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Phononic quantum networks feature distinct advantages over photonic networks for on-chip quantum
communications, providing a promising platform for developing quantum computers with robust solid-
state spin qubits. Large mechanical networks including one-dimensional chains of trapped ions, however,
have inherent and well-known scaling problems. In addition, chiral phononic processes, which are
necessary for conventional phononic quantum networks, are difficult to implement in a solid-state system.
To overcome these seemingly unsolvable obstacles, we have developed a new network architecture that
breaks a large mechanical network into small and closed mechanical subsystems. This architecture is
implemented in a diamond phononic nanostructure featuring alternating phononic crystal waveguides with
specially designed band gaps. The implementation also includes nanomechanical resonators coupled to
color centers through phonon-assisted transitions as well as quantum state transfer protocols that can be
robust against the thermal environment.
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I. INTRODUCTION

Photons are excellent carriers of quantum information
and are the ideal choice for long-distance quantum com-
munications and networks [1–5]. For on-chip communi-
cations and networks, there are, however, a few inherent
limitations. For example, the speed of light can be too fast
for communications over short distances, such as a few
hundred micrometers or less. Scattering losses of electro-
magnetic waves into vacuum can be excessive even
with state-of-the-art nanofabrication technologies, which
severely limits the photon lifetime in nano-optical systems
such as photonic-crystal optical resonators.
In comparison, phonons, which are the quanta of

mechanical waves, feature several distinct advantages for
on-chip communications [6–9]. The speed of sound is
about 5 orders of magnitude slower than the speed of light.
Mechanical waves cannot propagate in vacuum and are
thus not subject to scattering or radiation losses into
vacuum. The relatively long acoustic wavelength also
makes it easier to fabricate phononic nanostructures for
confining and guiding acoustic waves on a chip. Note that
trapped ions, one of the most successful platforms for
quantum computing, can be viewed effectively as a

microscopic phononic network, with complete quantum
control of both spin and motional degrees of freedom
(d.o.f.) [10].
Nevertheless, there are two inherent obstacles in scalingup

a phononic network. First of all, the coupling rate between a
qubit and a mechanical mode at the single-phonon level
scales with the zero-point fluctuation of the mechanical
system, which is proportional to 1=

ffiffiffiffi
m

p
, with m being the

mass of the mechanical system. The larger the mechanical
network is, the smaller the single-phonon coupling rate
becomes. Second and more seriously, nearest-neighbor
coupling of a large number of mechanical resonators leads
to the formation of spectrally dense mechanical modes. The
crosstalk between the collective mechanical modes prevents
the quantum control of individual mechanical modes. These
scaling problems are well known in ion trap quantum
computers [11], for which phonon-mediated interactions
play an essential role. In particular, the second scaling
problem severely limits the number of ions that can be used
in an ion trap module. Ion shuttling and photonic quantum
channels between themodules have been pursued for scaling
up ion trap quantum computers [3,11]. Various approaches
have also been proposed to tackle the scaling problems of a
solid-state system [9,12].
The primary function of a quantum network is to enable

high-fidelity quantum state transfer between neighboring
quantum nodes. This can take place in a cascaded network
[13], for which the coupling between the neighboring
nodes is unidirectional. Cascaded optical quantum net-
works can be realized with chiral optical interactions
[14,15], as demonstrated with atoms and quantum dots.
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The lack of easily accessible chiral acoustic processes,
however, makes it difficult to implement cascaded pho-
nonic quantum networks [6,9].
The scaling problems discussed above are unavoidable in

a large mechanical network. To overcome these problems,
we propose a general and conceptually simple approach,
which breaks the large mechanical network into small and
closedmechanical systems. The use of these closedmechani-
cal subsystems not only overcomes the scaling problems, but
also avoids the technical difficulty of implementing chiral
phononic processes. To realize this new approach, we use
alternating waveguides and employ two waveguide modes
for communications between neighboring quantum nodes.
As illustrated schematically in Fig. 1(a), each mechanical
resonator couples to two distinct phononic waveguides, A
and B, which allow phonon propagation at frequencies near
ωA and ωB, but forbid phonon propagation at frequencies
near ωB and ωA, respectively. This special feature of the
waveguides can make any two neighboring resonators and
the waveguide between them a closed mechanical subsys-
tem, as highlighted in Fig. 1(a). For a phononic quantum
network of solid-state spins, we use quantumnodes, inwhich
a spin system couples selectively to two mechanical reso-
nator modes with frequency ωA and ωB, respectively. This
phononic quantum network can be viewed as closed
mechanical subsystems coupled together via the spins, as
shown schematically in Fig. 1(b). In this network, high-
fidelity quantum state transfer between the neighboring spin
systems takes place via the closed mechanical subsystems.
We describe an implementation of this architecture

employing diamond color centers, nanomechanical reso-
nators, and phononic crystal waveguides. In this imple-
mentation, color centers featuring robust spin qubits couple
to vibrations of nanomechanical resonators through

sideband (i.e., phonon-assisted) transitions driven by exter-
nal optical or microwave fields [16]. Communications
between these spin-mechanical resonators take place via
alternating phononic crystal waveguides [17]. A key feature
of the network is specially designed phononic band gaps in
the phononic crystal waveguides, which enable the for-
mation of closed mechanical subsystems. In addition, the
entire network can be embedded in a phononic crystal
lattice, which isolates and protects the network from the
surrounding mechanical environment. Note that diamond
photonic crystals and optomechanical crystals, which are
technically more demanding than diamond phononic crys-
tals in terms of nanofabrication, have already been success-
fully realized [18–20].
We also outline two schemes for quantum state transfer

between spin systems in neighboring resonators. One
scheme relies on spin-mechanical coupling of a single
spin. The other employs spin ensembles for the quantum
state transfer and approximates the spin ensemble as a
bosonic oscillator [2,21,22]. Both schemes can be robust
against the overall thermal environment. Fidelities exceed-
ing 0.99 for quantum state transfer between single spins are
achievable with current technologies.
Solid-state spin systems such as negatively charged

nitrogen vacancy (NV) centers in diamond have emerged
as a promising qubit system for quantum information
processing [23–25]. High-fidelity quantum control of
individual spin qubits via microwave or optical transitions
has been well established. Photonic networks of NV centers
have been proposed [26–28]. Coherent spin-spin coupling
mediated by electromechanical transducers or by dark spin
chains has also been considered theoretically [12,29]. The
phononic quantum network described in this paper can
potentially enable a scalable, chip-based experimental

(a)

(b)

FIG. 1. (a) Schematic of a quantum network with alternating waveguides. Each mechanical resonator (the rectangular plate) couples to
two different phononic waveguides, A and B. Propagation near frequencies ωA and ωB is allowed and that near frequencies ωB and ωA is
forbidden for waveguides A and B, respectively. (b) In each resonator, a spin system couples selectively to two resonator modes with
frequency ωA and ωB. As indicated by the dashed-line boxes, any two neighboring resonators and the waveguide between them can form
a closed mechanical subsystem. The network thus consists of closed mechanical subsystems coupled together via the spins.
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platform for developing quantum computers using robust
solid-state spin qubits.

II. PHONONIC QUANTUM NETWORKS

The proposed phononic network consists of diamond
spin-mechanical resonators that couple spin qubits in
diamond to relevant mechanical modes, phononic crystal
waveguides with suitable band gaps and waveguide modes,
and a two-dimensional (2D) phononic crystal lattice that
protects the mechanical modes involved in the phononic
network. For numerical calculations, we assume that the
phononic network is fabricated from a diamond membrane
with a thickness of 300 nm. In addition to NV centers, other
color centers in diamond, such as silicon vacancy (SiV) or
germanium vacancy (GeV) centers [30–33], can also be
used in the phononic network. High-quality NV, SiV, and
GeV centers can be created in diamond through ion
implantation, followed by elaborate thermal annealing
and surface treatment [34,35].

