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We study electronic ordering instabilities of twisted bilayer graphene around the filling of n ¼ 2

electrons per supercell, where correlated insulator state and superconductivity have been recently observed.
Motivated by the Fermi surface nesting and the proximity to Van Hove singularity, we introduce a hot-spot
model to study the effect of various electron interactions systematically. Using the renormalization group
method, we find that d or p-wave superconductivity and charge or spin density wave emerge as the two
types of leading instabilities driven by Coulomb repulsion. The density-wave state has a gapped energy
spectrum around n ¼ 2 and yields a single doubly degenerate pocket upon doping to n > 2. The
intertwinement of density wave and superconductivity and the quasiparticle spectrum in the density-wave
state are consistent with experimental observations.
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I. INTRODUCTION

Recently, superconductivity was discovered near a cor-
related insulator state in bilayer graphene with a small twist
angle θ ≈ 1.1° [1,2], where the moiré pattern creates a
superlattice with a periodicity of about 13 nm. A correlated
insulating state is found at the filling of n ¼ 2 electrons per
supercell (n ¼ 0 is the charge neutrality point). Electron or
hole doping away from n ¼ 2 by electrostatic gating leads
to a superconducting dome, similar to cuprates. Insulating
states are also found in trilayer graphene with moiré
superlattice [3]. The nature of superconducting and insu-
lating states in graphene superlattices are now under
intensive theoretical study [4–13].
For θ ≈ 1.1°, the low-energy miniband of twisted bilayer

graphene has a narrow bandwidth of 10 meV scale [14–26].
However, this energy scale is still much larger than the
energy gaps of the superconducting and insulating states,
which are on the order of 1 K. Moreover, resistivity shows
metallic behavior above 4 K. This is rather different from
the case of a Mott insulator in the strong coupling limit,
which would become insulating at much higher temper-
ature. Based on these considerations, in this work, we take a
weak-coupling approach to study ordered states driven by
electron correlation in twisted bilayer graphene.
While details of the band structure remain to be fully

sorted out, a number of prominent features of the normal

state fermiology are robust and noteworthy. First, at small
twist angle, the two valleys of graphene have negligibly
small single-particle hybridization and give rise to two
separate Fermi surfaces that intersect each other in the mini
Brillouin zone [26–28]. Second, as the carrier density
increases, Fermi pockets associated with a given valley
first appear around the Dirac points at K and K0 in the mini
Brillouin zone, then these K and K0 pockets merge at a
saddle point on the Γ-M line to become a single pocket
centered at Γ. The saddle point associated with this Lifshitz
transition has a Van Hove singularity (VHS) with a
logarithmic divergence of the density of states (DOS).
Third, realistic band structure calculations [28] show that
near the Van Hove energy the Fermi surfaces of different
valleys contain nearly parallel segments and, hence, are
nearly nested; see Fig. 1. Such Fermi surface nesting
strongly enhances density-wave fluctuations.
When the Fermi energy crosses the Van Hove energy, a

conversion between electron and hole carriers is expected
and indeed observed from the sign change of Hall resis-
tance as a function of doping for θ ¼ 2° [28] and θ ¼ 1.8°
[27]. Remarkably, this sign change occurs near the filling
n ¼ 2, indicating that the Fermi energy is very close to
VHS. VHS in twisted graphene layers was also detected
from pronounced peaks in DOS in STM measurements
[29]. As the twist angle becomes smaller, the energy
separation between VHS in conduction and valence bands
is found to decrease rapidly from 430 meV at θ ¼ 3.4° to
82 meVat 1.79° and 12 meVat 1.16°. The strong reduction
of bandwidth is expected to magnify the effects of electron
correlation. This understanding is consistent with the fact
that correlated insulator and superconducting states are
found for θ ¼ 1.1°, but not for θ ¼ 1.8° and 2°. In the
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following, we take the Fermi surface with good nesting
condition and in proximity to VHS as a starting point
and study its instabilities in the presence of electron
interactions.
Because of the divergent DOS at VHS, electron inter-

action predominates in patches of the Brillouin zone around
saddle points, or “hot spots.” When multiple hot spots are
present at a given energy, various scattering processes
among them may interfere with each other, leading to
intertwined density wave and superconducting instabilities.
Such hot-spot models were studied with the renormaliza-
tion group (RG) approach in the context of cuprates
[30–34], and recently, by Nandkishore et al., in the context
of doped monolayer graphene [35].
In this paper, we study interaction-driven ordering

instabilities of twisted bilayer graphene around the filling
n ¼ 2 using RG by patching the Brillouin zone where the

DOS is considerably larger than other parts. Our RG
analysis shows how the electron interaction changes as
the energy scale is reduced. Nontrivial RG flows of the
coupling constants are found as a consequence of the
nesting of Fermi surfaces. Susceptibility calculations reveal
the possibility of various superconducting and spin or
charge density-wave states at low temperature. When
Coulomb repulsion is the dominant interaction, d=p-wave
superconductivity and charge or spin density wave at a
particular nesting wave vector emerge as two leading
instabilities. The density-wave state is found to have a
gapped energy spectrum at n ¼ 2 and yields a single
doubly degenerate pocket upon doping to n > 2.

II. MODEL

We set up a model to analyze the electron interaction
effect in twisted bilayer graphene around the filling n ¼ 2.
Our analysis of the interaction-driven instabilities focuses
on hot spots, which dominates in the DOS. The hot spots
are patches on the Brillouin zone. The Fermi surface
nesting in the hot spots may potentially lead to ordering
instabilities. In the following, we introduce a hot-spot
model for twisted bilayer graphene and then the notion
of Fermi surface nesting in hot spots.

A. Hot-spot model

To consider the electron interaction effect and resultant
ordering instabilities near the filling n ¼ 2, we focus on hot
spots in the Brillouin zone which possess significantly
larger electronic spectral weights compared to the other
region. Such hot spots are obtained by patching the
Brillouin zone around the saddle points. The patches are
labeled by τ ¼ �1 for Fermi surfaces from the two valleys,
σ for spins, and α ¼ 1;…; 3 for the patches of a given
valley (Fig. 1). We denote the position of a patch center by
kατ. The three inequivalent wave vectors connecting the
patch centers are defined by Qþ ¼ kατ − kβτ (intravalley),
Q− ¼ kατ − kβτ0 , and Q0 ¼ kατ − kατ0 (intervalley) (τ ≠ τ0,
α ≠ β); see Fig. 1(d).
Electron interaction is treated as scattering among the

patches. By analogy with the g-ology model in one-
dimensional physics [36–38] and Shankar’s RG approach
[39], we write down the general interaction Hamiltonian
compatible with lattice rotational symmetry:

Hint ¼
1

2

X4
i;j¼1

X
α1 ;…;α4
τ1 ;…;τ4

X
σσ0

gijψ
†
α1τ1σψ

†
α2τ2σ

0ψα3τ3σ
0ψα4τ4σ: ð1Þ

Here the patch indices satisfy α1 ¼ α3 ≠ α2 ¼ α4 (i ¼ 1),
α1 ¼ α4 ≠ α2 ¼ α3 (i ¼ 2), α1 ¼ α2 ≠ α3 ¼ α4 (i ¼ 3),
and α1 ¼ α2 ¼ α3 ¼ α4 (i ¼ 4). The valley indices
τ1;…; τ4 obey the same rule, associated with j. This rule
is diagrammatically shown in Fig. 2(a). The interaction
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FIG. 1. (a),(b) Two Fermi surfaces at the Van Hove energy from
different valleys shown in red and blue, reproduced from the band
structure calculation for twisted bilayer graphene with θ ¼ 2° [28].
Shaded areas are filled and VHS appear at the points, where two
Fermi surfaces encircling K and K0 touch. Each Fermi surface has
C3 symmetry about Γ,K, and K0. The Fermi surfaces in (a) and (b)
are related by C2 rotation with respect to an in-plane axis along
Γ-K. (c),(d) Fermi surfaces slightly away from the Van Hove
energy. The carrier density is lower than that at the Van Hove
energy in (c) and higher in (d). DOS is larger near the VHS points
(hot spots), where electron interaction predominates. We assign
patches (circles with dashed lines) centered at hot spots. (e) Three
inequivalent wave vectors (Qþ, Q−, and Q0), along with sym-
metry-related ones (not shown), connect various pairs of hot spots.
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describes 16 independent scattering processes with cou-
pling constants gij. In the following analysis, we consider
the momentum-conserving processes depicted in Fig. 2(b).
Scattering processes related by lattice symmetry are not
shown. Note that gi3, g12, g21, and g34 do not generally
conserve crystal momentum since the patches are located
away from the Brillouin zone boundary (see Fig. 12 in
Appendix F). Umklapp processes are allowed only when
the hot spots are located at special momenta. The analysis
for that case includes more or all gij, and is presented in
Appendix F. Among the nine momentum-conserving
terms, g11, g14, g22, g24, g44 are associated with forward
scattering processes, and g31, g32, g41, g42 are BCS
scattering processes involving two electrons with opposite
momenta.
The nine momentum-conserving terms gij in the inter-

