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Out-of-time-order correlation (OTOC) functions provide a powerful theoretical tool for diagnosing chaos
and the scrambling of information in strongly interacting, quantum systems. However, their direct and
unambiguous experimental measurement remains an essential challenge. At its core, this challenge arises
from the fact that the effects of both decoherence and experimental noise can mimic that of information
scrambling, leading to decay of OTOCs. Here, we analyze a quantum teleportation protocol that explicitly
enables one to differentiate between scrambling and decoherence. Moreover, we demonstrate that within
this protocol, one can extract a precise “noise” parameter which quantitatively captures the nonscrambling-
induced decay of OTOCs. Using this parameter, we prove explicit bounds on the true value of the OTOC.
Our results open the door to experimentally measuring quantum scrambling with built-in verifiability.
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I. INTRODUCTION

The thermalization of strongly interacting systems
causes information about the initial configuration to
become “scrambled” at late times, wherein two initial
states (with the same conserved quantities) become indis-
tinguishable without measuring a macroscopic number of
observables [1–4]. Recent studies on the dynamics of such
information scrambling have sharpened our understanding
of chaos in quantum many-body systems [5–27], and have
led to new insights on a variety of questions ranging from
the black-hole information paradox [5,11,15,28,29] to
transport phenomena in non-Fermi liquids [30,31].
While a precise definition of quantum scrambling remains
elusive, a powerful proxy for characterizing its behavior is
provided by out-of-time-order correlation (OTOC) func-
tions, which take the general form hVð0ÞWðtÞVð0ÞWðtÞi,
where V, W are operators that act on sufficiently small
subsystems [8,10,12,32]. The intuition behind this corre-
lator is an attempt to measure the influence of one
observable at earlier times on another observable at later
times—in essence, a quantum version of the so-called
butterfly effect. To do this, however, requires the precise
reversal of time evolution and thus, poses a daunting
challenge for any experiment.

Despite this challenge, a tremendous amount of interest
has been devoted to the development of protocols [33–35]
and platforms [36,37] for the direct measurement of
OTOCs. The crucial difficulty in interpreting such mea-
surements can be summarized as follows: For a generic
interacting system without symmetries, the scrambling of
quantum information will cause out-of-time-order correla-
tion functions to decay to zero. However, both decoherence
and imperfect experimental controls (e.g., time reversal)
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FIG. 1. (a) In the Hayden-Preskill variant of the black-hole
decoding problem [5], one asks whether Bob can decode the state
of Alice’s quantum spin using only Hawking radiation and an
entangled partner of the black hole. Any successful “decoding”
serves as affirmation for the existence of scrambling dynamics.
(b) For an arbitrary unitaryU, one can utilize a teleportation-based
decoding protocol to probe the scrambling behavior of the circuit
[29]. Crucially, even in the presence of arbitrary noise and
imperfections, the teleportation fidelity acts as ametric for quantum
scrambling and enables the bounding of the mutual information
between Alice’s and Bob’s reference quantum registers.
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will also cause OTOCs to decay to zero. At present, the
only way to distinguish between these two contributions—
namely, true chaotic scrambling versus noise and
decoherence—is to perform full quantum tomography on
the many-body system, requiring exponentially many
measurements in the number of qubits [38–41]. To this
end, the ability to distinguish between genuine quantum
information scrambling and extrinsic decoherence remains
an essential open question [42].
In this paper, we analyze a quantum teleportation

protocol that explicitly enables such differentiation. We
present three main results. First, we demonstrate that within
our protocol, one can extract a “noise” parameter, which
quantifies the nonscrambling-induced decay of OTOCs.
Here, we focus on two illustrative examples: (i) depolari-
zation (i.e., a nonunitary error) and (ii) imperfect “back-
wards” time evolution (i.e., a unitary error). Second, using
this noise parameter, we provide a bound on the true
scrambling-induced decay of the OTOC. Again, we analyze
two cases, one which applies specifically to the situation of
unitary errors and another which applies to arbitrary errors.
Finally, we describe two simple realizations of our protocol
amenable to near-term, intermediate scale qubit and qutrit
systems as well as their generalizations to include Grover
search [43].
The essence of our approach is based upon a recent

decoding algorithm for the Hayden-Preskill variant of the
black-hole information problem [5,29]. The connection
between this decoding algorithm and information scram-
bling can be understood as follows: If the dynamics of a
black hole are unitary, then one should, in principle, be able
to retrieve a quantum state that is thrown in from the
Hawking radiation that comes out [Fig. 1(a)]. Crucially, it
turns out that such a successful “decoding” of the original
quantum state serves as smoking-gun evidence for the
existence of true scrambling dynamics.

II. ORGANIZATION AND SUMMARY
OF MAIN RESULTS

In Sec. III, we begin by reviewing the information
theoretic interpretation of scrambling and OTOCs. Then,
using the example of a depolarizing quantum channel, we
illustrate the fact that decoherence can result in the decay of
OTOCs even in the absence of scrambling dynamics. This
allows us to propose a sharp measure which quantifies the
ratio of scrambling-induced versus decoherence-induced
OTOC decay. Moreover, it reveals that the genuine metric
for scrambling should be taken as the mutual information
between subsystems and not simply the measured OTOC.
The groundwork being laid, in Sec. IV, we introduce the
teleportation-based decoding protocol and clarify its oper-
ation in the ideal case without noise and decoherence.
Then in Sec. V, we turn to an analysis of the protocol in
the presence of arbitrary noise and decoherence. Here,
we demonstrate that the protocol provides a quantitative

estimate for the amount of dissipation in the system. In
Sec. VI, motivated by recent experiments, we restrict
ourselves to a subclass of noise and imperfections, with
a focus on coherent errors. Under this restriction, we show
that one can explicitly bound the ideal value of the OTOC
(i.e., in the absence of errors), using the experimentally
measured value of the OTOC. In Sec. VII, we generalize
such a bound to the case of arbitrary errors and prove that
one can utilize the teleportation fidelity to bound the mutual
information between subsystems (and hence the amount of
scrambling). Finally, in Sec. VIII, we propose and analyze
two experimental implementations of our protocol in near-
term intermediate scale quantum simulators. We focus on a
class of Clifford scramblers that saturate the lower bound
for OTOCs. In Sec. IX, we offer some concluding remarks
and intriguing directions to be pursued.

