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Genuinely quantum states of a harmonic oscillator may be distinguished from their classical counterparts
by the Glauber-Sudarshan P representation—a state lacking a positive P function is said to be nonclassical.
In this paper, we propose a general operational framework for studying nonclassicality as a resource in
networks of passive linear elements and measurements with feed forward. Within this setting, we define
new measures of nonclassicality based on the quantum fluctuations of quadratures, as well as the quantum
Fisher information of quadrature displacements. These measures lead to fundamental constraints on the
manipulation of nonclassicality, especially its concentration into subsystems, that apply to generic
multimode non-Gaussian states. Special cases of our framework include no-go results in the concentration
of squeezing and a complete hierarchy of nonclassicality for single-mode Gaussian states.
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I. INTRODUCTION

Continuous-variable quantum-optical systems exhibit
numerous operational advantages over their discrete coun-
terparts, including the unconditional generation of entan-
glement and relative resilience of such nonclassical states to
photon loss. They have thus played an important role in
diverse quantum technologies, spanning computing [1–4],
communication [5–7], and metrology [8,9]. Indeed, the
reliable creation of entanglement has allowed recent syn-
thesis of ultralarge entangled clusters that would be difficult
to achieve in any other regime [10].
This divergence in what information processing tasks

are considered operationally difficult also motivates differ-
ent perspectives on nonclassicality. In discrete variables,
nonclassicality is often characterized in terms of coherence
and entanglement—the former to capture the difficulty
of creating a quantum superposition of states in some
designated classical basis (such as energy eigenstates) and

the latter to characterize the difficulty of entangling two
quantum systems. In contrast, in continuous variables,
coherent states of light are typically considered the most
classical pure states [11,12] owing to their ease of synthe-
sis. Unlike the energy eigenstates, coherent states are not
mutually orthogonal and represent a superposition of
different energies. A state is considered nonclassical when
it is not a probabilistic mixture of coherent states [13].
Entanglement itself is considered secondary, as it is easily
synthesized by passive linear optics (i.e., networks of beam
splitters) once one has a source of nonclassical light
[14,15]. This observation has motivated tailored means
of witnessing and quantifying nonclassicality in the con-
tinuous-variable regime [16–26].
A full theoretical understanding of nonclassicality will

likely take the form of a resource theory [27]—a math-
ematical formalism that has enjoyed notable success in the
past two decades for describing the structure of entangle-
ment [28,29]. A resource theory gives meaning to the
question of how much of a quantity of interest is present in a
given state. In doing so, it renders different states compa-
rable. For instance, in the context of nonclassicality, one
might ask if a given squeezed state or a Fock state jni is
more nonclassical—a question that can be clearly answered
with the framework introduced below. Resource theories
thus provide a set of criteria for determining whether
a proposed quantity counts as a valid measure of the
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resource. They have been instrumental in understanding
quantum reference frames [30], thermodynamics [31–34],
coherence [35–37], contextuality [38], steering [39], and
non-Gaussianity [40–43]. Resource-theoretic terminology
in continuous variables has appeared in a number of recent
works [44–52], but these ideas are still in their infancy.
The main contribution of this paper is an operationally

motivated resource theory for continuous-variable nonclas-
sicality where passive linear optics and measurement feed
forward are considered operationally simple and thus “free.”
We show that this approach naturally leads to a novel
quantum resource theory of phase-space variance that
captures existing views of nonclassicality for both pure
and mixed states. For pure states, phase-space variance can
be analytically evaluated. For mixed states, we show it can
be bounded from below by the quantum Fisher information
(QFI) of quadrature displacements. Moreover, we prove that
the QFI produces valid indicators of nonclassicality in their
own right, having the same monotone behavior as phase-
space variance. This result shows a quantitative relation
between nonclassicality and performance in metrology. We
use this framework to obtain powerful bounds on the
concentration of nonclassicality that are applicable to general
non-Gaussian multimode states. Specialization of these tech-
niques to Gaussian states retrieves no-go theorems on the
concentration of squeezing and full hierarchies of nonclassi-
cality in the pure multimode and mixed single-mode cases.

II. PASSIVE LINEAR OPTICS AND THE
STRUCTURE OF THE RESOURCE THEORY

We work with n bosonic modes with corresponding
creation and annihilation operators a†i , ai for i ¼ 1;…; n
satisfying the commutation relations ½ai; a†j � ¼ δi;j. Quad-

ratures operators are defined by xi ¼ ð1= ffiffiffi
2

p Þðai þ a†i Þ,
pi ¼ ½1=ð ffiffiffi

2
p

iÞ�ðai − a†i Þ and may be collected into the
vector q ¼ ðq1; q2;…; q2n−1; q2nÞ ¼ ðx1; p1;…; xn; pnÞ
[53]. The canonical commutators are expressed via
½qs; qt� ¼ iΩst, where

Ω ¼ ⨁
n

i¼1

�
0 1

−1 0

�
ð1Þ

is the symplectic structure. The quadrature corresponding
to a general direction r ∈ R2n, jrj ¼ 1 in phase space
is r · q.
In a resource-theory viewpoint, one starts from the

perspective that under certain physical conditions or con-
straints, particular quantum states and processes may be
considered resources. The theory is specified by first
deciding which sets of states and operations are free,
meaning that they have no resource value. A sensible
choice of free states are those that are easily prepared in the
lab and similarly, free operations should be easily per-
formed. This structure allows for the quantification of

resources. A valid measure MðρÞ of the resource value of a
state ρ must satisfy several criteria:

(i) MðρÞ ≥ 0 and vanishes if and only if ρ is a free
state.

(ii) MðρÞ is nonincreasing when ρ undergoes a free
operation.

(iii) Convexity, i.e., MðPμpμρμÞ≤
P

μpμMðρμÞ for any
ensemble of states ρμ with probabilities pμ ≥ 0;P

μpμ ¼ 1.
Property (i) is a natural requirement for ordering resources.
Property (ii) expresses the fact that free operations cannot
create more of the resource. This can be expressed in
different versions, either for deterministic or probabilistic
transformations. AnyM satisfying (ii) is called amonotone;
we reserve the term measure for M satisfying both (i) and
(ii). Convexity is often desirable since probabilistic mixing
is typically considered a free operation.
Here, building on the approach of Ref. [52], we choose

the free states to coincide with the set Cn of classical states
on n modes consisting of convex mixtures of coherent
states. In terms of the Glauber-Sudarshan P function, we
have

Cn ≔
�Z

d2nαPðαÞjαihαj
����PðαÞ ≥ 0

�
; ð2Þ

where jαi ≔ jα1i;…; jαni is a product of coherent states,
and α ¼ ðα1;…; αnÞ ∈ Cn.
The choice of free operations is very important since it

determines what it means for one state to be more non-
classical than another. In resource theories, generally it is
not always possible to unambiguously say when one state is
a more valuable resource than another—this may depend
on the particular task being considered. However, we may
say that if ρ can be transformed into σ via a free operation,
then ρ is at least as nonclassical as σ.
The set of free unitary operations is easily motivated to

be passive linear (PL) unitaries, meaning all number-
conserving U such that ½U;

P
n
i¼1 a

†
i ai� ¼ 0 and displace-

ments DðαÞ ≔ Q
n
i¼1 e

αia
†
i−α

�
i ai . These operations are the

most general unitaries mapping the set of classical states
Cn to itself [52], which is necessary for a consistent
description of resources. Moreover, they are operationally
free in optics, for instance, where all PL unitaries can be
implemented with beam splitters and phase shifters [54],
readily accessible optical elements [55]. Displacements
are also routinely performed by mixing a state with a
large-amplitude coherent state at a beam splitter [56]. By
contrast, nonlinear operations are typically very weak and
difficult to perform coherently [57,58].
The relevant set of general (including nonunitary) free

quantum operations is not so clear cut. In principle, one can
take the largest set of classicality-preserving operations
(CPOs) [23]. However, this is unsatisfactory, lacking a full
mathematical characterization and physical motivation.
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Instead (following similar arguments for the resource
theory of coherence [59–61]), we demand that all nonuni-
tary free operations be implementable with free ancillas and
free unitaries, plus measurements and discarding of modes.
Therefore, we take the free operations to be all possible
compositions of the following elements:
(1) The addition of uncorrelated classical ancilla modes
(2) PL unitaries and displacements
(3) Destructive measurements on any set of modes
(4) Conditioning on classical randomness and coarse

graining
Note that arbitrary positive operator-valued measures
(POVMs) are permissible as long as they are destructive,
i.e., the measured modes are discarded afterwards. It is easily
checked that these operations preserve classicality. (Note that
there is no distinction between entangling and nonentangling
measurements, since beam splitters are free.) In most appli-
cations, however, only a small subset of measurements
may be feasible; e.g., when discussing Gaussian states in
Sec. VI, we limit the discussion to Gaussian measurements.
Nevertheless, all our results hold true with more restricted
measurements. The final elements in the list simply allow
for the conditioning of operations on a classical random
number generator and the forgetting of classical information.
As we discuss in detail in Appendix A, our free

operations can be described formally as quantum instru-
ments [62]. A quantum instrument I is a (possibly infinite)
collection of completely positive maps I ¼ ðA1;A2;…Þ
such that

P
m Am is trace preserving. Each Am describes

the operation resulting from a certain selected measurement
outcome m. Coarse graining can be described by forming a
new instrument I 0 whose elements A0

m are sums of distinct
partitions of the Am. The most fine-grained description of
an instrument consists of Am which each have a single
associated Kraus operator Km: AmðρÞ ¼ KmρK

†
m.