action Hamiltonian Eq. (1) can be divided into three groups
with different index j. For gi4 terms, all four operators
belong to one valley ðτ1 ¼ τ2 ¼ τ3 ¼ τ4Þ, thus describing
intravalley interactions. gi2 terms are the product of two
spin- and valley-conserving fermion bilinear operators that
are associated with two different valleys; we call them
intervalley density interactions. gi1 terms are the product of
two spin-conserving but valley-flipping fermion bilinear
operators; we call them intervalley exchange interactions.
We now discuss the microscopic origin of these inter-

action terms and how the coupling constants gij should,
in principle, be determined. First, when projected to
the lowest miniband, the long-range part of Coulomb
interaction generates intra- and intervalley density

interaction gi2, gi4, while the short-range part of
Coulomb interaction on graphene’s lattice scale generates
intervalley exchange interaction gi1 involving large
momentum transfer. Since Wannier functions in twisted
bilayer graphene extend over tens of nanometers, the long-
range part of Coulomb interaction is expected to dominate.
Based on this factor alone, one would expect density
interactions gi2, gi4 to be orders of magnitude larger than
the intervalley exchange interaction gi1. On the other hand,
it should be noted that the long-range Coulomb interaction
strength is reduced by screening from excited bands that
span a wide range of energies from ∼10 meV up to the
bandwidth of graphene layers ∼10 eV. The process of
integrating out these excited bands as well as those states of
the lowest band outside the patches will significantly
renormalize the coupling constants to be used in our patch
theory. Moreover, their values are also affected by electron-
phonon coupling. Since typical phonon energy in graphene
is much larger than the miniband width, it is reasonable to
integrate out the phonons to obtain phonon-mediated
electron-electron attraction [10], which renormalizes the
values of coupling constants.
In this work, we treat the bare values of gij as phenom-

enological parameters and calculate flows of these coupling
constants under RG to the one-loop order. Strictly speak-
ing, such a perturbative RG analysis is only legitimate for
weak coupling. However, instabilities toward supercon-
ductivity and/or density waves are found within the weak-
coupling regime (see below), which justifies the one-loop
RG analysis.

B. Susceptibilities and Fermi surface nesting

Fermion loops in the RG calculation are associated with
bare susceptibilities in the particle-hole and particle-particle
channels:

χphðq−;ωÞ ¼
Z
k∈patch

fðϵτkþkατ
Þ − fðϵτ0kþkβτ0

Þ
ω − ϵτkþkατ

þ ϵτ
0
kþkβτ0

; ð2Þ

χppðqþ;ωÞ ¼
Z
k∈patch

fðϵτkþkατ
Þ − fð−ϵτ0−kþkβτ0

Þ
ω − ϵτkþkατ

− ϵτ
0
−kþkβτ0

; ð3Þ

where q� ¼ kατ � kβτ0 , fðϵÞ is the Fermi distribution, and
ϵτk is the energy dispersion of valley τ with ϵ ¼ 0 on the
Fermi surface.
There are in total eight susceptibilities in the particle-

particle and particle-hole channels at various wave vectors:

χ0þ ¼ χppðQ0;ωÞ; χ0− ¼ χppð0;ωÞ; ð4Þ

χ1s ¼ χphðQs;ωÞ; ð5Þ
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FIG. 2. (a) Diagrammatic representation of scattering proc-
esses. The four diagrams describe the change of either saddle
point or valley index, where solid and dashed lines correspond to
electron propagators with different indices. (b) Nine momentum-
conserving scattering processes out of 16 distinct scattering
processes gij. Hexagons are the Brillouin zone boundaries and
the dots are located at saddle points with two colors correspond-
ing to the two valleys. There are three types in the interactions
(from left to right): intravalley, intervalley density, and intervalley
exchange interactions.
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χ2þ ¼ χphð0;ωÞ; χ2− ¼ χphðQ0;ωÞ; ð6Þ

χ3s ¼ χppðQ−s;ωÞ; ð7Þ

where s ¼ þ;− correspond to intra- and intervalley com-
ponents, respectively.
Among these susceptibilities, χ2þðω ¼ 0Þ is the DOS

within a patch at Fermi energy ρ0. χ0− is theQ ¼ 0 Cooper-
pair susceptibility, which involves patches at opposite
momenta, belonging to the different valleys. Regardless
of Fermi surface geometry, χ0− exhibits a logarithmic
divergence χ0−ðωÞ ¼ ðρ0=4Þ lnðΛ=ωÞ in the presence of
time-reversal symmetry, where Λ is the high-energy cutoff
and depends on the patch size.
Besides the BCS channel, susceptibilities in other

channels may find divergences when Fermi surfaces are
perfectly nested: ϵτkþkατ

¼ −ϵτ0kþkβτ0
for the particle-hole

channels and ϵτkþkατ
¼ ϵτ

0
−kþkβτ0

for the particle-particle

channels. In general, the interplay between BCS and
nesting-related interactions can lead to nontrivial RG flows
of coupling constants [39,40].
As shown in Fig. 1, the Fermi surfaces associated with

different valleys have nearly parallel segments connected
by the following nesting vectors: Q− and Q0 connect
occupied states of one valley and unoccupied states of
another, while Qþ connects occupied states around K
and those around K0 associated with the same valley;
see Fig. 1(d). Such Fermi surface nesting strongly enhances
three types of bare susceptibilities: intervalley charge or
spin density-wave susceptibility atQ− andQ0 (particle-hole
channel), and intervalley pair density wave at Qþ (particle-
particle channel).
In the ideal case where the Fermi surface is perfectly

nested (see Appendix A for the detailed discussion),
these susceptibilities are logarithmically divergent like
the BCS channel. When the Fermi surface is nearly nested,
the logarithmic frequency energy dependence still holds
approximately within a range Λ0 < ω ≤ Λ, but the diver-
gence in the ω → 0 limit is cut off below a smaller energy
scale Λ0 associated with the deviation from perfect nesting.
Finally, when the VHS lies close to the Fermi surface,

scatterings among states near VHS points receive particu-
larly large RG corrections because of the large spectral
weight. This justifies our use of the patch RG approach.
When the VHS lies exactly on the Fermi surface, the DOS
at ω ¼ 0 is logarithmically divergent and thus leads to an
additional log divergence in susceptibilities; see discussion
in Appendix B.

III. RG ANALYSIS

Loop corrections to the coupling constants suffer from
divergences due to Fermi surface nesting and divergent
DOS at the Van Hove energy, which are to be cured with the

RG method. We consider corrections to one-loop order
(Fig. 3). In the hot-spot model, each loop correction is
associated with the susceptibilities Eqs. (4)–(7). Since the
Cooper-pair susceptibility χ0− always gives the leading
divergence regardless of the Fermi surface geometry, we set
the RG scale by y≡ χ0−ðϵÞ. In the Wilsonian RG pro-
cedure, we integrate out high-energy modes and rescale the
remaining low-energy modes as we increase the RG scale
y, which is qualitatively similar to lowering the temperature
T down from Λ. The other susceptibilities are measured
with respect to y, parameterized by

dasðyÞ ¼
dχas
dy

: ð8Þ

By definition, d0− ¼ 1 always holds.