III. CHARACTERIZING SCRAMBLING
AND DECOHERENCE

A. Definition of scrambling in terms of OTOCs

Let us begin by providing a definition for quantum
scrambling in terms of the behavior of out-of-time-order
correlation functions [16,29]:

hOXOYðtÞOZOWðtÞi
≈ hOXOZihOYihOWi þ hOXihOZihOYOWi
− hOXihOYihOZihOWi; ð1Þ

where OX, OZ are operators that act on subsystem A (at
time zero) and OY , OW are operators that act on subsystem
D (at time t), as depicted in Fig. 2. This equation becomes
exact in the thermodynamic limit for chaotic systems at late
times and can also be derived from the eigenstate thermal-
ization hypothesis [1–4,44]. While we will focus on infinite
temperature systems with ρ ¼ ð1=dÞI, we note that this

FIG. 2. Schematic image of the setup associated with an out-of-
time-ordered correlation function, hOAð0ÞODðtÞOAð0ÞODðtÞi.
Time runs upward and evolution is generated by the unitary U.
The Hilbert space decomposes as H ¼ HA ⊗ HB ¼ HC ⊗ HD.
Ideally, operatorsOA andOD act on sufficiently small subsystems
of the full system.
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definition naturally generalizes to finite temperatures. Our
above definition of scrambling is required to hold for
all local operators, but a slightly more coarse-grained
characterization of scrambling (and one which is easier
to probe experimentally) can be achieved via the averaged
OTOC [15]:

hOTOCi≡
ZZ

dOAdODhOAODðtÞO†
AO

†
DðtÞi; ð2Þ

where
R
dOR is the Haar average over all unitary operators

on subsystem R. This Haar integral can be replaced by an
average over Pauli operators:

ZZ
dOAdODhOAODðtÞO†

AO
†
DðtÞi

¼ 1

d2Ad
2
D

X
PA;PD

hPAPDðtÞP†
AP

†
DðtÞi; ð3Þ

where PAðDÞ are Pauli operators and dAðDÞ is the dimension
of the subsystem [45]. Working at infinite temperature
and using Eq. (1) then yields the scrambled value of the
averaged OTOC as [48]

hOTOCiS ≈
1

d2A
þ 1

d2D
−

1

d2Ad
2
D
: ð4Þ

This scrambled value hOTOCiS is achieved for a Haar
random unitary as d → ∞ [15]. On the other hand, for
arbitrary unitary time evolution, hOTOCi is bounded from
above by unity and from below by max½ð1=d2AÞ; ð1=d2DÞ�;
the fact that it never fully decays to zero is because it
contains contributions from cases where PA ¼ I or PD ¼ I.
We note that the minimal scrambled value is only asymp-
totically achieved for large systems with d ≫ dA ≫ dD or
d ≫ dD ≫ dA [49].

B. Decoding as a route to scrambling

In order to characterize the effect of decoherence on the
averaged OTOC, it will be useful to first recall the
information theoretic interpretation of hOTOCi in terms
of the mutual information between subsystems. To do so,
we will utilize the so-called state representation of the
time-evolution operator U [5,15]. This representation
allows us to view a unitary operator U, acting on an n-
qubit Hilbert spaceHAB, as a pure quantum state, supported
on a 2n-qubit Hilbert space HAB ⊗ HRB0 ð≃HRCDB0 Þ:

ð5Þ

where time runs upward and the horizontal lines
in the diagram represent Einstein-Podolsky-Rosen (EPR)
pairs (jEPRi ≡ ð1= ffiffiffi

d
p ÞPd

j¼1 jji ⊗ jji), while the dots

capture the 1=
ffiffiffi
d

p
normalization factor in the EPR pair.

Crucially, this representation allows us to characterize the
scrambling behavior of the time evolution U via the
entanglement properties of the pure state jΨi.
Three remarks are in order. First, for noninteracting time

evolutions, including free-fermion dynamics or SWAP

operators, jΨi contains mostly bipartite entanglement
among subsystems. On the other hand, for strongly
interacting time evolutions that lead to scrambling, jΨi
consists of multipartite entanglement delocalized over the
full Hilbert space RCDB0.
Second, we note that jΨi is precisely the state of interest

in the Hayden-Preskill thought experiment [5]. In particu-
lar, the Hilbert spaces A, B, C, D [Eq. (5)] support,
respectively, Alice’s input states, the initial black hole,
the remaining black hole, and the Hawking radiation.
Meanwhile, R serves as a reference for Alice’s input state,
while B0 is the entangled partner of the black hole. The
Hayden-Preskill decoding problem can then be stated as
follows: when can Bob decode Alice’s quantum state using
only the Hawking radiationD and the entangled black-hole
partner B0 [5]? The answer, somewhat naturally, is when the
(von Neumann) mutual information between R and B0D is
maximal. More precisely, when this is the case, there exists
a unitary operator acting on B0D which distills an EPR pair
between R and B0D with high fidelity, thereby faithful
recovering Alice’s input state [5,50].
Third, we note that for maximally mixed states the

Rényi-2 mutual information, Ið2ÞðR; B0DÞ, lower bounds
the von Neumann mutual information, IðR; B0DÞ [51].
This is particularly useful since Ið2ÞðR; B0DÞ is, in fact,
directly related to our previously defined averaged OTOC
[15,16,23]:

hOTOCi ¼ 2−I
ð2ÞðR;B0DÞ; ð6Þ

where Ið2ÞðR;B0DÞ≡ Sð2ÞR þ Sð2ÞB0D − Sð2ÞRB0D and the Rényi-2
entropies Sð2Þ are evaluated with respect to the state jΨi. To
this end, in an ideal (noiseless) system, the smallness of
hOTOCi, which characterizes the amount of scrambling
in the system, is also sufficient to diagnose Bob’s faithful
recovery of Alice’s state [52].
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However, the essential point is that in a system with
noise and imperfections, the smallness of hOTOCi can
result either from decoherence or from true scrambling
behavior. Crucially, only the latter will contribute to Bob’s
ability to decode Alice’s quantum state. In the following
subsections, we will first focus on identifying the effects of
decoherence on the averaged OTOC. With this in hand, we
will then provide a precise metric to distinguish between
decoherence and scrambling.