A. Spin-mechanical resonators

The elementary unit or node in our quantum network is a
spin-mechanical resonator, in which spin qubits couple to
mechanical resonator modes in a thin, rectangular diamond
plate. Calculations of mechanical normal modes in the
diamond plate are discussed in detail in the Appendix. We
are interested in mechanical compression modes that are
symmetric with respect to the median plane of the plate (the
so-called symmetric modes). Figure 2(a) shows, as an
example, the displacement pattern of a fifth-order com-
pression mode.
Coherent interactions between electron spin states of a

NV center and long-wavelength mechanical vibrations of
the diamond lattice have been experimentally explored
via either ground-state or excited-state strain coupling
[16,36–42]. The orbital d.o.f. of a NV center can couple
strongly to the long-wavelength mechanical vibrations via
the excited states. As a result, the excited-state strain

coupling for a NV center is about 5 orders of magnitude
stronger than the ground-state strain coupling [42–44]. For
defect centers such as SiVand GeV centers, strong coupling
between the orbital d.o.f. and the mechanical vibrations can
also take place through the ground states [45].
As illustrated in Fig. 2(b), we control the coupling

between the ground spin states of the NV center and the
relevant mechanical mode through a resonant Raman
process that consists of a sideband (or phonon-assisted)
optical transition as well as a direct dipole optical tran-
sition. The Raman process is driven and controlled by two
external optical fields. The interaction Hamiltonian is given
by [40]

V ¼ ℏ
Ω−
2

gs
ωm

ðâeiðΔ−−ωmÞtjeih−j þ H:c:Þ

þ ℏ
Ωþ
2

ðeiΔþtjeihþj þ H:c:Þ; ð1Þ

where gs ¼ DkmxZPF, D is the deformation potential, xZPF
is the zero-point fluctuation, km is the phonon wave vector,
Ωþ and Ω− are the optical Rabi frequencies, and Δþ and
Δ− are the effective dipole detunings for the two respective
optical transitions, and â is the annihilation operator for a
mechanical mode with frequency ωm. For a NV center, the
ms ¼ �1 ground spin states can serve as states j�i and the
A2 state can serve as state jei [46]. A detailed derivation of
Eq. (1) is given in the Appendix of Ref. [40].
The use of the sideband transitions, instead of resonant

transitions, enables the selective coupling of an electron
spin to any relevant mechanical modes, including two or
more mechanical modes, which is an essential requirement
for the implementation of the proposed network architec-
ture. Specifically, we can couple the electron spin states to a
mechanical mode with frequency ωm by setting the detun-
ing between the two optical driving fields according to the
Raman resonant condition, Δ− − ωm ¼ Δþ.
A limitation of using the resonant Raman process for

coherent spin-mechanical coupling is the optically induced
decoherence due to the optical excitation of the excited
state, with a decoherence rate given by γopt ¼ ðΩ=2ΔÞ2Γex,
where Ω is the optical Rabi frequency, Δ is the relevant
dipole detuning, and Γex is the excited-state population
decay rate. To suppress optically induced decoherence, we
can exploit a combination of techniques, such as dark
states, shortcuts to adiabatic passage, and systematically
corrected control pulses [47–49], in addition to the use of a
relatively large dipole detuning. Excited-state mediated
spin-mechanical coupling via a dark state has already been
demonstrated in an earlier experimental study [40].
For negatively charged SiV or GeV centers that feature

strong ground-state strain coupling, the spin-mechanical
coupling can be driven by microwave sideband transitions
between the ground spin states. The resonant Raman process
discussed above is no longer needed. The coupling schemes
discussed in an earlier study can also be adopted [9].

(a) (b)

FIG. 2. (a) Displacement pattern of a fifth-order compression
mode in a thin rectangular diamond plate with dimension
ð27; 8; 0.3Þ μm. (b) Schematic of a spin qubit coupling to a
mechanical mode with frequency ωm through a resonant Raman
process, driven by two external optical fields with frequency ωþ
and ω−. We can couple the spin qubit to a given mechanical mode
by choosing a suitable detuning between ωþ and ω−.
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B. Alternating phononic crystal waveguides
and closed mechanical subsystems

We use phononic crystal waveguides, which are one-
dimensional (1D) phononic crystals consisting of a periodic
array of holes in a beam [see Fig. 3(a)], to network together
a series of spin-mechanical resonators. In a simple picture,
mechanical vibrations in a resonator excite propagating
mechanicalwaves in the adjacent phononicwaveguides [17].
Conversely, mechanical waves in the phononic waveguide
also excite vibrations in the adjacent mechanical resonators.
For the formation of closed mechanical subsystems,

we employ alternating phononic crystal waveguides. The
building block of our phononic network is shown in
Fig. 3(a), in which a spin-mechanical resonator couples
to two phononic waveguides, A and B, that feature an array
of elliptical holes with different periods. As shown in
Fig. 3(b), the phononic band structure of each waveguide
shows a sizable band gap for the symmetric mechanical
modes (which have spatial displacement patterns that are
symmetric with respect to the median plane of the 2D

structure). The center of the band gap for waveguide B,
which features a shorter period, is higher in frequency than
that for waveguide A, which features a longer period. The
two band gaps have two nonoverlapping spectral regions,
as highlighted by the gray shaded regions in Fig. 3(b).
Waveguidemodes in the upper and lower shaded regions can
only propagate in waveguides A and B, respectively. We use
waveguide modes and resonator modes with frequencies in
these nonoverlapping regions for quantum state transfer
between spin systems in neighboring quantum nodes.
For the design shown in Fig. 3(a), we choose two specific

resonator modes. The fifth-order compression mode with
frequency ωA=2π ¼ 1.6332 GHz, which is in the band gap
of waveguideB [see Fig. 3(b)], couples resonantly to a mode
in waveguide A. The third-order compression mode with
frequency ωB=2π ¼ 0.9133 GHz, which is in the band gap
of waveguideA [see Fig. 3(b)], couples resonantly to a mode
in waveguideB. In this case, any two neighboring resonators
in the network and the waveguide between them can form a
closed subsystem, effectively realizing the network archi-
tecture shown in Fig. 1.
For the closed mechanical subsystem, the relevant wave-

guide modes are discrete standing wave modes. For a
relatively short waveguide, the frequency spacing of these
modes can be large compared with other relevant frequency
scales and the waveguide can thus behave like a single-
mode mechanical oscillator. In this limit, we can treat the
closed mechanical subsystem as a three-mode system (see
the Appendix for the effective Hamiltonian and for more
detailed discussions). Numerical calculations of the normal
modes of the closed subsystem and, in particular, the
coupling rate g between the resonator and the waveguide
modes are presented in the Appendix. Depending on the
specific design of the waveguides and resonators, g=2π can
range from 1 MH to more than 10 MHz. We can also
engineer the coupling rate by tailoring or shaping the
contact area between the waveguide and the resonator.
It should be added that in the limit of a single-mode

waveguide, the phononic network is effectively a network of
mechanical resonators. In this limit, the phononic crystal
structures are not necessary for the formation of closed
mechanical subsystems. In practice, the relevant phononic
band gaps ensure the nearly complete suppression of the
unwanted mechanical coupling between the neighboring
resonators. We also note that the resonant conditions dis-
cussed above are required only for the adjacent resonator and
waveguide modes, but not for distant resonator and wave-
guide modes, which implies less stringent requirements on
the nanofabrication process.

C. Isolating intranode spin-mechanical coupling
from the waveguides

We separate the spin qubits in a spin-mechanical
resonator into computation qubits and communication
qubits that are used exclusively for quantum state transfer

FIG. 3. (a) A mechanical resonator couples to two phononic
crystal waveguides with a width of 3 μm and a period of 6 μm
(waveguide A) and 4 μm (waveguide B). For the elliptical holes
in the waveguides, the minor (major) axes are 0.6ð2.2Þ μm.
(b) Phononic band structures of the two waveguides. Each
features a band gap. Blue (red) lines: Waveguide A (B). The
gray (yellow) shaded areas show the nonoverlapping (overlap-
ping) regions of the two band gaps. Solid (dashed) lines are for
modes with displacement patterns that are symmetric (antisym-
metric) about the plane that bisects and is normal to both the
waveguide and the resonators. Dot-dashed lines indicate the
frequencies of the two resonator modes ωA and ωB, used to
couple to the respective waveguide modes.
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between neighboring quantum nodes. These qubits can be
addressed separately due to their different physical loca-
tions or their different frequencies or polarization selection
rules. The computation qubits can greatly enhance the
capability and especially the fault tolerance of the quantum
network. For example, it has been shown recently that with
15 qubits of all-to-all connectivity in each quantum node,
fault-tolerant threshold can be reduced to 0.12% [50]. For
our architecture, the all-to-all connectivity can be achieved
via the intranode interactions.
Ideally, intranode interactions should be decoupled from

the phononic waveguides, which can be accomplished by
exploiting the band gaps of the phononic crystal wave-
guides. Specifically, the computation qubits can couple to
each other and to the communication qubits through a
resonator mode with a frequency that is in the band gap of
both phononic crystal waveguides, i.e., in the overlapping
spectral region of the two phononic band gaps, as high-
lighted by the yellow shaded area in Fig. 3(b). In this case,
the phonon-mediated coupling among the computation
qubits and the communication qubits within a spin-
mechanical resonator is decoupled from the adjacent wave-
guides. For the resonator-waveguide design shown in
Fig. 3(a), the fourth-order compressional mode of the
resonator, with ωC ¼ 1.3258 GHz, falls in the band gap
of both phononic crystal waveguides and can thus serve as a
mechanical mode for intranode spin-mechanical coupling.
Other resonator modes in the overlapping region of the two
band gaps can also be used for this purpose, providing
flexibility in the physical location of the computation qubits.

