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Thermodynamics at the nanoscale is known to differ significantly from its familiar macroscopic
counterpart: The possibility of state transitions is not determined by free energy alone but by an infinite
family of free-energy-like quantities; strong fluctuations (possibly of quantum origin) allow one to extract
less work reliably than what is expected from computing the free-energy difference. However, these known
results rely crucially on the assumption that the thermal machine is not only exactly preserved in every
cycle but also kept uncorrelated from the quantum systems on which it acts. Here, we lift this restriction:
We allow the machine to become correlated with the microscopic systems on which it acts while still
exactly preserving its own state. Surprisingly, we show that this possibility restores the second law in its
original form: Free energy alone determines the possible state transitions, and the corresponding amount of
work can be invested or extracted from single systems exactly and without any fluctuations. At the same
time, the work reservoir remains uncorrelated from all other systems and parts of the machine. Thus,
microscopic machines can increase their efficiency via clever “correlation engineering” in a perfectly cyclic
manner, which is achieved by a catalytic system that can sometimes be as small as a single qubit (though
some setups require very large catalysts). Our results also solve some open mathematical problems on
majorization which may lead to further applications in entanglement theory.
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I. INTRODUCTION

Thermodynamics, as it is presented in the textbooks, is
usually concerned with macroscopic physical systems, like
large ensembles of weakly interacting gas molecules. In
this regime, the law of large numbers renders fluctuations
mostly irrelevant, and one obtains very precise statistical
predictions simply by computing averages. One of the most
important quantities in this regime is the Helmholtz free
energy,

FðρÞ ¼ hEiρ − TSðρÞ;

where hEiρ is the average energy of the system in state ρ
and S is its entropy. At constant ambient temperature T and
constant volume, transitions between two states are pos-
sible if and only if the difference between the free energies

of the initial and the final states is negative. The free-energy
difference also tells us how much work we can extract, or
need to invest, during a thermodynamic state transition.
However, this formulation of the second law applies only

in the thermodynamic limit of large numbers of identically
distributed or weakly interacting particles. In contrast,
modern technology allows us to probe and manipulate
physical systems at much smaller scales [1–4], where
quantum fluctuations and strong correlations may domi-
nate. Understanding the subtleties of thermodynamics in
this regime is also relevant for some biological processes
[5–7], since evolutionary pressure tends to force micro-
scopic machines to act as efficiently as possible in thermal
environments.
With this motivation in mind, based on the techniques

and ideas of quantum information theory, an approach to
small-scale thermodynamics has recently been developed
[8–29] which has demonstrated [9,10] that the free energy
F loses its role as the unique indicator of state transitions
in the microscopic regime. Instead, a family of “α-free
energies” Fα determines the possibility of thermodynamic
transformations: A transition is possible if and only if
ΔFα ≤ 0 for all α > 0. In the special case α ¼ 1, we obtain
the standard Helmholtz free energy F1 ¼ F. This case
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recovers the usual second law, ΔF ≤ 0, as a special case of
an infinite family of “second laws.”Moreover, the maximal
amount of work that can be reliably extracted from a state ρ
in contact with a heat bath is given by F0ðρÞ þ kBT logZ,
while the minimal amount of work that one has to invest to
prepare a state becomes F∞ðρÞ þ kBT logZ, with Z the
partition function and kB Boltzmann’s constant. In general,

F0ðρÞ < FðρÞ < F∞ðρÞ;

which shows that thermodynamics loses an important
reversibility property at the nanoscale: The amount of
work needed to create a state exceeds the amount of work
that can be extracted from that state. Intuitively, it is the
appearance of fluctuations of the order of the free energy
itself that is responsible for this effective irreversibility
[29]. It is only in the thermodynamic limit that all Fα

become effectively close to F ¼ F1, which recovers stan-
dard macroscopic thermodynamics [10,27,30].
Yet, these recent results all rely on a specific assumption

which is, as we argue, unnecessary in many important
physical situations. To understand this assumption, con-
sider transforming a state ρA of a physical system A to
another state ρ0A in the presence of a heat bath (see the
caption of Fig. 1 for more details). This transformation is
usually modeled by introducing another system—a thermal
machine M, containing a catalyst σM—such that

ρA ⊗ σM ↦ ρ0A ⊗ σM ð1Þ
via some suitable thermal operation. Crucially, the machine
starts and ends in the same state σM, which means that it is
retained in its original form and can be reused, which is
essential for a thermodynamic cycle. But we see that, in
addition to this crucial property, a further assumption is
made: namely, that A and M end up in a product state and
do not become correlated.
Arguably, there are many situations in which this addi-

tional assumption is unwarranted. For example, imagine a
microscopic machine that acts on a myriad of small
quantum systems, one after the other (say, a stream of
particles), and builds up correlations with them while doing
so. As long as the machine encounters every system only
once, these correlations will not spoil the working of the
machine on further systems. This example motivates us to
consider more general transformations of the form

ρA ⊗ σM ↦ σAM; ð2Þ
where the reduced final states are σA ¼ ρ0A on A and σM on
M. That is, the machine’s state becomes correlated with the
system on which it has acted, but it is locally exactly
preserved and can be used again on other systems on which
it has not acted before.
Below, we show that this setting surprisingly restores the

standard second law: It is the Helmholtz free energy F that

uniquely determines the possible state transitions. In par-
ticular, machines that act according to this more general
prescription gain a significant advantage: They can essen-
tially tame all fluctuations and invest or extract the free-
energy difference with perfect reliability even when
operating on single or strongly correlated quantum systems.
In some cases, very small catalysts M can already lead to
significant improvements of efficiency.
This result answers a major open question of Ref. [31] in

the positive: Helmholtz free energy becomes the “unique
criterion for the second law of thermodynamics.” It is
related to the insights of Ref. [32] but goes far beyond
them: Instead of correlating several auxiliary systems, here
the machine becomes correlated with the system on which
it acts (but remains otherwise intact), which is arguably a
much more natural situation relevant to thermodynamics.
The results of this paper also provide new insights into
majorization theory, solving several open problems in
that field, which may have further applications in entan-
glement theory [33]. Namely, majorization determines the
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FIG. 1. Thermal operation of the form that we are considering
in this paper; compare Fig. 1 in Ref. [10]. We have a system A that
we would like to act on, by transforming its state ρA into another
state ρ0A. We have access to a heat bath with an arbitrary
Hamiltonian HB, which is in its thermal state γB at some fixed
temperature T. The thermal machine contains a quantum system
in state σM, and it controls a unitary transformation UAMB
(symbolized by the pentagon), acting on the system A, heat
bath B, and its internal system M. Crucially, this transformation
is fully energy preserving, i.e., ½UAMB;HA þHM þHB� ¼ 0.
By tracing over the heat bath, we obtain the map σAM ¼
TrB½UAMBðρA ⊗ σM ⊗ γBÞU†

AMB�, which is, in total, a thermal
operation, ρA ⊗ σM ↦ σAM . We demand that the machine’s
internal state σM is exactly preserved (hence, σM is often called
a “catalyst”: It enables the transformation but is not consumed in
the process), and we would like the resulting state of A, TrMσAM,
to be identical (or very close) to the desired target state ρ0A. The
difference to Ref. [10] is that we allow correlations to build up
between A andM. If work is spent or extracted, we model this by
an additional two-level system (“work bit”) W which, initially as
well as finally, is enforced to be exactly in an energy eigenstate
(ground state jgi or excited state jei). This restriction ensures that
W remains uncorrelated with all other systems that are involved in
this process; hence, the resulting work Δ can be reliably trans-
ferred to or from an external battery.
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possibility of state interconversion for pure bipartite quan-
tum states via local operations and classical communication
[34], and standard catalysis is known to enhance the
possible transitions [35]. Since further thermodynamics-
related concepts have recently been translated into this
entanglement setting [33], we think that the results of the
present paper may have interesting implications in this
context, too. Furthermore, in contrast to earlier results [36],
the insights of this paper potentially continue to hold in the
presence of quantum coherence (see the conjecture in
Sec. II E).

II. RESULTS

A. Known results without correlation

We are working within a framework for thermodynam-
ics that is motivated by quantum information theory. This
framework formulates thermodynamics as a resource
theory [27,28]: Given any state of a physical system,
together with a set of rules that constrain the agent’s
actions (e.g., global energy conservation), a resource
theory asks for the ultimate limits of what is possible,
e.g., how much work the agent can extract or what state
transitions she can enforce. A sketch of the setup is given
in Fig. 1 (for now, ignore the “work bit” W). We have a
collection of quantum systems that each come with their
own Hamiltonians, including a microscopic system A,
typically out of equilibrium. We would like to transform
its quantum state ρA into another state ρ0A while possibly
extracting or investing some work Δ ≥ 0. This transition
is achieved with the help of a thermal machine,
as explained in the caption of Fig. 1. Crucially, all
processes preserve the total energy exactly (not only its
expectation value) and are performed in the presence of a
heat bath at fixed temperature T. Microscopic reversibility
is ensured by modeling global transformations as unitary
operations.
As in most previous work (including Refs. [9,10]), we

assume that the decoherence time is much smaller than the
thermalization time. This condition amounts to assuming
that all states are block diagonal in energy (i.e., ½ρX;HX� ¼
0 for all involved quantum systems X), which applies to a
large variety of situations in physics, including ones
traditionally studied in the context of Landauer erasure
[37,38]. In this semiclassical regime, the state of any
system is characterized by the occupation probabilities
of the different energy levels; the state is thermal if these
probabilities are given by the Boltzmann distribution. It has
recently been shown that coherence significantly compli-
cates the picture [36,39–41]; studying the semiclassical
regime is therefore a crucial first step even if one is
interested in the more general situation with coherence.
We thus defer the treatment of quantum coherence to future
work but discuss some evidence that our main result could
still hold in the presence of coherence in Sec. II E.

In order to account very carefully for all contributions of
energy and entropy, we assume that the machine can strictly
perform only the following operations: energy-preserving
unitaries; accessing thermal states from the bath; and
ignoring heat bath degrees of freedom by tracing over
them. This assumption results in a class of transformations
called thermal operations which have the form stated in the
caption of Fig. 1. If we assume for the moment that there is
no work reservoir W and demand that these operations
preserve the local state of the machine M and also its
independence from A, then they describe transitions ρA →
ρ0A as in Eq. (1). It has recently been shown [10] that a
thermal transformation can achieve this transition (up to an
arbitrarily small error on A) if and only if all α-free energies
decrease in the process:

ΔFα ¼ Fαðρ0AÞ − FαðρAÞ ≤ 0 for all α ≥ 0: ð3Þ

Here, FαðρAÞ ¼ kBTSαðρAkγAÞ − kBT logZA, with ZA the
partition function of A, T the background temperature, kB
Boltzmann’s constant, and Sα the Rényi divergence [42] of
the order of α (see Sec. II F and the Appendix A). For
α ¼ 1, this quantity reduces to the well-known Helmholtz
free energy F1 ¼ F.

B. Example: Smaller work cost with
a single-qubit catalyst

To see that the α-free energies impose severe constraints
on the workings of a thermal machine, let us look at a
simple example. Suppose that a thermal machine is
supposed to heat up a system A from its thermal state
(of ambient temperature T) to an infinite temperature. If A
is some two-level system with energies 0 and EA, and the
temperature is such that EA=ðkBTÞ ¼ log 2, then the initial
thermal state is

γA ¼
�
2=3 0

0 1=3

�
:

The desired target state is

ρ0A ¼
�
1=2 0

0 1=2

�
:

The associated work cost is delivered by an additional work
bitW with energy gapΔ > 0. It starts in its excited state jei
and ends up in its ground state jgi. The machine tries to
implement the transition

γA ⊗ jeihejW ↦ ρ0A ⊗ jgihgjW
with a work cost Δ that is as small as possible. As before,
this transition is achieved by a catalytic thermal operation
of the form
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γA ⊗ σM ⊗ jeihejW ↦ ρ0A ⊗ σM ⊗ jgihgjW ;

cf. Eq. (1) and Fig. 2.
What is the minimal amount of work needed, i.e., the

smallest possible Δ? The α-free-energy difference (see
Appendix A or Ref. [10] for the definition) between the
initial and final states of AW turns out to be

ΔFα

kBT
¼ logð21−α þ 1Þ − α log 2þ ðα − 1Þ log 3

α − 1
−

Δ
kBT

;

which is increasing in α. Thus, this difference is ≤ 0 for all
α if and only if ΔF∞ ≤ 0, which becomes

Δ ≥ kBT logð3=2Þ ≈ 0.4kBT: ð4Þ

This inequality represents the ultimate limit for a transition
as shown in Fig. 2 to be successfully implementable. On
the other hand, the standard free-energy difference is
ΔF=ðkBTÞ ¼ log 3 − 3=2 log 2 − Δ=ðkBTÞ, and for this
difference to be ≤ 0 we must have

Δ ≥ kBTðlog 3 − 3=2 log 2Þ ≈ 0.06kBT:

Thus, textbook thermodynamic reasoning suggests that
0.06kBT of energy should be sufficient for the state
transition; however, our analysis shows that the machine
needs to spend considerably more work, namely, 0.4kBT.
As explained above, one reason for this discrepancy is that
we are dealing with the case of a single system only. The
standard thermodynamic equations apply to large numbers
of (independent, or weakly correlated) identical systems
and their averages. That is, if ΔðnÞ is the energy (e.g.,
energy gap of the work bit) that is needed to approximately
achieve the transition

γA ⊗ � � � ⊗ γA|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n

⊗ jeihejW ↦ ρ0A ⊗ � � � ⊗ ρ0A|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n

⊗ jgihgjW;

then ΔðnÞ ≈ nΔF (here, 0.06nkBT) as n becomes large (up
to corrections that are sublinear in n), as shown, e.g., in
Refs. [27,43]. Intuitively, by acting collectively on a large
number of particles, a machine can achieve more than if it
had to act on each particle separately. This phenomenon is
again related to versions of the law of large numbers,
which results in quantities becoming sharply peaked
around their averages in large ensembles.
This result is bad news for the machine—what if it is

essential for the given physical setup that the specific single
instance of A is being heated and that very little work is
spent in this process? A glance at Fig. 2 can guide us
towards a solution: Whatever transition we have there, it
must come from a thermal operation that is being per-
formed globally on the MAW system. While doing so, the
thermal machine better take care of preserving the state of
M so that it can be reused in the future. But the way we
have formulated catalytic thermal operations so far intro-
duces yet another complication for the working of the
machine: It must keep M uncorrelated from AW. This
requirement seems hard and overly constraining, given that
interaction typically creates correlation.
We thus have two independent motivations to allow

correlations between M and AW: the difficulty to avoid
correlations on interaction and the desire to achieve higher
efficiency. We now show that the latter goal can indeed be
achieved by allowing correlations to build up, even if the
catalystM is as small as a single qubit. Suppose thatM has
a trivial Hamiltonian HM ¼ 0 and two basis states j0i and
j1i (both of energy zero). Denote the ground and excited
states of A by jgAi and jeAi, respectively, and consider the
correlated state

A WM

A WM

FIG. 2. Example of a work cost scenario without allowing
correlations to build up. A qubit A, initially in equilibrium, is
supposed to be heated up to an infinite temperature by spending
some energy Δ and by using a (potentially large) catalytic system
M that remains uncorrelated with AW (and unchanged by the
process). A transition of this form is possible only at a work cost
of at least Δ⪆0.4kBT.

A WM

A WM

FIG. 3. Example work cost if correlations betweenM and A are
allowed to build up. Since M is locally exactly preserved, it can
be reused on further states (just not on those ones on which it has
already acted before). This transition is possible at a work cost of
only Δ⪆0.26kBT (about 1=3 less than in Fig. 2), even though the
catalyst M consists only of a single qubit.
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ρ0AM ≔
1

10
jgA0ihgA0j þ

4

10
jgA1ihgA1j

þ 2

10
jeA0iheA0j þ

3

10
jeA1iheA1j:

By computing the partial trace, we find that ρ0A is indeed the
infinite-temperature state, and

ρ0M ¼ 3

10
j0ih0j þ 7

10
j1ih1j≕ σM;

which is also our local qubit catalyst state σM. Thus, if we
enforce thermal transitions of the form (cf., Fig. 3)

γA ⊗ σM ⊗ jeihejW → ρ0AM ⊗ jgihgjW;

then A is heated up, the local reduced state of M is
preserved, and correlations build up between A and M
(note that there cannot be any correlations with W, since
it is in a pure state). Now, as we show in Appendix D,
this transition can be achieved by a thermal operation
(without the need for any additional “standard” catalysts),
investing only

Δ⪆0.26kBT

of work. That is, the single-qubit catalyst allows us to save
about 1=3 of the total work cost as compared to Eq. (4).
One can easily imagine situations in which this saving
represents a decisive physical advantage.
In the remainder of the paper, we explore the ultimate

limitations of this kind of “correlating” catalysis. We
show that these limitations are uniquely determined by
Helmholtz free energy. That is, by using other suitable
catalysts in the example above, one can get as close to
Δ ¼ ΔF ≈ 0.06kBT as one wishes (but not below), at the
price of having a possibly large catalyst at hand (which can,
however, be reused).

C. Correlating state transformations in general

Under what conditions can a state transition as in the
example above be achieved? For the moment, let us assume
that there is no work bit W (we reintroduce W in the next
subsection). In order to implement the transition (2) with a
thermal operation, it is still necessary that ΔFα ≤ 0 on the
joint system AM for all α, since this is a necessary condition
for all thermal operations. In the uncorrelated case, Eq. (1),
the same inequalities follow for system A alone, since
FαðρA ⊗ σMÞ is simply the sum FαðρAÞ þ FαðσMÞ. But in
the correlated case, the situation is different. In this case, it
turns out that there are two special values of α, namely,
α ¼ 0 and α ¼ 1, for which Fα has the important property
of superadditivity, that is,

FαðσAMÞ ≥ FαðσAÞ þ FαðσMÞ; α ¼ 0; 1:

This property allows us to obtain two conditions on the
state of A alone, starting with the nonincrease of Fα on AM:

0 ≥ FαðσAMÞ − FαðρA ⊗ σMÞ
≥ Fαðρ0AÞ þ FαðσMÞ − FαðρAÞ − FαðσMÞ:

Thus, we conclude that

Fαðρ0AÞ − FαðρAÞ ≤ 0; α ¼ 0; 1:

But the other Fα are not, in general, superadditive, as
emphasized in Refs. [31,32,44]; see also Refs. [45,46].
Hence, we cannot draw an analogous conclusion for the
other α-free energies. Moreover, the condition F0ðρ0AÞ −
F0ðρAÞ ≤ 0 is arguably physically irrelevant for the pur-
pose of this subsection, as a glance at its definition shows:
We have

F0ðρAÞ ¼ −kBT logZA þ kBTS0ðρAkγAÞ

(the “min-free energy” from Ref. [9]), where S0ðρAkγAÞ ¼
− log trðπρAγAÞ is the “min-relative entropy” from quantum
information theory [47], with πρA the projector onto the
support of ρA. This quantity is discontinuous and takes its
minimal value whenever the state has full rank; i.e., no
energy level has probability zero. Since there is no essential
physical difference between zero population and an
extremely small nonzero population, we can ensure that
the target state ρ0A has full rank by allowing an arbitrarily
small error in the transition.
Thus, only the standard Helmholtz free-energy condition

ΔF1 ≡ ΔF ≤ 0 survives as a relevant necessary condition
for a correlating state transition. But is it also sufficient—
that is, given that it is satisfied, can we, in principle, always
engineer the machineM and its state such that transition (2)
is possible? This sufficiency was conjectured in Ref. [31],
and our first main result shows that such is indeed the case.

Main result 1.—Consider some initial state ρA and target state
ρ0A, both block diagonal in energy. In the setting of Fig. 1
(without work bit W), the transition

ρA ⊗ σM ↦ σAM;

with σA ≔ TrMσAM arbitrarily close to ρ0A, can be achieved by
a thermal operation if and only if FðρAÞ ≥ Fðρ0AÞ, with F the
Helmholtz free energy. Note that the state σM of the thermal
machine M is exactly identical before and after the
transformation, and its state space is finite dimensional.
Furthermore, the Hamiltonian on M can be chosen as
HM ¼ 0, and the final correlation between A and M, as
measured by the mutual information IðA∶MÞσ , can be made
arbitrarily small (but not, in general, zero).
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The proof is sketched in Sec. II F and given in full detail
in Appendix C. As in earlier work, the catalyst σM, in
general, depends on the initial and final states ρA and ρ0A
and on the Hamiltonian HA; it also depends on the
amount of correlation IðA∶MÞσ that the agent is willing
to allow to build up. Therefore, we should think of the
thermal machine in Fig. 1 as containing a large collection
of different catalysts σM. Depending on the situation, the
machine applies the corresponding suitable catalyst.
Does the agent not have to “know the system state ρA” to

apply her machine accordingly? The answer to this ques-
tion is that the state ρA is supposed to model the agent’s
knowledge of the system A in the first place, and this
interpretation is chosen implicitly in most works in the
present context. For example, the energy cost in Landauer
erasure [37,38] is not necessarily relying on an objective
“delocalization” of a particle in two halves of a box but is
simply due to the agent’s missing knowledge about whether
it will be detected in the left or the right half in any single
experimental run. Consequently, the agent can always
choose the catalyst that suits her knowledge of the system
as encoded in her state description.
What can we say about the size of the catalyst σM? As we

show by example in Sec. II B, in some cases the catalyst can
be as small as a qubit and still allow for substantial
advantages as compared to the standard “noncorrelating”
notion of catalysis. Main result 1 formalizes the ultimate
possibilities and limitations of thermal machines acting on
single small quantum systems, without aiming at the use of
“realistic” catalysts. Thus, in the proof, we take advantage
of constructing “custom-tailored” catalysts that can generi-
cally be very large. This situation is not different, however,
from the case of standard catalysis [48,49]. We leave the
problem of finding efficient implementations of the cata-
lysts for future work.

D. Correlating work cost in general

We now consider the more general situation that we
have an additional work reservoir, containing some energy
Δ ≥ 0 that we may spend in addition to achieve the
state transition. As depicted in Fig. 1, this reservoir is
modeled by a “work bit”W, a two-level system with energy
gapΔ, that transitions from its excited state jei to its ground
state jgi during this process. An example is discussed in
Sec. II B above.
We imagine that this work bit is part of a larger “ladder”

of energy levels which we can charge or discharge like a
battery in between thermodynamic cycles. It is therefore
crucial to demand that the work bit W does not become
correlated with the other parts of the machine M. One
way to ensure this requirement is to demand that W is
always exactly, and not just approximately, in an energy
eigenstate. It turns out that we can always achieve this
behavior.

Main result 2.—Consider some initial state ρA and target state
ρ0A, both block diagonal, such that Fðρ0AÞ ≥ FðρAÞ. Using a
work bitW with some energy gapΔ larger than, but arbitrarily
close to, Fðρ0AÞ − FðρAÞ, the transition

ρA ⊗ σM ⊗ jeihejW ↦ σAM ⊗ jgihgjW
can be achieved by a thermal operation, where σA ≔ TrMσAM
is arbitrarily close to ρ0A.
Similarly as in main result 1, the state σM is exactly identical
before and after the transformation, M is finite dimensional,
and the resulting correlations between A and M can be made
arbitrarily small.

The method to engineer this transition is very similar to
that of main result 1, except for one important difference:
Since we are interested in producing a pure state jgi exactly,
we have to make sure that the min-free energy F0, which
depends only on the rank of the state, is nonincreasing in the
process. But this condition holds automatically, because

F0ðjeihejWÞ > F0ðjgihgjWÞ
if Δ > 0. Thus, the min-free energy introduces no new
constraints in the case that we use work to form a state ρ0A.
The “correlating work cost” is given by the Helmholtz free-
energy difference Fðρ0AÞ − FðρAÞ.

E. Correlating work extraction and an open problem

Consider the converse situation: Given an initial
state ρA and a target state ρ0A such that FðρAÞ ≥ Fðρ0AÞ,
we would like to extract work by transforming a work bit
from its ground state jgihgjW to its excited state jeihejW .
Here, we encounter a problem: Since ρA, in general, has full
rank, the work bit alone lower bounds the min-free-energy
difference of the corresponding transition, namely, ΔF0 ¼
F0ðjeihejWÞ − F0ðjgihgjWÞ, and this difference is positive if
the energy gap Δ is positive.
Thus, unfortunately, the min-free-energy condition

ΔF0 ≤ 0 forbids this transition. If we still insist on producing
the excited state exactly (for the reasons explained in
Sec. II D), we need an additional resource: namely, a sink
S for the corresponding entropy S0ðρÞ ¼ log rankðρÞ, the
“max entropy.” A max-entropy sink S carries a trivial
Hamiltonian HS¼0 such that S0ðρSkγSÞ¼ logdS−S0ðρSÞ,
where dS is the Hilbert space dimension of S. Thus, we can
extract min-free energy by dumping max entropy S0 into S,
which can be achieved by increasing the rank of the state ofS.

For example, if S carries a state τðm;nÞ
S with eigenvalues�

1

m
;…;

1

m|fflfflfflfflffl{zfflfflfflfflffl}
m

; 0;…; 0|fflfflffl{zfflfflffl}
n−m

�

and this state is transformed into a state τðm;n;εÞ
S (for some

small ε > 0) with eigenvalues
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�
1 − ε

m
;…;

1 − ε

m|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
m

;
ε

n −m
;…;

ε

n −m|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n−m

�
;

then this transformation extracts min-free energy ΔF0 ¼
kBT logðn=mÞ from S. Since ε > 0 can be arbitrarily close to
zero and ΔF0 does not depend on ε, this transformation
changes the physical state ofS byan arbitrarily small amount.
Thus, we obtain the following.