We distinguish between different classes of such oper-
ations (see Fig. 1).

(i) P0 is formed by adding a classical ancilla perform-
ing a PL unitary and tracing out a set of modes. An
instrument I ∈ P0 has a single element.

(ii) P1 is the same as P0 but with a measurement first
performed on the modes to be traced out.

(iii) Pr is the set of all protocols generated by repeated
application of P1 with r measurement rounds. Note
that feed forward is permitted.

(iv) PN ≔ ⋃∞
r¼1Pr is the set of all finite-length pro-

tocols.
Different numbers of input and output modes are

permitted in general. In principle, any number of ancilla
modes may be used at each stage. Despite this, we prove the
following simplification (see Appendix B).
Lemma 1. The number of ancilla modes for an oper-

ation in P1 can be assumed to be no larger than the number
of output modes.
Given the chosen sets of free operations, nonclassicality

may be viewed generally as a resource in situations where
one has access only to the free operations. For example,
single-mode nonclassicality is a resource for creating
entanglement via passive linear optics: There exists a free
operation creating an entangled two-mode state from an
input single-mode state ρ if and only if ρ is nonclassical
[14,22,63]. Thus, by examining the structure of these
operations, we expect to derive general statements about
the utility of nonclassical states.
What kinds of operations are allowed by taking this free

set rather than the maximal set of CPOs? The following
result puts a strong constraint on the action that our free
operations can have on coherent states; it proves that no
process in PN is able to perform coherent amplification.
Theorem 1. (No free amplification.) Every operation in

PN can be described by a set of Kraus operators fKmg
satisfying

Kmjαi ¼ cmðαÞjMmαþ δmi; ð3Þ

where α ∈ Cn, cmðαÞ ∈ C, δm ∈ Cn0 , and Mm ∈ Cn0×n has
singular values of modulus ≤1. Here, n, n0 are the numbers
of input and output modes, respectively.
(See Appendix C for full details.) Note that an operation

is determined by its action on coherent states thanks to
the P representation. This demonstrates that every free
operation can be viewed as a classical mixture of phase-
space contractions (represented by Mm) and displacements
(represented by δm).
Let us consider some examples of CPOs. Single-photon

subtraction is a nondeterministic process mapping ρ →
aρa†. It is free in our framework, being implementable in
P1 using a vacuum ancilla, beam splitter, and single-photon
detection [64,65]. On the other hand, take phase-insensitive
noiseless linear amplification, which maps jαi ↦ jgαi with
jgj > 1 [66]. No deterministic process is able to do this,
but it can be done probabilistically with a trace-decreasing
map E such that EðjαihαjÞ ¼ pjgαihgαj, where p ≤ 1=jgj2
[67]. Proposals to implement this utilize either single-
photon ancillas (which are nonclassical) [67] or nonlinear

FIG. 1. An operation in the set P1 constructed with classical
ancilla modes, a PL unitary U, and a POVM on a set of output
modes. PN is constructed by repeated concatenation of P1

elements with feed forward depending on each measurement
outcome m. P0 is the special case of P1 where the outcome m is
not recorded.
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media [68]. In fact, Theorem 1 proves that the operation is
not in PN; i.e., no free implementation is possible.
Theorem 1 also has implications for the kinds of

measures of nonclassicality that are expected in the
resource theory. Every monotone under CPOs is neces-
sarily a monotone under the subset PN, but choosing a
smaller set of free operations may in principle allow for
more monotones. To gain some insight, consider a cat state
jψcðαÞi ∝ jαi þ j − αi. Suppose we ask for a process
taking jψcðαÞi to jψcðα0Þi. Every operation in PN is
constrained to output jαj0 ≤ jαj, while the above amplifi-
cation process gives a CPO such that jαj0 > jαj with
nonzero probability.
Some known measures of nonclassicality will fail to

capture this distinction. For example, one can define the
distance to the set of classical states infσ∈CnDðρ; σÞ with
some suitable distance measure D [19,21]. Taking the trace
distance Dðρ; σÞ ¼ 1

2
Trjρ − σj, we obtain a monotone

known as the “nonclassical distance” [19]. As shown in
Ref. [69], for jαj ≫ 1, the dependence on α becomes
negligible and saturates at 1=2, so its monotonicity gives
little information about the contractive behavior. This fact is
essentially due to the near orthogonality of the branches in
that limit. The same is true for the “entropic entanglement
potential” defined as the entropy of entanglement created at
a beam splitter, now saturating at 1 [22]. The nonclassical
depth defined by Lee [20] (namely, the minimal amount of
thermal noise that must be added to a state to make it
classical), in fact, has its maximal value of 1 for all α [70].
Even more striking, the nonclassical distance is found to
be decreasing with jαj in the case of an odd cat state
jαi − j − αi [69]. Hence, we may ask what kinds of
measures truly capture the size of jαj in such superpositions.

III. PHASE-SPACE QUANTUM VARIANCE

We propose measures of nonclassicality which capture
the separation in phase space of branches of a super-
position. In the cat state example, the magnitude of α is an
indicator of the macroscopic distinguishability of the
branches of the superposition and, hence, of the quantum
“macroscopicity” of the state [71,72]. This property is
captured by the maximal variance over all quadratures
[73,74]. For a single-mode pure state jψi, we define

V1ðjψiÞ ≔ max
r∈R2∶jrj¼1

Vðjψi; r · qÞ − 1

2
; ð4Þ

where Vðρ; AÞ ≔ Tr½ρA2� − Tr½ρA�2 is the variance of
observable A in the state ρ. By definition, V1 is invariant
under phase rotations. Moreover, it is a faithful witness of
nonclassicality, vanishing if and only if jψi is classical.
This result follows from the Heisenberg-Robertson uncer-
tainty principle [75]: For any quadrature x and its conjugate
momentum p, Vðjψi; xÞVðjψi; pÞ ≥ 1=4, so V1ðjψiÞ ¼ 0
is equivalent to the inequality being saturated with all

variances equal to 1=2; this means jψi must be Gaussian
[76] and, moreover, a coherent state.
Alternatively, one can consider the total variance [77],

which is related to another measure of macroscopicity [78]:

W1ðjψiÞ ≔ Vðjψi; xÞ þ Vðjψi; pÞ − 1: ð5Þ

This quantity is again non-negative and is found to be
invariant under phase rotations. W1 also vanishes if and
only if jψi is classical. This result follows from using
the uncertainty relation to write W1ðjψiÞ ≥ Vðjψi; xÞ þ
1=½ð4Vðjψi; xÞ� − 1 for any quadrature x, with equality if
and only if jψi is Gaussian. The minimum of the right-hand
side is zero attained at Vðjψi; xÞ ¼ 1=2.
For an n-mode pure state, we can extend both quantities

by considering the covariance matrix defined for an
arbitrary mixed state ρ as

VstðρÞ ≔ Tr

�
1

2
fqs; qtgρ

	
− Tr½qsρ�Tr½qtρ�: ð6Þ

In this description, PL unitaries correspond to the set
of 2n × 2n orthogonal symplectic matrices R ∈ KðnÞ ≔
Oð2nÞ ∩ Spð2nÞ ≅ UðnÞ, namely, RTR ¼ RRT ¼ I and
RTΩR ¼ Ω [53]. For any phase-space direction r, we have
Vðρ; r · qÞ ¼ rTVðρÞr.
It follows that V1 is identified with the maximal

eigenvalue of V − I=2. To capture multimode structure,
we consider the maximal variance over all linear subspaces
in phase space of dimension k ≤ 2n:

VkðjψiÞ ≔ max
T∶ dim T¼k

TrT ½VðjψiÞ − I=2�; ð7Þ

where TrT denotes a trace of the matrix restricted to
subspace T. Vk is manifestly invariant under free unitaries,
and clearly V1 ≤ V2 ≤ … ≤ V2n; all Vk vanish exactly on
classical states. V1 picks out the direction with largest
variance, while V2n is the total variance over the entire
phase space and coincides with the macroscopicity measure
of Ref. [78]. Vk can be calculated as the sum of the k largest
eigenvalues v1 ≥ … ≥ v2n of V − I=2: Vk ¼

P
k
i¼1 vi [79].

For Wk, we use the concept of a symplectic subspace
[80], essentially the 2k-dimensional subspace of the full
phase space R2n corresponding to a choice of k ≤ n
modes. Every symplectic subspace can be obtained by
applying a rotation R ∈ KðnÞ to the subspace spanned by
the canonical planes for ðx1; p1Þ;…; ðxk; pkÞ. We denote
the number of modes in a symplectic subspace S by
k ¼ jSj ¼ dimS=2. Then,

WkðjψiÞ ≔ max
S∶ jSj¼k

TrS½VðjψiÞ − I=2�: ð8Þ

Wk is again invariant under free unitaries, we have
W1 ≤ … ≤ Wn, and eachWk vanishes exactly on classical
states. Also note that Wk ≤ V2k and Wn ¼ V2n. As shown
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in Appendix D, we haveWk ¼
P

k
i¼1 wi, where w1 ≥ …wn

are the doubly degenerate eigenvalues of the matrix

WðjψiÞ ≔ 1

2
½VðjψiÞ þ ΩVðjψiÞΩT − I�: ð9Þ

The covariance matrix is additive under tensor pro-
ducts Vðρ ⊗ σÞ ¼ VðρÞ ⊕ VðσÞ, so combining the sys-
tems amounts to appending one list of vi to the other
and reordering. We prove in Appendix H that the phase-
space variances Vk, Wk are monotones for pure state
transformations.
Theorem 2. (Monotonicity of phase-space variances for

pure states.)
(a) Let jψi ↦ jϕi with probability p under P1, then

pVkðjϕiÞ ≤ VkðjψiÞ; ∀ k ≤ 2n; ð10Þ
where n is the number of output modes. [If 2k is larger
than the number of input modes, then we take
VkðjψiÞ ¼ V2nðjψiÞ.]