A. RG equations

The RG equations for the coupling constants involve the
parameters dasðyÞ defined in Eq. (8) as a function of the RG
scale y. In general, dasðyÞ depends on y, except when the
corresponding susceptibility χasðyÞ diverges similarly to
the BCS susceptibility. This occurs in the presence of Fermi
surface nesting. Then the corresponding density-wave
channel has a divergent susceptibility, and hence dasðyÞ ¼
das is a constant less than or equal to 1 [33–35].
In an ideal case for nesting where Fermi surface

comprises corner-sharing triangles (see Fig. 7), perfect
nesting occurs simultaneously in three channels: three
susceptibilities of the intervalley type, χ1−ðQ−Þ, χ2−ðQ0Þ,
and χ3−ðQþÞ, are all logarithmically divergent similar to
χ0−, so that d1−, d2− and d3− are nonzero constants. In
contrast, none of the intravalley susceptibilities χaþ is
divergent. Thus, daþðyÞ decay as y−1 (away from the
Van Hove energy) or y−1=2 (at the Van Hove energy; see
Appendix B), and hence become negligible at large y. We
neglect the subleading terms daþ in the following analysis.
(RG equations for a generalized model with daþ and
additional interaction terms are presented in Appendix F.)
As shown in Fig. 1, the Fermi surface of twisted bilayer

graphene is nearly (but not perfectly) nested. In this case,
the intervalley susceptibilities χa− (a ¼ 1, 2, 3) still have
a logarithmic dependence on energy from Λ down to a
smaller energy Λ0. Equivalently, the parameter da−ðyÞ is
approximately constant within the corresponding range of

FIG. 3. One-loop corrections to the coupling constants. The
solid lines represent the fermion propagators and the wavy lines
correspond to interactions. The leftmost diagram involves a
particle-particle loop, and the other three diagrams have
particle-particle loops.
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the RG scale, 0 ≤ y < y0. In the following, we analyze the
RG flow within this energy range of interest, where the
Fermi surface is regarded as nested.
For daþ ¼ 0, we obtain the RG equations for the nine

momentum-conserving coupling constants as follows:

_g14 ¼ _g24 ¼ _g44 ¼ 0; ð9Þ

_g22 ¼ −d3−ðg211 þ g222Þ þ d1−ðg222 þ g232Þ; ð10Þ

_g32 ¼ −ðg231 þ g232 þ 2g31g41 þ 2g32g42Þ þ 2d1−g22g32;

ð11Þ

_g42 ¼ −ð2g231 þ 2g232 þ g241 þ g242Þ þ d2−g242; ð12Þ

_g11 ¼ −2d3−g11g22 þ 2d1−ðg11g22 − g211 þ g31g32 − g231Þ;
ð13Þ

_g31 ¼ −2ðg31g32 þ g31g42 þ g32g41Þ
þ 2d1−ðg11g32 þ g22g31 − 2g11g31Þ; ð14Þ

_g41 ¼ −2ð2g31g32 þ g41g42Þ þ 2d2−ðg41g42 − g241Þ: ð15Þ

We use the convention _g≡ dg=dy.
Equations (9)–(15) show how different coupling con-

stants change under RG. Among them, the intervalley
interactions g22 and g11 involve two patches not related by
time-reversal symmetry, and hence receive corrections
solely from scattering processes related to intervalley
nesting. g32, g42, g31, and g41 involve two patches related
by time-reversal symmetry, and hence receive corrections
from both BCS and nesting-related processes. The intra-
valley interactions gi4 do not flow because they do not
participate in either process.
Details of the RG flow in the nine-dimensional param-

eter space are complicated and can in general be acquired
numerically. (See Appendix D for the simplest case
without nesting, where the analytic solution is obtained.)
Nonetheless, its general feature can be understood easily:
BCS corrections decrease repulsive interactions under RG,
while nesting-related corrections tend to increase repulsive
interactions in the corresponding channels. This important
trend is a useful guideline to understand the behavior of the
RG flow, which we present later.

B. Ordering instabilities

To analyze various possible instabilities, we consider
susceptibilities associated with s- and d-wave spin-singlet
superconductivity (s-SC and d-SC), p- and f-wave spin-
triplet superconductivity (p-SC and f-SC), charge density
wave (CDW), spin density wave (SDW), and pair density
wave (PDW). Three different wave vectors, Qþ, Q−, and
Q0, associated with density-wave orders are indicated by

superscriptsþ, −, and 0, e.g., SDW− and CDW0. Each of p-
and d-wave pairings has two degenerate components:
ðpx; pyÞ and ðdxy; dx2−y2Þ. The two-component supercon-
ducting order parameters allow chiral and nematic phases,
which break time-reversal and crystalline symmetries,
respectively. The analysis on the energetically stable state
requires a finite-temperature free-energy calculation.
When only the intervalley Fermi surface nesting is

considered, the relevant instabilities are superconductivity,
CDWor SDWat wave vectorsQ− andQ0, and PDWatQþ.
An occurrence of an instability is indicated by a divergence
of the corresponding susceptibility. The susceptibility is
obtained from a resummation similar to the random phase
approximation (RPA) [40]:

χηðyÞ ¼ χ0ηðyÞ − χ0ηðyÞVηðyÞχ0ηðyÞ þ � � �

¼ χ0ηðyÞ
1þ VηðyÞχ0ηðyÞ

; ð16Þ

where η is used to label various ordering susceptibilities.
χ0ηðyÞ is the bare susceptibility in the absence of interaction
and VηðyÞ is the effective interaction strength associated
with the ordering.
By a straightforward diagrammatic calculation, we find

Vη for various ordering channels as follows:

Vs;d-SC ¼ 2ðg42 þ g41 � g32 � g31Þ ðsinglet SCÞ; ð17Þ

Vp;f-SC ¼ 2ðg42 − g41 ∓ g32 � g31Þ ðtriplet SCÞ; ð18Þ

VCDW− ¼ 4ðg11 þ g31Þ − 2ðg22 þ g32Þ; ð19Þ

VCDW0 ¼ 4g41 − 2g42; ð20Þ

VSDW− ¼ −2ðg22 þ g32Þ; ð21Þ

VSDW0 ¼ −2g42; ð22Þ

VPDWþ ¼ 2ð−g11 þ g22Þ: ð23Þ

A detailed description and the derivation of interaction
strengths and susceptibilities are found in Appendix C.
When the parameters das are constant, to the leading

order in y, χηðyÞ is written as

χηðyÞ ¼
dasy

1þ VηðyÞdasy
: ð24Þ

The susceptibility diverges at 1þ VηðycÞχηðycÞ ¼ 0, lead-
ing to an instability at yc. An instability occurs only if
the interaction strength is attractive: Vη < 0. In mean-
field theory, the interaction strength VηðyÞ is treated as a
constant determined by the bare values of the coupling
constants gij. Then the instability temperature is given
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by Tη ¼ Λ exp½−ðcpdasjVηjÞ−1=p�, for y¼cp lnpðΛ=ϵÞ
(cp > 0) with p ¼ 1 away from the VHS or p ¼ 2 at
the VHS [41]. Our analysis here further takes into account
the RG-scale dependence of coupling constants gij and
hence the interaction strength VηðyÞ. We shall see that the
running coupling constants lead to results beyond mean-
field theory.