Main result 3.—Consider some initial state ρA and target state
ρ0A, both block diagonal, such that FðρAÞ ≥ Fðρ0AÞ. Using a
work bit with energy gap Δ smaller than, but arbitrarily close
to, FðρAÞ − Fðρ0AÞ, we can implement the following transition
with a thermal operation, which extracts work Δ without any
fluctuations:

ρA ⊗ σM ⊗ τðm;nÞ
S ⊗ jgihgjW ↦ σAMS ⊗ jeihejW:

Here, σM ¼ TrASσAMS remains identical during the

transformation, σS ¼ τðm;n;εÞ
S , and σA is as close to ρ0A as

we like. This transition can be achieved for any choice of
ε > 0, as long as n=m is large enough.

Since the state of the max-entropy sink S remains almost
unchanged, the agent may measure the state of the sink after
the transition, by checking whether its configuration is one
of the (n −m) basis states which have probability zero in the

initial state τðm;nÞ
S . With probability 1 − ε, this measurement

yields the answer “no” and restores the original state τðm;nÞ
S

due to state updating. However, even if ε > 0 is very small, a
large number of repetitions of the thermodynamic cycle
eventually lead to the failure of the protocol.
In other words, the case of work extraction suffers from a

deficit that is not present in the case of the formation of a
state: It admits only a weaker notion of cyclicity. An
additional max-entropy sink is needed, and its state is not
reset with unit probability after every cycle. It is well
known that allowing small deviations from cyclicity can
lead to quite implausible and unphysical effects like
embezzling of work [10,50]. Thus, we consider main result
3 as only a preliminary answer to the question of the
ultimate limits of work extraction in the setup of this paper.
Note that the authors of Ref. [10] use a similar construction
to dismiss the Fα conditions for α < 0.
The main source of the problem is to insist on producing

the excited state jei exactly. If we allow that this state is
obtained only approximately, and possibly correlated with
the system M, then we obtain a valid alternative to main
result 3 without any max-entropy sink (simply by applying
main result 1). The problem is that correlations between W
and M may potentially compromise the working of the
machine in further cycles. This insight leads to the question
of whether it can be ensured that W remains uncorrelated
with all other systems even if we drop the condition that it
is in an exact eigenstate.

Open problem.—Can we formulate a suitable version of main
result 3 which allows the state of the work bit to be slightly
mixed (dropping the max-entropy sink) but which ensures
nevertheless that it remains perfectly uncorrelated with all
other systems (in particular, M)?

This result should be achieved in a way that allows one to
accumulate work over many extraction cycles without
degrading its “quality” (fidelity with an eigenstate) and
without the need for increasing resources or precision.

We conjecture that the answer is “yes” and that it leads
to the same expression for the amount of work that can be
extracted in the correlating scenario of this paper as
suggested by main result 3, namely, FðρAÞ − Fðρ0AÞ. A
possible approach could be to adopt themethods of Ref. [51]
and to consider quasistatic “near-perfect” work extraction.
The authors of Ref. [52] have recently shown that work

can be extracted from passive states if the thermal machine
M is allowed to become correlated with the system.
However, only work extraction on average is considered
(not fluctuation-free single-shot work extraction like in this
paper), the extracted work is modeled only implicitly,
without the demand that unitaries preserve the total energy,
and no heat bath (and thus background temperature) is
considered. Thus, the Helmholtz free energyF plays no role
in Ref. [52].

F. Sketch of proof

Before discussing the role of coherence in Sec. II G
below, we now give a self-contained sketch of the proof of
the main results. It is mostly based on majorization theory
and can be skipped by readers who are interested in only
the physical discussion. All proof details can be found in
Appendixes A, B, and C.
Given any quantum system X (which may itself be

composed of several quantum systems), a thermal oper-
ation on X is a map ρX ↦ ρ0X such that there exists a finite-
dimensional system B with

ρ0X ¼ trB½UXBðρX ⊗ γBÞU†
XB�;

where ½UXB;HXþHB�¼0 forHX andHB the Hamiltonians
of X and B, respectively, and γB ¼ expð−βHBÞ=Z is the
Gibbs state, with β ¼ 1=ðkBTÞ and Z the partition function
such that trγB ¼ 1 (the temperature T is arbitrary but fixed).
Our main results claim that certain state transitions on
composite systems are or are not possible via thermal
operations. We make use of two technical simplifications to
prove these results.
First, since we are considering only states that are

block diagonal in energy eigenbasis (except for Sec. II G),
we can represent quantum states ρX as probability vectors,
pX ∈ Rm, wherem ¼ dimX is the dimension ofX’s Hilbert
space, and the entries of pX are the occupation probabilities
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of the (ordered) energy levels. A Hamiltonian HX can then
be represented as a vectorHX ¼ ðE1;…; EmÞ with energies
Ei, and it is for many purposes sufficient to consider only
unitaries U which correspond to permutations of entries of
the probability vector, chosen such thatHX is left invariant.
See Refs. [28,53] for mathematical details.
Second, there is a well-known technique to reduce the

study of (block-diagonal) thermal operations to the case
where all Hamiltonians of all involved physical systems Y
are trivial, HY ¼ 0. This reduction is achieved via an
“embedding map” Γ which, intuitively, reformulates the
canonical state on some space as a microcanonical state on
another space. This technique is introduced in Ref. [10] and
used, e.g., in Refs. [32,36] (the latter reference contains a
summary in its Methods section).
In this simplified situation of trivial Hamiltonians and

block-diagonal states, it can be shown that a state pX on
some system X can be transformed into another state p0

X to
arbitrary accuracy by a thermal operation if and only if pX
majorizes [54,55] p0

X:

pX≻p0
X;

which is shorthand for

Xk
i¼1

p↓
i ≥

Xk
i¼1

p0↓
i for all k ¼ 1;…; m;

where p↓ ¼ ðp↓
1 ;…; p↓

mÞ denotes the reordering of p in

nonincreasing order, i.e., p↓
i ¼ pπðiÞ for some permutation

π such that p↓
1 ≥ p↓

2 ≥ … ≥ p↓
m. This prescription

does not yet take into account the possibility of having
an additional catalyst cM as in Fig. 1. Demanding, as in
Secs. II A and II B, that the catalyst remains uncorrelated
with the system, we are led to the question of under what
conditions there exists some probability vector cM such that

pX ⊗ cM≻p0
X ⊗ cM: ð5Þ

This question is answered in Refs. [48,49]: Suppose that
p↓
X ≠ p0↓

X and at least one of them does not contain zeros.
Then there exists some state cM such that Eq. (5) holds if
and only if HαðpÞ < Hαðp0Þ for all α ∈ Rnf0g, and
HBurgðpÞ < HBurgðp0Þ, where the Rényi entropies Hα

[56] and the Burg entropy HBurg [57] are defined as

HαðpÞ ¼
sgnðαÞ
1 − α

log
Xm
i¼1

pα
i ðα ∈ Rnf0; 1gÞ;

HðpÞ≡H1ðpÞ ¼ −
Xm
i¼1

pi logpi;

HBurgðpÞ ¼
1

m

Xm
i¼1

logpi

with m ¼ dimX and sgnðαÞ ¼ þ1 if α > 0 and −1 if
α < 0. Inverting the embedding Γ, allowing arbitrarily
small errors in the production of the target state, and
investing a tiny amount of extra work [10] leads to
condition (3) for thermal transitions of the form (1), i.e.,
ΔFα ≤ 0 for all α-free energies with α > 0.
The crucial step for establishing main results 1–3 is the

following theorem that we prove in detail in Appendixes A
and B.

Main theorem.—Let p; p0 ∈ Rm be probability distributions
with p↓ ≠ p0↓. Then there exists an extension p0

XY of p0 ≡ p0
X

such that

pX ⊗ p0
Y≻p0

XY ð6Þ
if and only if H0ðpÞ≤H0ðp0Þ and HðpÞ<Hðp0Þ. Moreover,
for every ε > 0, we can choose Y and p0

XY such that the mutual
information is IðX∶YÞ≡ Sðp0

XYkp0
X ⊗ p0

YÞ < ε.

The statement of this theorem uses the max entropy
(or Hartley entropy) H0ðpÞ ¼ log #fijpi ≠ 0g, with its
quantum version (also used in the main text) S0ðρÞ ¼
log rankðρÞ, and it uses the notion of an “extension” of a
probability distribution p0. To this end, we label the system
on which p0 lives by X and introduce another (discrete)
system Y. An extension of p0 is then a joint probability
distribution p0

XY on the composite system XY such that its
marginal on X equals p0

X. The mutual information Ið•∶•Þ
and relative entropy Sð•k•Þ are defined in Appendixes A
and B. An interesting consequence is that, due to the
Pinsker inequality [58],

kp0
XY − p0

X ⊗ p0
Yk ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðX∶YÞ=2

p
<

ffiffiffiffiffiffiffi
ε=2

p
;

where kp − qk ≔ 1
2

P
m
i¼1 jpi − qij is the trace distance, or

variation distance, which quantifies the distinguishability
of p and q [59]. This inequality implies that p0

XY can be as
indistinguishable from a product state as we like, which is
arguably the operationally strongest possible form of
“containing almost no correlations.”
Using the subadditivity [46] ofH0 andH ¼ H1, it is very

easy to see thatHiðpÞ ≤ Hiðp0Þ for i ¼ 0, 1 is necessary for
the existence of some p0

XY which satisfies Eq. (6). The hard
part is to show that it is sufficient. To show this, we
construct an explicit extension p0

XY of p0
X that satisfies

Eq. (6). This construction is done in two steps. First, we
introduce an auxiliary system Y1 and an extension p0

XY1
of

p0
X such that

HαðpX ⊗ p0
Y1
Þ < Hαðp0

XY1
Þ for all α ∈ Rnf0g;

HBurgðpX ⊗ p0
Y1
Þ < HBurgðp0

XY1
Þ: ð7Þ

The results of Refs. [48,49] explained above then guarantee
that there is yet another auxiliary system Y2 with a
probability distribution cY2

such that
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pX ⊗ p0
Y1

⊗ cY2
≻p0

XY1
⊗ cY2

;

andwe can simply defineY≔Y1Y2 andp0
XY ≔ p0

XY1
⊗ cY2

.
The extension p0

XY1
is explicitly defined in Fig. 4. While

we can represent probability distributions pX on a system X
as vectors p ¼ ðp1;…; pmÞ ∈ Rm, we can similarly re-
present bipartite probability distributions pXY1

as matrices
pij, like we do for p0

XY1
in Fig. 4. Summing over the

rows (respectively, columns) gives the marginals p0
X ¼

ðp0
1;…; p0

mÞ and p0
Y1
, which shows, in particular, that

p0
XY1

is indeed an extension of p0
X. We choose Y1 to be

ðn2 þ nþ 1Þ dimensional, whereas X is m dimensional.
Let us consider the special case that p0

X does not
contain zeros [implying H0ðpÞ≤H0ðp0Þ] and that
pX≠ð1m;…; 1mÞ. Suppose that HðpÞ<Hðp0Þ. We claim that,
for all α ≠ 1,

lim
n→∞

Hαðp0
XY1

Þ −HαðpX ⊗ p0
Y1
Þ ¼ logm −HαðpXÞ;

which can be seen in Fig. 4 by the fact that the left-hand
side (the blue curve) approaches the right-hand side
(the black dashed curve) for large n. In fact, the blue
curve is monotonically increasing in n towards the black
curve. Since the maximal value of HαðpXÞ is logm, and

this value is attained only at the uniform distribution,
this behavior shows that the blue curve attains strictly
positive values away from α ∈ f0; 1g if n is large
enough. According to the first condition in Eq. (7),
this result is exactly what we need to achieve.
We can understand why this behavior happens by

considering the different intervals of α separately. It turns
out that the Rényi entropies Hα in the regime α > 1 are
dominated by the largest elements of a probability dis-
tribution, which, in this case, are the δ entries (shaded
yellow); all other entries do not contribute much to the
value of Hα. Since those entries are all equal, the
expression Hαðp0

XY1
Þ −Hαðp0

Y1
Þ reduces in the limit n →

∞ to logm. On the other hand, for α < 1, it is the smallest
entries of the probability distributions that matter, which
are the ðδ=n2Þ entries (shaded gray), leading to the
same conclusion. In fact, this intuition is used in quantum
information theory in the construction of counter-
examples to certain versions of the so-called additivity
conjecture [60–62].
In contrast, for α ¼ 1, the difference of entropies is

constant in n and satisfies

lim
δ↘0

H1ðp0
XY1

Þ −H1ðpX ⊗ p0
Y1
Þ ¼ Hðp0Þ −HðpÞ:

This equation explains why the blue curve in Fig. 4 has an
n-independent “dip” at α ¼ 1: The value there differs in the
limit from those at α < 1 and α > 1. Thus, the dip becomes
very narrow as n tends to infinity. The blue curve takes
values at α ≠ 1 which are in the limit positive and
independent of the target state p0

X and its extension
p0
XY1

; it is only at α ¼ 1 where the value depends on that
state and its extension. If we choose δ small enough, we
can enforce that the blue curve remains positive also
around α ¼ 1 if and only if Hðp0Þ −HðpÞ > 0—that is,
positivity of the standard Shannon entropy difference
survives as the unique condition. One can show that
the Burg entropy is related to the derivative of the blue
curve at α ¼ 0, and the second condition in Eq. (7) is
automatically satisfied, too, which establishes the first part
of the main theorem. All remaining details of the proof are
given in Appendixes A and B.
Main result 1 is then established by using an inverse of

the embedding map Γ, as explained above. The proofs of
main results 2 and 3 are very similar, except that some care
has to be taken that all approximations (which are unavoid-
able due to the construction of Γ [10]) are chosen without
spoiling the purity of the work bit W. These results have
thus independent (but very similar) proofs.
As we also show in Appendixes A and B, a simple

consequence of the result above is a resolution of an open
problem in Ref. [63]: In the notation of that paper, it follows
that c-trumping for k ¼ 2 is equivalent to c-trumping for
k ≥ 3.