C. Effects of decoherence on the OTOC

To understand the effects of decoherence, let us consider
the following quantum channel Q:

ρ → QðρÞ ¼ ð1 − pÞUρU† þ p
I
d
TrðρÞ; ð7Þ

which suffers from depolarization with probability p [53].
For traceless operators, one finds that the out-of-time-order
correlators behave as

hOX
fOYðtÞOZ

gOWðtÞi ¼ ð1 − pÞ2hOXOYðtÞOZOWðtÞi; ð8Þ
where we use the tilde to indicate observables time evolved
under the quantum channel Q, while time-evolved oper-
ators without a tilde are evolved under the unitary portion
of the channel U [54]. Thus, even in the absence of
information scrambling [i.e., in the actual behavior of
hOXOYðtÞOZOWðtÞi], the measured OTOCs for the chan-
nel Q can become small owing to decoherence; in
particular, undergoing depolarization with a finite proba-
bility per unit time induces an exponential decay of the
measured values of OTOCs.
The difference between scrambling and decoherence

can be further sharpened and made precise by considering
the late-time asymptotics of OTOCs, which serve as our
operational definition of quantum scrambling in Eq. (1).
Specifically, under a completely depolarizing channel (e.g.,
p ¼ 1), the out-of-time-order correlators decompose as
follows:

hOXOYðtÞOZOWðtÞi ¼ hOXOZihOYihOWi; ð9Þ
which contains only the first term in Eq. (1).
As before, one can also examine the averaged OTOCs

associated with the channel Q:

h gOTOCi≡ ZZ
dOAdODhOA

fODðtÞO†
A
fO†
DðtÞi: ð10Þ

Note that for an arbitrary quantum channel, the value of
h gOTOCi is now lower bounded by 1=d2D, whereas in the
absence of imperfections, hOTOCi was previously lower
bounded by max½ð1=d2AÞ; ð1=d2DÞ�.
In the above discussion, we have implicitly assumed that

both OY and OW are evolved with the same (possibly
imperfect) quantum channel Q. However, it is certainly of

interest to consider the situation where they evolve under
two different quantum channels, which is precisely the
experimental scenario if one performs backwards time
evolution imperfectly. We will address this case in detail
a bit later.

D. Distinguishing decoherence from scrambling

As we have shown, for an arbitrary quantum channel,
the decay of OTOCs is not sufficient to experimentally
diagnose the scrambling behavior of the system. To this
end, we now provide a formal metric for distinguishing
between scrambling and decoherence in noisy quantum
systems. Let us consider the state representation of the
channel Q defined as follows:

ð11Þ

where ρ is the system’s density matrix.
To gain some intuition, let us consider the two limiting

cases: p ¼ 0 (no decoherence) and p ¼ 1 (full depolari-
zation). In the first case, Q is purely unitary and can be
decomposed into two separate boxes corresponding
to U, U†, wherein ρ ¼ jΨihΨj is a pure state with jΨi as
defined in Eq. (5). In the second case, Q induces complete
depolarization and the corresponding quantum state ρ
is a maximally mixed state on RCDB0 with graphical
representation:

ð12Þ

As one can see from this example, for nonunitary time
evolution, ρ is not a pure state.
However, one nevertheless finds that the averaged OTOC

can be re-expressed in terms of Rényi-2 entropies evaluated
with respect to ρ [55]:

h gOTOCi ¼ 2
−ðSð2Þ

B0DþSð2ÞD −Sð2Þ
B0 Þ: ð13Þ
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The astute reader may wonder why this looks quite similar
to the aforementioned result in the ideal, noiseless case

[Eq. (6)]. Since Sð2ÞR þ Sð2ÞB0 ¼ Sð2ÞC þ Sð2ÞD ¼ n (where n is
the total number of qubits in RB0), if ρ was in fact a pure

state, then one would have Sð2ÞRB0D ¼ Sð2ÞC , and hence,

Sð2ÞB0D þ Sð2ÞD − Sð2ÞB0 ¼ Ið2ÞðR; B0DÞ: ð14Þ

Thus, when Q is unitary (e.g., when the depolarizing
probability p ¼ 0), the averaged OTOC indeed reduces to
our previous result for the ideal system [Eq. (6)].
Crucially, for a generic noisy quantum channel, the state

ρ is not pure and Sð2ÞB0D þ Sð2ÞD − Sð2ÞB0 ≠ Ið2ÞðR;B0DÞ. Herein
lies the essence of our result: The genuine metric for
scrambling, the mutual information, is not directly mea-
sured via the OTOC, which instead only measures the

entropy, Sð2ÞB0D þ Sð2ÞD − Sð2ÞB0 .
The deviation between these two quantities serves

as a natural metric or “noise parameter” capturing the
decoherence present in the channel Q:

δ≡ 2I
ð2ÞðR;B0DÞ

2
Sð2Þ
B0DþSð2ÞD −Sð2Þ

B0
¼ 2

Sð2ÞC −Sð2Þ
RB0D; ð15Þ

where δ ¼ 1 for unitary time evolution while δ ¼ 1=d2D for
a completely depolarizing channel. Note that for any δ < 1,
one knows that decoherence is at least partially responsible
for the observed decay in the averaged OTOC. More
succinctly, there are two physical mechanisms that cause
h gOTOCi to decay. First, entangling B0D with R (as per
unitary scrambling) and, second, entangling B0D with the
environment (as in a depolarizing channel); δ captures the
ratio between these two contributions.
In the following sections, we will turn to the exper-

imental measurement and characterization of δ, via a
quantum-teleportation-based decoding protocol [5,29]. In
Sec. IV, we will begin by setting up the framework of the
protocol in the ideal case (decoherence and noise free),
while in Secs. V and VI, we will shift our attention to
investigate a variety of imperfections (i.e., both unitary and
nonunitary errors).

IV. TELEPORTATION-BASED DECODING
PROTOCOL (IDEAL CASE)

A. Representing the OTOC as a thermofield
double state

To begin, let us consider the diagrammatic representation
of the OTOC in the case of unitary time evolution U:

ð16Þ

where again, time runs upward and the expectation value is
taken at infinite temperature; in our diagrammatic repre-
sentation, connecting the legs of the input and output
corresponds to taking a trace with respect to a maximally
mixed state. While the OTOC, hOAODðtÞO†

AO
†
DðtÞi, is

defined on the Hilbert space HAB, it can be recast as the
expectation value of local operators on the doubled Hilbert
space, HAB ⊗ HB0A0 . In particular, consider the following
state, jΦOA

i≡ ðUAB ⊗ U�
B0A0 ÞðOA ⊗ IBB0A0 ÞjEPRiABB0A0 ,

which lives in HAB ⊗ HB0A0 . This is the so-called thermo-
field double state (at infinite temperature) perturbed by
local operator OA and then time evolved by U ⊗ U�.
Taking the expectation value of IC ⊗ OD ⊗ O�

D ⊗ IC0 in
this state results in

ð17Þ

which is exactly equivalent to the OTOC defined in Eq. (16).
This equivalence is most easily seen by “unfolding” the
diagram of Eq. (16) while noting that ðU ⊗ IÞjEPRi ¼
ðI ⊗ UTÞjEPRi, or in diagrammatic form,

ð18Þ

Since hOAODðtÞO†
AO

†
DðtÞi ¼ hΦOA

jIC ⊗ OD ⊗ O�
D ⊗

IC0 jΦOA
i, one can directlymeasureOTOCs as an expectation
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value ofOD⊗O�
D in the doubledHilbert spaceHAB⊗HB0A0 ;

then to compute hOTOCi, one can simply average over the
various operators, OA, OD.
As aforementioned, a more elegant and efficient

method for measuring hOTOCi has recently emerged in
the form of a probabilistic decoding protocol (via post-
selected teleportation) for the Hayden-Preskill thought
experiment [29].