(b) Let jψi ↦ jϕmi with probabilities pm under PN, thenX
m

pmV2nðjϕmiÞ ≤ V2nðjψiÞ: ð11Þ

The same inequalities hold for Wk, k ≤ n.
Note that the total variance V2n is shown to be a stronger

monotone than the other Vk. V2n is a full ensemble monotone
for arbitrary-length adaptive protocols, while feed forward
presents an obstacle to the proof of monotonicity for the
remaining quantities. An upper bound on the probability p
of a transformation with P1 follows from Eq. (10):

p ≤ min
k¼1;…;2n

P
k
i¼1 viðjψiÞP
k
i¼1 viðjϕiÞ

; ð12Þ

analogous to the condition in entanglement theory derived
by Vidal [81]. Indeed, Eq. (10) can be recast as a weak
majorization relation: pvðjϕiÞ ≺w vðjψiÞ (see Fig. 2). A
bound of the same form holds with vi replaced by wi.
To extend the measures to mixed states, we use a convex

roof construction. A state ρ can generally be expressed in
many different ways as a classical mixture of pure states:
ρ ¼ P

μ pμjψμihψμj, pμ ≥ 0,
P

μ pμ ¼ 1. (We use sum
notation for convenience but must bear in mind that a
continuous integral may be necessary in general.) The
convex roof of Vk is the minimal average value of its pure
state components optimized over all possible decomposi-
tions of ρ:

V̂kðρÞ ≔ inf
fpμ;jψμig

X
μ

pμVkðjψμiÞ: ð13Þ

(We write inf rather than min since the noncompactness
of the state space makes it unclear whether the infimum is
attained.)

V̂k of course satisfies property (iii), being convex by
construction. In addition, property (iii) ensures that V̂k
vanishes if ρ is classical. As we show in Appendix E, the
converse is also true, but the proof is surprisingly nontrivial
due to the infimum in the definition. We show the converse
by proving that the trace distance between ρ and Cn is upper
bounded by V̂1. Thus, V̂k is a faithful witness of non-
classicality. The same result holds for Ŵk.
Furthermore, as we show in Appendix H, monotonicity

carries over from the pure state case thanks to the convex
roof construction. Thus, V̂k and Ŵk are valid measures of
nonclassicality for arbitrary states.
One may interpret these measures in terms of quantum

fluctuations of quadratures. In the pure state case, they
measure the size of quadrature fluctuations above zero-
point motion. With mixed states, one must ensure that the
quantified fluctuations are quantum in nature and not due to
classical uncertainty—the convexity property (iii) ensures
that this is the case.

IV. METROLOGY MONOTONES

Unfortunately, V̂k and Ŵk are in general hard to
calculate, as the lack of a closed form necessitates numeri-
cal optimization. Hence, we provide useful lower bounds
using the quantum Fisher information. In general, the QFI
is defined not for a single state but for a family of states ρθ
parametrized by θ ∈ R and measures the rate of change of
ρθ with respect to θ [8]. When the evolution is generated by
an observable H via ρθ ¼ e−iθHρeiθH, the QFI of a state ρ
with respect to H may be defined by Fðρ; HÞ ≔
−∂2

θFidðρ; ρθÞjθ¼0, where Fidðρ; σÞ ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp
is the

fidelity between two states. (For later convenience, our QFI
is a factor of 4 less than the usual definition.)
With multiple observables, a QFI matrix F can be

formed. We are interested in the quadratures as generators,
and so we take matrix elements FstðρÞ ≔ 1

4
Tr½1

2
fLs; Ltgρ�,

s; t ¼ 1;…; 2n, where Ls is the symmetric logarithmic

FIG. 2. An illustration of the upper bound (12) on the
probability p of reaching a state jϕi from jψi under P1. The
curve of VkðjϕiÞ may lie above that of VkðjψiÞ, but it must lie
below it when rescaled by p.
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derivative defined implicitly by 1
2
fLs; ρg ¼ −i½qs; ρ�. A

closed expression can be given in terms of the eigenvectors
jψ ii and eigenvalues λi of ρ:

Fst ¼
1

2

X
i;j

ðλi − λjÞ2
λi þ λj

hψ ijqsjψ jihψ jjqtjψ ii: ð14Þ

By linearity with respect to the observables, the QFI of
any quadrature r · q is obtained with the quadratic form
Fðρ; r · qÞ ¼ rTFðρÞr. The connection with the above
measures is the equality for pure states FðjψiÞ ¼ VðjψiÞ.
For mixed states, the convexity of the QFI [82] again

ensures that classical contributions to the variance are not
counted. Measures might be constructed analogously to
VkðjψiÞ by taking traces of F − I=2 over linear subspaces.
However, the resulting quantities can be negative. To fix
this, we take only the positive part by defining

F kðρÞ ≔ max
T∶ dim T¼k

TrT ½FðρÞ − I=2�þ; ð15Þ

where ½M�þ ¼ ðjMj þMÞ=2 denotes the positive part of
matrixM. In terms of the eigenvalues f1 ≥ f2… ≥ f2n ≥ 0

of ½F − I=2�þ, we have F k ¼
P

k
i¼1 fi.

Analogous to Wk, we define

GkðρÞ ≔ max
S∶ jSj¼k

TrS½FðρÞ − I=2�þ; ð16Þ

and Gk ¼
P

k
i¼1 gi, where g1 ≥ … ≥ gn ≥ 0 are the doubly

degenerate eigenvalues of

GðρÞ ≔ 1

2
½FðρÞ þΩFðρÞΩT − I�þ: ð17Þ

These quantities provide useful lower bounds: F k ≤ V̂k,
Gk ≤ Ŵk. This is because the convex roof is the largest
convex function reducing to a specified function on pure
states [82]. (Note that while the QFI with respect to a
single direction is the convex roof of the variance [83],
this does not hold for the eigenvalues of the QFI matrix.)
It also follows that they vanish for all classical states.
The nonclassicality-witnessing property of the QFI has
been noted in Ref. [84]. Furthermore, F k is more directly
accessible in experiments, there being a number of
practical techniques for measuring and lower bounding
the QFI [85–87].
Remarkably, F k and Gk are valid monotones, and so they

put similar constraints on state transformations.
Theorem 3. (Monotonicity of QFI.)

(a) Let ρ ↦ σ with probability p under P1, then

pF kðσÞ ≤ F kðρÞ; ∀ k ≤ 2n: ð18Þ

Equivalently, pf ðσÞ ≺w f ðρÞ.

(b) Let ρ ↦ σm with probabilities pm under PN, then

X
m

pmF 2nðσmÞ ≤ F 2nðρÞ: ð19Þ

(c) Let ρ ↦ σ under P0, then

fiðσÞ ≤ fiðρÞ; ∀ i ≤ 2n: ð20Þ

The same inequalities hold for Gk, gk, k ≤ n.
Given the operational meaning of the QFI, Theorem 3

has immediate consequences for metrology:
A performance advantage in sensing quadrature dis-
placements cannot be gained with passive linear optics,
measurements, and classical resources either determin-
istically or on average in the case of a probabilistic
process.

We see in the next section that this these constraints
can be further refined in the context of nonclassicality
concentration.
Note also that while F k and Gk are monotones, they

are not strictly full measures of nonclassicality. This is
because they do not satisfy condition (i)—they can be zero
for some nonclassical states. An example is given by the
state ρ ¼ ð1 − pÞP∞

n¼1 p
n−1jnihnj (a thermal state with the

vacuum term removed). We find F kðρÞ ¼ 0 when p > 1=2
(see Appendix G), but this state is always nonclassical [88].
Nevertheless, the monotonicity enables us to still treat

these quantities as valid and potentially highly useful
quantifiers of nonclassicality. An analogous situation
occurs in entanglement theory, where local operations
and classical communication (LOCC) operations are con-
sidered free. Here, negativity [89,90]—a common quanti-
fier of entanglement—is known to be a monotone under
LOCC but may vanish for certain entangled states [90].

V. CONCENTRATION OF NONCLASSICALITY
AND ITS IMPLICATIONS FOR METROLOGY

A. Concentration of nonclassicality

The monotonicity of V̂2n, Ŵn, F 2n, Gn immediately
implies that the total quantum variance cannot increase on
average; i.e., the total amount of nonclassicality is not
increased by a free operation. However, the monotonicity
of V̂k, Ŵk, F k, Gk for general k offers a family of more
refined constraints.
Specifically, consider the task of nonclassicality con-

centration, where a process is to output a subset of modes
with higher values of nonclassicality than they originally
had, while the remaining modes reduce in value. The above
constraints specify that such a task can be performed only
with a certain maximal probability.
To illustrate this, consider the following scheme for

“growing cat states” [91]. Starting with a pair of cat
states jψcðαÞi⊗2 with jαj ≫ 1, we have W1 ¼ jαj2,
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W2 ¼ 2jαj2. Interacting the modes at a 50∶50 beam splitter
gives j ffiffiffi

2
p

αij0i þ j0ij ffiffiffi
2

p
αi þ j0ij − ffiffiffi

2
p

αi þ j − ffiffiffi
2

p
αij0i.