C. Intertwined superconductivity and density waves

Since the intervalley exchange interaction is likely
smaller than the density-density interaction, it is instructive
to first analyze cases only with the density-density
interactions. For simplicity, we set the strengths of all
density-density interactions equal ðg14¼g24¼ g44¼g22¼
g32¼g42>0Þ. In the absence of the exchange interactions,
some susceptibilities become degenerate as we see from
Eqs. (17)–(23): s-SC and f-SC, d-SC and p-SC, and CDW
and SDW at each wave vector. Such degeneracy results
from the fact that each valley has its own charge con-
servation and spin rotation symmetry. Similar degeneracy
also occurs in exciton insulators when only long-range
Coulomb interaction is considered [42].
With this choice of coupling constants, a mean-field

analysis does not find any superconducting instability
because the pairing interactions shown in Eqs. (17) and
(18) are zero. In the presence of Fermi surface nesting, a
density-wave instability is found in mean-field analysis,
whose wave vector is Q− if d1−ðg22 þ g32Þ > d2−g42, and
Q0 vice versa.
Our RG analysis including the scale dependence of the

coupling constants gij finds qualitatively different results.
Figures 4(a) and 4(b) are the phase diagrams from the one-
loop RG analysis on the ðd1−; d2−Þ plane with d3− ¼ 0 and
the ðd1−; d3−Þ plane with d2− ¼ 0, respectively. First, in
both cases, d-SC or p-SC is found for small d1−, which is
absent in mean-field theory. Second, the Q− density-wave
state is far more dominant than theQ0 density-wave state: it
already occurs at very small nesting parameter d1−, even
when the Fermi surface nesting condition is much stronger
at wave vector Q0.
To understand why the Q− density wave and d=p-SC

emerge as leading instabilities, we examine the flow of
intervalley density interactions g22, g32, and g42. Since g32
and g42 are associated with BCS scattering processes, they
receive renormalization even without nesting and decrease
under RG when their initial values are repulsive, as shown
in Figs. 4(c) and 4(d). In contrast, since g22 is associated
with a forward scattering process, it is marginal without
nesting. According to the RG equation, Eq. (10), Fermi
surface nesting in the particle-hole channel (d1− > 0)
increases g22 under RG. Therefore, in the presence of
Fermi surface nesting, only g22 grows without suppression
from the BCS process and thus strongly enhances the Q−

density-wave fluctuation, making it dominate over the Q0
density wave.

Although g32 and g42 both decrease under RG, the
former decreases slower because the BCS process and
density-wave nesting at wave vector Q− tend to renorm-
alize g32 in the opposite way; see Eq. (11). Therefore, a
negative g42 − g32 < 0 is generated and its magnitude
grows under RG. As shown in Eqs. (17) and (18), this
attraction provides pairing interaction for both d-SC and
p-SC and thus enhances these superconducting suscep-
tibilities; see Fig. 4(f). Fermi surface nesting in the particle-
particle channel (d3− > 0) assists superconductivity in that
it suppresses the increase of g22. Finite nesting in the
particle-particle channel yields nonzero PDW susceptibil-
ity, but the interaction is repulsive for the PDWþ fluc-
tuation, cf. Eq. (23).
The attractive pairing interaction should be stronger

than that for the Q− density waves; otherwise the
CDW− or SDW− state is the leading instability for a larger
d1− [Fig. 4(e)]. We note that in both cases the susceptibil-
ities diverge before the coupling constants blow up, which
retains the validity of the one-loop RG analysis.
We conclude that in the presence of repulsive intervalley

density interactions, the two leading instabilities are
charge or spin density wave at wave vector Q− and
d=p-SC. When the Fermi surface nesting in the particle-
hole channel is strong (weak), the density wave state
(superconductivity) is favored.

IV. ROLE OF INTERVALLEY EXCHANGE
INTERACTION

The degeneracies of d=p-SC and of CDW or SDW
susceptibilities are lifted when intervalley exchange inter-
actions g11, g31, g41 are included. Their bare values depend
on microscopic details, as we discuss in Sec. II A. For
example, such interactions can arise from intervalley
scattering mediated by optical phonons. Since the typical
phonon frequency is much larger than the miniband width,
intervalley exchange interactions between low-energy elec-
trons may be even attractive.
Figure 5 shows the RG flows including both density-

density and exchange interactions. With a small d1−
[Figs. 5(a) and 5(d)], the superconducting instabilities
are dominant, but a larger d1− favors density-wave states
[Figs. 5(b), 5(c), 5(e), and 5(f)]. Since their initial values are
chosen to be small, the change of exchange interactions
under RG is considerably smaller than that of the density
interactions. Nonetheless, degeneracies of susceptibilities
are lifted by finite exchange interactions. We show cases for
repulsive interaction in Figs. 5(a), 5(b), 5(d), and 5(e) and
for attractive interaction in Figs. 5(c) and 5(f).
Roughly speaking, repulsive interaction prefers d-SC

to p-SC and SDW− to CDW−, and attractive interaction
prefers the converse. This can be seen from our expressions
for interaction strengths shown in Eqs. (17)–(19) and (21).
Depending on the choice of intervalley exchange
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interactions and nesting parameter d1−, any of the four
orders—d-SC, p-SC, CDW−, and SDW−—can be the
leading instability.
While the bare values of intervalley exchange inter-

actions are hard to obtain accurately, we now discuss
another important factor in selecting between d-SC and
p-SC, and between CDW− and SDW−. Both SDW and p-
SC (which is spin-triplet) breaks the SU(2) spin rotational
symmetry, while the CDWand d-SC (which is spin-singlet)
do not. With SU(2) symmetry, it is known that thermal
fluctuations associated with Goldstone modes prevent any
true long-range spin order in two dimensions. This argu-
ment suggests that d-SC or CDW− can still be realized at

nonzero temperature, even when the leading susceptibility
above the ordering temperature is p-SC or SDW−.

V. ELECTRONIC STRUCTURE OF
DENSITY-WAVE STATES

We now examine the electronic structure in a CDW−

state and show that at filling the n ¼ 2 the CDW− state can
be insulating. The same conclusion applies to a collinear
SDW− because it can be mapped to the CDW− state by
performing a sign change on electrons of one spin
polarization in one valley [41].

(d)(c)

(b)(a)

(e) (f)

FIG. 4. Phase diagrams with the density-density interactions. (a),(b) Phase diagrams obtained by the RG analysis in the presence of
the density-density interactions (g14 ¼ g24 ¼ g44 ¼ g22 ¼ g32 ¼ g42). Two parameters for nesting are varied in each phase diagram:
(a) d1− and d2− (d3− ¼ 0) and (b) d1− and d3− (d2− ¼ 0). Colors represent critical RG scales for instabilities: warm (cool) colors
correspond to high (low) energy and temperature. The solid lines represent phase boundaries, obtained in the range of g0yc ≤ 15. There
are CDW0 or SDW0 and normal regions in the vicinity of d1− ¼ 0 (not shown), but critical temperatures are extremely low for those
instabilities (g0yc > 15). (c),(d) Running coupling constants and (e),(f) susceptibilities for possible orders. We show the results for two
cases with different strength of nesting: (c),(e) d1− ¼ 0.4 and (d),(f) d1− ¼ d3− ¼ 0.25. The vertical dashed lines indicate the positions
where instabilities occur.
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In density-wave states, the Brillouin zone in momentum
space is reduced because of the enlarged unit cell in real
space. The previously distinct momentum eigenstates now
can hybridize, resulting in a band structure reconstruction.
When the number of electrons in the enlarged unit cell is
an even integer, the resulting CDW state can be a band
insulator.
The CDW− order can occur at three equivalent wave

vectors related by the C3 rotational symmetry:

Q1 ¼ Q−n0; Q2 ¼ Q−n2π=3; Q3 ¼ Q−n−2π=3:

ð25Þ

with nϕ ¼ ðcosϕ; sinϕÞ. Below, we consider a triple-Q
CDW state, where the above three wave vectors form the
new reciprocal vectors, and hence define the reduced
Brillouin zone. Compared to a single-Q state, the triple-
Q state is expected to be energetically favorable as it gaps
more parts of the Fermi surface especially around the hot
spots with large DOS.
In the CDW− state, the intervalley order parameter

hψ†
kþQi;τσ

ψkτ̄σi ðτ̄ ¼ −τÞ becomes nonzero. The mean-field
Hamiltonian in the CDW− state thus includes the CDW
potential in addition to the original electron dispersion:

HCDW ¼
X
kτ

�
ϵτkψ

†
kτψkτ þ Δ

X3
j¼1

ðψ†
kþQj;τ

ψkτ̄ þ H:c:Þ
�
:

ð26Þ

Since the spin structure is irrelevant, we have dropped the
spin index σ. Here we assume that the CDW order
parameters at Q1, Q2, Q3 are equal, so that the resulting
state is invariant under the threefold rotation.
For the original Fermi surface shown in Fig. 1, the