B. Decoding protocol in the ideal case

In the decoding protocol, in addition to Alice’s reference
state, Bob also prepares an additional EPR pair jEPRiA0R0

before applyingU� to both the entangled black-hole partner
B0 and the A0 part of his EPR pair. In order to decode Alice’s
state, Bob must create an EPR pair between Alice’s
reference state R and his remaining register qubit R0.
After time evolution, the system is in the state

ð19Þ

Next, Bob collects pairs of qubits on DD0 and performs
a projective measurement onto jEPRiDD0 , resulting in
the state

ð20Þ

where PEPR represents the probability of measuring
jEPRiDD0 . Noting that hΨoutjΨouti ¼ ð1=PEPRÞhΨinjIRC ⊗
ΠDD0 ⊗ IC0R0 jΨini ¼ 1 yields the diagram for PEPR:

ð21Þ

where ΠDD0 ¼ jEPRihEPRjDD0 represents the projective
measurement. The fidelity of Bob’s decoding (of Alice’s
state) can then be computed via the EPR projection fidelity
on RR0:

FEPR ≡ hΨoutjICDD0C0 ⊗ ΠRR0 jΨouti: ð22Þ

It has been shown [29] that if the time evolution U is
scrambling an EPR pair, jEPRiRR0 , can be distilled with
high fidelity by postselecting the measurement result on
jEPRiDD0 . Thus, the projection ΠDD0 not only serves to
decouple Bob’s register R0 from the remaining black holes
CC0, but also teleports Alice’s quantum state jψi to Bob’s
register [Fig. 1(b)].
In the ideal, noiseless case, this probabilistic decoding

protocol enables one to measure the averaged OTOC
associated with U in two different ways, using the values
of PEPR and FEPR, respectively. First, noting thatR
dODOD ⊗ O�

D ¼ ΠDD0 , one finds via a simple graphical
derivation that [16]

PEPR ¼ hOTOCi: ð23Þ

Thus, by keeping track of the probability associated with
the projective measurement ΠDD0 , one directly measures
the averaged OTOC. In the case of FEPR, one can use the
following equation:

ð24Þ

to derive

FEPR ¼ 1

d2AhOTOCi
: ð25Þ

To this end, the teleportation fidelity of Alice’s state into
Bob’s register also directly encodes the averaged OTOC.
While both PEPR and FEPR measure hOTOCi, there is an

important (but subtle) distinction from the perspective of
experiments; in particular, for a scrambling unitary, the
former becomes small while the latter becomes large.
Thus, when using PEPR, an experiment cannot distinguish
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between a decay in signal arising from scrambling or
decoherence. On the other hand, when using FEPR, since
decoherence can never enhance the fidelity, a successful
decoding always serves as a definite signature of quantum
scrambling. This difference will become more apparent in
Secs. V and VI when we explicitly consider the effects of
noise and decoherence.

C. Teleportation of a quantum state

In the previous subsection, we formulated the decoding
protocol in terms of the distillation of EPR pairs on RR0.
This formulation implicitly assumes an average over
Alice’s input state jψi. However, in the context of experi-
ments, one necessarily performs the teleportation protocol
for individual quantum states. Moreover, for dynamics that
are not fully scrambling, the dependence of the decoding
fidelity on the initial state can be used to discern certain
properties of the unitary. An example of this is provided by
a system evolving under classical random dynamics, where
teleportation only occurs for computational basis states.
To this end, we now consider the decoding protocol for a

specific input wave function, where Alice prepares jψi on
A, and Bob checks to see if he obtains jψi on R0 [Fig. 1(b)]:

ð26Þ

Interestingly, such a setup for decoding specific states can
probe more fine-grained properties of OTOCs. The prob-
ability of measuring an EPR pair on DD0 is given by

ð27Þ

This probability can be reexpressed in terms of OTOCs as
follows:

Pψ ¼
ZZ

dODdϕhOAODðtÞO†
AO

†
DðtÞi; ð28Þ

where OA ¼ jψihϕj and the average over OA is performed
by integrating over jϕi. It suffices to take an average over
any set of orthogonal states (i.e., fj0i; j1i; j2i;…g), since

the above Haar integral involves only the first moment of
jϕi. By inserting an EPR projection onto CC0, one arrives
at the following lower bound:

ð29Þ

To recover PEPR, one simply averages over (orthogonal)
states, PEPR ¼ R

dψPψ . Since the minimal value of PEPR is
also 1=d2A, this minimum is achieved when Pψ ¼ ð1=d2AÞ
for all states. Letting Fψ be the decoding fidelity after
postselection, one finds

ð30Þ

leading to the bound [56]:

PψFψ ≥
1

d2A
⇒ Fψ ≥

1

d2APψ
: ð31Þ

Thus, in the ideal case, a small value of Pψ guarantees the
faithful postselected teleportation of jψi from Alice to Bob.
In contrast to the previous subsection, we note that the
value of PψFψ depends on the initial state jψi.
One can also recast PψFψ as an OTOC,

PψFψ ¼ 1

dA

Z
dODhOAODðtÞO†

AO
†
DðtÞi; ð32Þ

where OA ¼ jψihψ j. Then, by averaging over input states
[57], one obtains

Z
dψPψFψ ¼ 1

dA þ 1

�
PEPR þ 1

dA

�
ð33Þ

for the ideal, noise-free case.
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D. Physical interpretation of EPR projection

Interestingly, Eq. (32) suggests that all of the accessible
information about OTOCs probed in a state decoding
experiment are averaged over operators OD on subsystem
D. The physical intuition, as well as the operational
interpretation of taking this average is as follows. In
classical physics, chaos refers to the sensitive dependence
of the system’s dynamics on the initial conditions. In
particular, one can imagine preparing two identical objects,
adding a small perturbation to one of them, and then letting
them evolve under the same Hamiltonian. If the system is
chaotic, the outcomes will be drastically different, since a
small initial perturbation has an exponentially growing
effect.
In quantum systems, chaos can be probed by preparing a

pair of objects with macroscopic entanglement, i.e., in an
EPR pair (or the thermofield double state at finite temper-
ature). Once again, one can imagine adding a small
perturbation to one of the objects, and then letting them
evolve under two Hamiltonians, H and H�, forward and
backward in time, respectively. Without the perturbation,
the system remains in an EPR pair, since

e−iHt ⊗ eiH
�tjEPRi ¼ jEPRi: ð34Þ

However, with a perturbation, the resulting dynamics can
cause the system to deviate. In the above, our perturbation
is OA and we are interested in studying how the initial
jEPRi entanglement changes in time. Operationally, we use
the EPR projector, ΠDD0 , to check if the entanglement
(as seen from DD0) has been disturbed by the perturbation
or not. This now provides a natural bridge to explain the
averaging over operators OD seen in Eq. (32), sinceR
dODOD ⊗ O�

D ¼ ΠDD0 .
In addition to verifying entanglement, the projector

ΠDD0 also has the intriguing effect of “undoing” the
chaotic dynamics. To see this, let us assume that the
time-evolution operator U is strongly scrambling so that
hOTOCi is close to its theoretical minimum, ∼ð1=d2AÞ.
By postselecting on jEPRiDD0 , one obtains an output
state jΨouti [Eq. (20)]. Since hΨinjΠRR0ΠCC0ΠDD0 jΨini ¼
ð1=d2AÞ, one has

hΨoutjΠRR0ΠCC0ΠDD0 jΨouti ¼
1

d2AhOTOCi
≈ 1: ð35Þ

Thus, the projector ΠDD0 not only distills an EPR pair
on RR0, but also undoes the chaotic time evolution
associated with U, returning the entire system to a
set of EPR pairs. In particular, if one prepares a quantum
state jψi on A, then the output state will be close to
jEPRiCC0 jEPRiDD0 jψiR0 .
The fact that the projector ΠDD0 can halt the chaotic

dynamics of U is consistent with the traversable wormhole

interpretation of the Hayden-Preskill thought experiment
[5,11,29]. Indeed, it has been found that the growth
of the wormhole interior can be stopped or slowed down
by applying certain interactions, and here, ΠDD0 plays
the role of resetting the growth of the wormhole. Most
importantly, this observation provides an additional veri-
fication method for our teleportation-based decoding pro-
tocol. Once one measures an EPR pair on DD0, it is very
likely that one will measure EPR pairs on other pairs of
qubits if the experimental procedures are perfect and there
is no decoherence.

V. TELEPORTATION-BASED DECODING
PROTOCOL: ARBITRARY NOISE AND

DECOHERENCE

In the previous section, we saw that in the absence of
decoherence both PEPR and FEPR provide the same infor-
mation, namely, the value of the averaged OTOC, which in
the ideal case precisely captures the scrambling behavior of
the unitary. We now turn to our pièce de résistance, an
analysis of the decoding protocol in the presence of
arbitrary noise and imperfections, as characterized via a
generic quantum channel Q. The intuition behind the
protocol’s ability to distinguish between scrambling and
decoherence is the redundancy provided by the pair of
measurements, PEPR and FEPR, in inferring the scrambling
behavior of the unitary.
The protocol proceeds in exactly the same fashion as

in the previous section, except that Q and Q� are now
applied (rather thanU andU�). A straightforward graphical
calculation then yields the probability PEPR associated
with ΠDD0 as

ð36Þ

As one might recall [Eq. (13)], h gOTOCi is directly related

to the values of the Rényi-2 entropies, Sð2ÞB0D þ Sð2ÞD − Sð2ÞB0 ,
meaning that it contains effects from both decoherence and
scrambling.
To measure the mutual information, Ið2ÞðR; B0DÞ, which

encodes the true scrambling behavior of the channel Q,
we return to our previous equation for PEPRFEPR, wherein
one finds
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ð37Þ

where δ≡2I
ð2ÞðR;B0DÞ=2S

ð2Þ
B0DþSð2ÞD −Sð2Þ

B0 ¼2I
ð2ÞðR;B0DÞ×PEPR is

precisely our previously defined noise parameter
[Eq. (15)]. We emphasize that Eqs. (36) and (37) are
precisely the “noisy-quantum-channel” analogs of
Eqs. (21) and (24) for the noise-free case. The decoding
fidelity after postselection is then given by

FEPR ¼ 2I
ð2ÞðR;B0DÞ

d2A
: ð38Þ

Thus, the success of teleportation implies true scrambling
[i.e., large Ið2ÞðR;B0DÞ] for a generic quantum channel Q.
Moreover, by measuring both PEPR and FEPR, one can
directly compute δ, thereby characterizing the amount of
noise in the quantum channel.
To see this in action, let us now return to the case where

Q reflects a depolarizing channel [Eq. (7)]. In this situation,
the measurement of δ via PEPR and FEPR immediately
provides insight into the amount of dissipation in the
system (given by probability p), since

δ ¼
�
ð1 − pÞ2 þ ð2p − p2Þ 1

d2D

�
: ð39Þ

While experimental decoherence cannot always be recast
simply as depolarization, this expression serves as an
operational (and quantitative) measure of extrinsic exper-
imental noise.
For the case of state decoding, an analogous calculation

reveals that the error parameter δ is given by

Z
dψPψFψ ¼ 1

dA þ 1

�
PEPR þ δ

dA

�
: ð40Þ

Interestingly, we note that as an alternative strategy, one
can also study the effect of decoherence for a specific
input state by observing possible violations of the bound
in Eq. (31).

VI. TELEPORTATION-BASED DECODING
PROTOCOL: COHERENT ERRORS

A. Distinguishing scrambling from coherent errors

In the previous section, we focused on the case of a
generic noisy quantum channel and, more specifically, on
the effects of depolarization. In this subsection, motivated
by recent experiments [36,37], we consider the case of
coherent unitary errors (i.e., systematic over- or under-
rotations), which lead to imperfect “backwards” time
evolution (but no nonunitary decoherence). In particular,
we investigate the situation where the time-evolution
operator is given by U ⊗ V� (rather than U ⊗ U�, which
we assume to be the desired ideal case). For simplicity, let
us assume that all other operations, including the initial
preparation of EPR pairs and the final readout measure-
ments, are error free [58].
In this scenario, the probability of measuring jEPRiDD0 is

given by

ð41Þ

where ODðtÞ ¼ UODU† and ODV
ðtÞ ¼ VODV† are time

evolved by different unitaries, U and V, respectively.
A simple graphical calculation yields the product
PEPRFEPR as

ð42Þ

which is strictly smaller than the ideal case (i.e., when
U ¼ V), where PEPRFEPR ¼ ð1=d2AÞ. Again, we emphasize
that Eqs. (41) and (42) are precisely the “coherent-error”
analogs of Eqs. (21) and (24) in the ideal case.
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By analogy to Eq. (37), this suggests that one can define
a noise parameter η for coherent errors as follows:

PEPRFEPR ¼ η

d2A
: ð43Þ

While η and δ effectively measure the same diagram, η
cannot be interpreted in terms of entropy since U ⊗ U� is
performed incorrectly.
Moreover, the physical interpretation of η is quite

different from that of δ, which characterizes the strength
of decoherence. In particular, we note that a natural
measure of the amount of coherent error is provided by
the composite unitary operator, E ¼ U†V. In the error-free,
ideal case, E simply corresponds to the identity operation.
The noise parameter η is related to E as follows:

ð44Þ

The right-hand side of Eq. (44) is the 2-norm overlap
between EjD and ID; here, EjD is the quantum channel
defined onD by tracing out the degrees of freedom on C. If
one takes D to be the whole system, then η is simply the
2-norm overlap between E and I, precisely capturing the
amount of deviation between the composite unitary U†V
and the identity. Finally, we note that 0 ≤ η ≤ 1, where
the lower bound is saturated when E ¼ I ⊗ OD for any
traceless operator OD. This contrasts with the decoherence
noise parameter δ, which is lower bounded by
min½ð1=d2AÞ; ð1=d2DÞ�.

B. Bounding the OTOC via η in the case
of coherent errors

Intriguingly, under certain physical assumptions, one can
utilize the measured value of η to upper bound the true
value of the OTOC that would have been measured without
coherent errors (i.e., if U ¼ V). In particular, we compare
the following two quantities,

hOAODðtÞO†
AO

†
DðtÞi and hOAODðtÞO†

AO
†
DV
ðtÞi; ð45Þ

and use the second, which is measured via PEPR, to bound
the first. For simplicity, let us assume thatOA,OD are Pauli
operators.

We also make and justify a second assumption.
In particular, consider an OTOC of the form,
hOAð0ÞODðtÞO†

AO
0
D
†ðtÞi, where the two operators, OD

and O0
D, are both time evolved by U. We assume that

hOAð0ÞODðtÞO†
AO

0
D
†ðtÞi ≈ 0; ð46Þ

so long as TrðODO0
D
†Þ ¼ 0. The intuition behind this

assumption is as follows. At t ¼ 0, if regions A
and D do not overlap, then hOAð0ÞODðtÞO†

AO
0
D
†ðtÞi ¼

TrðODO0
D
†Þ ¼ 0. Then, since OTOCs generically decay

under ergodic time evolution, one expects the above
expectation value to be small for all times beyond the
local relaxation timescale.
To proceed, it will be useful to define a new unevolved

(e.g., time t ¼ 0) operator OE ¼ EODE†, which corre-
sponds to the conjugation of OD by the composite unitary
E. The subsequent time evolution of this operator via the
unitary U is given by UEODE†U† ¼ VODV† ¼ ODV

ðtÞ.
Then, we have

hOAODðtÞO†
AO

†
DV
ðtÞi ¼ hOAODðtÞO†

AO
†
EðtÞi; ð47Þ

where OEðtÞ ¼ UOEU†. Let us now expand the composite
unitary E in terms of Pauli operators, P and Q,

E ¼
X
P;Q

αP;QP ⊗ Q; ð48Þ

where P, Q act on subsystems C, D, respectively andP
P;Q jαP;Qj2 ¼ 1 [59]. Plugging this into our expression

for η, one obtains

η ¼
X
P

jαP;Ij2: ð49Þ

Let us also expand OE in terms of Pauli operators,

OE ¼
X
P;Q

βP;QP ⊗ Q; ð50Þ

where again
P

P;QjβP;Qj2 ¼ 1. Plugging this expression
back into Eq. (47) yields

hOAODðtÞO†
AO

†
EðtÞi ¼

X
P;Q

βP;QhOAODðtÞO†
AðP ⊗ QÞðtÞi

≈ βI;OD
hOAODðtÞO†

AO
†
DðtÞi; ð51Þ

where we have used our assumption [Eq. (46)] to drop
all terms with Q ≠ OD in going from the first to the
second line.
Noting that βI;OD

¼ ð1=dÞTrðODO
†
EÞ allows us to bound

it as follows:
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βI;OD
¼ 1

d
Tr½ðI⊗ODÞEðI⊗O†

DÞE†�

¼ 1

d
Tr

�X
P;Q

jαP;Qj2ðI⊗ODÞðP⊗QÞðI⊗O†
DÞðP⊗QÞ

�

¼
X
P

jαP;Ij2þ
X
P

X
Q≠I

�jαP;Qj2≥2η−1: ð52Þ

Here, the � signs in the final line correspond to the case
where OD and Q commute or anticommute, respectively.
Thus, the lower bound corresponds to the case where all
nonzero αP;Q come with a negative sign.
Finally, combining Eqs. (47), (51), and (52) yields the

following bound:

hOAODðtÞO†
AO

†
DV
ðtÞi ¼ hOAODðtÞO†

AO
†
EðtÞi

¼ βI;OD
hOAODðtÞO†

AO
†
DðtÞi

≥ ð2η − 1ÞhOAODðtÞO†
AO

†
DðtÞi:

ð53Þ

Thus, in the case of coherent errors corresponding to
imperfect backwards time evolution, the experimentally
measured value of the averaged OTOC (via, e.g., PEPR)
explicitly bounds the actual ideal OTOC:

hOTOCi ≤ PEPR

2η − 1
: ð54Þ

We note that this bound is valid only for η > 0.5.
Two additional remarks. First, it is worth pointing

out that the value of βI;OD
can be directly measured

via hOAODðtÞO†
AO

†
DV
ðtÞi with OA ¼ I, since βI;OD

¼
hODO

†
EðtÞi ¼ hODðtÞO†

DV
ðtÞi. Second, in a generic chaotic

system, one expects the � signs in Eq. (52) to appear
randomly. Under this assumption, one can make the
following approximation:

βI;OD
≈
X
P

jαP;Ij2 ¼ η; ð55Þ

which enables us to obtain an estimate for the actual value
of the OTOC and not simply a bound:

hOAODðtÞO†
AO

†
DðtÞi ≈

1

η
hOAODðtÞO†

AO
†
DV
ðtÞi: ð56Þ

VII. BOUNDING THE MUTUAL INFORMATION
VIA THE DECODING FIDELITY

A. Mutual information bound

In the previous section, we have shown that in the case of
coherent errors, one can utilize η as extracted from PEPR
and FEPR to formally bound the true (i.e., error-free) value

of the averaged OTOC. However, this proof explicitly
hinges on the unitarity of the composite channel E and is
thus inapplicable to the generic situation with decoherence.
Moreover, in the presence of decoherence, it becomes
ambiguous to define what precisely the value of the OTOC
is [60]; rather, as we have previously seen, a better
characterization for quantum scrambling is provided by
the mutual information.
To this end, in this section, we demonstrate that for

arbitrary quantum channels, one can derive a bound on the
mutual information, Ið2ÞðR;B0DÞ, using only the decoding
fidelity FEPR [61]. When applied to the case of purely
unitary errors (i.e., the previous section), this leads to a
somewhat weaker bound on hOTOCi.
To treat experimental imperfections on a fully general

footing, we consider time evolution via the quantum
channel Q and an arbitrary decoding operation Φ, acting
nontrivially only on B0D (Fig. 3). As previously discussed,
the goal of this decoding operation is to distill an EPR pair
on RR̄, where R̄ represents a subset of the qubits in B0D
with the same dimension as R (e.g., jRj ¼ jR̄j). Let us
assume that Φ, an arbitrary completely positive trace-
preserving map, outputs a normalized state supported
on RR̄:

Φ∶ ρRB0D → σRR̄: ð57Þ

Since the decoding operation acts locally on B0D, it
cannot increase entanglement between R and B0D; i.e.,
the mutual information satisfies IðR;B0DÞ ≥ IðR; R̄Þ [62].
Since IðR; R̄Þ can be lower bounded via FEPR, any non-
trivial decoding fidelity always signifies quantum scram-
bling even in the presence of arbitrary imperfections.

FIG. 3. Schematic representation of the decoding protocol as
the distillation of an EPR pair on RR̄. The initial state is
jEPRiRAjEPRiBB0 . The quantum channel Q describes the time
evolution of the system and Φ represents an arbitrary decoding
operation acting only on B0D.
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Deriving a rigorous lower bound on either the von
Neumann or Rényi-2 mutual informations in terms of
FEPR is tremendously challenging, owing in part to the
existence of fine-tuned adversarial examples that tend to
make the bounds loose in physically relevant situations.
This is ameliorated by making the assumption that the
decoding fidelity is independent of the input state jψi. One
expects this assumption to be approximately valid for
strongly interacting systems without conserved quantities
after the system locally thermalizes. This assumption also
excludes the trivial decoding protocol which returns a fixed
state regardless of input state.
To begin, we note that ρR is a maximally mixed state

[Eq. (11)], implying that σR is also maximally mixed, since
Φ acts only locally on B0D. Moreover, our assumption that
the decoding fidelity does not depend on the input state
implies that σR̄ is a maximally mixed state as well. While
generally true, this statement is particularly easy to see in
the case where R and R̄ consist of only single qubits. In
particular, we can use our previous trick and decompose
σRR̄ in terms of Pauli operators: σRR̄ ¼ P

P;Q γP;QP ⊗ Q,
for P;Q ∈ fI; X; Y; Zg. Since σR is maximally mixed, one
has that γP;I ¼ 0 for all P ≠ I.
For an input state jψi, the quantum state on R̄ is given by

dRðjψihψ j ⊗ IR̄ÞσRR̄ðjψihψ j ⊗ IR̄Þ; ð58Þ

where dR is a normalization constant. The decoding fidelity
can then be written as

Fψ ¼ dRTrðjψihψ j ⊗ jψ�ihψ�jσRR̄Þ: ð59Þ

Noting that j0ih0j ¼ ðI þ ZÞ=2 and j1ih1j ¼ ðI − ZÞ=2
implies γZ;I þ γI;Z ¼ 0; since γZ;I ¼ 0, one also has that
γI;Z ¼ 0. The same analysis leads to γI;P ¼ 0 for all
nonidentity Pauli operators P. Thus, σR̄ is also a maximally
mixed state.
Having shown that σR̄ is a maximally mixed state, we

are now ready to lower bound the mutual information. The
EPR projector and the decoding fidelity of the distilled
quantum state σRR̄ are given by ΠRR̄ ¼ jEPRihEPRjRR̄
and FEPR ¼ TrðΠRR̄ρRR̄Þ, respectively. Then, using the
Cauchy-Schwartz inequality, one immediately arrives at
the following bound:

Sð2ÞRR̄ ¼ − log2 Trðρ2RR̄Þ ≤ − log2 TrðΠRR̄ρRR̄ÞTrðΠRR̄ρRR̄Þ
¼ −2 log2 FEPR; ð60Þ

implying that the mutual information satisfies

Ið2ÞðR;R̄Þ¼ SRþSR̄−SRR̄ ≥ 2 log2dRþ2 log2FEPR: ð61Þ

In order to utilize the monotonicity of mutual information
[53], we will make the additional technical assumption that

the Rényi-2 and von Neumann entropies are close to one
another [63]. This then leads to our final result, lower
bounding the mutual information in terms of the decoding
fidelity:

IðR;B0DÞ ≈ Ið2ÞðR;B0DÞ ≥ 2 log2 dR þ 2 log2 FEPR: ð62Þ

B. OTOC bound for coherent errors

While the previous subsection focused on the case of
arbitrary quantum channels, one can also apply the derived
bound to the situation where only coherent errors are
present. To this end, let us return to the scenario described
in Sec. VI. A, where the time evolution is given byU ⊗ V�.
As we have already seen, the measurement of PEPR
corresponds to

PEPR ¼
Z

dOAdODhOAODðtÞO†
AO

†
DV
ðtÞi; ð63Þ

which includes the effect of unitary errors associated with
E ¼ U†V ≠ I. In analogy to Sec. VI B, the true OTOC,
which would have been measured if the experiment did not
contain such unitary errors, is given by

hOTOCi ¼
Z

dOAdODhOAODðtÞO†
AO

†
DðtÞi: ð64Þ

Since hOTOCi ¼ 2−I
ð2ÞðA;BDÞ, our above bound on the

mutual information also immediately bounds hOTOCi in
the case of purely coherent errors:

hOTOCi ≤ 1

d2RF
2
EPR

: ð65Þ

VIII. EXPERIMENTAL IMPLEMENTATION

Having detailed a teleportation protocol that explicitly
enables experiments to distinguish between decoherence
and quantum information scrambling [64], we now propose
two specific examples of scrambling Clifford circuits [49]
amenable to near-term experiments in small-scale quantum
simulators [67,68].