Performing a measurement projecting one mode onto the
vacuum, with probability 1=2 the other mode becomes
jψcð

ffiffiffi
2

p
αÞi, i.e., W1 ¼ 2jαj2 has doubled. While this was

observed to be the optimal probability for outputting a
double-sized cat state for the scheme in Ref. [91], Theorem
2(a) proves that in fact no other protocol can perform better.
Theorem 3(c) gives additional, stronger constraints for

P0 transformations. They highlight that there is a strict
hierarchy in terms of the power of the different sets of free
operations: Concentration of nonclassicality is impossible
without measurement. (Theorem 4 below extends this
statement to the full PN set of operations for the case of
Gaussian states.)

B. Metrological implications

We begin with the operational interpretation of the
relevant quantities. First, F 1 represents the optimal per-
formance of a state for sensing a displacement in any single
direction (i.e., optimized over all directions in phase space).
More generally, F k indicates the optimal performance for
simultaneous sensing of k orthogonal directions, where an
equal weighting is given to each direction. Note that the
trace of the QFI is a commonly used figure of merit in
multiparameter metrology [92]. A similar interpretation
holds for Gk, where the 2k directions are now also required
to form a symplectic basis (i.e., k orthogonal conjugate
pairs of directions). Theorem 3(a) may thus be rephrased as
the following statement:

With only passive linear optics, measurements, and
classical resources, the conversion of a state which is
useful for multiparameter metrology into one which is
more useful for estimating fewer parameters, necessarily
has a limited probability of success.
Moreover, the eigenvalues fi of the QFI matrix may be

understood as the ability to estimate displacements along
the ith “best” direction in phase space for a given state; i.e.,
f1 is the most sensitive direction, f2 is the second most
sensitive, and so on. Let us refer to the corresponding
directions in phase space as principal directions (note that
they form a set of orthogonal axes). Theorem 3(c) gives a
stronger constraint for P0 transformations than the first
parts of the theorem:

With only passive linear optics and classical resources,
the sensitivity to displacements along any principal
direction cannot increase.

VI. GAUSSIAN STATES

Gaussian states [53,93,94] are fully determined by their
first and second quadrature moments. Since displacements
are free operations, here we lose no generality by neglect-
ing the first moments TrðρqsÞ and characterizing states
only by their covariance matrices. A simple condition for

nonclassicality of Gaussian states is known: ρ is non-
classical if and only if the smallest eigenvalue of VðρÞ
satisfies vmin < 1=2 [95]. This “squeezing criterion” simply
tests whether there exists a quadrature that exhibits less
noise than the vacuum.
It may be shown (see Appendix I) that for Gaussian

states, F ¼ 1
4
ΩV−1ΩT . Hence, all of the above constraints

on state transformations can be expressed in terms of
eigenvalues of V. Moreover, the squeezing criterion implies
that f1 ¼ 0 if and only if ρ is classical; unlike the general
case, fi, gi and F k, Gk are valid measures of nonclassicality
for Gaussian states.
We look at the case where input and output both have n

modes. Lemma 1 then says that the ancilla used in a P1

instrument can be assumed to have n modes (the same
conclusion was reached via a different argument in
Ref. [51]). While P0 necessarily preserves Gaussianity,
measurements and feed forward must be constrained. A
Gaussian measurement is described by POVM elements of
the form EðαÞ ¼ π−nDðαÞΛDðαÞ†, where Λ is a Gaussian
state [93]. We constrain the conditional feed-forward
operations to be displacements with linear gain (such as
those in Ref. [68]). We refer to the resulting Gaussian set of
free operations as GPN. The resulting resource theory of
squeezing is a subresource theory of nonclassicality.
Theorem 4. (No concentration of nonclassicality for

Gaussian states.) Let Gaussian ρ ↦ σ under GPN with
nonzero probability, then

fiðσÞ ≤ fiðρÞ; ∀ i ≤ 2n; ð21Þ

and similarly for gi, i ≤ n.
This result shows that concentration of nonclassicality

is impossible in the Gaussian case (see Appendix H). It
echoes similar no-go results about distillation of resources
in Gaussian settings [96–99].
We now determine some necessary and sufficient con-

ditions for Gaussian state transformations. The single-mode
case is particularly simple: Since Kð1Þ ≅ Uð1Þ ≅ SOð2Þ, V
can be diagonalized with a PL unitary R ∈ Kð1Þ. Hence,
we need to only keep track of its eigenvalues vþ ≥ v−. We
define three measures of nonclassicality:

N 1 ≔ max f1 − 2v−; 0g; ð22Þ

N 2 ≔
N 1

2vþ − 1
; ð23Þ

N 3 ≔ vþN 2 ¼
N 1

2 − 1
vþ

: ð24Þ

Theorem 5. (Single-mode Gaussian conversion.)
(a) Gaussian ρ ↦ σ under P0 if and only if N 1ðσÞ ≤

N 1ðρÞ and N 2ðσÞ ≤ N 2ðρÞ.
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(b) Gaussian ρ ↦ σ under GPN with nonzero probability
if and only if N 1ðσÞ ≤ N 1ðρÞ and N 3ðσÞ ≤ N 3ðρÞ.

(See Appendix J for the proof.) N 1 is simply a measure
of squeezing, having minimum value zero for classical
states and maximum 1 for infinitely squeezed states. N 2,
N 3 place limits on the amount of noise that can be removed
from the larger-variance quadrature. With P0, noise is best
removed by mixing with a coherent state at a beam splitter.
With GPN, one can perform a homodyne measurement on
the ancilla, thereby reducing the uncertainty in one direc-
tion. In both cases, a reduction in noise comes with an
associated loss of squeezing. The region of accessible states
is illustrated in Fig. 3.
Under P0, a single-mode pure state jψi cannot be sent to

any pure state other than itself or a coherent state. Since the
uncertainty relation is saturated, i.e., vþv− ¼ 1=4, we have
N 3ðjψiÞ ¼ 1=2, and N 1 becomes the only nontrivial
monotone under GPN. Thus, jψi can be transformed under
GPN into any less-squeezed state ρ, i.e., with a lower value
of N 1.
For n-mode pure states, we again have the simplification

that V is diagonalized by R ∈ KðnÞ:

RTVR ¼ ⨁
n

i¼1

1

2

�
si 0

0 s−1i

�
; ð25Þ

where the s1≥…≥ sn≥1 are squeezing parameters [100].
Physically, jψi can be disentangled into n-independent
squeezed states js1ijs2i;…; jsni by a PL unitary. Thus, full
conditions for transformations between Gaussian pure
states can be given.

Theorem 6. (n-mode pure Gaussian conversion.) A
Gaussian pure state jψi ↦ jϕi under GPN if and only
if siðjϕiÞ ≤ siðjψiÞ ∀ i.
The necessity of the inequalities follows from Theorem 4

after noting that fi ¼ si=2 for i ¼ 1;…; n. Conversely,
given the inequalities, the above observation on single-
mode pure state transformations shows that an operation
effecting the transformation exists: diagonalize jψi with a
PL unitary, operate on each squeezed mode individually,
then apply a suitable PL unitary to get jϕi.

VII. CONCLUSIONS

Recent advances in quantum resource theories have
led to sophisticated tools for identifying and quantifying
nonclassicality—features of quantum information that
distinguish it from classical counterparts. This article adapts
these tools to identify an operational resource theory of
nonclassicality in the continuous-variable regime. Our
approach is to take those classicality-preserving operations
which are considered comparatively easy to engineer in
experimental conditions, namely, passive linear unitaries and
measurements with feed forward. Quadrature variances and
quantum Fisher information emerge naturally within this
framework as quantifiers of nonclassicality. These then
provide strong and general bounds regarding concentration
of quantum resources. In the Gaussian regime, our frame-
work reveals a hierarchy of nonclassicality beyond squeez-
ing. Meanwhile, no-go theorems for squeezing concentration
fall out as corollaries, providing a new perspective on recent
results in Gaussian resources theories [99].
Another noteworthy point is the significance of quantum

Fisher information. Commonly used as a measure of
performance in parameter estimation, its emergence here
indicates an operational interpretation of continuous-variable
nonclassicality as a resource for metrological applications.
While not every nonclassical state is useful for metrology,
we show that ranking one state as more nonclassical than
another implies a higher precision in sensing quadrature
displacements. Meanwhile, these practical consequences
directly lead to experimental means of verifying nonclassi-
cality within a given system, without resorting to full tomo-
graphy. Quantum Fisher information has also recently been
adopted to quantify the macroscopicity of quantum systems
[74,86,101]. This connection hints that in capturing an
operational form of nonclassicality for continuous-variable
systems, we may naturally recover innate notions of macro-
scopic quantum effects.
We expect our results to lay the foundations for

a systematic understanding of nonclassicality in the
continuous-variable regime. Certainly many exciting ques-
tions remain. One direction is to extend our result to
independent and identically distributed scenarios, where
one seeks to convert N copies of a quantum state to another
without additional sources of nonclassicality—in the limit
of large N. Could we use these ideas to build a hierarchy of

FIG. 3. The region of achievable states from a single-mode
Gaussian state ρ under free operations. The light shaded region is
accessible under P0, while GPN transformations also access the
dark shaded region. The constraints provided by the monotones
N i are shown. The dotted curve delimits the physical states
satisfying the uncertainty relation vþv− ≥ 1=4.
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nonclassicality for general, possibly non-Gaussian, continu-
ous-variable states? Progress in this direction will ultimately
help us fully characterize the distinguishing features of
nonclassical light.
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APPENDIX A: QUANTUM-INSTRUMENT
DEFINITION OF FREE OPERATIONS

Here we give a formal quantum-instrument definition of
the free operations. We employ the concepts which were
introduced in Ref. [103] to study local operations and
classical communication. As we mention in the main text, a
quantum instrument is a family of completely positive (CP)
maps I ¼ ðAmÞm such that

P
mAm is trace preserving.