D. Protecting phononic networks with
a 2D phononic crystal lattice

To protect the relevant mechanical modes from the
surrounding mechanical environment, we embed the entire
phononic network in a 2D phononic crystal lattice, as
illustrated in Fig. 4. 2D phononic crystal lattices have been
used extensively in earlier studies to isolate mechanical
systems such as optomechanical crystals, membranes, and
single-mode phononic wires from the surrounding envi-
ronment [51–54]. The use of 2D phononic crystal shields
has led to the experimental realization of ultrahigh
mechanical Q factors, with ωQm=2π approaching or even
exceeding 1017 [53,54].
The bottom panel of Fig. 4 plots the phononic band

structure of the symmetric mechanical modes (i.e., modes
that are symmetric about the median plane of the 2D
structure) in the 2D phononic crystal lattice shown in the
top panel. The band structure features a band gap between
0.85 and 2.25 GHz, spanning the phononic band gaps of
both phononic crystal waveguides A and B and thus
protecting all the mechanical modes relevant to the pho-
nonic quantum network. For the design shown in Fig. 4,
only waveguide B is attached to the 2D lattice, because this
waveguide and the 2D square lattice have the same period.

In this case, mechanical modes with frequencies near ωA
are isolated from the environment by the band gap in the 2D
lattice as well as the band gap in waveguide B, which also
relaxes the requirement that the band gap of the 2D lattice
spans both ωA and ωB.
The specific design for the mechanical resonators,

phononic crystal waveguides, and 2D phononic crystal
shields discussed above is by no means optimal. The design
serves as an example for implementing the proposed
network architecture in a phononic network.

III. QUANTUM STATE TRANSFERS

Mechanically mediated quantum state transfers have
been investigated theoretically for optomechanical trans-
ducers that can interface hybrid quantum systems [55–60],
as well as for pure mechanical systems [8,9,21,22]. State
transfer processes that can be robust against thermal
mechanical noise have also been proposed. One approach
is based on the use of dark modes, which are decoupled

FIG. 4. Top: The building block of a phononic network
embedded in a square phononic crystal lattice with a period of
4 μm. The side length of the squares is 3 μm. The connecting
bridges have a length of 1 μm and width of 0.4 μm. Bottom:
Phononic band structure of the 2D lattice. Only symmetric modes
are shown.
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from the relevant mechanical system through destructive
interference [61,62]. Dark modes in multimode optome-
chanical and electromechanical systems have been realized
experimentally [63–66]. Another approach returns the
mediating mechanical mode to its initial state, disentan-
gling the mechanical mode from the rest of the system
[67–70].
The closed mechanical subsystem discussed above con-

sists of three mechanical modes, including two resonator
modes in the respective mechanical resonators, described
by annihilation operators, â1 and â2, and a waveguide
mode, described by b̂. For simplicity, we assume that the
two resonator modes couple to the waveguide mode with
equal coupling rate g and all three mechanical modes have
the same resonance frequency, unless otherwise specified.
Each resonator mode couples to either a single spin or an
ensemble of spins. For the quantum state transfer between
the two spin systems in the respective resonators, the
interaction Hamiltonian is given by

HI ¼ℏgb̂þðâ1þ â2Þþℏ½G1ðtÞŜ1âþ1 þG2ðtÞŜ2âþ2 �þH:c:;

ð2Þ
where Ŝ1 and Ŝ2 describe the spin systems, as will be
discussed in more detail later, and G1ðtÞ and G2ðtÞ are the
corresponding spin-mechanical coupling rates. Spin qubits
in a resonator can selectively couple to given mechanical
modes of the resonator. As discussed earlier, the mode
selection for the spin-mechanical coupling is set by the
detuning between the external laser driving fields or by the
frequency of the microwave driving field.
The relevant mechanical modes in the two resonators can

be cooled to near their motional ground states. This can be
achieved via resolved sideband cooling using a phonon-
assisted optical transition [43], along with cryogenic cool-
ing. Because of the protection provided by the 2D phononic
crystal shield, the mechanical damping rate can in principle
be much smaller than the relevant coupling rate such that
mechanical losses can be ignored during the transfer
process. With ðG1; G2Þ ≫ kBT=ℏQm, the effects of thermal
heating during the transfer process can also be negligible.

For T ¼ 1 K and G1 and G2 on the order of 0.1 MHz, this
requiresQm ≫ 105, a regime readily achievable in state-of-
the-art phononic nanostructures [53,54].
We consider two quantum state transfer schemes based

on the use of single spins and spin ensembles, respectively.
Both schemes can return the relevant mechanical system to
its initial state and can thus be robust against the mechani-
cal thermal environment [22,67,69]. It might be possible to
combine and take advantage of both single spins and spin
ensembles (in separate resonators) for quantum state trans-
fers. Different color centers can also be used in the same
photonic network. In addition, our network architecture
allows a high degree of parallelism. Relevant gate or state
transfer operations can take place in parallel, when they are
implemented simultaneously in respective mechanical
subsystems.

A. Quantum state transfer between single spins

For the single-spin-based transfer scheme, the spin
operator in Eq. (2) corresponds to the lowering operator
for a single spin, with Ŝ ¼ σ̂ ¼ j−ihþj. The single spin,
which serves as a communication qubit, can be positioned
near the node of the resonator mode [see Fig. 2(a)], where
the spin-mechanical coupling reaches its maximum value.
For the resonant Raman process shown in Fig. 2(b), the
effective spin-mechanical coupling rate for a single spin is
given by G ¼ gsΩþΩ−=ð4jΔþjωmÞ [40]. With estimated
D ¼ 5 eV [42,43] and xZPF ¼ 0.75 × 10−15 m, we have
G=2π ¼ 0.1 MHz, where we take Ωþ=2π ¼ Ω−=2π ¼
0.6 GHz, Δþ=2π ¼ 3 GHz, and ωm=2π ¼ 1 GHz. In this
case, the magnitude of G is limited by the relatively large
dipole detuning for the resonant Raman process. Much
greater G can be achieved with SiV and GeV centers [45],
for which ground-state strain coupling can be used.
As shown in Fig. 5, the state transfer between the two

spin systems can take place in a simple triple-swap process.
For the first swap, we set G2 ¼ 0 and turn on G1 for a
duration τ1 ¼ π=2G1, mapping the spin state for Ŝ1 to the
state for â1. For the second swap, we set G1 ¼ G2 ¼ 0.
After a duration τ2 ¼ π=

ffiffiffi
2

p
g, the state of â1 is effectively

FIG. 5. Time evolution of the mechanical and spin systems with G=g ¼ 100 during the three successive swaps of the state transfer
between two single spins, with the same peak value G for both G1 and G2. Top: resonator mode 1 (blue), resonator mode 2 (purple), and
waveguide mode (black). Bottom: spin 1 (red) and spin 2 (green).
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mapped to that of â2 [68]. This waveguide-mediated
mapping between the two mechanical resonators leaves
the state in the waveguide unchanged, as shown in Fig. 5.
For the third swap, we set G1 ¼ 0 and turn on G2 for a
duration τ3 ¼ π=2G2, mapping the state from â2 to Ŝ2.
Overall, the triple-swap process leads to an effective state
swap between Ŝ1 and Ŝ2.
The unavoidable coupling to the waveguide mode during

the swaps between the single spin and the resonator modes
(i.e., the first and the third swap) limits the fidelity of the
overall quantum state transfer, which is defined as

F ¼
n
Tr
h� ffiffiffiffiffiffiffiffiffiffi

ρðtfÞ
q

USWAPρðtiÞUþ
SWAP

ffiffiffiffiffiffiffiffiffiffi
ρðtfÞ

q �
1=2

io
2
; ð3Þ

whereUSWAP represents the ideal two-qubit swap operation
and ρ is the reduced two-qubit density matrix [71].
Figure 6(a) shows the lower bound on fidelity, calculated
over all initial spin states (using a dense mesh over the
Bloch sphere) and with the initial mechanical state j0; 0; 0i,
as a function of G=g, where G is the peak value for both

G1 and G2. For the triple-swap process, high fidelity can be
achieved only when G=g ≫ 1. Figure 6(b) plots the fidelity
when the duration of the π=2 pulses deviates from the ideal
value. For relatively small G=g, the maximum fidelity
actually occurs away from the zero deviation, ϵ ¼ 0. This is
because for the phononic network, g is a constant. The
mechanical resonators remain coupled to the waveguide in
the first and the third swap of the state transfer process.
In the limit that G=g ≫ 1, the maximum fidelity occurs at
ϵ ¼ 0, as shown in Fig. 6(b).
Detuning between the individual mechanical modes can

also limit the fidelity of the state transfer. Here, we assume
that the single spin couples resonantly to the respective
resonator mode since the corresponding detuning is set by
the frequency of the driving lasers. Figure 6(c) shows the
fidelity as a function of the detuning, δ1 and δ2, between the
waveguide and the two resonators. As expected, high
fidelity is achieved when the detuning is small compared
with g. Figure 6(d) plots the fidelity with equal detuning for
the two resonators, δ ¼ δ1 ¼ δ2.