FIG. 4. The extension p0
XY1

of p0
X that is used in the main

text to establish sufficiency of the entropy conditions in the
main theorem. According to Eq. (7), the goal is to build an
extension such that the blue curve (that is, the α-Rényi entropy
balance) attains only positive values. The plot is for m ¼ 3,
δ ¼ 10−3, p ¼ pX ¼ ð 91

100
; 1
20
; 1
25
Þ, Y1 ¼ Rn2þnþ1 with n ¼ 1015,

and p0 ¼p0
X ¼ð17

20
; 7
50
; 1
100

Þ. Since HαðpÞ > Hαðp0Þ for 0 < α ≤ 1
3
,

there does not exist cM such that Eq. (5) holds true; i.e., no
standard catalytic thermal operation can transform p into p0.
Nevertheless, the transition can be achieved by a correlating
catalytic thermal operation. The shaded colors show how differ-
ent entries of p0

XY1
are responsible for (the positivity of) different

parts of the curve, as explained in the main text. In the limit
n → ∞, only positivity at α ¼ 1, i.e., positive balance of Shannon
entropy, remains as a necessary condition.
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Theorem B (cf. Appendix B).—Let p; q ∈ Rm be probability
distributions with p ≠ q. Then there exist auxiliary systems B
and C and a bipartite distribution rBC such that

pA ⊗ ðrB ⊗ rCÞ≻qA ⊗ rBC

if and only if H0ðpÞ ≤ H0ðqÞ and HðpÞ < HðqÞ. Here, rB
and rC denote the marginals of rBC.

This theorem also shows that k ¼ 2 systems are enough
to use stochastic independence as a resource as described in
Ref. [32], not only k ≥ 3. We briefly comment on the
relation between the present work and Ref. [63] after
Theorem 4 in Appendix B.

G. Correlation and coherence?

So far, our discussion has focused on block-diagonal
states, i.e., states that commute with the total Hamiltonian.
In quantum thermodynamics, it is standard to consider this
situation first, since transitions between states with coher-
ence are much harder to characterize [36,39,40]. In fact, the
generic situation is that classification results for block-
diagonal states fail to hold in the presence of coherence
[64], such as the equivalence of Gibbs-preserving and
thermal operations [22].
It is thus remarkable that the result of this paper has

potentially a chance to hold in the presence of coherence
as well.

Conjecture.—Main result 1 remains true also in the case that
ρA and/or ρ0A are not block diagonal, i.e., in the presence of
quantum coherence.

At first sight, this conjecture may seem implausible: If,
e.g., ρ0A ¼ σA is a pure state, σAM must be a product state,
and so the transition in main result 1 simplifies to

ρA ⊗ σM ↦ ρ0A ⊗ σM; ð8Þ

which is just a standard catalytic thermal transition as
discussed in Sec. II A, subject to the family of second laws
ΔFα ≤ 0 (not just ΔF ≤ 0). But this argumentation ignores
that we are, in general, interested only in producing the
target state ρ0A approximately (though to arbitrary accuracy)
such that σA ≈ ρ0A may, in general, still be a mixed state,
undermining the above counterargument.
If ρA is incoherent and ρ0A is not, then a simple argument

shows that transitions of the form (8) are impossible.
Following Ref. [65], define the quantum Fisher informa-
tion for a system with Hamiltonian H and state ρ as
Iðρ;HÞ ≔ trð_ρΔ−1

ρ _ρÞ, where _ρ ≔ i½ρ; H� and ΔρX ≔
ðρX þ XρÞ=2. Then Iðρ; HÞ ¼ 0 if and only if ρ is

incoherent. Moreover, I is additive on tensor products,
and ρ → σ by a thermal operation implies IðρÞ ≥ IðσÞ,
since thermal operations are covariant. Applying these
properties to Eq. (8) tells us that IðρAÞ ≥ Iðρ0AÞ; i.e., if
ρA is block diagonal, then so is ρ0A.
However, this kind of reasoning cannot be used to

rule out main result 1: In general, it may hold that
IðσAÞ þ IðσMÞ > IðσAMÞ, and, in this sense, correlations
can increase the total amount of coherence as summed over
all subsystems. This phenomenon is also at the heart of
Åberg’s result [66], which gives us further evidence for the
conjecture above. While Åberg’s setting is different from
the one in this paper (his catalyst changes its state during
every operation and, in particular, is infinite dimensional,
thus exceeding the strict notion of cyclicity that we have
adopted here—similar comments apply to the improved
results by Korzekwa et al. [41]), his setup allows one to
“broadcast” coherence in some sense indefinitely catalyti-
cally, while correlating the catalyst with the systems on
which it acts, pretty much in the sameway as in this paper. It
has been noted that this comes at the prize of correlating the
systems on which the catalyst successively acts [67].
Therefore, the conjecture above blends into a series of
questions about how to best use coherence catalytically [68].
We leave the resolution of this conjecture to future work.

III. CONCLUSIONS

It is argued in Ref. [10] that the Helmholtz free energy
loses its role as the unique indicator of state transitions in
small-scale thermodynamics. Instead, an infinite family of
α-free energies takes its place. It has been noted that this
implies, in particular, that there is an inherent irreversibility
at the nanoscale: While it takes F∞ðρÞ þ kBT logZ to
create a state ρ, only work F0ðρÞ þ kBT logZ can be
extracted if one is given one copy of ρ, where, in general,
F0 < F∞. But these results have been obtained under
the assumption that the corresponding thermal machine
remains uncorrelated from the systems on which it acts. In
this paper, we argue that this restriction can be lifted
in many situations, and we show that this relaxation
restores the distinguished role of the Helmholtz free energy
F. Moreover, work extraction and formation at the free-
energy difference can be achieved without any fluctuations,
up to a minor tweak in the extraction case.
Does this mean that we have restored reversibility at the

nanoscale? Not quite. An interesting perspective to take is
that this irreversibility has simply been shifted, from work
to correlations. That is, while work cost and extractable
work are now both equal to FðρÞ (up to the open problem in
Sec. II E), a new form of irreversibility has appeared:
Namely, initially uncorrelated systems (e.g., A and M)
become correlated. It is interesting to see that this setting
brings us closer to discussions of the founding days of
thermodynamics: Boltzmann’s H theorem [69], e.g.,
derives the nondecrease of entropy in a gas from the
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assumption that the velocities of molecules are initially
uncorrelated (i.e., factorize), but they become correlated
after a collision (“stoßzahlansatz”). This behavior intro-
duces naturally an “arrow of time,” and the fluctuation-free
single-shot work formation and extraction in the present
paper come at the prize of introducing an analogous
“aging” to the physical systems, with “wrinkles” given by
correlations.
We emphasize that the results of this paper are not

primarily meant as a criticism of earlier work. The point is
not that it would be “wrong” to demand that the catalyst
is returned uncorrelated [as in Eq. (8)] but rather that the
thermodynamic task of state conversion, when considered
at the nanoscale, comes in two different versions: one
version applicable to situations in which the machine acts
on the same system multiple times, such that the catalyst
must be returned uncorrelated; and a second version, in
which the machine acts onmany different quantum systems
individually (and on each only once), in which case
correlations are allowed to persist. The good (and arguably
surprising) news of the present work is that the latter case
is particularly simple to characterize, namely, in terms of
the free energy F alone. The question of which version to
choose depends entirely on the physical context.
The results of this paper open up a multitude of

interesting open problems. First, does main result 1 remain
true in the presence of coherence? Can we reformulate the
work extraction result (main result 3) without a max-
entropy sink (open problem in Sec. II E)? And finally, do
machines that operate in this correlating-catalytic way have
any realization in nature?
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APPENDIX A: MATHEMATICAL
PRELIMINARIES

In this paper, any “probability distribution” (or just
“distribution”) is assumed to be discrete, i.e., is a vector
p ∈ Rm for some m ∈ N such that p ¼ ðp1;…; pmÞ,
pi ≥ 0,

P
m
i¼1 pi ¼ 1. We interpret it as a probability

distribution on the discrete sample space f1; 2;…; mg,
and we usually denote the corresponding probability space

by an uppercase letter like A, following quantum informa-
tion terminology, writing p≡ pA. Given two probability
spaces (“systems”) A and B, we can consider the composite
probability space AB with a sample space that is the
direct product of the two sample spaces. Independent
product distributions are then represented by vectors
pA ⊗ qB, and we can write joint probability distributions
q≡ qAB in matrix form, by collecting the probabilities
qABði; jÞ into a table. Summing over the rows (respectively,
columns) of this matrix gives the marginal distributions on
A (respectively, B). We sometimes slightly abuse notation
and use uppercase letters like A also as place holders for the
vector space Rm that contains its probability distributions,
writing, e.g., p ∈ A instead of p ∈ Rm, which improves
clarity in cases where there is more than one system with
sample space f1; 2;…; mg. Moreover, probability distri-
butions are sometimes called “states,” again following
quantum information terminology.
We define the notions of majorization [54] and α-Rényi

entropies Hα as well as Burg entropy HBurg as described
in Sec. II F. A stochastic map is a linear map Λ∶A → A that
maps probability distributions to probability distributions.
A stochastic map is bistochastic if it preserves the uniform
distribution μ¼ð1m;…; 1mÞ∈Rm, i.e., ΛðμÞ ¼ μ. It is well
known that p≻q is equivalent to the existence of a
bistochastic map Λ such that ΛðpÞ ¼ q [54]. Following
Refs. [34,35], we say that a distribution pA trumps another
distribution qA, denoted p≻Tq, if there exists another (finite
discrete) system B and a distribution cB such that

pA ⊗ cB≻qA ⊗ cB:

As explained in Sec. II F, the relation p≻Tq for p↓ ≠ q↓ is
equivalent to HαðpÞ < HαðqÞ for all α ∈ Rnf0g and
HBurgðpÞ < HBurgðqÞ, which is proven in Refs. [48,49].
We use the trace norm (or trace distance [59])

kak ≔
1

2

Xm
i¼1

jaij; a ¼ ða1;…; amÞ ∈ Rm:

Stochastic maps Λ do not increase the trace norm; i.e.,
kΛðaÞk ≤ kak for all a ∈ Rm.
Following Ref. [10] (see also Ref. [42]), we define the

Rényi divergences, or relative Rényi entropies, for distri-
butions p; q ∈ Rm as

SαðpkqÞ ≔
sgnþðαÞ
α − 1

log
Xm
i¼1

pα
i q

1−α
i ðα ∈ Rnf0; 1gÞ;

where

sgnþðαÞ ¼
�þ1 if α ∈ ½0;þ∞�;
−1 if α ∈ ½−∞; 0Þ:

For α ∈ f−∞; 0; 1;∞g, we use the definitions [10]
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S0ðpkqÞ¼ lim
α↘0

SαðpkqÞ¼− log
X
i∶pi≠0

qi;

S1ðpkqÞ≡SðpkqÞ¼ lim
α→1

SαðpkqÞ¼
Xm
i¼1

piðlogpi− logqiÞ;

S∞ðpkqÞ¼ lim
α→∞

SαðpkqÞ¼ logmax
i

pi

qi
;

S−∞ðpkqÞ¼ lim
α→−∞

SαðpkqÞ¼ S∞ðqkpÞ:

We always assume that there is a fixed “background
inverse temperature” β > 0, and we use the definition
kBT ≔ 1=β, where we interpret T as the temperature and
kB as the Boltzmann constant. The α-free energies Fα are
defined as [10]

FαðpÞ≔−kBT logZþkBTSαðpkγÞ; FðpÞ≔F1ðpÞ;

where p ∈ A is any state, Z≡ ZA ¼ P
m
i¼1 expð−βEiÞ is

the partition function with HA ¼ ðE1;…EmÞ the
Hamiltonian (which, as described in Sec. II F, is now a
vector with the energy levels as entries), and γ ¼
ðγ1;…; γmÞ with γi ¼ expð−βEiÞ=Z the thermal state (or
Gibbs state).
Recall the definition of a thermal operation in Fig. 1 but

in the special case that the system M is trivial, i.e.,
AM ¼ A. If all states are block diagonal, then we have a
“classical” version of a thermal operation, acting effectively
on classical probability distributions. If p; q ∈ A are
probability distributions, we can ask under what conditions
a thermal operation can map the quantum state diagðpÞ to
diagðqÞ. This question is answered in Ref. [43] (see also
Refs. [53,70,71]): This transition is possible to arbitrary
accuracy if and only if there exists a stochastic map Λ with

ΛðpÞ ¼ q and ΛðγAÞ ¼ γA

(actually, in many but not all cases, the target state q can be
produced exactly by a thermal operation, i.e., with perfect
accuracy, as discussed in Ref. [53]). Therefore, the exist-
ence of a thermal operation that maps one block-diagonal
state to another can be shown by constructing a corre-
sponding “Gibbs-preserving” stochastic map which maps
the initial to the final distribution. The main result of
Ref. [10] is to give a criterion for the existence of a
stochastic map Λ with the above properties: Basically (for
details, see Ref. [10]), FαðpÞ ≥ FαðqÞ for all α is sufficient
and necessary for the existence of such a map (we do not
use this result directly in what follows).

