωÞg�ðω0Þ cosh rω cosh rω0 ðEc þ jα1j2Þ;
h0jd̂0†1ωd̂01ω0 j0i ¼ g�ðωÞgðω0Þ sinh rω sinh rω0 ðEd þ jα1j2Þ;
h0jĉ01ωĉ01ω0 j0i ¼ α21g

�ðωÞg�ðω0Þ cosh rω cosh rω0 ;

h0jd̂01ωd̂01ω0 j0i ¼ α�21 gðωÞgðω0Þ sinh rω sinh rω0 ;

h0jĉ01ωd̂01ω0 j0i ¼ g�ðωÞgðω0Þ cosh rω sinh rω0 ðEcd − jα1j2Þ;
h0jĉ0†1ωd̂01ω0 j0i ¼ −α�21 gðωÞgðω0Þ cosh rω sinh rω0 : ðB2Þ

For the right-moving operators, we have

h0jĉ0†2ωĉ02ω0 j0i ¼ gðωÞg�ðω0Þ cosh rω cosh rω0 ðEc þ jα2j2Þ;
h0jd̂0†2ωd̂02ω0 j0i ¼ g�ðωÞgðω0Þ sinh rω sinh rω0 ðEd þ jα2j2Þ;
h0jĉ02ωĉ02ω0 j0i ¼ α22g

�ðωÞg�ðω0Þ cosh rω cosh rω0 ;

h0jd̂02ωd̂02ω0 j0i ¼ α�22 gðωÞgðω0Þ sinh rω sinh rω0 ;

h0jĉ02ωd̂02ω0 j0i ¼ g�ðωÞgðω0Þ cosh rω sinh rω0 ðEcd − jα2j2Þ;
h0jĉ0†2ωd̂02ω0 j0i ¼ −α�22 gðωÞgðω0Þ cosh rω sinh rω0 : ðB3Þ

For the products of the left-moving and right-moving
operators, we have

h0jĉ0†1ωĉ02ω0 j0i ¼ α�1α2gðωÞg�ðω0Þ cosh rω cosh rω0 ;

h0jd̂0†1ωd̂02ω0 j0i ¼ α1α
�
2g

�ðωÞgðω0Þ sinh rω sinh rω0 ;

h0jĉ01ωĉ02ω0 j0i ¼ g�ðωÞg�ðω0Þ cosh rω cosh rω0 ðEcc þ α1α2Þ;
h0jd̂01ωd̂02ω0 j0i ¼ gðωÞgðω0Þ sinh rω sinh rω0 ðEdd þ α�1α

�
2Þ;

h0jĉ01ωd̂02ω0 j0i ¼ −α1α�2g�ðωÞgðω0Þ cosh rω sinh rω0 ;

h0jd̂01ωĉ02ω0 j0i ¼ −α�1α2gðωÞg�ðω0Þ sinh rω cosh rω0 ;

h0jĉ0†1ωd̂02ω0 j0i ¼ gðωÞgðω0Þ cosh rω sinh rω0 ðĒcd − α�1α
�
2Þ;

h0jd̂0†1ωĉ02ω0 j0i ¼ g�ðωÞg�ðω0Þ sinh rω cosh rω0 ðĒcd − α1α2Þ:
ðB4Þ

The vacuum expectation values of the left-moving and
right-moving Minkowski particle number are

h0jN̂1j0i ¼ jα1j2ðIc þ IsÞ þ ðIcEc þ I sEdÞ;
h0jN̂2j0i ¼ jα2j2ðIc þ IsÞ þ ðIcEc þ I sEdÞ: ðB5Þ

Toaccomplish the homodynedetection,we also need to know
the strength of the local oscillators in the absence of signal:
h0jN̂10j0i ¼ jα1j2ðIc þ IsÞ, h0jN̂20j0i ¼ jα2j2ðIc þ IsÞ.
According to Eq. (3), the expectation values of the left-
moving and right-moving quadrature amplitudes can be
found as

h0jX̂1ðϕ1Þj0i ¼ h0jX̂2ðϕ2Þj0i ¼ 0 ðB6Þ

in the limit of jα1j ≫ 1 and jα2j ≫ 1.
Using Eq. (B2) and keeping terms to second order of α1,

we find

h0jN̂1ðϕ1ÞN̂1ðϕ0
1Þj0i − h0jN̂1ðϕ1Þj0ih0jN̂1ðϕ0

1Þj0i
¼ α�1α

0
1Ic þ α1α

0�
1 Is þ ðα�1α01 þ α1α

0�
1 Þ

× ðI2
cEc þ I2

sEd − 2IcI sEcdÞ: ðB7Þ

When ϕ1 ¼ ϕ0
1, we obtain the variance of the left-moving

quadrature amplitude,

V1ðϕ1Þ ¼
h0jN̂2

1ðϕ1Þj0i − h0jN̂1ðϕ1Þj0i2
h0jN̂10ðϕ1Þj0i

¼ 1þ 2ðI2
cEc þ I2

sEd − 2IcI sEcdÞ=ðIc þ IsÞ:
ðB8Þ

We are also interested in the case where ϕ0
1 ¼ ϕ1 þ π=2:

h0jX̂1ðϕ1ÞX̂1ðϕ1 þ π=2Þj0i ¼ h0jN̂1ðϕ1ÞN̂1ðϕ1 þ π=2Þj0i − h0jN̂1ðϕ1Þj0ih0jN̂1ðϕ1 þ π=2Þj0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0jN̂10ðϕ1Þj0ih0jN̂10ðϕ1 þ π=2Þj0i

q ¼ i
Ic þ I s

: ðB9Þ

According to the symmetry between the left-moving and right-moving modes, similar results can be obtained:

V2ðϕ2Þ ¼ 1þ 2ðI2
cEc þ I2

sEd − 2IcIsEcdÞ=ðIc þ I sÞ ðB10Þ

and
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h0jX̂2ðϕ2ÞX̂2ðϕ2 þ π=2Þj0i ¼ i
Ic þ Is

: ðB11Þ

To first order of α1α2, we find

h0jN̂1ðϕ1ÞN̂2ðϕ2Þj0i − h0jN̂1ðϕ1Þj0ih0jN̂2ðϕ2Þj0i
¼ ðα1α2 þ α�1α

�
2ÞðI2

cEcc þ I2
sEdd − 2IcIsĒcdÞ:

ðB12Þ

The vacuum expectation value of the product of the left-
moving and right-moving quadrature amplitudes is

h0jX̂1ðϕ1ÞX̂2ðϕ2Þj0i

¼h0jN̂1ðϕ1ÞN̂2ðϕ2Þj0i−h0jN̂1ðϕ1Þj0ih0jN̂2ðϕ2Þj0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0jN̂10ðϕ1Þj0ih0jN̂20ðϕ2Þj0i

q

¼2ðI2
cEccþI2

sEdd−2IcI sĒcdÞcosðϕ1þϕ2Þ=ðIcþIsÞ:
ðB13Þ

For Gaussian states, the covariance matrix is a very
important quantity to characterize the state. In the special
case where the expectation values of the quadrature
amplitudes are zero, which is the case that we are consid-
ering, the covariance matrix contains full information of the
state. We formally define an operator vector

x̂≡ ðx̂1; p̂1; x̂2; p̂2ÞT
¼ ðX̂1ð0Þ; X̂1ðπ=2Þ; X̂2ð0Þ; X̂2ðπ=2ÞÞT: ðB14Þ

The covariance matrix V is defined as

Vij ¼
1

2
hfδx̂i; δx̂jgi; ðB15Þ

where δx̂i ¼ x̂i − hx̂ii and f; g is the anticommutator. Using
the fact that hx̂ii ¼ 0 and Eqs. (B8)–(B13), we find
that the nonvanishing components of the covariance
matrix are

V11¼V22¼V33¼V44

¼1þ2ðI2
cEcþI2

sEd−2IcIsEcdÞ=ðIcþIsÞ;
V13¼V31¼−V24¼−V42

¼2ðI2
cEccþI2

sEdd−2IcIsĒcdÞ=ðIcþI sÞ: ðB16Þ

By using Eq. (A4) and the relation Ic − Is ¼ 1, we obtain
the covariance matrix Eq. (18).

APPENDIX C: AN ADDITIONAL DISPLACEMENT
IN THE LEFT RINDLER WEDGE

While, in general, it is not possible for the inertial
detector to see a pure state if the squeezer and local

oscillator are imposed on the right Rindler wedge, in this
Appendix, we show that by appropriately adding an addi-
tional local oscillator in the left Rindler wedge, the inertial
detector can see a pure state. Physically, this would require
a mirror-image accelerated source to perform coordinated
displacements of the quantum field in their reference frame.
In order to match the mode shape in the right Rindler

wedge, the wave-packet mode in the left Rindler wedge is
chosen as g�ðωÞ. The appearance of the complex conjugate
comes from the fact that the coordinate time in the left
Rindler wedge runs backward compared to that in the right
Rindler wedge (and the Minkowski time coordinate). The
displacement operator is thus D̂g� ðγÞ, where γ ¼ jγjeiϕγ and
ϕγ is the phase. We further require that the phase ϕγ

satisfies ϕγ ¼ −ϕ. For convenience, we define the ratio
between the amplitude of the displacements in the left and
right Rindler wedges as z≡ jγj=jαj. From the general
input-output relations of the Unruh modes, Eq. (6), we find