FIG. 6. (a) Lower bound on fidelity for the triple-swap quantum state transfer between two single spins, calculated over all initial spin
states and with an initial mechanical state j0; 0; 0i, as a function of G=g. T ¼ 0 K and no decoherence processes are included. (b) As a
function of the deviation from the π=2 pulses. From top to bottom, G=g ¼ 50, 10, 3, 2. (c) As a function of the detuning, δ1 and δ2,
between the waveguide and the two resonator modes, with G=g ¼ 25. (d) As a function of the detuning δ1 ¼ δ2 ¼ δ. The result is also
marked with the red dashed curve in (c). Ideal pulse duration and detuning are used unless otherwise specified.
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In the limit that G < g, the spins in adjacent resonators
can be coupled by any of the three normal modes of the
resonator-waveguide-resonator system. In this case, the
Mølmer-Sørensen gate, which was initially developed for
the trapped ion system [67], can be employed to achieve
thermally robust high-fidelity state transfer. Figure 7(a)
shows schematically the coupling scheme of the Mølmer-
Sørensen gate between two single spins, for which each
spin is driven bi-chromaticallywith opposite detuning�ΔMS

andwithG1 ¼ G2 ¼ G. ForG ¼ jωm − ΔMSj=ð2
ffiffiffiffiffiffiffi
2K

p Þ and
for a duration given by 2πK=jωm − ΔMSj, where K is a
positive integer, the Mølmer-Sørensen gate drives the
two spins from state j − −i to a maximally entangled state
ðj − −i − ij þ þiÞ= ffiffiffi

2
p

(assuming only one mechanical
normal mode is involved), which is also disentangled from
the relevantmechanicalmode [72]. State transfer between the
two spins can be realized by combining the Mølmer-
Sørensen gate, which is a universal two-qubit gate, with
additional single-qubit operations. Figure 7(b) plots the
fidelity obtained at T ¼ 0.5 K as a function of G, with
the mechanical modes initially in a thermal state and with
Qm ¼ 107, ωm=2π ¼ 1 GHz, and δ ¼ 0. As discussed ear-
lier, the high Qm should be achievable with the use of 2D
phononic crystal shields and with the state-of-the-art nano-
fabrication technologies.
The Lindblad master equation used for the fidelity

calculation includes noise sources from both the mechani-
cal and spin systems. For the mechanical system, the noise
includes the mechanical damping as well as the thermal
noise. For the spin system, both the pure dephasing and
population decay (or spin flip) are included. The population
decay rate is typically orders of magnitude smaller than the
spin dephasing rate. For convenience, we take population
decay time, T1 ¼ 1 s. As shown in Fig. 7(b), a fidelity

greater than 0.99 can be achieved with G=2π exceeding
0.32 and 0.23 MHz for spin dephasing time T�

2 ¼ 150 and
250 μs (for isotopically purified diamond [73]), respec-
tively. The relatively large spin-mechanical coupling rate
can be achieved with ground-state strain coupling of SiVor
GeV centers [74].
For phononic quantum networks of single spins, the

Mølmer-Sørensen protocol, which operates in the regime of
G ≪ g, is preferable over the triple-swap protocol that
requires G ≫ g for high-fidelity operations. The regime of
G ≫ g will be difficult to achieve in diamond without
compromising resonator-waveguide coupling. Furthermore,
the Mølmer-Sørensen protocol should also tolerate small
detunings between the waveguide and resonator modes.

B. Quantum state transfer between spin ensembles

For the spin-ensemble-based transfer scheme, the spin
operator in Eq. (2) corresponds to the collective lowering
operator for a spin ensemble, with

Ŝ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihPmðj−ih−j − jþihþjÞmi
p X

m

σ̂m; ð4Þ

where we assume that the spins are initially prepared in the
j−i state through optical pumping and the expectation
value is taken with respect to the fully polarized state
⊗m j−i. Ground-state spin-strain coupling of SiV or GeV
centers can be used to avoid large optical inhomogeneous
broadening of the NV centers. Alternatively, a relatively
large optical dipole detuning Δ can be used for the
ensemble NV centers. For sufficiently weak excitations,
we can approximate Ŝ as a bosonic operator, with
½Ŝ; Ŝþ� ¼ 1. Similar approximations for spin ensembles
have also been used for thermally robust quantum state

(a)

(b)

FIG. 7. (a) Schematic of the coupling scheme for the Mølmer-Sørensen gate between two single spins initially in state j − −i.
(b) Fidelity of the Mølmer-Sørensen gate at T ¼ 0.5 K as a function of G, with the mechanical modes initially in a thermal state. Other
parameters used are discussed in the text. The dashes lines are a guide to the eye.
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transfer in an optical network [21,22]. In this limit, the
overall system can be approximated as a set of linearly
coupled harmonic oscillators.
With G1 ¼ G2 ¼ G, the interaction Hamiltonian can be

written in terms of super modes, with â� ¼ ðâ1 � â2Þ=
ffiffiffi
2

p

and Ŝ� ¼ ðŜ1 � Ŝ2Þ=
ffiffiffi
2

p
, and with the form

HI ¼
ffiffiffi
2

p
ℏgb̂þâþ þ ℏGðŜþþâþ þ Ŝþ− â−Þ þ H:c: ð5Þ

The corresponding Heisenberg equations can be solved
analytically. The time evolution of Ŝ1 is given by

Ŝ1ðtÞ¼
gG
Γ2

½cosðΓtÞ−1�b̂− iGffiffiffi
2

p
Γ
sinðΓtÞâþ− iffiffiffi

2
p sinðGtÞâ−

þ 1ffiffiffi
2

p
�
1þG2

Γ2
½cosðΓtÞ−1�

�
Ŝþþ 1ffiffiffi

2
p cosðGtÞŜ−;

ð6Þ

where Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2 þG2

p
.

Under the condition that Γ ¼ 2nG, where n is a positive
integer Ŝ1ðt ¼ π=GÞ ¼ Ŝ2, as can be seen from Eq. (6), and
Ŝ2ðt ¼ π=GÞ ¼ Ŝ1, which enables a perfect state transfer
between the two spin systems, provided that Ŝ can be
approximated as a bosonic operator. This state transfer
process is independent of the initial states of the two
mechanical resonators as well as the initial state of the
phononic crystal waveguide.
To gain further physical insights into the quantum state

transfer process, we plot in Fig. 8 the dynamics of the

constituent mechanical and spin-ensemble systems under a
constant spin-mechanical coupling. For simplicity, we
assume that at t ¼ 0, the occupation in Ŝ1, â1, and b̂ is
1 and that in Ŝ2 and â2 is 0. As shown in Fig. 8(a) (with
Γ ¼ 2G) and Fig. 8(b) (with Γ ¼ 4G), an effective π pulse
(with duration τ ¼ π=G) swaps the quantum states of the
two spin systems as well as those of the two mechanical
resonator modes and returns the waveguide mode to its
initial state. Because of the bosonic approximation of the
spin ensembles, the dynamics of the constituent mechanical
and spin systems are periodic. With Γ ¼ 2nG, the complete
state swapping between the two spin ensembles occurs
simultaneously with that between the two mechanical
resonator modes. This state-swapping process, which arises
from the periodic dynamics of the system, is independent of
the phonon occupation or distribution in the individual
mechanical modes (waveguide or resonator modes) and
keeps the mechanical and the spin systems disentangled. In
this regard, the state transfer can be robust against the
overall thermal environment, provided that the thermaliza-
tion rate kBT=ℏQm is small compared with other relevant
coupling rates.
The above state transfer scheme requires a careful tuning

of the spin-mechanical coupling rate G to satisfy the
condition Γ ¼ 2nG. Nevertheless, the quantum state trans-
fer process can tolerate considerable deviations of G from
its targeted or optimal value. As shown in Fig. 9(a), even
with a deviation as large as 3%, the lower bound of the
fidelity for the state transfer process calculated with the
effective Hamiltonian given in Eq. (5) can still exceed 0.99
[see the shaded area in Fig. 9(a)]. Note that the lower bound
in fidelity is computed in the same manner as Fig. 6.
In the limit that Γ ≫ G (which implies G ≪ g), the fast

dynamics of the “þ” supermodes interacting with mode b̂
effectively average to zero. As a result, the time evolution
of mode b̂ has negligible effects on the dynamics of the spin
system, as shown in Fig. 8(c). In this case, the time
evolution can be described by the effective Hamiltonian