APPENDIX B: RESULTS FOR TRIVIAL
HAMILTONIAN

As explained in the main text, we in the following
consider a particular family of bipartite probability
distributions. For any given probability distribution

q≡ qA ¼ ðq1;…; qmÞ ∈ Rm with qi ≠ 0 for all i, we
define the extension

ðB1Þ

where n ∈ N and 0 < δ < 1
2
miniqi. This extension is an

m × ðn2 þ nþ 1Þ matrix with strictly positive entries
which defines a joint probability distribution on AB.
Summing over the rows shows that it has q as its marginal
on A. Its marginal on B is

qB ¼

0
B@mδ;

mδ

n2
;…;

mδ

n2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n2

;
1 − 2mδ

n
;…;

1 − 2mδ

n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

1
CA:

By direct computation, it turns out that the mutual
information in qAB is independent of n:

IðA∶BÞ ¼ SðqABkqA ⊗ qBÞ

¼
Xm
i¼1

ðqi − 2δÞ logðqi − 2δÞ

−
Xm
i¼1

qi log qi − 2mδ logm

− ð1 − 2mδÞ logð1 − 2mδÞ; ðB2Þ

and we have, in particular, limδ↘0IðA∶BÞ ¼ 0.
Lemma 1.—Let p; q ∈ Rm be probability distributions

with full rank such that HðpÞ < HðqÞ. Then, for every
ε > 0, there exist δ > 0 with δ < 1

2
miniqi and n ∈ N such

that qAB as defined in Eq. (B1) satisfies

pA ⊗ qB≻TqAB

as well as IðA∶BÞ≡ SðqABkqA ⊗ qBÞ < ε.
Proof.—For α ∈ R ∪ f−∞;þ∞g, define the entropy

difference

ΔðαÞ
n ≔ HαðqABÞ −HαðpAÞ −HαðqBÞ:

We claim that ΔðαÞ
n is everywhere continuous in α. By

definition, this claim is true for all α ≠ 0; for α ¼ 0, it
follows from the fact that p and q both have full rank that

limα↗0Δ
ðαÞ
n ¼ limα↘0Δ

ðαÞ
n ¼ Δð0Þ

n ¼ 0. Let us first compute
this difference for α ¼ 1. Defining ηðxÞ ≔ −x log x for
x ≠ 0 and ηð0Þ ≔ 0, we get
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Δð1Þ
n ¼mηðδÞþmn2ηðδn−2Þþ

Xm
i¼1

nη½ðqi−2δÞn−1�

−HðpÞ−ηðmδÞ−n2ηðmδn−2Þ−nη½ð1−2mδÞn−1�

¼−
Xm
i¼1

ðqi−2δÞ logðqi−2δÞ−HðpÞ

þ2mδ logm−ηð1−2mδÞ:
All n dependence miraculously cancels out, and we
have

lim
δ↘0

Δð1Þ
n ¼ HðqÞ −HðpÞ > 0:

By continuity, positivity of Δð1Þ
n is ensured if δ is small

enough.Furthermore, due toEq. (B2), if δ is small enough,we
also have IðA∶BÞ < ε [note that IðA∶BÞ is, in particular,
independent of n]. We thus choose some δ ∈ ð0; 1mÞ small
enough for both and keep it fixed in all that follows.

Consequently,Δð1Þ
n is constant inn andpositive, and0<δ< 1

m.
For finite α ∈ f0; 1g, we get

ΔðαÞ
n ¼ −HαðpÞ þ

sgnðαÞ
1 − α

log
mδα þmδαn2ð1−αÞ þ n1−α

P
m
i¼1ðqi − 2δÞα

ðmδÞα þ ðmδÞαn2ð1−αÞ þ ð1 − 2mδÞαn1−α ðα ∈ Rnf0; 1gÞ: ðB3Þ

We claim that this expression is increasing in n, for every
nonzero α ∈ R ∪ f−∞;∞g. We have already shown this
for α ¼ 1, and now we show it for all other α=∈f0; 1g by
considering the following cases.

(i) If α < 0 and α ≠ −∞, then it is easy to see that ΔðαÞ
n

is increasing in n if and only if the fraction on the
right-hand side of Eq. (B3) is decreasing in
x ≔ n1−α. In other words, we have a function

fðxÞ ≔ mδα þmδαx2 þ x
P

m
i¼1ðqi − 2δÞα

ðmδÞα þ ðmδÞαx2 þ ð1 − 2mδÞαx ; ðB4Þ

and we have to show that it is decreasing in x;
note that we are interested only in x ≥ 1, since
n1−α ≥ n ≥ 1. To this end, we can simply look at the
derivative

f0ðxÞ ¼ −
ðx2 − 1Þδα½mα

P
m
i¼1ðqi − 2δÞα −mð1 − 2mδÞα�

½ðmδÞα þ ðmδÞαx2 þ ð1 − 2mδÞαx�2 ;

and we see that it remains to be shown only that
mα

P
m
i¼1ðqi−2δÞα≥mð1−2mδÞα. Let ri≔ðqi−2δÞ=

ð1−2mδÞ, then r ¼ ðr1;…; rmÞ is a probability
distribution, and HαðrÞ ≤ − logm, which impliesP

m
i¼1 r

α
i ≥ m1−α, and so

mα
Xm
i¼1

ðqi − 2δÞα ¼ mαð1 − 2mδÞα
Xm
i¼1

rαi

≥ mαð1 − 2mδÞαm1−α

¼ mð1 − 2mδÞα;

which shows that f0ðxÞ ≤ 0 in the relevant interval
for x, and we are done.

(ii) If 0 < α < 1, we can argue similarly, except that now
the function f in Eq. (B4) has to be increasing in
x ¼ n1−α. We can argue via the derivative exactly as
above, but nowHαðrÞ≤logm, hence

P
m
i¼1 r

α
i ≤m1−α,

and therefore mα
P

m
i¼1ðqi − 2δÞα ≤ mð1 − 2mδÞα,

which gives us the opposite sign, f0ðxÞ ≥ 0, as
desired.

(iii) If α > 1, then the function f in Eq. (B4) also has to
be increasing in x ¼ n1−α, but, since 1 − α < 0, we

are now interested only in the interval 0 < x < 1. On
the one hand, we now have

P
m
i¼1 r

α
i ≥ m1−α, which

implies mα
P

m
i¼1ðqi − 2δÞα ≥ mð1 − 2mδÞα, but, on

the other hand, the factor ðx2 − 1Þ in the derivative
becomes negative; hence, f0ðxÞ ≥ 0.

(iv) By continuity, ΔðαÞ
n must also be increasing

for α ∈ f−∞; 0;∞g.
Since Δð1Þ

n¼1 > 0 and ΔðαÞ
n¼1 is continuous in α, there exists

some ε > 0 such that ΔðαÞ
n¼1 > 0 for all α ∈ ½1 − ε; 1þ ε�.

But, due to the monotonicity that we have just proven, it

follows thatΔðαÞ
n > 0 for alln ∈ N and allα ∈ ½1 − ε; 1þ ε�.

Now consider the interval α ∈ ½1þ ε;þ∞�. On this
interval, we have

lim
n→∞

ΔðαÞ
n ¼ logm −HαðpÞ > 0; ðB5Þ

since p cannot be the uniform distribution [due to HðpÞ <
HðqÞ]. For finite α ≥ 1þ ε, this result follows directly
from Eq. (B3), while, for α ¼ þ∞, it follows from
H∞ðqABÞ ¼ − log δ and H∞ðqBÞ ¼ − logðmδÞ if n is large
enough.
Thus, on the interval ½1þ ε;þ∞�, the sequence of

continuous functions ΔðαÞ
n converges pointwise to a strictly
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positive continuous function, namely, logm −HαðpÞ.
Therefore, a version of Dini’s theorem (see, e.g., Lemma
6 in Ref. [63]) proves that there is some Nþ ∈ N such that

ΔðαÞ
n > 0 for all n ≥ Nþ and all α ∈ ½1þ ε;þ∞�.
Now consider the Burg entropy difference. A simple

calculation yields

ΔBurg
n ≔ HBurgðqABÞ −HBurgðpAÞ −HBurgðqBÞ

¼ −HBurgðpÞ þ
1

n2 þ nþ 1

×

�
n
m

Xm
i¼1

logðqi − 2δÞ − ðn2 þ 1Þ logm

− n logð1 − 2mδÞ
�
:

Thus, we obtain

lim
n→∞

ΔBurg
n ¼ − logm −HBurgðpÞ > 0: ðB6Þ

For all α ∈ R, define

Δ̄ðαÞ
n ≔

(
1−α
jαj Δ

ðαÞ
n if α ≠ 0;

ΔBurg
n if α ¼ 0.

Then Δ̄ðαÞ
n is continuous in α (in particular, at α ¼ 0). It is

easy to verify that Eq. (B5) holds also true of 0 < α < 1;

consequently, the Δ̄ðαÞ
n represent an increasing family of

continuous functions on the compact interval ½0; 1 − ε�
which converges to the continuous and strictly positive
function (for α in that interval)

lim
n→∞

Δ̄ðαÞ
n ¼

� 1−α
α ½logm −HαðpÞ� if α > 0;

− logm −HBurgðpÞ if α ¼ 0.

Therefore, by Dini’s theorem, there exists some N0 ∈ N

such that Δ̄ðαÞ
n > 0 for all n ≥ N0 and all α ∈ ½0; 1 − ε�.

But this result implies that, for all n ≥ N0, we have

both ΔðαÞ
n > 0 for all α ∈ ð0; 1 − ε� and ΔBurg

n > 0.
Now consider Δ̄ðαÞ

n on the interval α ∈ ½−∞; 0�.
If −∞ < α < 0, then

lim
n→∞

Δ̄ðαÞ
n ¼ 1−α

jαj lim
n→∞

ΔðαÞ
n ¼ 1−α

jαj ½− logm−HαðpÞ�> 0:

We also have

Δ̄ð−∞Þ
n ≔ lim

α↘−∞
ΔðαÞ

n ¼ Δð−∞Þ
n ;

and, if n is large enough,

Δð−∞Þ
n ¼ H−∞ðqABÞ −H−∞ðqBÞ −H−∞ðpAÞ

¼ log
δ

n2
− log

mδ

n2
−H−∞ðpÞ

¼ − logm −H−∞ðpÞ > 0;

since at least one entry of p must be larger than 1=m.
Together with Eq. (B6), this inequality establishes that the

Δ̄ðαÞ
n are a family of continuous functions on ½−∞; 0� that

converge pointwise to a strictly positive continuous func-
tion. Again, by a version of Dini’s theorem, it follows that
there is some N− ∈ N such that for all n ≥ N−, we have

Δ̄ðαÞ
n > 0 and, in particular, ΔðαÞ

n > 0 for all n ≥ N−.
Thus, if we set N ≔ maxfN−; N0; Nþg, then, for all

n ≥ N, we have that ΔðαÞ
n > 0 for all α ∈ ½−∞;þ∞� and

also ΔBurg
n > 0. Therefore, pA ⊗ qB≻TqAB. ▪

Lemma 1 remains true (under identical premises, and
with the same form of catalyst) even if p does not have full
rank. We now show this but at the same time replace the
trumping relation by majorization.
Corollary 2.—Let p; q ∈ Rm be probability distributions

such that q (but not necessarily p) has full rank and such
that HðpÞ < HðqÞ. Then, for every ε > 0, there is an
extension qAB of q¼qA with IðA∶BÞ≡SðqABkqA⊗qBÞ<
ε such that

pA ⊗ qB≻qAB:

Proof.—While p does not necessarily have full rank,
the distribution pðκÞ ∈ Rm does (for every 0 < κ < 1),

where pðκÞ
i ≔ ð1 − κÞpi þ κ=m. Since HðpÞ < HðqÞ and

limκ↘0HðpðκÞÞ ¼ HðpÞ, there exists some κ > 0 (smaller
than one) such that HðpðκÞÞ < HðqÞ. Thus, we can apply
Lemma 1 and get that there exists a system C of suitable

dimension and an extension q0AC of q ¼ qA such that p
ðκÞ
A ⊗

q0C≻Tq0AC and Sðq0ACkq0A⊗q0CÞ<ε. But p≻pðκÞ, and hence

pA⊗q0C≻p
ðκÞ
A ⊗q0C; therefore, pA⊗q0C≻Tp

ðκÞ
A ⊗q0C. Since

the trumping relation is transitive, it follows that pA ⊗
q0C≻Tq0AC. By the definition of trumping, there exists yet
another system D of suitable dimension and a distribution
rD such that pA ⊗ q0C ⊗ rD≻q0AC ⊗ rD. Now, we define B
to be the joint system CD, and qAB ≔ q0AC ⊗ rD, then
qB ¼ q0C ⊗ rD, and we have pA ⊗ qB≻qAB. Furthermore,