CDW− wave vector connecting a pair of hot spots is close
to the commensurate vectorQ− ≃ jΓMj=2 ¼ G=4, whereG
is the length of the original reciprocal lattice vectors of
twisted bilayer graphene. (The analytic expression of the
energy dispersion in the normal state ϵτk is given in
Appendix E.) With this choice of CDW wave vector Q−,
the reduced Brillouin zone is 4 × 4 smaller than the original
Brillouin zone and can be constructed as shown in Fig. 6(a).
Since there are two conduction bands (one per valley) in the
original Brillouin zone, there are 32 bands in the reduced
Brillouin zone. A complete filling of 16 bands corresponds
to the filling of n ¼ 2, where correlated insulating behavior
was experimentally observed.
When the CDW− order parameter is small, the Fermi

surface at the filling n ¼ 2 is not fully gapped due to
imperfect nesting. A full gap appears for Δ≳ Δc. For a
realistic Fermi surface with good nesting condition, we find
the critical value of the order parameterΔc ¼ 0.15D, where
D is the bandwidth of the original conduction band. The
fact Δc ≪ D justifies our weak-coupling approach.
The gapped energy spectrum in the CDW− state with

Δ ¼ 0.16D is presented in Fig. 6(b). Importantly, we note
that the direct gap in the CDW state is located at Γ in the
reduced Brillouin zone. A single electron pocket (with
twofold spin degeneracy) is present above the gap, while
two nearly degenerate hole pockets are present below the

(b)

(e)

(a)

(d) (f)

(c)

FIG. 5. Effect of the exchange interactions. (a)–(c) Running coupling constants and (d)–(f) susceptibilities for possible orderings. We
choose the strengths of density-density interactions g14 ¼ g24 ¼ g44 ¼ 1 (intravalley) and g22 ¼ g32 ¼ g42 ¼ 1 (intervalley). Fermi
surface nesting is weak in (a) and (d) with d1− ¼ 0.1 and strong in (b), (c), (e), and (f) with d1− ¼ 0.4. Finite exchange interactions lift
the degeneracies of susceptibilities, cf. Figs. 4(e) and 4(f). We choose the exchange interactions to be initially repulsive
(g11 ¼ g31 ¼ g41 ¼ 0.1) in (a), (b), (d), and (e) and attractive (g11 ¼ g31 ¼ g41 ¼ −0.1) in (c) and (f). The vertical dashed lines
indicate the positions where instabilities occur.
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gap. The hole pockets have much heavier mass than the
electron. These features are consistent with quantum
oscillation measurements at densities slightly away from
n ¼ 2, as we discuss in the next section.
For the commensurate CDW state with Q− ¼ G=4

considered here, the scattering process labeled by g43
carries momentum 2Q0 ¼ 4Q− ¼ G, and thus it is allowed.
This process corresponds to the intervalley exchange
interaction and it is presumably smaller than intravalley
and intervalley density interactions. We confirm that
inclusion of small g43 does not alter the RG flow much,
and we obtain qualitatively the same result [43]. We note
that the umklapp process g43 locks the commensurate
density wave to the lattice and thus stabilizes this ordered
phase at low temperature [44].

VI. DISCUSSIONS

In this section, we compare our results with the experi-
ments on twisted bilayer graphene [1]. We have found
from RG analysis the intertwining of unconventional
superconductivity and density-wave instabilities. We have
obtained from band structure calculations the gapped
spectrum of density-wave states at the filling n ¼ 2.
On the experiment side, the resistivity measurement at

zero magnetic field near n ¼ 2 observes a metallic behavior
at high temperatures, then an upturn of resistivity in an
intermediate temperature region, before superconductivity
appears at the lowest temperature. Furthermore, the in-
plane upper critical field of the superconducting state is
found to be comparable to the Pauli limit, indicating spin-
singlet pairing. The change from insulating to supercon-
ducting behaviors is consistent with the intertwined
density-wave and SC instabilities, shown by the evolution
of susceptibility with decreasing energy scale in Figs. 4(e),

4(f), 5(e), and 5(f). Finally, when superconductivity is
destroyed by the magnetic field, resistivity becomes insu-
lating at the lowest temperature.
We interpret this T ¼ 0 insulating state as a CDW or

SDW state at wave vector Q−. We have analyzed a triple-
Q− CDW or collinear SDW phase with 4 × 4 periodicity
and have shown that a moderate density-wave order
parameter fully gaps the energy spectrum at the filling
n ¼ 2, consistent with the insulating behavior of resis-
tivity at low temperature. Importantly, at densities slightly
above n ¼ 2 (or doping towards complete filling of
minibands), a single pocket with twofold degeneracy is
found in quantum oscillation measurements. This is
consistent with our finding of a single pocket with spin
degeneracy above the gap. On the other hand, at densities
slightly below n ¼ 2, quantum oscillations have so far not
been observed. This is consistent with the fact that the
pockets below the gap in our density-wave state have
heavy mass.
The pairing symmetry in the superconducting state may

be probed by tunneling measurements, the thermal con-
ductivity, and the in-plane upper critical field. The spatial
modulation in CDW or SDW states could be visible by
local probes, such as an STM measurement.
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APPENDIX A: FERMI SURFACE NESTING

1. Perfect and near nesting

Fermi surface nesting provides singularities in suscep-
tibilities. The susceptibilities (Lindhard functions) in the
particle-hole and particle-particle channels are given by

χphττ0 ðq;ωÞ ¼
Z
k

fðϵτkþqÞ − fðϵτ0k Þ
ω − ϵτkþq þ ϵτ

0
k

; ðA1Þ

χppττ0 ðq;ωÞ ¼
Z
k

fðϵτkþqÞ − fð−ϵτ0−kÞ
ω − ϵτkþq − ϵτ

0
−k

: ðA2Þ

τ and τ0 denote Fermi surfaces, which correspond to the
valley degrees of freedom for the case of twisted bilayer
graphene.
The conditions for perfect nesting is given by

ϵτkþq ¼ −ϵτ0k ðparticle-hole channelÞ; ðA3Þ

Kr Mr Kr

(b)

MQ1

Q2

Q3

K

Kr

K

Kr

Mr

(a)

-1

-0.5

0

0.5

 E
/D

FIG. 6. (a) Reduced Brillouin zone in a triple-Q density-wave
state. We assume the three ordering vectors Qj (j ¼ 1, 2, 3),
which are parallel to the Γ −M lines and satisfy
jQjj ¼ Q− ¼ G=4. (b) Energy spectrum in the CDW− or
collinear SDW− state with order parameter Δ ¼ 0.16D. D is
the original conduction bandwidth. There are 32 bands in the
reduced Brillouin zone and the seventeenth band from the
bottom is colored in red. Filling of 16 bands corresponds to the
filling n ¼ 2.
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ϵτkþq ¼ ϵτ
0
−k ðparticle-particle channelÞ: ðA4Þ

When the Fermi surfaces are perfectly nested, i.e., one of
the above conditions holds in a certain area of the Brillouin
zone, singularities in the susceptibilities are found in the
static limit ω → 0. One finds a logarithmic divergence
in a susceptibility with perfectly nested Fermi surfaces in
two dimensions, so that the susceptibility has lnðΛ=ωÞ
dependence.
In order to observe logarithmic dependence in suscep-

tibilities at ω, the nesting condition should hold at the
energy scale determined by ω. In other words, if the
conditions are approximately met with an accuracy of
around ω, we see lnðΛ=ωÞ behavior at the energy scale ω. It
allows us to relax the nesting conditions at ω to be

δphðωÞ≡
���� ϵ

τ
kþq þ ϵτ

0
k

ω

���� ≪ 1; ðA5Þ

δppðωÞ≡
���� ϵ

τ
kþq − ϵτ

0
−k

ω

���� ≪ 1; ðA6Þ

for the particle-hole and particle-particle channels, respec-
tively. When Fermi surfaces are perfectly nested, we have
δph ¼ 0 or δpp ¼ 0, and lnðΛ=ωÞ dependence in the
susceptibility holds down to the lowest energies. On the
other hand, when Fermi surfaces are nearly nested with
δph=ppðωÞ ≪ 1 for Λ0 < ω ≤ Λ, we see a logarithmic
enhancement within the range Λ0 < ω ≤ Λ, and it is cut
off by the lower bound Λ0.
Our RG analysis focuses on the energy range

Λ0 < ω ≤ Λ, where Fermi surfaces are regarded as nearly
nested, and hence we assume the parameters das are
constant within the range. For energy scale below Λ0,
das can no longer be regarded as constant, and we need to
consider the y dependence of das.