Heff ¼ ℏGðŜþ− â− þ Ŝ−âþ−Þ: ð7Þ

The complete state swap between the two spin systems
can now occur to the zeroth order of the small parameter
G=g, with Ŝ1ðt ¼ π=GÞ ¼ Ŝ2 and without the requirement
that Γ ¼ 2nG.
For the ensemble spin system, spin dephasing induced

by the nuclear spin bath (which includes effects of
inhomogeneous ground-state broadening) is a major limit-
ing factor for the quantum state transfer process, especially
in the regime of G ≪ g. Figure 9(b) shows the fidelity for
the state transfer as a function of the spin dephasing rate
1=T�

2, calculated with the effective Hamiltonian given in
Eq. (6) and with the mechanical parameters from the design
presented in the Appendix. The Lindblad master equation
used includes effects of pure dephasing and population

FIG. 8. Time evolution of the mechanical and spin-ensemble
systems under a constant spin-mechanical coupling. At t ¼ 0, the
occupation in Ŝ1, â1, and b̂ is 1 and that in Ŝ2 and â2 is 0. Red
lines: two spin ensembles. Green lines: two resonator modes.
Black line: the waveguide mode. Top panel: Γ=G ¼ 2. Middle
panel: Γ=G ¼ 4. Bottom panel: Γ=G ¼ ffiffiffiffiffiffiffiffiffiffi

1001
p

. For both the top
and middle panels, the complete state swap between the spin
ensembles is accompanied by that between the resonator
modes.
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decay (with T1 ¼ 1 s). As expected, high fidelity can only
be achieved when 1=T�

2 is small compared with G. In
addition to the use of isotopically purified diamond [73],
we can effectively suppress spin dephasing by using
dressed, instead of bare, spin states [75,76].
We have also calculated the fidelity for the quantum state

transfer of spin ensembles in a thermal environment.
Similar to Fig. 7, the Lindblad master equation used
includes noise sources from both mechanical and spin
systems. The mechanical parameters used, g=2π ¼ 5 MHz,
Qm ¼ 107, ωm=2π ¼ 1 GHz, and δ ¼ 0, are derived from
designs similar to those discussed in the Appendix. With
G=2π ¼ 0.5 MHz and T�

2 ¼ 80 μs, we obtained a lower
bound of 0.94 for fidelity obtained at a temperature of 100
mK. The fidelity increases to 0.98 at T ¼ 30 mK. A fidelity
of 0.99 can be achieved if T2

� is increased to 160 μs (with
T ¼ 30 mK). Note that this scheme is thermally less robust
than the Mølmer-Sørensen scheme discussed earlier. For
the ensemble spin system, the key experimental challenge
is to increase the number of spins, while minimizing the
increase in the effective spin dephasing rate, because of
possible interactions between the spins. We also note that
effects of resonator-waveguide detuning, while not signifi-
cant at relatively small fidelities, become noticeable when
fidelities approach 0.99.

IV. CONCLUSIONS

In summary, we have developed theoretically a phononic
quantum network of solid-state spins, in which a spin-
mechanical resonator is coupled to two distinct phononic
crystal waveguides. The specially designed band gaps in
the alternating waveguides enable a new architecture for
quantum networks. In this architecture, any two neighbor-
ing nodes and the waveguide between them can form a
closed subsystem. This conceptually simple architecture
overcomes the inherent obstacles in scaling up phononic

quantum networks and avoids the technical difficulty of
employing chiral spin-phonon interactions. The proposed
phononic quantum network thus provides a promising
route for developing quantum computers that can take
advantage of robust spin qubits.
We have considered two schemes for quantum state

transfer between spin systems in neighboring quantum
nodes, using single spins and spin ensembles, respectively.
Both schemes can be robust against the thermal environment.
These schemes are intended to illustrate examples of spin-
mechanical interactions that can be used for the proposed
phononic quantum networks. By using closed subsystems as
building blocks, the phononic network can exploit and adopt
a variety of quantum state transfer or entanglement schemes.
While the discussions in this paper use, as a specific

example, color centers in diamond, the implementation can
be applied or extended to other defect centers or solid-state
spin systems such as SiC-based systems [77]. The general
architecture in breaking a large network into small and closed
subsystems and the specific approach of alternating, fre-
quency-selective coupling can also be extended to micro-
wave networks of superconducting circuits as well as to
photonic networks. In addition, 2D quantum networks, for
which the implementation of surface codes becomes possible
[78], can also be pursued with the use of four waveguide
modes and four corresponding resonator modes.
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APPENDIX: MECHANICAL MODES IN
DIAMOND PHONONIC STRUCTURES

1. Calculations of mechanical compression modes

For wavelengths much larger than the atomic spacing,
mechanical modes in an elastic material can be treated as a

FIG. 9. (a) Lower bound on fidelity for the state transfer between two spin ensembles as a function of G, with Γ=Gopt ¼ 4Unhandled
Math Content: Z and with the initial occupation in â1, b̂, and â2 given by 1, 1, 0, respectively. T ¼ 0 K and no decoherence processes are
included. The shaded area indicates the range, for which a fidelity of 0.99 can still be achieved. (b) As a function of the spin dephasing
rate, with G=2π ¼ 0.1 MHz, g=2π ¼ 9.1 MHz, and δ ¼ 0.
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continuum field with time-dependent displacement at a
point r, given by Qðr; tÞ. The field displacement obeys a
wave equation

ρ∂2
tQ ¼ ðλþ μÞ∇ð∇ ·QÞ þ μ∇2Q; ðA1Þ

where ρ is the density of the material. The Lamé constants

λ ¼ νE
ð1þ νÞð1 − 2νÞ ; μ ¼ E

2ð1þ νÞ ðA2Þ

are expressed in terms of the Young’s modulus E and
Poisson ratio ν.
We determine the frequencies and field patterns of the

normal modes by solving the corresponding eigenvalue
equations using finite element numerical calculations. The
material properties of diamond used are E ¼ 1050 GPa,
ν ¼ 0.2, and ρ ¼ 3539 kg=m3. All structures under study
have mirror symmetries, as illustrated in Fig. 10. The
solutions of the wave equations will thus be eigenmodes of
the symmetry operations. We organize the solutions as even
or odd under reflection Rj about a plane perpendicular to
the coordinate axis j ¼ x, y, z. The specific symmetries of
the structure are Ry and Rz. All modes considered in this
work have even symmetry under Rz (these modes are
referred to as symmetric modes). Figure 10 shows the
displacement patterns of the third and fourth-order com-
pression modes of the thin diamond plate discussed in
Fig. 2(a) of the main text.

2. Resonator-waveguide coupling

We describe the coupling between the plate resonators
and the phononic crystal waveguides by using a standard
coupled-mode theory. The Hamiltonian for a pair of single-
mode resonators connected by a waveguide is taken to be

H ¼
X
n

ℏ(Δnb̂
†
nb̂n þ gnf½â1 þ ð−1Þnâ2�b̂†n þ H:c:g);

ðA3Þ

FIG. 10. Top: The reflection symmetry planes of the phononic
network structure. The blue and red planes correspond to Rz and
Ry, respectively. Bottom: Displacement patterns of the third-
order compression mode (left), with even Ry symmetry, and
fourth-order compression mode (right), with odd Ry symmetry.
The positions of the communication and computation qubits are
schematically indicated in the third and fourth order modes,
respectively.