Although the inputs and outputs may have different
numbers of modes, we assume that each CP map in a
given instrument has the same sized inputs and outputs.
We say that I 0 ¼ ðA0

lÞl is a coarse graining of I ¼
ðAmÞm when the index set of I is partitioned into sets Σl
such that A0

l ¼
P

m∈Σl
Am.

Any instrument I ∈ P0 has a single element: I ¼ ðAÞ.
Given a set of input system modes S and ancilla modes A,
we pass the state ρS ⊗ ρA, where ρA is classical through a
PL unitary U and trace out some set of modes A0 to give an
output σS0 . Hence,

σS0 ¼ AðρSÞ ¼ TrA0 ½UðρS ⊗ ρAÞU†�: ðA1Þ

For P1, we let an arbitrary POVM fEmgm; Em ≥ 0,P
m Em ¼ I act on A0. Then,

AmðρAÞ ¼ TrA0 ½Em
A0UðρS ⊗ ρAÞU†�: ðA2Þ

To describe multiple rounds with feed forward, we intro-
duce the following terminology: I 0 ¼ ðA0

lÞl is PL linked to
I ¼ ðAmÞm if there exists a collection of J m ¼ ðBljmÞl ∈
P1 such that I 0 is a coarse graining of ðBljm∘AmÞm;l.

Operationally, I is performed and the measurement out-
come retained; a new P1 operation is then performed
conditional on the previous measurement; finally, some
forgetting of classical information may happen.
Finally, we then say that I ∈ Pr for r ≥ 2 if I is PL

linked to an element of Pr−1. The set of all finite-length
protocols is PN ¼ ⋃∞

r¼1Pr. Note that while coarse graining
can be performed after each measurement, it is always
possible to assume that this happens only at the end of the
protocol. In addition, every protocol can be described as a
coarse graining of a fine-grained instrument in which each
Am has a single Kraus operator, AmðρÞ ¼ KmρK

†
m.

APPENDIX B: MAXIMUM REQUIRED
ANCILLA SIZE

We first establish a useful statement about the structure
of PL unitaries.
Lemma 2. Let U be a PL unitary taking two sets of

input modes A, B of sizes nA, nB and outputting two sets C,
D of sizes nC, nD. There exists a decomposition ofU into b
beam splitters taking A1B1 → C1D1;…; AbBb → CbDb,
where b ¼ minfnA; nB; nC; nDg, and initial and final PL
unitaries XA, XB, YC, YD acting on each group separately.
There remaining modes are transferred between groups
(see Fig. 4).
Proof.—This is a direct consequence of a matrix decom-

position result known as the cosine-sine (CS) decomposi-
tion [104]. In its most general form, this states that, given
partitions n ¼ nA þ nB ¼ nC þ nD, a matrixU ∈ UðnÞ can
be written as U ¼ YDX, where

X ¼
�
XA

XB

�
; Y ¼

�
YC

YD

�
; ðB1Þ

D ¼

0
BBBBBBBBB@

C S

I OT
s

Oc I

S −C
Os I

I OT
c

1
CCCCCCCCCA
; ðB2Þ

FIG. 4. The decomposition of Lemma 2 for the case
ðnA; nB; nC; nDÞ ¼ ð3; 2; 2; 3Þ.
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C ¼ diagðc1;…; cbÞ; 1 ≥ c1 ≥ … ≥ cb ≥ 0; ðB3Þ

S ¼ diagðs1;…; sbÞ; 0 ≤ s1 ≤ … ≤ sb ≤ 1; ðB4Þ

C2 þ S2 ¼ I: ðB5Þ

Here, XA, XB, YC, YD are unitaries of respective dimen-
sions nA, nB, nC, nD, and D is shown partitioned into
blocks of nC, nD rows and nA, nB columns. The identity
matrices I are not all the same size, and Oc, Os are
rectangular matrices of zeroes whose sizes depend on the
partition.
X and Y correspond to the initial and final “local”

unitaries. To interpret the form of D, first note that the sub-
block containing the C and S matrices corresponds to beam
splitters of reflectivities c2i between the first b modes of A
and B. The remaining sub-blocks correspond to direct
transferral of modes from A → C and B → D, as well as
swapping A → D and B → C. □

Now consider a P1 operation taking input system S and
ancilla A to output system S0 and ancilla A0, where a final
measurement is performed on A0. We first show that if
nA > nS0 , then there are ancilla modes which do not interact
with the system. Later, we show that these modes are
unnecessary. (In the following, we can ignore the local PL
unitaries XS, XA, YS0 , YA0 acting on each group without loss
of generality.) Suppose first that nS ≥ nS0 . Then, by
applying Lemma 2 to the input groupings S, A and output
groupings S0, A0, at most nS0 beam splitters are needed. So
only nS0 of the modes in A are required for the beam
splitters, while the remainder go directly to A0. If instead
nS ≤ nS0 , then only nS beam splitters are needed. nS of the
outputs from the beam splitters go to S0; to make up the
remainder, nS0 − nS modes from Amust be transferred to S0.
So in total, no more than ðnS0 − nSÞ þ nS ¼ nS0 modes are
needed for A, apart from those going directly into A0.
Suppose that nA > nS0 . By the above argument, we can

divide A into two sets of modes B, C and similarly A0 into
B0, C0, such that B interacts with S via beam splitters with
possible transferral of modes, C maps directly onto C0, and
B0 contains all other measured modes (see Fig. 5). Since the
ancilla is initially classical, we can write

ρBC ¼
Z

d2nC0 γPðγÞρBjγ ⊗ jγihγjC; PðγÞ ≥ 0; ðB6Þ

where jγi is a coherent state on C. Let σS0B0jγ be the result of
applying the PL unitary to ρS ⊗ ρBjγ and transferring any
necessary modes from S to B0 and B to S0. This trans-
formation describes the dynamics of all modes apart fromC
going to C0. Thus, with a POVM fEm

B0C0g, the output state is

pmσS0jm ¼ TrB0C0

�
Em
B0C0

Z
d2nC0 γPðγÞσS0B0jγ ⊗ jγihγjC0

	

ðB7Þ

¼ TrB0

�Z
d2nC0 γPðγÞFm

B0jγσS0B0jγ

	
; ðB8Þ

where Fm
B0jγ ≔ hγjC0Em

B0C0 jγiC0 defines a new POVM for

each γ. Thus, we see that the C modes are unnecessary
and just result in a classical mixture of different P1

protocols.

APPENDIX C: KRAUS OPERATORS FOR PN

First note that every quantum operation is uniquely
determined by its action on coherent states due to the P
representation and the linearity of operations. So, we need
to consider only fine-grained elements of PN in which all
ancilla states are initially pure (i.e., coherent states) and all
measurements are rank-1 POVMs. We look at a single such
element of P1 with input jαiS and initial ancilla state jβiA.
Before the measurement, we have the state jα0iS0 jβ0iA0 ,
where

�
α0

β0

�
¼

�
U11 U12

U21 U22

��
α

β

�
; ðC1Þ

where U11 is nS0 × nS, U12 is nS0 × nA, and so on. It is
immediately clear from the decomposition in Lemma 2
that U11 has singular values of modulus ≤1. Hence,
α0 ¼ U11αþ U12β, where U11 is a contraction, and the
displacement by U12β is independent of the input α.
Since jα0iS0 jβ0iA0 is uncorrelated, any measurement on A0

has no backaction on S0. Suppose a rank-1 POVM has
outcome m projecting A0 onto jψmi, then the Kraus
operator determining the mapping from input to output is

KmjαiS ¼ cmðαÞjU11αþ U12βiS0 ; ðC2Þ

where cmðαÞ ¼ hψmjU21αþ U22βi.
Finally, it is clear that the Kraus operator form remains

the same under multiple rounds with feed forward, where
the contractions and displacements applied may depend on
previous measurement outcomes, hence, the stated form of
general Km for PN.

FIG. 5. An example of unnecessary ancilla modes (C, C0) for a
P1 operation.
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APPENDIX D: EIGENVALUE EXPRESSION
FOR Wk

W has a particular structure in terms of 2 × 2 blocks,

W ¼

0
BB@

W11 W12 …

W21 W22 …

..

. ..
. . .

.