2. Inner and outer Fermi surfaces

Figure 7 shows simplified Fermi surfaces at the Van
Hove energy, where the Fermi surfaces are approximated as

corner-sharing triangles, to emphasize Fermi surface nest-
ing. For convenience, we regard those Fermi surfaces as
large hole Fermi surfaces encircling the Γ point. At a saddle
point located along the Γ-M line, a Fermi surface touches
another from an adjacent Brillouin zone. Therefore, there
are two Fermi surfaces in one patch around a hot spot when
we consider the reduced Brillouin zone. For convenience,
we call the Fermi surface from the first Brillouin zone the
“inner” Fermi surface and the other from the second
Brillouin zone the “outer” Fermi surface.
From Fig. 7, we find four distinct Fermi surface nestings.

First, the Fermi surfaces of patches 1 and 10 (1 and 10 are
from different valleys) are perfectly nested in the particle-
particle channel, yielding the BCS instability. It always
holds for time-reversal-invariant systems. There are also
symmetry-related pairs: 2–20 and 3–30. Second, the inner
Fermi surfaces are nested between 1 and 10, leading to the
logarithmic dependence in χphðQ0;ωÞ and constant d2−.
In addition, by looking at both inner and outer Fermi
surfaces, we can find that the Fermi surfaces from 1 and 20
are nested both in the particle-hole and particle-particle
channels. It gives logarithmic dependences in χphðQ−;ωÞ
and χppðQþ;ωÞ, which results in constant d1− and d3−,
respectively.
The discussion can be done in parallel near the Van Hove

energy. When the Fermi energy is slightly above the Van
Hove energy, we can regard the Fermi surfaces as hole
pockets around the Γ point similarly as above. If we
consider the filling slightly below the Van Hove energy,
we should instead look at electron pockets, which surround
the K and K0 points, cf. Fig. 1(c). In this case, a hot spot
involves two Fermi surfaces from the two electron pockets.
Still, a hot spot contains two Fermi surfaces, and Fermi
surface nesting for both of them should be considered.

APPENDIX B: SUSCEPTIBILITIES NEAR
THE VAN HOVE ENERGY

The DOS logarithmically diverges at a saddle point
in two dimensions because of the Van Hove singularity.
When we approximate the energy dispersion near a saddle
point as ϵðδkÞ ¼ Aδk2x − Bδk2y, we obtain the DOS (in the
vicinity of the saddle point) as

ρ0ðϵÞ ¼
1

2π2
ffiffiffiffiffiffiffi
AB

p ln
Λ
ϵ
; ðB1Þ

whereΛ is the high-energy cutoff, which corresponds to the
patch size in the present case.
We have defined the eight susceptibilities χas in the

particle-hole and particle-particle channels with four
different wave vectors in Eqs. (4)–(7). Among the eight
susceptibilities, χ2þ corresponds to the DOS; χ2þðωÞ ¼
ρ0ðωÞ. The divergence in the limit ω → 0 is relaxed by
finite chemical potential or away from the Van Hove
energy:

(a) (b)

3

2

1

3

2

1

FIG. 7. Simplified Fermi surface to show Fermi surface nesting
with different wave vectors. (a),(b) Fermi surfaces for different
valley degrees of freedom. Labels 1, 2, and 3 are the patch
indices, assigned at the hot spots.
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χ2þðωÞ ¼
1

2π2
ffiffiffiffiffiffiffi
AB

p ln
Λ

maxðω; μÞ : ðB2Þ

The susceptibility in the BCS channel χ0− suffers from
the Cooper instability in the presence of time-reversal
symmetry. An alternative way to state this is that the
Fermi surfaces are perfectly nested in this channel. We note
that χ0− is an intervalley susceptibility since the saddle
points at kατ and−kατð¼ kα;τ0≠τÞ belong to different valleys.
Calculating χ0−ðωÞ, we obtain

χ0−ðωÞ¼
ρ0ðωÞ
4

ln
Λ
ω
¼ 1

8π2
ffiffiffiffiffiffiffi
AB

p ln
Λ

maxðω;μÞ ln
Λ
ω
: ðB3Þ

For μ ¼ 0 (at the Van Hove energy), χ0− has a double log
singularity. It is the leading divergence in the eight
susceptibilities and it sets the RG scale y. It is important
to note that the two logarithms have different origins: one
logarithmic singularity ½lnðΛ=maxfω; μgÞ� is from the Van
Hove singularity and the other ½lnðΛ=ωÞ� from the Fermi
surface nesting. The logarithmic divergence from Fermi
surface nesting has already been discussed. The divergence
of the DOS is suppressed away from the Van Hove energy.
However, if μ ≪ Λ is satisfied, there are still large spectral
weights in the patches around the hot spots, which justifies
the use of patch RG.
When Fermi surfaces are nested for a susceptibility in a

certain channel and a wave vector (say, χas), a logarithmic
dependence from Fermi surface nesting is present. (One
can find an explicit calculation for the case of monolayer
graphene in, e.g., Ref. [45].) Then, χas has the same
singularity as χ0− and the corresponding parameter
dasðyÞ ¼ dχas=dy becomes constant as we define the
RG scale by y≡ χppð0; ϵÞ. In contrast, Fermi surface
nesting is absent for χas; the corresponding parameter
dasðyÞ decays as y−1=2 for y ≫ 1 [33,35].

APPENDIX C: SUSCEPTIBILITIES FOR
ORDERING INSTABILITIES

1. Interaction strengths for instabilities

Now we consider an interaction strength that may trigger
an ordering instability. We write two-particle interactions in
the particle-particle and particle-hole channels as

V̂ph ¼ Vphψ†
1ψ2ψ

†
3ψ4; ðC1Þ

V̂pp ¼ Vppψ†
1ψ

†
2ψ3ψ4: ðC2Þ

One can perform a mean-field analysis by considering a
mean field composed of the first or last two fermion
operators on the right-hand sides. Those two types of
interactions are diagrammatically depicted in Fig. 8(a).
In the present model, there are 16 distinct scattering

processes, and to the lowest order, interaction strengths for
ordering instabilities are written as linear combinations of
those coupling constants [Fig. 8(b)]. Various interaction
strengths Vη corresponding to ordering η with all 16
coupling constants are given as follows:

Vs-SC ¼ 2ðg42 þ g41 þ g32 þ g31Þ; ðC3Þ

Vp-SC ¼ 2ðg42 − g41 − g32 þ g31Þ; ðC4Þ

Vd-SC ¼ 2ðg42 þ g41 − g32 − g31Þ; ðC5Þ

Vf-SC ¼ 2ðg42 − g41 þ g32 − g31Þ; ðC6Þ

VCDWþ ¼ 4ðg12 þ g14 þ g32 þ g34Þ
− 2ðg21 þ g24 þ g31 þ g34Þ; ðC7Þ

VCDW− ¼ 4ðg11 þ g13 þ g31 þ g33Þ
− 2ðg22 þ g23 þ g32 þ g33Þ; ðC8Þ

(a)

(c)

(b) SC, PDW

CDW SDW

FIG. 8. Diagrammatic representation of interactions and summation for the susceptibility. (a) Diagrams for interactions in the particle-
particle channel Vpp and in the particle-hole channel Vph. The two-particle interactions are drawn by four-leg ladders. (b) Interactions for
various orderings to the lowest order. (c) RPA-like resummation for susceptibilities.
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VCDW0 ¼ 2ð2g41 − g42 þ g43Þ
− 2ðg12 þ g13Þ þ 4ðg21 þ g23Þ; ðC9Þ

VSDWþ ¼ −2ðg21 þ g24 þ g31 þ g34Þ; ðC10Þ

VSDW− ¼ −2ðg22 þ g23 þ g32 þ g33Þ; ðC11Þ

VSDW0 ¼ −2ðg12 þ g13 þ g42 þ g43Þ; ðC12Þ

VPDWþ ¼ 2ð−g11 − g12 þ g21 þ g22Þ; ðC13Þ

VPDW− ¼ 2ð−g13 − g14 þ g23 þ g24Þ; ðC14Þ

VPDW0 ¼ 2ðg33 þ g34 þ g43 þ g44Þ; ðC15Þ

Vc ¼ −ðg11 þ g14Þ þ 2ðg22 þ g24Þ − g41 þ 2g42 þ g44;

ðC16Þ

Vs ¼ −ðg11 þ g14 þ g41 þ g44Þ: ðC17Þ

In addition to instabilities for superconductivity and
density waves, we also write down the interaction strengths
for the charge compressibility Vc and the uniform spin
susceptibility Vs.
As for superconductivity, we can consider six different

pairing symmetries because of the six patches. The six
pairing symmetries are distinct in regard to the super-
conducting order parameters Δ at the patches (Fig. 9). Each
p- and d-wave pairing has two different components, but
those two give the same interaction strength Vη. We assume
that the system respects the point group D3, which has the
representations A1, A2, and E. From this viewpoint, s- and
f-wave pairings belong to the one-dimensional represen-
tations A1 and A2, respectively, and each p- and d-wave
pairing belongs to the two-dimensional representation E.
For the other interaction strengths, we assume the A1

representation.