FIG. 11. Displacement patterns of three normal modes in a closed mechanical subsystem. The parameters used are the same as in
Fig. 3. The frequencies are (1.6737, 1.6791, 1.6826) GHz from top to bottom. The triplet arises from the coupling between the fifth-
order compression modes in the two neighboring plate resonators and the nearly resonant waveguide mode. The array of holes in the
waveguide has a period of 6 μm.
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written in a frame rotating at the resonator frequency, where
â1 and â2 describe the two resonator modes with the same
frequency, b̂n describes the waveguide modes, gn is the
resonator-waveguide coupling rate, andΔn is the frequency
difference between the waveguide and the resonator modes.
The sign difference on alternating modes reflects alternat-
ing symmetry of the eigenmodes in the waveguide. For a
waveguide of length L ¼ 120 μm, numerical simulations
of the diamond waveguide structure used in this study give
a mode spacing about 30 MHz. In the limit that g is much
less than the mode spacing, only the resonant or nearly
resonant waveguide mode b̂0 needs to be considered.
In the limit of a single waveguide mode, the (unnor-

malized) eigenmodes are ψ0 ¼ a1 − a2 and ψ� ¼ 4gb0þ
ðΔ0 � ΛÞða1 þ a2Þ, with corresponding eigenvalues
λ0 ¼ 0, λ� ¼ 1

2
ðΔ0 � ΛÞ, where Λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

0 þ 8g2
p

. To
determine the relevant resonator-waveguide coupling rates
for the phononic network structure, we first calculate
numerically the relevant eigenmodes of the full structure.
As shown in Fig. 11, the eigenmodes occur as triplets,
which arise from the coupling between the unperturbed
resonator and waveguide modes. From the frequencies of
the given triplet, we can then determine both g and Δ0, with

Δ0 ¼ λþ þ λ− − 2λ0; ðA4Þ

and

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ − λ−Þ2 − Δ2

0

8

r
: ðA5Þ

For the dimensions of the phononic network used in the
main text, the third-order compression mode features g ¼
9.0 MHz and Δ0 ¼ −3.4 MHz, while the fifth-order com-
pression mode features g ¼ 3.1 MHz andΔ0 ¼ −1.9 MHz.
Further fine tuning of the resonator dimensions can reduce
Δ0 to be much smaller than g. The coupling rate can also be
tuned or tailored by shaping the contact area between the
plate resonator and the phononic crystal waveguide.
In the single-waveguide-mode limit, the eigenmode ψ0

should have no contribution from the waveguide mode. As
can been seen from the displacement patterns shown in
Fig. 11, there are still discernable contributions from the
waveguide, which arise from the coupling of the resonators
to the adjacent waveguide modes such as b�1. In order to
avoid the coupling to multiple waveguide modes, the
waveguide mode spacing needs to far exceed the wave-
guide-resonator coupling rate. For diamond-based pho-
nonic network, relatively short waveguides are preferred
due to the relatively small size of the diamond membranes
available. Note that in the limit of long waveguides (i.e.,
with g much greater than the mode spacing), quantum state
transfer schemes similar to those proposed for optical
networks can be used [21,22].

[1] H. J. Kimble, The Quantum Internet, Nature (London) 453,
1023 (2008).

[2] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Quantum
Interface between Light and Atomic Ensembles, Rev. Mod.
Phys. 82, 1041 (2010).

[3] L. M. Duan and C. Monroe, Colloquium: Quantum
Networks with Trapped Ions, Rev. Mod. Phys. 82, 1209
(2010).

[4] T. E. Northup and R. Blatt, Quantum Information Transfer
Using Photons, Nat. Photonics 8, 356 (2014).

[5] A. Reiserer and G. Rempe, Cavity-Based Quantum
Networks with Single Atoms and Optical Photons, Rev.
Mod. Phys. 87, 1379 (2015).

[6] S. J. M. Habraken, K. Stannigel, M. D. Lukin, P. Zoller, and
P. Rabl, Continuous Mode Cooling and Phonon Routers for
Phononic Quantum Networks, New J. Phys. 14, 115004
(2012).

[7] M. V. Gustafsson, T. Aref, A. F. Kockum,M. K. Ekstrom, G.
Johansson, and P. Delsing, Propagating Phonons Coupled
to an Artificial Atom, Science 346, 207 (2014).

[8] M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K.
Vandersypen, M. D. Lukin, and J. I. Cirac, Universal
Quantum Transducers Based on Surface Acoustic Waves,
Phys. Rev. X 5, 031031 (2015).

[9] M. A. Lemonde, S. Meesala, A. Sipahigil, M. J. A. Schuetz,
M. D. Lukin, M. Loncar, and P. Rabl, Phonon Networks
with Silicon-Vacancy Centers in Diamond Waveguides,
Phys. Rev. Lett. 120, 213603 (2018).

[10] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland,
Quantum Dynamics of Single Trapped Ions, Rev. Mod.
Phys. 75, 281 (2003).

[11] C. Monroe and J. Kim, Scaling the Ion Trap Quantum
Processor, Science 339, 1164 (2013).

[12] P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P.
Zoller, andM. D. Lukin, A Quantum Spin Transducer Based
on Nanoelectromechanical Resonator Arrays, Nat. Phys. 6,
602 (2010).

[13] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi,
Quantum State Transfer and Entanglement Distribution
among Distant Nodes in a Quantum Network, Phys. Rev.
Lett. 78, 3221 (1997).

[14] K. Y. Bliokh, F. J. Rodriguez-Fortuno, F. Nori, and A. V.
Zayats, Spin-Orbit Interactions of Light, Nat. Photonics 9,
796 (2015).

[15] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel,
P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, Chiral
Quantum Optics, Nature (London) 541, 473 (2017).

[16] D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. L.
Wang, Optomechanical Quantum Control of a Nitrogen-
Vacancy Center in Diamond, Phys. Rev. Lett. 116, 143602
(2016).

[17] D. Hatanaka, I. Mahboob, K. Onomitsu, and H. Yamaguchi,
Phonon Waveguides for Electromechanical Circuits, Nat.
Nanotechnol. 9, 520 (2014).

[18] A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J.
Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco,
H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko,
E. Bielejec, H. Park, M. Loncar, and M. D. Lukin, An
Integrated Diamond Nanophotonics Platform for
Quantum-Optical Networks, Science 354, 847 (2016).

MARK C. KUZYK and HAILIN WANG PHYS. REV. X 8, 041027 (2018)

041027-12

https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1103/RevModPhys.82.1209
https://doi.org/10.1103/RevModPhys.82.1209
https://doi.org/10.1038/nphoton.2014.53
https://doi.org/10.1103/RevModPhys.87.1379
https://doi.org/10.1103/RevModPhys.87.1379
https://doi.org/10.1088/1367-2630/14/11/115004
https://doi.org/10.1088/1367-2630/14/11/115004
https://doi.org/10.1126/science.1257219
https://doi.org/10.1103/PhysRevX.5.031031
https://doi.org/10.1103/PhysRevLett.120.213603
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1126/science.1231298
https://doi.org/10.1038/nphys1679
https://doi.org/10.1038/nphys1679
https://doi.org/10.1103/PhysRevLett.78.3221
https://doi.org/10.1103/PhysRevLett.78.3221
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nature21037
https://doi.org/10.1103/PhysRevLett.116.143602
https://doi.org/10.1103/PhysRevLett.116.143602
https://doi.org/10.1038/nnano.2014.107
https://doi.org/10.1038/nnano.2014.107
https://doi.org/10.1126/science.aah6875


[19] M. J. Burek, J. D. Cohen, S. M. Meenehan, N. El-Sawah, C.
Chia, T. Ruelle, S. Meesala, J. Rochman, H. A. Atikian, M.
Markham, D. J. Twitchen, M. D. Lukin, O. Painter, and M.
Loncar, Diamond Optomechanical Crystals, Optica 3, 1404
(2016).

[20] N. H. Wan, S. Mouradian, and D. Englund, Two-
Dimensional Photonic Crystal Slab Nanocavities on Bulk
Single-Crystal Diamond, Appl. Phys. Lett. 112, 141102
(2018).

[21] B. Vermersch, P. O. Guimond, H. Pichler, and P. Zoller,
Quantum State Transfer via Noisy Photonic and Phononic
Waveguides, Phys. Rev. Lett. 118, 133601 (2017).

[22] Z. L. Xiang, M. Z. Zhang, L. Jiang, and P. Rabl, Intracity
Quantum Communication via Thermal Microwave
Networks, Phys. Rev. X 7, 011035 (2017).

[23] M.W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J.
Wrachtrup, and L. C. L. Hollenberg, The Nitrogen-Vacancy
Colour Centre in Diamond, Phys. Rep. 528, 1 (2013).

[24] D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and
J. R. Petta, Quantum Spintronics: Engineering and Manipu-
lating Atom-Like Spins in Semiconductors, Science 339,
1174 (2013).

[25] L. Childress, R. Walsworth, and M. Lukin, Atom-Like
Crystal Defects: From Quantum Computers to Biological
Sensors, Phys. Today 67, No. 10, 38 (2014).

[26] S. D. Barrett and P. Kok, Efficient High-Fidelity Quantum
Computation Using Matter Qubits and Linear Optics, Phys.
Rev. A 71, 060310(R) (2005).

[27] Q. Chen, W. L. Yang, M. Feng, and J. F. Du, Entangling
Separate Nitrogen-Vacancy Centers in a Scalable Fashion
via Coupling to Microtoroidal Resonators, Phys. Rev. A 83,
054305 (2011).

[28] K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B.
Scharfenberger, K. Buczak, T. Nobauer, M. S. Everitt, J.
Schmiedmayer, and W. J. Munro, Photonic Architecture for
Scalable Quantum Information Processing in Diamond,
Phys. Rev. X 4, 031022 (2014).