1
CCA; Wij ¼

�
Wij

R −Wij
I

Wij
I Wij

R

�
;

ðD1Þ
where each diagonal block has Wii

I ¼ 0. This structure
lets us use an isomorphism [105] onto a complex vector
space of half the dimension: We form W̃ ∈ Cn×n with
elements W̃ij ≔ Wij

R þ iWij
I , and similarly, a vector r ¼

ðr1;x; r1;p; r2;x; r2;p;…Þ ∈ R2n is mapped to r̃ ¼ ðr1;x þ
ir1;p; r2;x þ ir2;p;…Þ ∈ Cn. Then, r̃†W̃ r̃ ¼ rTWr; in addi-
tion, an orthogonal basis in Cn corresponds to a symplectic
basis in R2n. Therefore,

Wk ¼ max
T∶ dim T¼k

TrTW̃; ðD2Þ

where the maximization is over all subspaces T of complex
dimension k.
Note that W̃ is Hermitian and positive semidefinite; the

Courant-Fischer theorem [79] states that its eigenvalues
w1 ≥ w2 ≥;…; wn ≥ 0 can be obtained by

wi ¼ max
T∶ dim T¼i

min
c∈T∶ jcj¼1

c†W̃c ðD3Þ

¼ max
S∶ jSj¼i

min
r∈S∶ jrj¼1

rTWr; ðD4Þ

and moreover, Wk ¼
P

k
i¼1 wi. The fact that wi are the

doubly degenerate eigenvalues of W is evident from
inverting the isomorphism to map from the diagonal
form of W̃ back to the real 2n-dimensional matrix
diagðw1; w1; w2; w2;…Þ.

APPENDIX E: VANISHING OF CONVEX ROOF

Here we show that V̂kðρÞ ¼ 0 ⇒ ρ ∈ Cn. This is not
straightforward because of the infimum in the definition.
We start with an inequality showing that small V̂kðρÞ
implies ρ is close to Cn. We use the nonclassical distance
as defined in Ref. [19]:

δðρÞ ≔ inf
σ∈Cn

DTrðρ; σÞ; ðE1Þ

where DTrðρ; σÞ ≔ 1
2
Trjρ − σj is the trace distance [106].

Lemma 3. For an n-mode pure state jψi, there exists a
classical pure state jϕi such that

DTrðjψi; jϕiÞ2 ≤ nV1ðjψiÞ: ðE2Þ

Proof.—We initially assume for simplicity that jψi has
vanishing first moments. Choose a set of modes with
quadratures xi, pi such that x1 is the optimal quadrature
with V1ðjψiÞ ¼ Vðjψi; x1Þ − 1=2. Defining number oper-
ators Ni ¼ ðx2i þ p2

i − 1Þ=2 and N ¼ P
n
i¼1Ni, we have

hNi ¼ 1

2

Xn
i¼1

½Vðjψi; xiÞ þ Vðjψi; piÞ − 1� ðE3Þ

≤ n

�
Vðjψi; x1Þ −

1

2

�
ðE4Þ

¼ nV1ðjψiÞ: ðE5Þ

The overlap between jψi and the n-mode vacuum state is
jh0jψij2¼PðN¼0Þ. By writing hNi¼P∞

k¼0kPðN¼kÞ≥P∞
k¼1PðN¼kÞ, we obtain

jh0jψij2 ¼ 1 − PðN ≥ 1Þ ≥ 1 − hNi ≥ 1 − nV1ðjψiÞ:
ðE6Þ

For pure states, the trace distance simplifies to DTrðjψi;
j0iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jh0jψij2

p
[106], hence, DTrðjψi; j0iÞ2 ≤

nV1ðjψiÞ. Finally, in general we take jϕi to be the coherent
state with the same first moments as jψi. □

If V̂1ðρÞ ¼ 0, then there exists a sequence of pure
state decompositions such that ρ ¼ P

μ pα;μjψα;μihψα;μj
for each α ¼ 0; 1; 2;…, and limα→∞

P
μpα;μV1ðjψα;μiÞ¼0.

So, for any ϵ > 0, there exists α� such that

X
μ

pα;μV1ðjψαiÞ ≤ ϵ; ∀ α ≥ α�: ðE7Þ

Applying Lemma 3, we find a sequence of classical jϕα;μi
such that

X
μ

pα;μDTrðjψα;μi; jϕα;μiÞ2 ≤ nϵ; ∀ α ≥ α�: ðE8Þ

The Cauchy-Schwarz inequality gives

�X
μ
pα;μDTrðjψα;μi; jϕα;μiÞ

�
2

¼
�X

μ

ffiffiffiffiffiffiffiffi
pα;μ

p
×

ffiffiffiffiffiffiffiffi
pα;μ

p
DTrðjψα;μi; jϕα;μiÞ

�
2

ðE9Þ

≤
�X

μ

pα;μ

��X
μ

pα;μDTrðjψα;μi; jϕα;μiÞ2
�

ðE10Þ

¼
X
μ

pα;μDTrðjψα;μi; jϕα;μiÞ2: ðE11Þ

The convexity of the trace distance [106] then gives
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DTrðρ; σαÞ2 ≤
�X

μ
pα;μDTrðjψα;μi; jϕα;μiÞ

�
2

≤ nϵ;

ðE12Þ

where σα ≔
P

μ pα;μjϕα;μihϕα;μj. Therefore, by choosing
sufficiently large α, we can find a classical state σα that is
arbitrarily close to ρ in trace distance. Hence, δðρÞ ¼ 0. As
shown in Ref. [69], this implies that ρ is classical.
Finally, we note that the same conclusions hold for Ŵk.

Instead of the inequality hNi ≤ nV1, we use hNi ≤ nW1.
It is also worth noting that states can be close to classical

in trace distance but have arbitrarily large variance. For
example, take a superposition of number states jψ li ¼ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p j0i þ ffiffiffi
ϵ

p jli with l > 2. Now, jh0jψ lij2 ¼ 1 − ϵ but
Vðjψ li; xÞ ¼ 1=2þ ϵl, which can be made arbitrarily large
by choosing large enough l.

APPENDIX F: CONVEXITY OF QFI MEASURES

The QFI of any single observable A is convex:
for any ensemble of states ρμ with probabilities pμ,
FðPμ pμρμ; AÞ ≤

P
μ pμFðρμ; AÞ. Then,

F k

�X
μ

pμρμ

�
≤ max

T∶ dim T¼k

X
μ

pμTrT ½FðρμÞ − I=2�þ

ðF1Þ

≤ max
fTμ∶ dim Tμ¼kg

X
μ

pμTrT ½FðρμÞ − I=2�þ ðF2Þ

¼
X
μ

pμF kðρμÞ: ðF3Þ

The same applies to Gk.

APPENDIX G: NONCLASSICAL STATE
NOT WITNESSED BY QFI

We give an example of a state whose nonclassicality
is not witnessed by the QFI measure: ρ ¼ ð1 − pÞ×P∞

n¼1 p
n−1jnihnj. This was used in a proof [88] of lack

of sufficiency of a nonclassicality witness by Vogel [16]
and is nonclassical for all p ∈ ð0; 1Þ. Using the expression
(14), we have

Fðρ; xÞ ¼
�
1 − p
p

� X∞
n>m≥1

ðpn − pmÞ2
pn þ pm jhnjxjmij2

þ
�
1 − p
p

�X∞
m≥1

pmjh0jxjmij2 ðG1Þ

¼
�
1 − p
p

��X∞
m¼1

ðpmþ1 − pmÞ2
pmþ1 þ pm

ðmþ 1Þ
2

þ p
2

	
ðG2Þ

¼
�
1 − p
2p

��
pþ

X∞
m¼1

pm ð1 − pÞ2
1þ p

ðmþ 1Þ
	

ðG3Þ

¼ 1 − p
2

þ ð1 − pÞ3
2pð1þ pÞ

�X∞
n¼0

npn−1 − 1

	
: ðG4Þ

(Note that this state is symmetric with respect to phase
rotations, so x can be any quadrature.) After some algebra,
we get

Fðρ; xÞ ¼ 3

2

�
1 − p
1þ p

�
; ðG5Þ

and Fðρ; xÞ < 1=2 for p > 1=2, so the QFI does not detect
the nonclassicality of this state.

APPENDIX H: MONOTONICITY PROOFS

We start by proving monotonicity of Vk for pure states
by checking the behavior under each of the elementary
operations.
(1) Addition of uncorrelated classical ancilla modes:

The covariance matrix for a product of states is
simply the direct sum VðjψiSjαiAÞ ¼ VðjψiSÞ ⊕
VðjαiAÞ with VðjαiAÞ ¼ I=2. Hence, the vector
vðjψiSjαiAÞ is just vðjψiSÞ with zeros appended,
so Vk is unchanged.

(2) PL unitaries and displacements: The eigenvalues of
V are manifestly invariant under these unitaries.

(3) Destructive measurements: We divide the whole set
of modes into S and A, where A is to be measured.
Let TS, TA be their respective (orthogonal) subspa-
ces of the total phase space, such that TS ⊕ TA ¼
R2ðnSþnAÞ. Taking any global state jψiSA and
k ≤ 2nS,

VkðjψiSAÞ ¼ max
T∶ dim T¼k

TrT ½VðjψiSAÞ − I=2�þ

≥ max
T⊆TS∶ dim T¼k

TrT ½VðjψiSAÞ − I=2�þ:

ðH1Þ

Now we use a crucial property of the variance [107]:
For any observable xS acting only on S and (rank-1)
POVM acting only on A,

VðjψiSA; xSÞ ≥
X
m

pmVðjϕmiS; xSÞ; ðH2Þ

where the jϕmiS is the state resulting from meas-
urement outcome m with probability pm. This
inequality extends to a trace of the covariance matrix
over any subspace T ⊆ TS, hence,
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VkðjψiSAÞ ≥ max
T⊆TS∶ dim T¼k

X
m

pmTrT

½VðjϕmiSÞ − I=2�þ: ðH3Þ

For any single m, we therefore have

VkðjψiSAÞ ≥ pm max
T⊆TS∶ dim T¼k

TrT ½VðjϕmiSÞ − I=2�þ

¼ pmVkðjϕmiSÞ: ðH4Þ

In the case k ¼ 2nS, there is no maximization on the
right-hand side of Eq. (H3), so

V2nSðjψiSAÞ ≥
X
m

pmTrTS
½VðjϕmiSÞ − I=2�þ

¼
X
m

pmV2nSðjϕmiSÞ: ðH5Þ

(4) Classical randomness and coarse graining: In the
pure state case, the only such operation allowed is
to coarse grain the measurement outcomes that
give the same output (otherwise, mixed states are
produced)—this changes nothing.