SðqABkqA ⊗ qBÞ ¼ Sðq0AC ⊗ rDkq0A ⊗ q0C ⊗ rDÞ
¼ Sðq0ACkq0A ⊗ q0CÞ < ε:

This completes the proof. ▪
This allows us to prove the main theorem of Sec. II F.
Theorem 3.—Let p; q ∈ Rm be probability distributions

with p↓ ≠ q↓. Then there exists an extension qAB of q ¼ qA
such that
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pA ⊗ qB≻qAB

if and only ifH0ðpÞ ≤ H0ðqÞ andHðpÞ < HðqÞ. Moreover,
if these inequalities are satisfied, we can always choose B
and qAB such that IðA∶BÞ≡ SðqABkqA ⊗ qBÞ < ε, for any
choice of ε > 0.
Proof.—“Only if” part.—If p ≠ q and pA ⊗ qB≻qAB,

then we get due to additivity, subadditivity, and Schur
concavity of Hα for α ∈ f0; 1g

HαðpAÞ þHαðqBÞ ¼ HαðpA ⊗ qBÞ ≤ HαðqABÞ
≤ HαðqAÞ þHαðqBÞ;

and thus HαðpÞ ≤ HαðqÞ. It follows that H0ðpÞ ≤ H0ðqÞ.
Now consider the α ¼ 1 case. While we also get
HðpÞ ≤ HðqÞ, equality [i.e., HðpÞ ¼ HðqÞ] would entail
that HðqABÞ ¼ HðqAÞ þHðqBÞ, which is possible only if
qAB ¼ qA ⊗ qB. But this equation would give us
pA ⊗ qB≻qA ⊗ qB, or pA≻TqA for p ≠ q, which implies
that HðpÞ < HðqÞ.
“If” part.—We may assume without the loss of

generality that the entries of p and q are sorted in non-
increasing order, i.e., p1 ≥ p2 ≥ � � � and q1 ≥ q2 ≥ � � �.
Since q may not have full rank, we can “split off all zeros”
by writing

q ¼

0
BBBBB@

q̃

0

..

.

0

1
CCCCCA; where q̃ ∈ Rd has full rank; i:e:; does not contain zeros; such that d ¼ 2H0ðqÞ ≤ m:

Since H0ðpÞ ≤ H0ðqÞ, the distribution p must contain at least as many zeros as q such that we can also split off (m − d)
zeros and write p ¼ ðp̃; 0;…; 0ÞT , where p̃ ∈ Rd. But then

Hðp̃Þ ¼ HðpÞ < HðqÞ ¼ Hðq̃Þ;

so Corollary 2 tells us that there is an extension q̃AB of q̃ such that p̃A ⊗ q̃B≻q̃AB. Moreover, no matter what ε > 0 we
choose, we can always choose B and q̃AB such that Sðq̃ABkq̃A ⊗ q̃BÞ < ε. Using our matrix notation for bipartite
distributions, denoting the dimension of the system B by k, and using that adding a fixed number of zeros to two
distributions does not change their majorization relation, we obtain

pA ⊗ q̃B ¼

0
BBBBBBBBBB@

p̃1

..

.

p̃d

0

..

.

0

1
CCCCCCCCCCA

⊗

0
BBB@

q̃B;1

..

.

q̃B;k

1
CCCA ¼

0
BBBBBBBBBBBBB@

p̃1q̃B;1 p̃1q̃B;2 � � � p̃1q̃B;k
p̃2q̃B;1 p̃2q̃B;2 � � � p̃2q̃B;k

..

. ..
. ..

.

p̃dq̃B;1 p̃dq̃B;2 � � � p̃dq̃B;k
0 0 � � � 0

..

. ..
. ..

.

0 0 � � � 0

1
CCCCCCCCCCCCCA
≻

0
BBB@

q̃AB

0 0 � � � 0

..

. ..
. ..

.

0 0 � � � 0

1
CCCA≕ q0AB;

where q̃AB denotes q̃AB as a largematrix block. By summing
over the rows, one sees that the marginal of q0AB on A is
ðq̃1;…; q̃d; 0;…; 0ÞT ¼ qA, and, by summing over the
columns, one obtains q̃B as the marginal on B. Thus, q0AB
is the sought-for extension. Moreover, since the relative
entropy does not change if common zero entries of both
arguments are removed, we also have Sðq0ABkq0A ⊗ q0BÞ ¼
Sðq̃ABkq̃A ⊗ q̃BÞ < ε. ▪
This result allows us to answer an open problem

from Ref. [63]. There, we define a notion of correlated
trumping: We say that p c-trumps q, denoted p≻cq, if

there exists some k ∈ N0 and a k-partite distribution r1;2;…;k

such that

p ⊗ ðr1 ⊗ r2 ⊗ � � � ⊗ rkÞ≻q ⊗ r1;2;…;k; ðB7Þ

where r1;…; rk are the marginals of r1;…;k. In Ref. [63], we
show that p≻cq for p ≠ q if and only if H0ðpÞ ≤ H0ðqÞ
and HðpÞ < HðqÞ. We also show that we can always
choose k ¼ 3, but we are not able to answer the question of
whether k ¼ 2 catalysts are always sufficient. Theorem 3
allows us to answer this question in the positive.
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Theorem 4.—Let p; q ∈ Rm be probability distributions
with p ≠ q. Then there exist auxiliary systems B and C and
a bipartite distribution rBC such that

pA ⊗ ðrB ⊗ rCÞ≻qA ⊗ rBC

if and only if H0ðpÞ ≤ H0ðqÞ and HðpÞ < HðqÞ. Here, rB
and rC denote the marginals of rBC.
Proof.—The only if part of the proof is completely

analogous to the corresponding part of the proof of
Theorem 3 and thus omitted. For the if part, the premises
p ≠ q and H0ðpÞ ≤ H0ðqÞ as well as HðpÞ < HðqÞ imply,
due to Theorem 3, that there exists some auxiliary systemC
and an extension qAC of q ¼ qA such that pA ⊗ qC≻qAC.
Now introduce another system B of the same dimension as
A, and define a distribution qB which is just a copy of
q ¼ qA. Then

pA ⊗ qC ⊗ qB≻qAC ⊗ qB:

Finally, since the majorization relation is permutation
invariant, we perform the swap of systems A ↔ B on
the right-hand side and obtain

pA ⊗ ðqB ⊗ qCÞ≻qA ⊗ qBC

(the left-hand side is simply a change of notation and not a
physical swap). Thus, we can choose rBC ≔ qBC. ▪
Note that the results of Ref. [63], i.e., the characterization

of c-trumping [as defined in Eq. (B7)] via H and H0, is a
strictly weaker result than the main majorization result of
the present work, Theorem 3. First, as the proof of Theorem
4 above shows, the result of Ref. [63] can mathematically
easily be obtained, and extended, from the results of the
present paper. Second, Lemma 5 of Ref. [63] is a strictly
weaker version of the present work’s Theorem 3, establish-
ing sufficiency of the monotonicity of all Hα, for α ≥ 1, for
the existence of a correlating catalytic state transition
(between full-rank states), while now we know that
monotonicity of H ¼ H1 is enough. Regarding the thermo-
dynamic version of Ref. [63] described in Ref. [32],
c-trumping as in Eq. (B7) can be physically interpreted
as the irreversible use of k auxiliary systems to admit a state
transition p → q on the physical system of interest. That is,
stochastic independence is used up as a “fuel” in a non-
repeatable way. In contrast, the present paper describes a
more natural thermodynamic scenario in which a single
auxiliary system (that we can interpret as being part of a
thermal machine) is used catalytically to implement state
transitions on a single system. The auxiliary system can be
used repeatedly on further copies of the system, which is
arguably crucial for a thermodynamic cycle.

APPENDIX C: RESULTS FOR NONTRIVIAL
HAMILTONIANS

In this Appendix, we change our notation slightly and
call the auxiliary system M (for “thermal machine”), since
B is misleading in the thermodynamic context (it could be
confused with the “bath”).
Our main tool to transfer the results for trivial

Hamiltonians to the case of nontrivial Hamiltonians is a
technique that is introduced in Ref. [10] and also applied
in Ref. [32]: the embedding map Γd. Given any ordered list
of positive integers d ¼ ðd1;…; dnÞ, the stochastic map
Γd∶Rn → RD is defined as

ΓdðpÞ≔⨁
n

i¼1

piμi¼
�
p1

d1
;…;

p1

d1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
d1

;
p2

d2
;…;

p2

d2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
d2

;…;
pn

dn
;…;

pn

dn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dn

�
;

where μi ¼ ð1=di;…; 1=diÞ ∈ Rdi is the uniform distribu-
tion in di dimensions and D ¼ P

n
i¼1 di.

Lemma 5.—Let A be a system with thermal distribution
γA that has only rational entries, i.e., that can be written in
the form

γA ¼
�
d1
D

;
d2
D

;…;
dn
D

�
∈ Rn: ðC1Þ

Then, for every α ∈ R ∪ f−∞;þ∞g, the α-free energies of
any pA are given by

FαðpAÞ − FαðγAÞ≡ kTSαðpAkγAÞ
¼ kTfsgnþðαÞ logD −Hα½ΓdðpAÞ�g;

where d ¼ ðd1;…; dnÞ.
Proof.—Simply evaluate the definition of HαðΓdðpAÞÞ

for the different cases of α. ▪
In order to prove our main result, we need the following

generalization and slight reformulation of Lemma 15 in
Ref. [10].
Lemma 6.—Let r; r0 ∈ Rn be probability distributions

with full rank (i.e., without any zero entries). Then there
exists a stochastic map Φ∶Rn → Rn with ΦðrÞ ¼ r0 and

kΦðpÞ − pk ≤ max
j

�
1 −

r0j
rj

�
for all probability distributions p ∈ Rn:

In this sense, if r ≈ r0, thenΦðpÞ ≈ p for all distributions p.
Proof.—The idea is to construct a map Φ that first

“shrinks” the probability simplex and then translates the
shrunk simplex within the original simplex so that r is
mapped to r0. To this end, set uðxÞ ≔ x1 þ � � � þ xn
for x ∈ Rn, and, for every 0 ≤ λ ≤ 1, define the “shrinking
map”

MARKUS P. MÜLLER PHYS. REV. X 8, 041051 (2018)

041051-16



SλðxÞ ≔ λxþ uðxÞð1 − λÞμ ðx ∈ Rn; 0 ≤ λ ≤ 1Þ;

where μ ∈ Rn is the uniform distribution. Finally, set

ΦðxÞ ≔ SλðxÞ − uðxÞ½SλðrÞ − r0� ðx ∈ RnÞ:

It is easy to see that Φ preserves the normalization
of probability distributions, i.e., u½ΦðxÞ� ¼ uðxÞ for
all x ∈ Rn. For Φ to be stochastic, it is thus necessary
and sufficient that it maps the standard basis vectors
ej ¼ð0;…;0; 1|{z}

j

;0;…;0ÞT to vectors with non-negative

entries. Since ΦðeiÞ ¼ λei − λrþ r0, we have ½ΦðeiÞ�i ¼
λð1 − riÞ þ r0i, which is non-negative since ri ≤ 1. On the
other hand, for ½ΦðeiÞ�j ¼ r0j − λrj for i ≠ j to be non-
negative, we need that λ ≤ r0j=rj. Thus, if we define

λ ≔ min
j

r0j
rj
;

the resulting map Φ is stochastic. Since ΦðpÞi ¼
λpi − λri þ r0i, we have

kΦðpÞ − pk ¼ 1

2

Xn
i¼1

j½ΦðpÞ�i − pij

≤
1

2

Xn
i¼1

ðjλpi − pij þ jr0i − λri|fflfflffl{zfflfflffl}
≥0

jÞ ¼ 1 − λ

for every probability distribution p ∈ Rn, which completes
the proof. ▪
Theorem 7.—Consider a system A with HamiltonianHA

and two distributions pA and qA. Then, for every ε > 0,
there exists a distribution qϵA with kqεA − qAk < ε, an
auxiliary system M, and an extension qεAM of qεA as well
as a thermal operation T ε with

T εðpA ⊗ qεMÞ ¼ qεAM ðC2Þ

if and only if FðpAÞ ≥ FðqAÞ. Moreover, we can always
choose the Hamiltonian onM to be trivial,HM ¼ 0, and we
can choose M and qεAM such that IðA∶MÞ≡ SðqεAMkqεA ⊗
qεMÞ is (possibly nonzero but) as small as we like.
Note that the marginal on M is exactly identical before

and after the transformation, namely, equal to qεM.
Proof.—We start with the only if part of the proof. Since

the free energy F is superadditive, decreasing under
thermal operations, and additive, Eq. (C2) implies

FðqεAÞ þ FðqεMÞ ≤ FðqεAMÞ ≤ FðpA ⊗ qεMÞ
¼ FðpAÞ þ FðqεMÞ:

Thus, for every ε > 0, there is a distribution qεA which is ε-
close to qA such that FðqεAÞ ≤ FðpAÞ. Because of the
continuity of F, it follows that FðqAÞ ≤ FðpAÞ.
For the if direction, suppose that pA and qA are

distributions with FðpAÞ ≥ FðqAÞ, which is equivalent
to SðpAkγAÞ ≥ SðqAkγAÞ. First, consider the case that
qA is the thermal state, qA ¼ γA. Then we can choose M
to be the trivial system, and T ε can be the thermal operation
that simply prepares the thermal state. Similarly, if
qA ¼ pA, then we can simply choose the identity map as
our thermal operation. Let us now turn to the case qA ≠ γA
and qA ≠ pA.
In general, the thermal distribution γA has nonrational

entries and thus is not of the form (C1). However, since
distributions with rational entries are dense in the set of all
distributions, for every δ > 0, we can find another distri-

bution γðδÞA with all rational entries and maxjð1 − γðδÞj =γjÞ <
δ as well as maxjð1 − γj=γ

ðδÞ
j Þ < δ (just pick γðδÞ close

enough to γ). Because of Lemma 6, there exists a stochastic
map Φ∶Rn → Rn such that ΦðγÞ ¼ γðδÞ and kΦðsÞ − sk <
δ for all distributions s ∈ Rn, and there also exists a
stochastic map Φ̄∶Rn → Rn with Φ̄ðγðδÞÞ ¼ γ and kΦ̄ðsÞ −
sk < δ for all distributions s ∈ Rn. Writing

γðδÞ ¼
�
dðδÞ1

Dδ
;
dðδÞ2

Dδ
;…;

dðδÞn

Dδ

�
;

dδ ≔ ðdðδÞ1 ; dðδÞ2 ;…; dðδÞn Þ ∈ Nn;

we obtain a corresponding embedding map Γdδ ≕Γδ that
we use shortly.
But before doing so, define qðεÞA ≔ ½1 − ðε=2Þ�qA þ ε

2
γA

for every 0 < ε < 1. It follows that kqðεÞA − qAk ≤ ðε=2Þ.
Because of the convexity of the relative entropy, we have

SðqðεÞA kγAÞ ≤
�
1 −

ε

2

�
SðqAkγAÞ þ

ε

2
SðγAkγAÞ

¼
�
1 −

ε

2

�
SðqAkγAÞ ≤

�
1 −

ε

2

�
SðpAkγAÞ:

Let pðδÞ
A ≔ ΦAðpAÞ, and then kpðδÞ

A − pAk < δ. Since

limδ↘0SðqðεÞA kγðδÞA Þ ¼ SðqðεÞA kγAÞ and limδ↘0SðpðδÞ
A kγðδÞA Þ ¼

SðpAkγAÞ due to continuity, we can pick δ > 0 small
enough such that

SðqðεÞA kγðδÞA Þ < SðpðδÞ
A kγðδÞA Þ:

In the following, let us assume that, for any choice of ε > 0,
we choose δ > 0 small enough for this condition to be
satisfied, and by doing so we also make sure that δ < ε=2.
Then Lemma 5 shows that

H½ΓδðpðδÞ
A Þ� < H½ΓδðqðεÞA Þ�:
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Since γA has full rank, so does qðεÞA , and thus ΓδðqðεÞA Þ has
full rank, too; hence, H0½ΓδðpðδÞ

A Þ� ≤ H0½ΓδðqðεÞA Þ�.
Denoting the Dδ-dimensional system by A0, such
that Γδ is a map from A to A0, Theorem 3 tells us that
there exists a distribution rðεÞA0M on A0M (recall that δ

depends on the choice of ε) such that rðεÞA0 ¼ ΓδðqðεÞA Þ and
ΓδðpðδÞ

A Þ ⊗ rðεÞM ≻rðεÞA0M. Moreover, for any choice of κ > 0,
we can choose this state such that IðA0∶MÞ≡
SðrðεÞA0MkrðεÞA0 ⊗ rðεÞM Þ < κ. Therefore, there exists a bisto-
chastic map Λε∶A0 ⊗ M → A0 ⊗ M [i.e., a stochastic map
with ΛεðμA0 ⊗ μMÞ ¼ μA0 ⊗ μM] such that

Λε½ΓδðpðδÞ
A Þ ⊗ rðεÞM � ¼ rðεÞA0M:

Let us define a stochastic map Γ̄δ∶RDδ → Rn which is a
pseudoinverse of Γδ via

Γ̄δðxÞ ≔
�Xdδ1

i¼1

xi;
Xdδ1þdδ

2

i¼dδ
1

xi;…;
XDδ

i¼dδ
1
þ���þdδn−1

xi

�

½x ¼ ðx1;…; xnÞ ∈ RDδ �;
and then we have Γ̄δ∘Γδ ¼ 1A. Furthermore, define a linear
map T ε∶A ⊗ M → A ⊗ M via

T ε≔ ðΦ̄A⊗ 1MÞ∘ðΓ̄δ ⊗ 1MÞ∘Λε∘ðΓδ ⊗ 1MÞ∘ðΦA ⊗ 1MÞ:

As a composition of stochastic maps, T ε is stochastic, i.e.,
maps probability distributions to probability distributions.
If we equip M with the trivial Hamiltonian HM ¼ 0, the
thermal distribution on A ⊗ M is γA ⊗ μM. Using some
previous identities, it is easy to see that

T εðγA ⊗ μMÞ ¼ γA ⊗ μM;

and, hence, T ε is a thermal operation. Similarly, we obtain

T εðpA ⊗ rðεÞM Þ ¼ ðΦ̄A ⊗ 1MÞ∘ðΓ̄δ ⊗ 1MÞðrðεÞA0MÞ≕ sðεÞAM:

From this equation, we see that the marginal on M is
sðεÞM ¼ rðεÞM . The marginal on A is

sðεÞA ¼ Φ̄A½Γ̄δðrðεÞA0 Þ� ¼ Φ̄AfΓ̄δ½ΓδðqðεÞA Þ�g¼ Φ̄AðqðεÞA Þ≕qðε;δÞA ;

and this distribution is ε-close to qA:

kqðε;δÞA −qAk≤ kqðε;δÞA −qðεÞA kþkqðεÞA −qAk< δþ ε

2
< ε:

Thus, we can set qεAM ≔ sðεÞAM. To prove the final part of the
claim, recall that the relative entropy is nonincreasing under
stochastic maps, and hence

SðqεAMkqεA ⊗ qεMÞ ¼ SðsðεÞAMksðεÞA ⊗ sðεÞM Þ ¼ SfðΦ̄A ⊗ 1MÞ∘ðΓ̄δ ⊗ 1MÞðrðεÞA0MÞkΦ̄A½Γ̄δðrðεÞA0 Þ� ⊗ rðεÞM g
¼ S½ðΦ̄A ⊗ 1MÞ∘ðΓ̄δ ⊗ 1MÞðrðεÞA0MÞkðΦ̄A ⊗ 1MÞ∘ðΓ̄δ ⊗ 1MÞðrðεÞA0 ⊗ rðεÞM Þ� ≤ SðrðεÞA0MkrðεÞA0 ⊗ rðεÞM Þ < κ:

▪
In order to talk aboutwork extraction,weneed to introduce

work bits. A work bit system W with energy gap Δ∈R is a
binary system W ¼ R2 with Hamiltonian HW¼ð0;ΔÞ. We
usually consider situations whereΔ ≥ 0, andwe in particular
allow that Δ ¼ 0, i.e., that HW is degenerate.
Theorem 8: Performing work on the system.—Consider a

system A with Hamiltonian HA and two distributions pA
and qA such that FðpAÞ ≤ FðqAÞ. Suppose wewould like to
transform pA approximately into qA with the help of
spending some energy Δ ≥ 0. Then, for every δ; ε > 0,
we can find some Δ < FðqAÞ − FðpAÞ þ δ and a thermal
operation T δ;ε such that

T δ;ε½pA ⊗ ð0; 1ÞW ⊗ qδ;εM � ¼ qδ;εAM ⊗ ð1; 0ÞW; ðC3Þ

where kqδ;εA − qAk < ε, qδ;εAM is a suitable extension of qδ;εA ,
and W is a work bit with energy gap Δ. In particular, the
work bit transforms from a pure excited state ð0; 1ÞW to a
pure ground state ð1; 0ÞW and does not become correlated
with AM.
Proof.—We use the convention β ≔ 1=ðkBTÞ. Consider

the thermal state γW of the work bit:

γW ¼ 1

1þ e−βΔ
ð1; e−βΔÞ:

The set of Δ for which e−βΔ is rational is dense in R. Thus,
for every δ > 0, we can find someΔwithFðqAÞ − FðpAÞ <
Δ < FðqAÞ − FðpAÞ þ δ such that e−βΔ is rational. We pick
one arbitrarily; consequently, γW has rational entries.
In the following, we suppress the dependence from δ for

notational simplicity; it is, however, explicitly denoted in
the statement of the theorem.
Now let qðεÞA ≔ ½1−ðε=2Þ�qAþε

2
γA, then qðεÞA has full rank,

and
S½qðεÞA ⊗ ð1; 0ÞWkγA ⊗ γW �

¼ SðqðεÞA kγAÞ þ S½ð1; 0ÞWkγW �
≤ SðqAkγAÞ þ βF½ð1; 0ÞW �|fflfflfflfflfflffl{zfflfflfflfflfflffl}

0

− βFðγWÞ

¼ βFðqAÞ − βFðγAÞ − βFðγWÞ
< β Δ|{z}

F½ð0;1ÞW �
þ βFðpAÞ − βFðγAÞ − βFðγWÞ

¼ SðpAkγAÞ þ S½ð0; 1ÞWkγW �
¼ S½pA ⊗ ð0; 1ÞWkγA ⊗ γW �: ðC4Þ
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In general, the thermal distribution γA has nonrational
entries and thus is not of the form (C1). However, since
distributions with rational entries are dense in the set of all
distributions, for every κ > 0, we can find another distri-

bution γðκÞA with all rational entries and maxjð1−γðκÞj =γjÞ<κ

as well as maxjð1− γj=γ
ðκÞ
j Þ< κ (just pick γðκÞ close enough

to γ). Because of Lemma 6, there exists a stochastic map
Φ∶A → A such that ΦðγÞ ¼ γðκÞ and kΦðsÞ − sk < κ for
all distributions s ∈ Rn, and there also exists a stochastic
map Φ̄∶A → A with Φ̄ðγðκÞÞ¼γ and kΦ̄ðsÞ−sk<κ for all

distributions s ∈ Rn. Set pðκÞ
A ≔ ΦðpAÞ, and then

kpA − pðκÞ
A k < κ. Because of the continuity of the relative

entropy, we can find some 0 < κ < ε=2 that is small enough
such that the inequality of Eq. (C4) is still true if γA is

replaced by γðκÞA and if pA is replaced by pðκÞ
A :

S½qðεÞA ⊗ ð1;0ÞWkγðκÞA ⊗ γW �<S½pðκÞ
A ⊗ ð0;1ÞWkγðκÞA ⊗ γW �:

ðC5Þ

Since both γðκÞA and γW have all rational entries, we can write

γðκÞA ⊗ γW ¼
�
dðκÞ1

Dκ
;
dðκÞ2

Dκ
;…;

dðκÞn

Dκ

�
;

dκ ≔ ðdðκÞ1 ; dðκÞ2 ;…; dðκÞn Þ; all dðκÞi ∈ N;

and obtain a corresponding embedding map Γdκ ≕Γκ.
Because of Lemma 5, we get

HfΓκ½pðκÞ
A ⊗ ð0; 1ÞW �g < HfΓκ½qðεÞA ⊗ ð1; 0ÞW �g: ðC6Þ

Let us now check the balance of Rényi divergence S0, in
analogy to Eq. (C5). Using ZW ≔ 1þ e−βΔ, we get

S0½qðεÞA ⊗ ð1; 0ÞWkγðκÞA ⊗ γW �
¼ S0ðqðεÞA kγðκÞA Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

0

þ S0½ð1; 0ÞWkγW � ¼ logZW;

S0½pðκÞ
A ⊗ ð0; 1ÞWkγðκÞA ⊗ γW � ≥ S0½ð0; 1ÞWkγW �

¼ logZW þ βΔ ≥ logZW; ðC7Þ
since Δ ≥ 0 (note that this is where it becomes important
that we talk about performingwork on the system, not about
extracting work from the system). Using Lemma 5 again,
we obtain

H0fΓκ½pðκÞ
A ⊗ ð0; 1ÞW �g ≤ H0fΓκ½qðεÞA ⊗ ð1; 0ÞW �g:

Now we can apply Theorem 3: Denoting the image of
AW under Γκ by ðAWÞ0, it follows from Eqs. (C6) and (C7)

that there exists a distribution rðεÞðAWÞ0M with rðεÞðAWÞ0 ¼
Γκ½qðεÞA ⊗ ð1; 0ÞW � and Γκ½pðκÞ

A ⊗ð0;1ÞW �⊗rðεÞM ≻rðεÞðAWÞ0M.