[29] N. Y. Yao, L. Jiang, A. V. Gorshkov, P. C. Maurer, G.
Giedke, J. I. Cirac, and M. D. Lukin, Scalable Architecture
for a Room Temperature Solid-State Quantum Information
Processor, Nat. Commun. 3, 800 (2012).

[30] A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya,
A. S. Zibrov, F. Jelezko, and M. D. Lukin, Indistinguishable
Photons from Separated Silicon-Vacancy Centers in
Diamond, Phys. Rev. Lett. 113, 113602 (2014).

[31] L. J. Rogers, K. D. Jahnke, T. Teraji, L. Marseglia, C.
Muller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya,
L. P. McGuinness, and F. Jelezko, Multiple Intrinsically
Identical Single-Photon Emitters in the Solid State, Nat.
Commun. 5, 4739 (2014).

[32] M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans,
M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H.
Metsch, H. Park, F. Jelezko, M. Loncar, and M. D. Lukin,
Quantum Nonlinear Optics with a Germanium-Vacancy
Color Center in a Nanoscale Diamond Waveguide, Phys.
Rev. Lett. 118, 223603 (2017).

[33] P. Siyushev, M. H. Metsch, A. Ijaz, J. M. Binder, M. K.
Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, C. T.
Nguyen, M. D. Lukin, P. R. Hemmer, Y. N. Palyanov, I. N.
Kupriyanov, Y. M. Borzdov, L. J. Rogers, and F. Jelezko,

Optical and Microwave Control of Germanium-Vacancy
Center Spins in Diamond, Phys. Rev. B 96, 081201(R)
(2017).

[34] Y. Chu, N. P. de Leon, B. J. Shields, B. Hausmann, R.
Evans, E. Togan, M. J. Burek, M. Markham, A. Stacey, A. S.
Zibrov, A. Yacoby, D. J. Twitchen, M. Loncar, H. Park, P.
Maletinsky, and M. D. Lukin, Coherent Optical Transitions
in Implanted Nitrogen Vacancy Centers, Nano Lett. 14,
1982 (2014).

[35] R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov, and
M. D. Lukin, Narrow-Linewidth Homogeneous Optical
Emitters in Diamond Nanostructures via Silicon Ion
Implantation, Phys. Rev. Applied 5, 044010 (2016).

[36] E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A.
Bhave, and G. D. Fuchs, Mechanical Spin Control of
Nitrogen-Vacancy Centers in Diamond, Phys. Rev. Lett.
111, 227602 (2013).

[37] J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky,
Strain Coupling of a Nitrogen-Vacancy Center Spin to a
Diamond Mechanical Oscillator, Phys. Rev. Lett. 113,
020503 (2014).

[38] P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B.
Jayich, Dynamic Strain-Mediated Coupling of a Single
Diamond Spin to a Mechanical Resonator, Nat. Commun.
5, 4429 (2014).

[39] S. Meesala, Y. I. Sohn, H. A. Atikian, S. Kim, M. J. Burek,
J. T. Choy, and M. Loncar, Enhanced Strain Coupling of
Nitrogen-Vacancy Spins to Nanoscale Diamond Cantile-
vers, Phys. Rev. Applied 5, 034010 (2016).

[40] D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A.
Stewart, and H. L. Wang, Coupling a Surface Acoustic
Wave to an Electron Spin in Diamond via a Dark State,
Phys. Rev. X 6, 041060 (2016).

[41] E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs,
Cooling a Mechanical Resonator with Nitrogen-
Vacancy Centres Using a Room Temperature Excited
State Spin-Strain Interaction, Nat. Commun. 8, 14358
(2017).

[42] K.W. Lee, D. Lee, P. Ovartchaiyapong, J. Minguzzi, J. R.
Maze, and A. C. B. Jayich, Strain Coupling of a Mechanical
Resonator to a Single Quantum Emitter in Diamond, Phys.
Rev. Applied 6, 034005 (2016).

[43] K. V. Kepesidis, S. D. Bennett, S. Portolan, M. D. Lukin,
and P. Rabl, Phonon Cooling and Lasing with Nitrogen-
Vacancy Centers in Diamond, Phys. Rev. B 88, 064105
(2013).

[44] A. Albrecht, A. Retzker, F. Jelezko, and M. B. Plenio,
Coupling of Nitrogen Vacancy Centres in Nanodiamonds by
Means of Phonons, New J. Phys. 15, 083014 (2013).

[45] Y. I. Sohn, S. Meesala, B. Pingault, H. A. Atikian, J.
Holzgrafe, M. Gundogan, C. Stavrakas, M. J. Stanley, A.
Sipahigil, J. Choi, M. Zhang, J. L. Pacheco, J. Abraham, E.
Bielejec, M. D. Lukin, M. Atature, and M. Loncar, Con-
trolling the Coherence of a Diamond Spin Qubit through Its
Strain Environment, Nat. Commun. 9, 2012 (2018).

[46] E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L.
Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer,
A. S. Zibrov, and M. D. Lukin, Quantum Entanglement
between an Optical Photon and a Solid-State Spin Qubit,
Nature (London) 466, 730 (2010).

SCALING PHONONIC QUANTUM NETWORKS OF SOLID- … PHYS. REV. X 8, 041027 (2018)

041027-13

https://doi.org/10.1364/OPTICA.3.001404
https://doi.org/10.1364/OPTICA.3.001404
https://doi.org/10.1063/1.5021349
https://doi.org/10.1063/1.5021349
https://doi.org/10.1103/PhysRevLett.118.133601
https://doi.org/10.1103/PhysRevX.7.011035
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1126/science.1231364
https://doi.org/10.1126/science.1231364
https://doi.org/10.1063/PT.3.2549
https://doi.org/10.1103/PhysRevA.71.060310
https://doi.org/10.1103/PhysRevA.71.060310
https://doi.org/10.1103/PhysRevA.83.054305
https://doi.org/10.1103/PhysRevA.83.054305
https://doi.org/10.1103/PhysRevX.4.031022
https://doi.org/10.1038/ncomms1788
https://doi.org/10.1103/PhysRevLett.113.113602
https://doi.org/10.1038/ncomms5739
https://doi.org/10.1038/ncomms5739
https://doi.org/10.1103/PhysRevLett.118.223603
https://doi.org/10.1103/PhysRevLett.118.223603
https://doi.org/10.1103/PhysRevB.96.081201
https://doi.org/10.1103/PhysRevB.96.081201
https://doi.org/10.1021/nl404836p
https://doi.org/10.1021/nl404836p
https://doi.org/10.1103/PhysRevApplied.5.044010
https://doi.org/10.1103/PhysRevLett.111.227602
https://doi.org/10.1103/PhysRevLett.111.227602
https://doi.org/10.1103/PhysRevLett.113.020503
https://doi.org/10.1103/PhysRevLett.113.020503
https://doi.org/10.1038/ncomms5429
https://doi.org/10.1038/ncomms5429
https://doi.org/10.1103/PhysRevApplied.5.034010
https://doi.org/10.1103/PhysRevX.6.041060
https://doi.org/10.1038/ncomms14358
https://doi.org/10.1038/ncomms14358
https://doi.org/10.1103/PhysRevApplied.6.034005
https://doi.org/10.1103/PhysRevApplied.6.034005
https://doi.org/10.1103/PhysRevB.88.064105
https://doi.org/10.1103/PhysRevB.88.064105
https://doi.org/10.1088/1367-2630/15/8/083014
https://doi.org/10.1038/s41467-018-04340-3
https://doi.org/10.1038/nature09256


[47] X. Chen, I. Lizuain, A. Ruschhaupt, D. Guery-Odelin, and
J. G. Muga, Shortcut to Adiabatic Passage in Two- and
Three-Level Atoms, Phys. Rev. Lett. 105, 123003 (2010).

[48] B. B. Zhou, A. Baksic, H. Ribeiro, C. G.Yale, F. J. Heremans,
P. C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. D.
Awschalom, Accelerated Quantum Control Using Super-
adiabatic Dynamics in a Solid-State Lambda System, Nat.
Phys. 13, 330 (2017).

[49] H. Ribeiro, A. Baksic, and A. A. Clerk, Systematic Magnus-
Based Approach for Suppressing Leakage and Nonadia-
batic Errors in Quantum Dynamics, Phys. Rev. X 7, 011021
(2017).

[50] Y. Li and S. C. Benjamin, One-Dimensional Quantum
Computing with a “Segmented Chain” Is Feasible with
Today’s Gate Fidelities, npj Quantum Inf. 4, 25 (2018).