It is easily checked that all of the above logic works
identically for Wk, the only difference being that maximi-
zation is now performed over symplectic subspaces of
dimension 2k.
For the convex roof V̂k, elements (1) and (2) work as

above, so we first address (3). For any ϵ > 0, we can find a
pure state decomposition ρSA ¼ P

μ rμjψμihψμjSA such thatP
μrμVkðjψμiSAÞ ≤ V̂kðρSAÞ þ ϵ. Let the POVM on A act

on jψμiSA to give jϕmjμiS with probability pmjμ. For any
fixed m,

V̂kðρSAÞ þ ϵ ≥
X
μ

rμpmjμVkðjϕmjμiSÞ ðH6Þ

≥ pmV̂kðσSjmÞ; ðH7Þ

where pmσSjm ¼ P
μ rμpmjμjϕmjμihϕmjμjS is the state

obtained from measurement of ρSA with probability
pm. Letting ϵ → 0 gives the desired result. In the case
k ¼ 2nS, we have the stronger inequality V̂2nSðρSAÞ ≥P

mpmV̂2nSðρmSÞ.
Monotonicity under coarse graining simply follows from

convexity of V̂k.
Again, everything works analogously for Ŵk.
We now prove monotonicity for F k. The QFI matrix of a

product state is again a direct sum FðρS ⊗ ρAÞ ¼ FðρSÞ ⊕
FðρAÞ due to additivity of the QFI [108], with FðρAÞ ≤ I=2
if ρA is classical. Invariance under PL unitaries is due to the
quadratic form Fðρ; r · qÞ ¼ rTFðρÞr. Displacements have
the action q → qþ constant for any quadrature q, under
which Fðρ; qÞ is unchanged.

Part (3) hinges on the property of the QFI analogous to
Eq. (H2) [74]:

FðρSA; xSÞ ≥
X
m

pmFðσSjm; xSÞ: ðH8Þ

Then, the proofs of monotonicity of F k and Gk proceed
exactly as above.
For special cases where the QFI matrix is the same for

every outcome of a measurement, a stronger constraint
can be given: the monotonicity of the eigenvalues of
the QFI matrix. The proof follows from the Courant-
Fischer theorem [79],

fi ¼ max
T∶ dim T¼i

min
r∈T∶jrj¼1

rT ½F − I=2�þr: ðH9Þ

Following the same logic as above, for any initial state ρSA
and a measurement on A, we have

fiðρSAÞ¼ max
T∶ dimT¼i

min
r∈T∶ jrj¼1

½FðρSA;r ·qÞ−1=2�þ ðH10Þ

≥ max
T⊆TS∶ dim T¼i

min
r∈T∶ jrj¼1

½FðρSA;r ·qÞ−1=2�þ ðH11Þ

≥ max
T⊆TS∶ dimT¼i

min
r∈T∶ jrj¼1

X
m

pm½FðσSjm; r · qÞ − 1=2�þ:

ðH12Þ

When all outcomes have the same QFI matrix independent
of m, for any m we have

fiðρSAÞ ≥ max
T⊆TS∶ dimT¼i

min
r∈T∶ jrj¼1

½FðσSjm; r · qÞ − 1=2�þ

¼ fiðσSjmÞ: ðH13Þ

This applies both to P0 (since the measurement is trivial)
and to Gaussian states with Gaussian measurements (see
Appendix J).
The same argument works for gi.

APPENDIX I: QFI MATRIX FOR
GAUSSIAN STATES

According toWilliamson’s theorem [53], every covariance
matrix can be diagonalized with a symplectic transformation:
V ¼ SDST , where S ∈ Spð2nÞ, and D ¼ diagðd1; d1; d2;
d2;…; dn; dnÞ is the covariance matrix of a product of n
thermal states. A straightforward calculation gives the QFI
matrix for a thermal state:

V ¼ D ⇔ F ¼ 1

4
D−1: ðI1Þ

From Eq. (14), we see that under a linear transformation
V → SVST , the QFI matrix transforms in the same way:
F → SFST . Hence,
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V ¼ SDST ⇔ F ¼ 1

4
SD−1ST: ðI2Þ

To arrive at the claimed expression, we use the fact that
SΩST ¼ Ω, or SΩ ¼ ΩðSTÞ−1:

ΩV−1ΩT ¼ ΩðSTÞ−1D−1S−1ΩT ðI3Þ

¼ SΩD−1ΩTST ðI4Þ

¼ SD−1S ðI5Þ

¼ 4F: ðI6Þ

APPENDIX J: GAUSSIAN TRANSFORMATIONS

A crucial property of Gaussian POVMs EðαÞ ¼
π−nDðαÞΛDðαÞ† is that every outcome has the same
covariance matrix independent of the measurement out-
come α [53]. Therefore, the same conditions apply to
deterministic state transformations as to probabilistic ones.
This also implies that it is always sufficient to consider a
single measurement step.

1. Single-mode P0 transformations

We consider a single system mode S interacting with a
single ancilla mode A (which is sufficient by Lemma 1),
with covariance matrices V and Y, respectively. From
Lemma 2, we can assume the PL unitary interaction to
consist of a single beam splitter of reflectivity η, with phase
rotations of each mode before and after. Thus, the covari-
ance matrix of the output can be written as

V 0 ¼ ð1 − ηÞRSVRT
S þ ηRAYRT

A; RS; RA ∈ Kð1Þ: ðJ1Þ

We determine the set of V 0 achievable by varying η, RS, RA.
First, consider fixing η. Given a pair of Hermitian matrices
A, B, there exists a set of linear inequalities constraining
the eigenvalues of their sum C ¼ Aþ B in terms of the
eigenvalues of A and B. In the two-dimensional case, three
inequalities are necessary and sufficient for the existence of
the triple ðA;B;CÞ [109] (Sec. III. 2). Applied to Eq. (J1),
these inequalities are

v0þ ≤ ð1 − ηÞvþ þ ηyþ; ðJ2aÞ

v0− ≤ ð1 − ηÞvþ þ ηy−; ðJ2bÞ

v0− ≤ ð1 − ηÞv− þ ηyþ; ðJ2cÞ

where the eigenvalues of V are vþ ≥ v− and similar
for Y, V 0. To eliminate η, we use the fact that TrV 0 ¼
ð1 − ηÞTrV þ ηTrY, i.e.,

v0þ þ v0− ¼ ð1 − ηÞðvþ þ v−Þ þ ηðyþ þ y−Þ: ðJ3Þ

Thus, we obtain the following necessary and sufficient
conditions for the existence of η, RS, RA satisfying Eq. (J1):

v0þðy− − v−Þ ≤ v0−ðyþ − vþÞ þ vþy− − v−yþ; ðJ4aÞ

v0−ðyþ − v−Þ ≤ v0þðy− − vþÞ þ vþyþ − v−y−; ðJ4bÞ

v0−ðy− − vþÞ ≤ v0þðyþ − v−Þ þ v−y− − vþyþ: ðJ4cÞ

As illustrated in Fig. 6, these inequalities correspond to a
triangular region in the ðv0þ; v0−Þ plane.
Now we use the ability to choose any classical ancilla,

i.e., to choose any yþ ≥ y− ≥ 1=2. Clearly, every classical
V 0 is achievable by choosing any classical Y and swapping
the states using η ¼ 1. Given a nonclassical V (meaning
v− < 1=2), the achievable nonclassical region is as shown
in Fig. 3. This can be seen geometrically by considering
triangles as in Fig. 6. It is bounded by two constraints: one
situation where yþ → ∞, imposing that v0− ≥ v−, the other
situation where yþ ¼ y− ¼ 1=2. The inequality corre-
sponding to the latter situation is found to be

1=2 − v0−
v0þ − 1=2

≤
1=2 − v−
vþ − 1=2

: ðJ5Þ

This determines the two necessary and sufficient monot-
ones N 1, N 2 for P0 transformations.