Therefore, there exists a bistochastic map Λε∶ðAWÞ0M →
ðAWÞ0M such that

ΛεfΓκ½pðκÞ
A ⊗ ð0; 1ÞW � ⊗ rðεÞM g ¼ rðεÞðAWÞ0M:

We define a stochastic map Γ̄κ∶ðAWÞ0 → AW which is a
pseudoinverse of Γκ via

Γ̄κðxÞ ≔
�Xdκ1

i¼1

xi;
Xdκ1þdκ

2

i¼dκ
1

xi;…;
XDκ

i¼dκ
1
þ���þdκn−1

xi

�

½x ¼ ðx1;…; xnÞ ∈ RDκ �;

so that we get Γ̄κ∘Γκ ¼ 1AW . Now we define a linear map

T ε≔ ðΦ̄A⊗1WMÞ∘ðΓ̄κ⊗1MÞ∘Λε∘ðΓκ⊗1MÞ∘ðΦA⊗1WMÞ:

It is straightforward to check that T ε maps the thermal state
γA ⊗ γW ⊗ μM of AWM onto itself; hence, it is a thermal
operation. Furthermore,

T ε½pA ⊗ ð0; 1ÞW ⊗ rðεÞM �
¼ ðΦ̄A ⊗ 1WMÞ∘ðΓ̄κ ⊗ 1MÞðrðεÞðAWÞ0MÞ≕ sðεÞAWM:

Thus, sðεÞM ¼ rðεÞM , and

sðεÞAW ¼ ðΦ̄A ⊗ 1WÞ∘½Γ̄κðrðεÞðAWÞ0 Þ�
¼ Φ̄A ⊗ 1W(Γ̄κfΓκ½qðεÞA ⊗ ð1; 0ÞW �g)
¼ Φ̄AðqðεÞA Þ ⊗ ð1; 0ÞW:

Since pure states are always uncorrelated with other

systems, we obtain sðεÞAWM ¼ ð1; 0ÞW ⊗ sðεÞAM. We also get

ksðεÞA − qAk ≤ ksðεÞA − qðεÞA k þ kqðεÞA − qAk < κ þ ε

2
< ε:

Thus, we may set qδ;εAM ≔ sðεÞAM. ▪
For work extraction, we need a notion of entropy sink. A

“max-entropy sink” S consists of a large collection of states
of the form

sðm;nÞ ≔
�
1

m
;
1

m
;…;

1

m|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
m

; 0; 0;…; 0

�
∈ Rn;

where m; n ∈ N and m ≤ n. We “dump max entropy” into
S by transforming these states into

sðm;n;εÞ ≔
�
1 − ε

m
;…;

1 − ε

m|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
m

;
ε

n −m
;…;

ε

n −m

�
∈ Rn;
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where 0 < ε < 1. We assume that the Hamiltonian of the
sink is trivial,HS ¼ 0. Then we have the following entropy
balance:

ΔF ≔ Fðsðm;nÞÞ − Fðsðm;n;εÞÞ ¼ 1

β
½Hðsðm;n;εÞÞ −Hðsðm;nÞÞ�

¼ 1

β

�
ηðεÞ þ ε log

n −m
m

�
;

ΔF0 ≔ F0ðsðm;nÞÞ − F0ðsðm;n;εÞÞ

¼ 1

β
½H0ðsðm;n;εÞÞ −H0ðsðm;nÞÞ� ¼ 1

β
ðlog n − logmÞ;

where ηðεÞ ¼ −ε log ε − ð1 − εÞ logð1 − εÞ. In particular,
by choosing ε small enough, we can make ΔF as small as
we like while keeping ΔF0 constant. Note that the states
sðm;nÞ are also introduced in Ref. [28], under the name
“sharp states”.
Theorem 9: Extracting work from the system.—Consider

a system A with Hamiltonian HA and two distributions pA
and qA such that FðpAÞ > FðqAÞ. Suppose we would like
to extract some energy Δ > 0 by transforming pA approx-
imately into qA. Then, for every δ; ε > 0 and every m; n ∈
N with n=m large enough, we can find some Δ > FðpAÞ −
FðqAÞ − δ and a thermal operation T δ;ε such that

T δ;ε½pA ⊗ ð1; 0ÞW ⊗ qδ;εM ⊗ sðm;nÞ
S � ¼ qδ;εAMS ⊗ ð0; 1ÞW;

ðC8Þ

where kqδ;εA − qAk < ε,W is a work bit with energy gap Δ,
S is a max-entropy sink such that qδ;εS ¼ sðm;n;εÞ

S , and qδ;εAMS

is a suitable extension of qδ;εA and qδ;εS . In particular, the
work bit transforms from a pure ground state ð1; 0ÞW to a
pure excited state ð0; 1ÞW and does not become correlated
with AMS, but this transformation comes at the expense of
dumping an arbitrarily small amount of entropy into S. In
more detail, “n=m large enough” means that the following
inequality must hold:

log
n
m
>maxflog2;βF0ðqAÞ−βF0ðγAÞþβFðpAÞ−βFðqAÞg:

Both T δ;ε and q
δ;ε
ABS depend on m and n, which is, however,

suppressed from the notation.
Proof.—The proof is very similar to that of Theorem 8.

First, similarly as in the proof of Theorem 8, we choose
some Δ with FðpAÞ − FðqAÞ − δ < Δ < FðpAÞ − FðqAÞ
such that e−βΔ is rational. Consequently, γW has only
rational entries. Let us suppress the dependence from δ in
the notation in the following. We have

S½qA ⊗ ð0; 1ÞW ⊗ sðm;n;εÞ
S kγA ⊗ γW ⊗ μS� ¼ SðqAkγAÞ þ S½ð0; 1ÞWkγW � þ Sðsðm;n;εÞ

S kμSÞ
¼ βFðqAÞ − βFðγAÞ þ βF½ð0; 1ÞW � − βFðγWÞ þ βFðsðm;n;εÞ

S Þ − βFðμSÞ
< βFðpAÞ − βFðγAÞ − βFðγWÞ þ βFðsðm;n;εÞ

S Þ − βFðμSÞ − βΔ

¼ SðpAkγAÞ þ S½ð1; 0ÞWkγW � þ Sðsðm;nÞ
S kμSÞ − ηðεÞ − ε log

n −m
m

< S½pA ⊗ ð1; 0ÞW ⊗ sðm;nÞ
S kγA ⊗ γW ⊗ μS�: ðC9Þ

Similarly as in the proof of Theorem 8, we now choose
some κ with 0 < κ < ε such that we obtain a distribution

γðκÞA with all rational entries and maps Φ; Φ̄∶A → A such

thatΦðγAÞ¼γðκÞA as well as Φ̄ðγðκÞA Þ¼ γA and kΦðsÞ− sk< κ
and kΦ̄ðsÞ − sk < κ for all probability distributions s ∈ A.

We also set pðκÞ
A ≔ ΦðpAÞ. Our κ is chosen small enough

such that

S½qA ⊗ ð0; 1ÞW ⊗ sðm;n;εÞ
S kγðκÞA ⊗ γW ⊗ μS�

< S½pðκÞ
A ⊗ ð1; 0ÞW ⊗ sðm;nÞ

S kγðκÞA ⊗ γW ⊗ μS�:

Since S0ðqAkγAÞ þ βΔ ¼ βF0ðqAÞ − βF0ðγAÞ þ βΔ <
logðn=mÞ, we can choose κ also small enough to have

S0ðqAkγðκÞA Þ þ βΔ < logðn=mÞ, because S0 is continuous

in the second entry (though not in the first entry). Using
the additivity of S0 on tensor products, we obtain

½S0ðqAkγðκÞA Þ�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
<lognm−βΔ

þ S0½ð0; 1ÞWkγW �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
logZWþβΔ

þ S0ðsðm;n;εÞ
S kμSÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

0

< S0ðpðκÞ
A kγðκÞA Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
0

þ S0½ð1; 0ÞWkγW �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
logZW

þ S0ðsðm;nÞ
S kμSÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
lognm

;

which gives us the analog of Eq. (C9) for S0 due to its
additivity on tensor products. Similarly as in the proof of

Theorem 8, since γðκÞA ⊗ γW has all rational entries, we obtain
a corresponding embedding map Γκ∶AW → ðAWÞ0. For
α ∈ f0; 1g, it satisfies
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HαfΓκ½pðκÞ
A ⊗ ð1; 0ÞW � ⊗ sðm;nÞ

S g ¼ logDκ − Sα½pðκÞ
A ⊗ ð1; 0ÞWkγðκÞA ⊗ γW � þ logn − Sαðsðm;nÞ

S kμSÞ
¼ logDκ þ logn − Sα½pðκÞ

A ⊗ ð1; 0ÞW ⊗ sðm;nÞ
S kγðκÞA ⊗ γW ⊗ μS�

< logDκ þ logn − Sα½qA ⊗ ð0; 1ÞW ⊗ sðm;n;εÞ
S kγðκÞA ⊗ γW ⊗ μS�

¼ HαfΓκ½qA ⊗ ð0; 1ÞW � ⊗ sðm;n;εÞ
S g:

Denoting the image of AW under Γκ by ðAWÞ0, we can again invoke Theorem 3, obtaining a distribution rðεÞðAWÞ0MS with

Γκ½pðκÞ
A ⊗ ð1; 0ÞW � ⊗ rðεÞM ⊗ sðm;nÞ

S ≻rðεÞðAWÞ0MS and r
ðεÞ
ðAWÞ0S ¼ Γκ½qA ⊗ ð0; 1ÞW � ⊗ sðm;n;εÞ

S . Thus, there exists a bistochastic map

Λε∶ðAWÞ0MS → ðAWÞ0MS such that

ΛεfΓκ½pðκÞ
A ⊗ ð1; 0ÞW � ⊗ rðεÞM ⊗ sðm;nÞ

S g ¼ rðεÞðAWÞ0MS:

Defining a pseudoinverse Γ̄κ exactly as in the proof of Theorem 8, we can define our linear map this time as

T ε ≔ ðΦ̄A ⊗ 1WMSÞ∘ðΓ̄κ ⊗ 1MSÞ∘Λε∘ðΓκ ⊗ 1MSÞ∘ðΦA ⊗ 1WMSÞ:

It is easy to see that T ε maps the thermal state γA ⊗ γW ⊗ μM ⊗ μS of AWMS onto itself; hence, it is a thermal operation.
Furthermore,

T ε½pA ⊗ ð1; 0ÞW ⊗ rðεÞM ⊗ sðm;nÞ
S � ¼ ðΦ̄A ⊗ 1WMSÞ∘ðΓ̄κ ⊗ 1MSÞðrðεÞðAWÞ0MSÞ≕ sðεÞAWMS:

It follows that sðεÞMS ¼ rðεÞMS, and

sðεÞAW ¼ ðΦ̄A ⊗ 1WÞ½Γ̄κðrðεÞðAWÞ0 Þ� ¼ ðΦ̄A ⊗ 1WÞ(Γ̄κfΓκ½qA ⊗ ð0; 1ÞW �g) ¼ Φ̄AðqAÞ ⊗ ð0; 1ÞW:

Since pure states are uncorrelatedwith other systems, we get

sðεÞAWMS ¼ ð0; 1ÞW ⊗ sðεÞAMS. We also get

ksðεÞA − qAk ¼ kΦ̄AðqAÞ − qAk < κ < ε:

Thus, we can set qδ;εAMS ≔ sðεÞAMS. ▪

APPENDIX D: WORK COST EXAMPLE
FROM SEC. II B

Our goal is to determine under what conditions the
transition

γA ⊗ σM ⊗ jeihejW → ρ0AM ⊗ jgihgjW ðD1Þ

can be accomplished by a thermal operation, without an
additional catalyst. Labeling (and sorting) the eigenvectors
of AMB by

jgA0gi; jgA0ei; jgA1gi; jgA1ei; jeA0gi;
jeA0ei; jeA1gi; jeA1ei;

the state on the left-hand side corresponds to the probability
distribution

pAMW ¼
�
0;
1

5
; 0;

7

15
; 0;

1

10
; 0;

7

30

�

and the state on the right-hand side to

qAMW ¼
�
1

10
; 0;

2

5
; 0;

1

5
; 0;

3

10
; 0

�
:

The sorted energy eigenvalues are

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

FIG. 5. The thermal Lorenz curves signify the possibility of
state transition (D1) by a thermal operation.
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ðE1;…; E8Þ ¼ ð0;Δ; 0;Δ; EA; EA þ Δ; EA; EA þ ΔÞ;

where EA ¼ kBT log 2. We use the thermomajorization
criterion as explained, e.g., in Supplementary Note E in
Ref. [9]: There exists a thermal operation mapping p to q
if and only if the thermal Lorenz curve of p is everywhere
on or above the thermal Lorenz curve of q. Using
Mathematica, we generate the plots in Fig. 5 for Δ ¼
0.26kBT, which shows that p’s curve (in blue) is indeed
nowhere below q’s curve (in orange); the same must then
be true for larger values of Δ (and we numerically verify
this). We also use Mathematica to verify directly the
necessary inequalities for all “elbow points” of the curves.
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