[51] P. L. Yu, K. Cicak, N. S. Kampel, Y. Tsaturyan, T. P. Purdy,
R. W. Simmonds, and C. A. Regal, A Phononic Bandgap
Shield for High-QMembrane Microresonators, Appl. Phys.
Lett. 104, 023510 (2014).

[52] R. N. Patel, Z. Wang, W. Jiang, C. J. Sarabalis, J. T. Hill, and
A. H. Safavi-Naeini, A Single-Mode Phononic Wire, Phys.
Rev. Lett. 121, 040501 (2018).

[53] S. M. Meenehan, J. D. Cohen, G. S. MacCabe, F. Marsili,
M. D. Shaw, and O. Painter, Pulsed Excitation Dynamics of
an Optomechanical Crystal Resonator near Its Quantum
Ground State of Motion, Phys. Rev. X 5, 041002 (2015).

[54] Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser,
Ultracoherent Nanomechanical Resonators via Soft Clamp-
ing and Dissipation Dilution, Nat. Nanotechnol. 12, 776
(2017).

[55] K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D.
Lukin, Optomechanical Transducers for Long-Distance
Quantum Communication, Phys. Rev. Lett. 105, 220501
(2010).

[56] L. Tian and H. L. Wang, Optical Wavelength Conversion of
Quantum States with Optomechanics, Phys. Rev. A 82,
053806 (2010).

[57] A. H. Safavi-Naeini and O. Painter, Proposal for an
Optomechanical Traveling Wave Phonon-Photon Trans-
lator, New J. Phys. 13, 013017 (2011).

[58] C. A. Regal and K.W. Lehnert, From Cavity Electrome-
chanics to Cavity Optomechanics, J. Phys. Conf. Ser. 264,
012025 (2011).

[59] S. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, and D.
Vitali, Reversible Optical-to-Microwave Quantum Inter-
face, Phys. Rev. Lett. 109, 130503 (2012).

[60] C. H. Dong, Y. D. Wang, and H. L. Wang, Optomechanical
Interfaces for Hybrid Quantum Networks, Natl. Sci. Rev. 2,
510 (2015).

[61] L. Tian, Adiabatic State Conversion and Pulse Trans-
mission in Optomechanical Systems, Phys. Rev. Lett.
108, 153604 (2012).

[62] Y. D. Wang and A. A. Clerk, Using Interference for High
Fidelity Quantum State Transfer in Optomechanics, Phys.
Rev. Lett. 108, 153603 (2012).

[63] F. Massel, S. U. Cho, J. M. Pirkkalainen, P. J. Hakonen, T. T.
Heikkila, and M. A. Sillanpaa, Multimode Circuit Optome-
chanics near the Quantum Limit, Nat. Commun. 3, 987
(2012).

[64] C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, Optome-
chanical Dark Mode, Science 338, 1609 (2012).

[65] C. H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. L.
Wang, Optical Wavelength Conversion via Optomechanical
Coupling in a Silica Resonator, Ann. Phys. (Berlin) 527,
100 (2015).

[66] M. C. Kuzyk and H. L. Wang, Controlling Multimode
Optomechanical Interactions via Interference, Phys. Rev.
A 96, 023860 (2017).

[67] A. Sørensen and K. Mølmer, Quantum Computation with
Ions in Thermal Motion, Phys. Rev. Lett. 82, 1971 (1999).

[68] Y. D. Wang and A. A. Clerk, Using Dark Modes for High-
Fidelity Optomechanical Quantum State Transfer, New J.
Phys. 14, 105010 (2012).

[69] M. C. Kuzyk, S. J. van Enk, and H. L. Wang, Generating
Robust Optical Entanglement in Weak-Coupling Optome-
chanical Systems, Phys. Rev. A 88, 062341 (2013).

[70] M. J. A. Schuetz, G. Giedke, L. M. K. Vandersypen, and J. I.
Cirac, High-Fidelity Hot Gates for Generic Spin-Resonator
Systems, Phys. Rev. A 95, 052335 (2017).

[71] A. Uhlmann, The Transition Probability in the State Space
of a *-Algebra, Rep. Math. Phys. 9, 273 (1976).

[72] A. Sørensen and K. Mølmer, Entanglement and Quantum
Computation with Ions in Thermal Motion, Phys. Rev. A 62,
022311 (2000).

[73] G. Balasubramanian, P. Neumann, D. Twitchen, M.
Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard,
J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and
J. Wrachtrup, Ultralong Spin Coherence Time in Isotopi-
cally Engineered Diamond, Nat. Mater. 8, 383 (2009).

[74] S. Meesala, Y.-I. Sohn, B. Pingault, L. Shao, H. A. Atikian,
J. Holzgrafe, Gündoğan, C. Stavrakas, A. Sipahigil, C. Chia,
R. Evans, M. J. Burek, M. Zhang, L. Wu, J. L. Pacheco, J.
Abraham, E. Bielejec, M. D. Lukin, M. Atatüre, and M.
Lončar, Strain Engineering of the Silicon-Vacancy Center
in Diamond, Phys. Rev. B 97, 205444 (2018).

[75] D. A. Golter, T. K. Baldwin, and H. L. Wang, Protecting a
Solid-State Spin from Decoherence Using Dressed Spin
States, Phys. Rev. Lett. 113, 237601 (2014).

[76] X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang,
Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F.
Du, Coherence-Protected Quantum Gate by Continuous
Dynamical Decoupling in Diamond, Phys. Rev. Lett. 109,
070502 (2012).

[77] W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine,
and D. D. Awschalom, Room Temperature Coherent Con-
trol of Defect Spin Qubits in Silicon Carbide, Nature
(London) 479, 84 (2011).

[78] A. G. Fowler, A. M. Stephens, and P. Groszkowski, High-
Threshold Universal Quantum Computation on the Surface
Code, Phys. Rev. A 80, 052312 (2009).

MARK C. KUZYK and HAILIN WANG PHYS. REV. X 8, 041027 (2018)

041027-14

https://doi.org/10.1103/PhysRevLett.105.123003
https://doi.org/10.1038/nphys3967
https://doi.org/10.1038/nphys3967
https://doi.org/10.1103/PhysRevX.7.011021
https://doi.org/10.1103/PhysRevX.7.011021
https://doi.org/10.1038/s41534-018-0074-2
https://doi.org/10.1063/1.4862031
https://doi.org/10.1063/1.4862031
https://doi.org/10.1103/PhysRevLett.121.040501
https://doi.org/10.1103/PhysRevLett.121.040501
https://doi.org/10.1103/PhysRevX.5.041002
https://doi.org/10.1038/nnano.2017.101
https://doi.org/10.1038/nnano.2017.101
https://doi.org/10.1103/PhysRevLett.105.220501
https://doi.org/10.1103/PhysRevLett.105.220501
https://doi.org/10.1103/PhysRevA.82.053806
https://doi.org/10.1103/PhysRevA.82.053806
https://doi.org/10.1088/1367-2630/13/1/013017
https://doi.org/10.1088/1742-6596/264/1/012025
https://doi.org/10.1088/1742-6596/264/1/012025
https://doi.org/10.1103/PhysRevLett.109.130503
https://doi.org/10.1093/nsr/nwv048
https://doi.org/10.1093/nsr/nwv048
https://doi.org/10.1103/PhysRevLett.108.153604
https://doi.org/10.1103/PhysRevLett.108.153604
https://doi.org/10.1103/PhysRevLett.108.153603
https://doi.org/10.1103/PhysRevLett.108.153603
https://doi.org/10.1038/ncomms1993
https://doi.org/10.1038/ncomms1993
https://doi.org/10.1126/science.1228370
https://doi.org/10.1002/andp.201400110
https://doi.org/10.1002/andp.201400110
https://doi.org/10.1103/PhysRevA.96.023860
https://doi.org/10.1103/PhysRevA.96.023860
https://doi.org/10.1103/PhysRevLett.82.1971
https://doi.org/10.1088/1367-2630/14/10/105010
https://doi.org/10.1088/1367-2630/14/10/105010
https://doi.org/10.1103/PhysRevA.88.062341
https://doi.org/10.1103/PhysRevA.95.052335
https://doi.org/10.1016/0034-4877(76)90060-4
https://doi.org/10.1103/PhysRevA.62.022311
https://doi.org/10.1103/PhysRevA.62.022311
https://doi.org/10.1038/nmat2420
https://doi.org/10.1103/PhysRevB.97.205444
https://doi.org/10.1103/PhysRevLett.113.237601
https://doi.org/10.1103/PhysRevLett.109.070502
https://doi.org/10.1103/PhysRevLett.109.070502
https://doi.org/10.1038/nature10562
https://doi.org/10.1038/nature10562
https://doi.org/10.1103/PhysRevA.80.052312