A. Qubit Clifford scrambler

Let us consider the following 3-qubit unitary operator:

ð66Þ
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where H represents a Hadamard gate, while 2-qubit,
control-Z gates (ji; ji → ð−1Þijji; ji) are depicted as hori-
zontal lines (ending in dots). This unitary is maximally
scrambling since all one-body Pauli operators are delocal-
ized into three-body Pauli operators underU [69]. From the
perspective of decoding, this delocalization implies that
Bob can collect any pair of qubits (from among the three
possible pairs in Fig. 4) and perform a projective meas-
urement in order to decode Alice’s state. To be concrete, the
full decoding protocol is illustrated in Fig. 4.
Two comments are in order. In particular, for a Haar

random unitary, one expects hOTOCiS ¼ 7
16
, whereas our

circuit exhibits hOTOCiS ¼ 1
4
. This discrepancy arises from

finite-size effects, since one expects a Haar random unitary
to saturate the lower bound of 1=4 only in the limit of large
systems, i.e., d, dD → ∞ while fixing dR ¼ 2. On the other
hand, our Clifford circuit saturates this lower bound by
construction but has certain nongeneric features [49].
Second, as we briefly alluded to in Sec. IV C, it is also
possible to explore circuits that scramble only classical
information:

ð67Þ

In this case, teleportation occurs only for computational
basis states.

B. Qutrit Clifford scrambler

While we presented the minimum case of interest for
qubits in the previous subsection, by increasing the on-site
Hilbert space, one can realize slightly more complex
circuits in even smaller systems. To this end, motivated
by the advent of physical qutrit implementations ranging
from solid-state spin defects and superconducting circuits
to orbital angular momentum states of photons, we describe
a simple qutrit Clifford scrambler.
To begin, we denote a qutrit as a three-state quantum spin

with basis j0i; j1i; j2i. An elementary entangling gate
between two qutrits can be achieved via the following
controlled-NOT gate:

CNOT1→2ji; ji ¼ ji; iþ ji modulo 3; ð68Þ

where the subscript 1 → 2 indicates that the control is
qutrit-1 and the target is qutrit-2. Switching the control and
target realizes an analogous operation: CNOT2→1ji; ji ¼
jiþ j; ii mod 3.
Let us now consider the following qutrit unitary:

U ¼ CNOT2→1CNOT1→2; ð69Þ

which can be explicitly decomposed asUji;ji¼j2iþj;iþji
or graphically reexpressed as

ð70Þ

To understand the scrambling properties of this unitary,
we will explore how the qutrit Pauli operators are trans-
formed under the circuit. In particular, let us consider the
following qutrit Pauli operators: X ¼ P

2
j¼0 jjþ 1ihjj and

Z ¼ P
2
j¼0 ω

jjjihjj, where ω ¼ eið2π=3Þ.
One finds that these operators are transformed as

follows:

UðZ ⊗ IÞU† ¼ Z ⊗ Z2;

UðI ⊗ ZÞU† ¼ Z2 ⊗ Z2;

UðX ⊗ IÞU† ¼ X2 ⊗ X;

UðI ⊗ XÞU† ¼ X ⊗ X: ð71Þ

Thus, as in the qubit case, we observe that the unitary
transforms any nonidentity one-body Pauli operator into a
two-body operator. This property is essential for the
delocalization of quantum information and enables the
construction of a similar decoding protocol:

Hawking radiation 

Bob 

Alice 

7

EPR 

FIG. 4. Decoding circuit based upon a 3-qubit Clifford scram-
bler. Alice’s quantum state jψi is supported on qubit 1, while
Bob’s quantum register corresponds to qubit 7. The left (beige)
and right (gray) Hilbert spaces have the following correspond-
ences 1 ↔ 6, 2 ↔ 5, and 3 ↔ 4 (with respect to U ⊗ U�). By
performing an EPR projection on qubits 3 and 4, Bob teleports
Alice’s quantum state to his register qubit. In the case of this
Clifford scrambler, Bob could also have achieved teleportation by
performing EPR projections on either qubits f1; 6g or f2; 5g.
This distinguishes the Clifford scrambler from other more trivial
(nonscrambling) unitaries (i.e., a SWAP gate), where teleporta-
tion occurs only for EPR projection on a specific pair of qubits.
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EPR EPR

ð72Þ

By performing an EPR projection on either qutrits f2; 3g or
f1; 4g, Bob successfully teleports Alice’s quantum state
from qutrit-1 to qutrit-5.

C. Distinction from conventional
quantum teleportation

The importance of being able to perform teleportation by
projecting either pair of qutrits (or in the previous case,
any of the three qubit pairs) is most easily seen by
considering the effect of a SWAP gate, SWAPji;ji¼jj;ii,
or graphically,

1 2

ð73Þ

From the perspective of scrambling, a SWAP gate is totally
trivial since it does not generate any entanglement; thus, its
decoding behavior must be markedly different from that of
the maximally scrambling U in Eq. (70).
ReplacingU with the SWAP gate in the decoding protocol

leads to the following:

EPR

EPR EPR

ð74Þ

which is simply ordinary quantum teleportation [53,70,71].
Crucially, this teleportation only works when Bob projects
on qutrits f2; 3g and fails if he attempts to project on
qutrits f1; 4g. Herein lies the essential feature of a
maximally scrambling unitary: Successful decoding and
teleportation occur regardless of which pair of qutrits (or
qubits) one chooses to collect and project, precisely
indicating the full delocalization of quantum information
across the circuit.

IX. CONCLUSION

We demonstrate that one can distinguish between scram-
bling and decoherence in strongly interacting quantum
systems by utilizing a teleportation-based decoding proto-
col. Our protocol enables the explicit extraction of a “noise
parameter,” which can be used to bound the value of out-of-
time-ordered correlation functions in the case of coherent
errors. More generally, even for arbitrary imperfections,

the teleportation fidelity acts as a metric for quantum
scrambling and enables the bounding of the mutual
information between subsystems. Thus, our protocol rep-
resents the first example of an experimental method,
which can unambiguously characterize the delocalization
of quantum information within a system’s own degrees of
freedom and differentiate this from entanglement with an
extrinsic environment.
Our work opens the door to a number of intriguing future

directions. First, by systematically exploring the state-
dependent decoding fidelity in the presence of different
forms of decoherence, one may be able to study the
transition from classical to quantum chaos. Second, in this
work, we have mainly focused on decoherence as an
adversary to quantum scrambling. However, the pro-
nounced sensitivity of scrambling dynamics to the presence
of decoherence suggests that one may be able to utilize our
protocol as a particularly efficient “noise” spectroscopy
tool [72]. Finally, an interesting question that has received
much recent attention, and which goes under the moniker
of quantum supremacy, is whether quantum devices with-
out error correction can perform computational tasks
beyond the capabilities of classical computers [73]. It
has been suggested that the simulation of random quantum
circuits may be an ideal platform for this purpose [74].
Since OTOCs are natural probes of pseudorandomness, it
may be possible to generalize our protocol to explore such
questions.
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