Since each p-SC and d-SC possesses two degenerate
components, it generally has two distinct states: nematic
and chiral states, which break crystalline rotational sym-
metry and time-reversal symmetry, respectively. Also,
SDW states allow various spin configurations. The iden-
tification of stable phases requires a free-energy calculation
at finite temperature.

2. Derivation of susceptibilities
for ordering instabilities

We calculate the susceptibilities for ordering ηχη by
summing up RPA-like diagrams, shown in Fig. 8(c); see
also Ref. [40]. It yields the susceptibility χη in the form of

χη ¼ χ0η − χ0ηVηχ
0
η þ χ0ηVηχ

0
ηVηχ

0
η − � � � ¼ χ0η

1þ Vηχ
0
η
;

ðC18Þ

where χ0η is the susceptibility calculated without interaction.
χ0η are equal to χas with fasg depending on η: 0þ (PDW0),
0− (all SC), 1þ (CDWþ, SDWþ), 1− (CDW−, SDW−),
2− (CDW0, SDW0), 3þ (PDW−), and 3− (PDWþ).
The susceptibility can instead be obtained from RG

equations for vertices corresponding to the susceptibilities
[31,33,46–49]. In this procedure, dressed vertices acquire
logarithmic corrections captured by the RG equations, and
then use the vertices to calculate the susceptibilities with
the running coupling constants gijðyÞ. We discuss this in
detail in Supplemental Material [41].

APPENDIX D: ANALYSIS OF THE RG
EQUATIONS WITHOUT NESTING

The RG equations, Eqs. (9)–(15), involve many variables
and parameters, and a full analysis of all nine running
coupling constants is rather complicated. Here we analyze
the simplest case where there is no Fermi surface nesting
other than the BCS channel (das ¼ 0, except for d1− ¼ 1 by

FIG. 9. SC pairing symmetries and order parameters at hot spots. Note that the order parameters are not normalized for each pairing.
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definition). Then, only g31, g32, g41, and g42 receive one-
loop corrections since they can be regarded as BCS
interactions. The RG equations for the four coupling
constants are written as

dg3�
dy

¼ −g23� − 2g3�g4�; ðD1Þ

dg4�
dy

¼ −2g23� − g24�; ðD2Þ

where we define

ga� ¼ ga2 � ga1 ða ¼ 3; 4Þ: ðD3Þ

We note that gaþ and ga− characterize spin-singlet and spin-
triplet SC, respectively. The analysis on pairing symmetries
can found in Supplemental Material [41]. The RG flow
on the ðg4þ; g3þÞ plane is shown in Fig. 10. The coupled
RG equations can be rewritten as

dðg4� þ 2g3�Þ
dy

¼ −ðg4� þ 2g3�Þ2; ðD4Þ

dðg4� − g3�Þ
dy

¼ −ðg4� − g3�Þ2; ðD5Þ

and thus are readily solved.
When we neglect the exchange interactions, g4� and g3�

are reduced to be g42 and g32, respectively. If we further
assume that those two intervalley density-density inter-
actions have the same amplitude g42 ¼ g32, the equality
holds under the RG flow from Eq. (D5). Each coupling
constant obeys the RG equation _g ¼ −3g2, which is in
accordance with Shankar’s result for BCS interactions
without nesting [39].

APPENDIX E: ENERGY DISPERSION
OF A NORMAL STATE

We construct an analytic form of the energy dispersion
with two valley degrees of freedom, belonging to the point
group D3 and satisfying a filling condition. For the latter,
we require that the energy dispersion have VHS points at
the filling n ¼ 2. The symmetry conditions are given as
follows: The C3 rotational symmetry is kept within a valley,
and hence the energy dispersion satisfies the relation

ϵτC3k
¼ ϵτk: ðE1Þ

There also exist in-planeC2 rotations about the Γ − K lines,
where one of them is taken along the ky axis. The in-plane
C2 rotation interchanges the two valley and flips kx, thus
requiring

ϵτkx;ky ¼ ϵτ̄−kx;ky : ðE2Þ

A function that obeys the symmetry conditions Eqs. (E1)
and (E2) can be represented as a Fourier series because
of the underlying lattice periodicity. Up to the third order,
the symmetry-allowed terms are given by

ϵτk ¼
X2
i¼0

½t0 þ t1 cosðkiyÞ þ t2 cosð
ffiffiffi
3

p
kixÞ þ τt02 sinð

ffiffiffi
3

p
kixÞ

þ t3 cosð2kiyÞ�; ðE3Þ

where we define kiy ¼ Ci
3ky and k

i
x ¼ Ci

3kx. The parameters
t1, t2, t02, and t3 are real. In addition to theD3 symmetry, we
further impose the filling condition, which is fulfilled by
tuning the parameters t1, t2, t02, and t3. By choosing, e.g.,
t1 ¼ 1, t2 ¼ −1, t02 ¼ 0.3, and t3 ¼ 0.6, we find saddle
points of the energy dispersion, i.e., VHS points, at the
filling n ¼ 2, as shown in Fig. 11. The energy bands extend
in the range of 0 ≤ E=t1 ≤ D ¼ 7.2.

FIG. 10. RG flows on the ðg4þ; g3þÞ plane without Fermi
surface nesting other than the BCS channel. Black solid lines are
the separatrix lines of the flows. One finds the same RG flow for
g4− and g3−.

(a) (b)

FIG. 11. Energy contour plots of the energy bands ϵτk,
Eq. (E3). Panels (a) and (b) correspond to the energy dis-
persions of the two different valleys. The parameters are chosen
as t0 ¼ 5.4, t1 ¼ 1, t2 ¼ −1, t02 ¼ 0.3, and t3 ¼ 0.6. The Lifshitz
transition and accompanying VHS are found at E=t1 ≈ 6.1. The
bandwidth is D ¼ 7.2.
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APPENDIX F: GENERALIZED MODEL
AND RG EQUATIONS

1. Generalized model

We generalize the model for twisted bilayer graphene,
consisting of two valleys with SU(2) spins, to a ðNv × NsÞ-
band model, consisting of Nv valleys with SUðNsÞ spins.
We assume that the valley degrees of freedom are non-
degenerate in the kinetic part, and as a result, there are Nv
separate bands each with Ns-fold degeneracy from spin;
i.e., the kinetic component has Uð1Þ × SUðNsÞ symmetry.
Each Fermi surface is assumed to possess np hot spots.
Such a model is applicable, e.g., to cuprates, monolayer
graphene, and graphene superlattices. Our results for
graphene superlattices are obtained by setting Nv ¼ Ns ¼
2 and np ¼ 3. A model for cuprates corresponds toNc ¼ 1,

Ns ¼ 2, and np ¼ 2 [30–34], and one for monolayer
graphene to Nc ¼ 1, Ns ¼ 2, and np ¼ 3 [35]. All those
cases are in two dimensions; a generalization to other
dimensions is straightforward.
The orbital index takes τ ¼ 1;…; Nv, the spin index

σ ¼ 1;…; Ns, and the saddle point index α ¼ 1;…; np.
Redefining the range of the indices, we use the same
interaction as Eq. (1). As long as we have the same set of
coupling constants, the structure of the RG equations does
not depend on either the position of the saddle points in the
Brillouin zone or the dimensionality of the system, which
merely changes the parameters das. Note that the dimen-
sionality constrains geometrically possible Nv and ns if we
consider the same set of coupling constants. Also, note that
umklapp processes in the valley space (j ¼ 3) explicitly
violate the valley U(1) symmetry.