2. Single-mode GPN transformations

We first demonstrate the necessity of the monotones
(assuming a nonclassical initial state). Monotonicity of N 1

follows immediately from Theorem 4 since f1 ¼ ð2v−Þ−1.
For N 3, we first convince ourselves that it suffices to
consider a pure ancilla and measurement consisting of
projection onto pure Gaussian states, i.e., with POVM

FIG. 6. The region of achievable v0 for fixed v and y is shaded.
The points ṽ and ỹ are the reflections of v and y in the line
v0þ ¼ v0−.
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elements of the form π−1DðαÞjsihsjDðαÞ†, where jsi is a
pure squeezed state. This works because any protocol with
more general mixed elements can be obtained by a coarse-
grained mixture of such pure cases.
We use the following result about Gaussian measure-

ments at the level of covariance matrices [96–98]: suppose
that a two-mode state has covariance matrix written in the
2 × 2 block form

�
A C

CT B

�
: ðJ6Þ

Then projection of the second mode onto a pure Gaussian
state with covariance matrix Z results in the first mode
having the covariance matrix

A − CðBþ ZÞ−1CT: ðJ7Þ

In the present case, we start with system and ancilla
covariance matrices VS, VA. We apply a beam-splitter
operation with reflectivity η represented by

R ¼
� ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p

I − ffiffiffi
η

p
Iffiffiffi

η
p

I
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
I

�
: ðJ8Þ

This results in RðVS ⊕ VAÞRT ; hence, in Eq. (J6) we
have A ¼ ð1 − ηÞVS þ ηVA, B ¼ ηVS þ ð1 − ηÞVA, C ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞp ðVS − VAÞ. The most general pure squeezed

state has

Z ¼ 1

2

�
z−1 cos2 θ þ z sin2 θ ðz−1 − zÞ cos θ sin θ
ðz−1 − zÞ cos θ sin θ z−1 sin2 θ þ z cos2 θ

�
;

ðJ9Þ

where z ≥ 1. Also note that, since we take VA ¼ I=2
(corresponding to a coherent state), VS and VA can be
simultaneously diagonalized by single-mode phase rota-
tions. Therefore, without loss of generality, we may write

A ¼
� ð1 − ηÞvþ þ η=2 0

0 ð1 − ηÞv− þ η=2

�
;

B ¼
�
ηvþ þ ð1 − ηÞ=2 0

0 ηv− þ ð1 − ηÞ=2

�
; ðJ10Þ

C ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηð1 − ηÞp ðvþ − 1=2Þ 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞp ðv− − 1=2Þ

�
:

ðJ11Þ

We put these into Eq. (J7) and obtain (complicated)
expressions for the eigenvalues v0þ, v0−. Evaluating the
expression forN 3 and performing an optimization over θ, η
with all other parameters fixed, we obtain

max
θ;η

1=2 − v0−
2 − 1=v0þ

¼ 1=2 − v−
2 − 1=vþ

ðJ12Þ

attained at θ ¼ 0, η ¼ 1=2.
For a clearer physical picture and to demonstrate

sufficiency, we now give an explicit operation which takes
ρ ↦ σ whenN 3ðρÞ ¼ N 3ðσÞ. This operation also includes
the conditional displacement on the output that is necessary
to achieve a deterministic transformation. As illustrated in
Fig. 7, the protocol uses a vacuum ancilla, a beam splitter
with reflectivity η plus homodyne detection, and feed
forward to a displacement with gain factor γ. The homo-
dyne is performed on the most noisy quadrature.
We choose xS, pS such that VðρS; xSÞ ¼ vþ;

VðρS; pSÞ ¼ v− and perform a homodyne measurement
of x0A ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p

xA − ffiffiffi
η

p
xS. Let the final displaced quad-

ratures be x00S ¼ x0S þ γx0A, p
00
S ¼ p0

S. We calculate the final
variances as

v0− ¼ VðσS; p00
SÞ ¼ ð1 − ηÞv− þ η=2 ðJ13Þ

and v0þ ¼ VðσS; x00SÞ. Using

x00S ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
xS þ

ffiffiffi
η

p
xAÞ þ γð− ffiffiffi

η
p

xS þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
xAÞ

ðJ14Þ

¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
− γ

ffiffiffi
η

p ÞxS þ ð ffiffiffi
η

p þ γ
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
ÞxA; ðJ15Þ

and noting that xS and xA are initially uncorrelated, we have

v0þ ¼ VðσS; x00SÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
− γ

ffiffiffi
η

p Þ2VðρS; xSÞ
þ ð ffiffiffi

η
p þ γ

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
Þ2VðρA; xAÞ ðJ16Þ

¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
− γ

ffiffiffi
η

p Þ2vþ þ ð ffiffiffi
η

p þ γ
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
Þ2 × 1

2
: ðJ17Þ

This expression is minimized by choosing a gain factor

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − ηÞp ðvþ − 1=2Þ

ηvþ þ ð1 − ηÞ × 1=2
; ðJ18Þ

from which one finds

FIG. 7. A GPN operation that achieves a transformation with
unchanged N 3.
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v0þ ¼ vþ=2
ηvþ þ ð1 − ηÞ × 1=2

¼
�
1 − η

vþ
þ 2η

�
−1
: ðJ19Þ

From this and Eq. (J13), we have

2 − 1=v0þ
2 − 1=vþ

¼ 1 − η ¼ 1=2 − v0−
1=2 − v−

; ðJ20Þ

showing that N 3 is unchanged. Moreover, by choosing
appropriate η, we see that v0þ can be varied in the interval
½1=2; vþ�. Hence, any point lying on the curve N 3 ¼
constant with v0− ≥ v− is reachable.
Finally, we can see that any point lying above the curves

N 1,N 3 ¼ constant is reachable. After the above operation,
one simply adds classical noise to v0− without affecting v0þ.
In Fig. 3, this corresponds to moving vertically upward in
the plane.

[1] S. Lloyd and S. L. Braunstein, Quantum Computation over
Continuous Variables, Phys. Rev. Lett. 82, 1784 (1999).

[2] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook,
T. C. Ralph, and M. A. Nielsen, Universal Quantum
Computation with Continuous-Variable Cluster States,
Phys. Rev. Lett. 97, 110501 (2006).

[3] M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and
P. van Loock, Quantum Computing with Continuous-
Variable Clusters, Phys. Rev. A 79, 062318 (2009).

[4] A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph,
J. L. O’Brien, and T. C. Ralph, Boson Sampling from a
Gaussian State, Phys. Rev. Lett. 113, 100502 (2014).

[5] N. Gisin and R. Thew, Quantum Communication,
Nat. Photonics 1, 165 (2007).

[6] T. C. Ralph, Continuous Variable Quantum Cryptography,
Phys. Rev. A 61, 010303 (1999).

[7] A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, T.
Tyc, T. C. Ralph, and P. K. Lam, Continuous-Variable
Quantum-State Sharing via Quantum Disentanglement,
Phys. Rev. A 71, 033814 (2005).

[8] M. G. A. Paris, Quantum Estimation For Quantum
Technology, Int. J. Quantum. Inform. 07, 125 (2009).

[9] D. Šafránek, A. R. Lee, and I. Fuentes, Quantum
Parameter Estimation Using Multi-Mode Gaussian States,
New J. Phys. 17, 073016 (2015).

[10] S. Yokoyama, R. Ukai, S. C. Armstrong, C.
Sornphiphatphong, T. Kaji, S. Suzuki, J.-. Yoshikawa,
H. Yonezawa, N. C. Menicucci, and A. Furusawa, Ultra-
Large-Scale Continuous-Variable Cluster States Multi-
plexed in the Time Domain, Nat. Photonics 7, 982 (2013).

[11] R. J. Glauber, The Quantum Theory of Optical Coherence,
Phys. Rev. 130, 2529 (1963).

[12] E. C. G. Sudarshan, Equivalence of Semiclassical and
Quantum Mechanical Descriptions of Statistical Light
Beams, Phys. Rev. Lett. 10, 277 (1963).

[13] L. Mandel, Non-Classical States of the Electromagnetic
Field, Phys. Scr. T12, 34 (1986).

[14] M. S. Kim, W. Son, V. Bužek, and P. L. Knight,
Entanglement by a Beam Splitter: Nonclassicality as a

Prerequisite for Entanglement, Phys. Rev. A 65, 032323
(2002).

[15] X.-b. Wang, Theorem for the Beam-Splitter Entangler,
Phys. Rev. A 66, 024303 (2002).

[16] W. Vogel, Nonclassical States: An Observable Criterion,
Phys. Rev. Lett. 84, 1849 (2000).

[17] T. Richter and W. Vogel, Nonclassicality of Quantum
States: A Hierarchy of Observable Conditions, Phys. Rev.
Lett. 89, 283601 (2002).

[18] E. Shchukin, T. Richter, and W. Vogel, Nonclassicality
Criteria in Terms of Moments, Phys. Rev. A 71, 011802
(2005).

[19] M. Hillery, Nonclassical Distance in Quantum Optics,
Phys. Rev. A 35, 725 (1987).

[20] C. T. Lee, Measure of the Nonclassicality of Nonclassical
States, Phys. Rev. A 44, R2775 (1991).

[21] P. Marian, T. A. Marian, and H. Scutaru, Quantifying
Nonclassicality of One-Mode Gaussian States of the
Radiation Field, Phys. Rev. Lett. 88, 153601 (2002).

[22] J. K. Asbóth, J. Calsamiglia, and H. Ritsch, Computable
Measure of Nonclassicality for Light, Phys. Rev. Lett. 94,
173602 (2005).

[23] C. Gehrke, J. Sperling, and W. Vogel, Quantification of
Nonclassicality, Phys. Rev. A 86, 052118 (2012).

[24] W. Vogel and J. Sperling, Unified Quantification of Non-
classicality and Entanglement, Phys. Rev. A 89, 052302
(2014).

[25] S. Ryl, J. Sperling, and W. Vogel, Quantifying Non-
classicality by Characteristic Functions, Phys. Rev. A
95, 053825 (2017).
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