ĉ0ω ¼ ĉsω þ αg�ðωÞLω;

d̂0ω ¼ d̂sω þ α�gðωÞMω; ðC1Þ

where Lω ¼ cosh rω − z sinh rω, Mω¼ zcoshrω−sinhrω,
and the operators ĉsω and d̂sω are the output Unruh operators
in the absence of displacements. For a uniformly accel-
erated single-mode squeezer,

ĉsω ¼ ĉω þ g�ðωÞ cosh rω½b̂Rg ðcosh r − 1Þ þ b̂R†g sinh r�;
d̂sω ¼ d̂ω − gðωÞ sinh rω½b̂R†g ðcosh r − 1Þ þ b̂Rg sinh r�:

ðC2Þ

The total Minkowski particle number operator

N̂ ¼ jαj2
Z

dωjgðωÞj2ðL2
ω þM2

ωÞ þ ðn̂c þ n̂dÞ þ Ŷc þ Ŷd;

ðC3Þ

where n̂c and n̂d are the output Unruh particle numbers in
the absence of displacements,

n̂c ¼
Z

dωĉs†ω ĉsω; n̂d ¼
Z

dωd̂s†ω d̂
s
ω: ðC4Þ

Note that Ŷc and Ŷd are defined as

Ŷc ¼ α�
Z

dωgðωÞLωĉsω þ α

Z
dωg�ðωÞLωĉ

s†
ω ;

Ŷd ¼ α

Z
dωg�ðωÞMωd̂

s
ω þ α�

Z
dωgðωÞMωd̂

s†
ω : ðC5Þ

To second order of α, the variance of the total particle
number is
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ðΔNÞ2 ¼ h0jŶ2
cj0i þ h0jŶ2

dj0i þ 2h0jŶcŶdj0i: ðC6Þ

For a uniformly accelerated single-mode squeezer, the expectation values h0jŶ2
cj0i, h0jŶ2

dj0i and h0jŶcŶdj0i can be
calculated straightforwardly from Eqs. (C5) and (C2):

h0jŶ2
cj0i ¼ jαj2ðIc − 2zIcs þ z2IsÞ þ 2jαj2½Ec þ Ecc cosð2ϕÞ�ðIc − zI sÞ2;

h0jŶ2
dj0i ¼ jαj2ðz2Ic − 2zIcs þ IsÞ þ 2jαj2½Ed þ Edd cosð2ϕÞ�ðzIc − I sÞ2;

h0jŶcŶdj0i ¼ 2jαj2½Ecd þ Ēcd cosð2ϕÞ�ðIc − zIsÞðzIc − IsÞ; ðC7Þ

where the new integral Ics is defined as

Ics ¼
Z

dωjgðωÞj2 cosh rω sinh rω: ðC8Þ

Therefore, the variance of the quadrature amplitude is

VðϕÞ ¼ h0jN̂2j0i − h0jN̂j0i2
h0jN̂0j0i

¼ 1þ 2f½EccðIc − zIsÞ2 þ EddðzIc − I sÞ2 þ 2ĒcdðIc − zIsÞðzIc − IsÞ� cosð2ϕÞ½EcðIc − zIsÞ2 þ EdðzIc − I sÞ2
þ 2EcdðIc − zIsÞðzIc − IsÞ�g=½ð1þ z2ÞðIc þ I sÞ − 4zIcs�; ðC9Þ

where N̂0 can be obtained from Eq. (C3) by omitting n̂c and
n̂d. Notice that when z ¼ 0, we regain Eq. (13) as expected
[see also Eq. (A6)].
In the narrow-bandwidth limit, namely, the central

frequency ω0 of gðωÞ is much greater than the bandwidth
σ, we can approximate the integrals as

Ic≈cosh2rω0
; I s≈sinh2rω0

; Ics≈coshrω0
sinhrω0

:

By substituting these approximated integrals into Eq. (C9),
it is straightforward to show that when

z ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IcðIc − 1Þp
2Ic − 1

; ðC10Þ

the variance of the quadrature amplitude is

VðϕÞ ¼ coshð2rÞ þ sinhð2rÞ cosð2ϕÞ: ðC11Þ

This implies VmaxVmin ¼ 1, indicating that the detected
state is pure.
More generally, it can be shown that for an arbitrary

wave packet gðωÞ, there exists a nonzero z such that
VmaxVmin ¼ 1. In fact, one can solve the equation
VmaxVmin ¼ 1 for z based on the variance of the quadrature
amplitude Eq. (C9). Therefore, by appropriately creating a
particular additional local oscillator in the left Rindler
wedge, but only by doing so, the inertial detector will see a
pure state.
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