2. RG equations for the coupling constants

For the generalized ðNv × NsÞ-band model where each
Fermi surface has np saddle points, we obtain the RG
equations for the 16 coupling constants gij to one-loop level
(see Figs. 3 and 12 for the case with Nv ¼ Ns ¼ 2 and
np ¼ 3):

dg11
dy

¼ −Nvd3−ðg11g22 þ g12g21Þ þ Nvd2þðg11g44 þ g14g41Þ þ 2d1−½g11g22 þ g31g32 þ ðNv − 1Þðg13g23 þ g233Þ�

− Nsd1−½g213 þ g233 þ ðNv − 1Þðg211 þ g231Þ�; ðF1Þ

dg12
dy

¼ −2d3−½g12g22 þ ðNv − 1Þg11g21� þ 2d2−½g12g42 þ ðNv − 1Þg13g43�

þ 2d1þ½g12g24 þ g32g34 þ ðNv − 1Þðg14g21 þ g31g34Þ� − NvNsd1þðg12g14 þ g32g34Þ; ðF2Þ

dg13
dy

¼ −Nvd3þðg13g24 þ g14g23Þ þ Nvd2−ðg12g43 þ g13g42Þ þ 2d1−½g13g22 þ g32g33 þ ðNv − 1Þðg11g23 þ g31g33Þ�

− NvNsd1−ðg11g13 þ g31g33Þ; ðF3Þ

dg14
dy

¼ −2d3þ½g14g24 þ ðNv − 1Þg13g23� þ 2d2þ½g14g44 þ ðNv − 1Þg11g41�

þ 2d1þ½g14g24 þ g234 þ ðNv − 1Þðg12g21 þ g31g32Þ� − Nsd1þ½g214 þ g234 þ ðNv − 1Þðg212 þ g232Þ�; ðF4Þ

dg21
dy

¼ −Nvd3−ðg11g12 þ g21g22Þ þ Nvd1þðg21g24 þ g31g34Þ þ d2−½g12g41 þ g21g42 þ ðNv − 1Þðg13g43 þ g23g43Þ�

− 2Nsd2−½g23g43 þ ðNv − 1Þg21g41�; ðF5Þ

dg22
dy

¼ −d3−½g212 þ g222 þ ðNv − 1Þðg211 þ g221Þ� þ d1−½g222 þ g232 þ ðNv − 1Þðg223 þ g233Þ�

þ 2d2þ½g14g42 þ g22g44 þ ðNv − 1Þðg11g44 þ g24g41Þ� − NvNsd2þðg22g44 þ g24g42Þ; ðF6Þ

FIG. 12. Sevenmomentum-nonconserving scattering processes.
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dg23
dy

¼ −Nvd3þðg13g14 þ g23g24Þ þ Nvd1−ðg22g23 þ g32g33Þ þ 2d2−½g12g43 þ g23g42 þ ðNv − 1Þðg13g41 þ g21g43Þ�

− NvNsd2−ðg21g43 þ g23g41Þ; ðF7Þ

dg24
dy

¼ −d3þ½g214 þ g224 þ ðNv − 1Þðg213 þ g223Þ� þ d1þ½g224 þ g234 þ ðNv − 1Þðg221 þ g231Þ�

þ 2d2þ½g14g44 þ g24g44 þ ðNv − 1Þðg11g42 þ g22g41Þ� − 2Nsd2þ½g24g44 þ ðNv − 1Þg22g42�; ðF8Þ

dg31
dy

¼ −Nvðg31g42 þ g32g41Þ − Nvðnp − 2Þg31g32 þ Nvd1þðg21g34 þ g24g31Þ

þ 2d1−½g11g32 þ g22g31 þ ðNv − 1Þðg13g33 þ g23g33Þ� − 2Nsd1−½g13g33 þ ðNv − 1Þg11g31�; ðF9Þ

dg32
dy

¼ −2½g32g42 þ ðNv − 1Þg31g41� − ðnp − 2Þ½g232 þ ðNv − 1Þg231� þ 2d1−½g22g32 þ ðNv − 1Þg23g33�

þ 2d1þ½g12g34 þ g24g32 þ ðNv − 1Þðg14g31 þ g21g34Þ� − NvNsd1þðg12g34 þ g14g32Þ; ðF10Þ

dg33
dy

¼ −Nvd0þðg33g44 þ g34g43Þ − Nvðnp − 2Þd0þg33g34 þ Nvd1−ðg22g33 þ g23g32Þ

þ 2d1−½g13g32 þ g22g33 þ ðNv − 1Þðg11g33 þ g23g31Þ� − NvNsd1−ðg11g33 þ g13g31Þ; ðF11Þ

dg34
dy

¼ −2d0þ½g34g44 þ ðNv − 1Þg33g43� − ðnp − 2Þd0þ½g234 þ ðNv − 1Þg233� þ 2d1þ½g24g34 þ ðNv − 1Þg21g31�

þ 2d1þ½g14g34 þ g24g34 þ ðNv − 1Þðg12g31 þ g21g32Þ� − 2Nsd1þ½g14g34 þ ðNv − 1Þg12g32�; ðF12Þ

dg41
dy

¼ −Nvg41g42 − Nvðnp − 1Þg31g32 þ Nvd2þg41g44 þ Nvðnp − 1Þd2þg11g14 þ 2d2−½g41g42 þ ðNv − 1Þg243�

þ 2ðnp − 1Þd2−½g12g21 þ ðNv − 1Þg13g23� − Nsd2−½g243 þ ðNv − 1Þg241� − Nsðnp − 1Þd2−½g223 þ ðNv − 1Þg221�;
ðF13Þ

dg42
dy

¼ −½g242 þ ðNv − 1Þg241� − ðnp − 1Þ½g232 þ ðNv − 1Þg231� þ d2−½g242 þ ðNv − 1Þg243� þ ðnp − 1Þd2−½g212 þ ðNv − 1Þg213�

þ 2d2þ½g42g44 þ ðNv − 1Þg41g44� þ 2ðnp − 1Þd2þ½g14g22 þ ðNv − 1Þg11g24�
− NvNsd2þg42g44 − NvNsðnp − 1Þd2þg22g24; ðF14Þ

dg43
dy

¼ −Nvd0þg43g44 − Nvðnp − 1Þd0þg33g34 þ Nvd2−g42g43 þ Nvðnp − 1Þd2−g12g13 þ 2d2−½g42g43 þ ðNv − 1Þg41g43�

þ 2ðnp − 1Þd2−½g12g23 þ ðNv − 1Þg13g21� − NvNsd2−g41g43 − NvNsðnp − 1Þd2−g21g23; ðF15Þ

dg44
dy

¼ −d0þ½g244 þ ðNv − 1Þg243� − ðnp − 1Þd0þ½g234 þ ðNv − 1Þg233� þ d2þ½3g244 þ ðNv − 1Þg241 þ 2ðNv − 1Þg41g42�

þ ðnp − 1Þd2þ½g214 þ 2g14g24 þ ðNv − 1Þðg211 þ 2g11g22Þ�
− Nsd2þ½g244 þ ðNv − 1Þg242� − Nsðnp − 1Þd2þ½g224 þ ðNv − 1Þg222�: ðF16Þ

The RG equations for the case of twisted bilayer graphene are obtained with Nv ¼ Ns ¼ 2 and np ¼ 3. By setting
Nv ¼ 1, Ns ¼ 2, we can reproduce the previous results for cuprates with np ¼ 2 [30–34] and for graphene with np ¼ 3

[35]. Since there are no valley degrees of freedom in such cases, we need only four coupling constants gi and four
parameters da, dropping the second subscripts j from gij and s from das.
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