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A remarkable recent experiment has observed Mott insulator and proximate superconductor phases in
twisted bilayer graphene when electrons partly fill a nearly flat miniband that arises a “magic” twist angle.
However, the nature of the Mott insulator, the origin of superconductivity, and an effective low-energy
model remain to be determined. We propose a Mott insulator with intervalley coherence that spontaneously
breaks Uð1Þ valley symmetry and describe a mechanism that selects this order over the competing
magnetically ordered states favored by the Hund’s coupling. We also identify symmetry-related features of
the nearly flat band that are key to understanding the strong correlation physics and constrain any tight-
binding description. First, although the charge density is concentrated on the triangular-lattice sites of the
moiré pattern, the Wannier states of the tight-binding model must be centered on different sites which form
a honeycomb lattice. Next, spatially localizing electrons derived from the nearly flat band necessarily
breaks valley and other symmetries within any mean-field treatment, which is suggestive of a valley-
ordered Mott state, and also dictates that additional symmetry breaking is present to remove symmetry-
enforced band contacts. Tight-binding models describing the nearly flat miniband are derived, which
highlight the importance of further neighbor hopping and interactions. We discuss consequences of this
picture for superconducting states obtained on doping the valley-ordered Mott insulator. We show how
important features of the experimental phenomenology may be explained and suggest a number of further
experiments for the future. We also describe a model for correlated states in trilayer graphene
heterostructures and contrast it with the bilayer case.
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I. INTRODUCTION

Superconductivity occurs proximate to a Mott insulator
in a few materials. The most famous are the cuprate high-Tc
materials [1]; others include layered organic materials [2],
certain fullerene superconductors [3], and some iron-based
superconductors [4]. In these systems, there is a complex
and often poorly understood relationship between the Mott
insulator and the superconductor, which has spurred
tremendous research activity in condensed matter physics
in the past 30 years. Very recently, in some remarkable
developments, both Mott insulating behavior and proxi-
mate superconductivity have been observed in a very
different platform: two layers of graphene that are rotated
by a small angle relative to each other [5,6].
Twisted bilayer graphene (TBG) structures have been

studied intensely in the past few years [7–18]. The charge
density is concentrated on a moiré pattern which forms

(at least approximately) a triangular lattice [8,9,11,14,15].
The electronic states near each valley of each graphene
monolayer hybridize with the corresponding states from the
other monolayer. When the twisting angle is close to certain
discrete values known as the magic angles, theoretical
calculations show that there are two nearly flat bands (per
valley per spin) that form in the middle of the full spectrum
that are separated from other bands [12]. When the carrier
density is such that the chemical potential lies within these
nearly flat bands, interaction effects are expected to be
enhanced. At a filling of 1=4 or 3=4 (denoted ν ¼ −2 and
þ2, respectively, with full band filling denoted ν ¼ þ4) of
these nearly flat bands, Ref. [5] reports insulating behavior
at very low temperatures. At such fillings, band insulation
is forbidden, which leads naturally to the expectation that
these are correlation-driven (Mott) insulators. Doping the
Mott insulator at 1=4 band filling—with either electrons or
holes—reveals superconductivity at low T [6].
A number of other striking observations are made in

Refs. [5,6] about both the Mott insulator and the super-
conductor from transport studies in a magnetic field. The
Mott insulation is suppressed through the Zeeman coupling
of the magnetic field at a low scale of approximately 5T—
roughly the same scale as the activation gap inferred from
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zero field resistivity. Quantum oscillations are seen in the
hole-doped state with a frequency set (in the hole-doped
side) by the density deviation from the Mott insulator. The
degeneracy of the corresponding Landau levels is half of
what might be expected from the spin and valley degrees of
freedom that characterize electrons in graphene. The super-
conductivity occurs at temperatures that are high given the
low density of charge carriers. Just like in other doped Mott
insulators, there is a dome of superconductivity with Tc
reaching an “optimal” value at a finite doping. The super-
conductivity is readily suppressed in accessible magnetic
fields—both perpendicular and parallel to the plane.
The observation of these classic phenomena in graphene

gives new hope for theoretical progress in addressing old
questions on Mott physics and its relationship to super-
conductivity. They also raise a number of questions. What
is the nature of the insulators seen at these fractional
fillings? How are they related to the observed super-
conductivity? On the theoretical side, what is an appro-
priate model that captures the essential physics of this
system?.
In this paper, we make a start on addressing these

questions. The two nearly flat bands for each valley found
in the band structure have Dirac crossings at the moiré K
points (but not Γ). We argue that these Dirac crossings are
protected by symmetries of the TBG system. We show that
this protection precludes finding a real-space representation
of the nearly flat bands in terms of Wannier orbitals
localized at the triangular moiré sites, in contrast to natural
expectations. Thus, a suitable real-space lattice model is
necessarily different from a correlated triangular-lattice
model with two orbitals (corresponding to the two valleys)
per site. We instead show that a representation that is
faithful to the Dirac crossings is possible on a honeycomb
lattice with two orbitals per site, but even this representa-
tion has some subtleties. First, one cannot implement a
natural representation of all the important symmetries in the
problem, which include spatial symmetries, time reversal,
and a separate conservation of electrons of each valley
[which we dub Uvð1Þ]. Second, since the charge density is
concentrated at the moiré triangular sites (which appear as
the centers of the honeycomb plaquettes), the dominant
interaction is not an on-site Coulomb repulsion on the
honeycomb sites. Rather, it is a “cluster-charging energy”
that favors having a fixed number of electrons in each
honeycomb plaquette, which makes this model potentially
rather different from more standard Hubbard models with
on-site interactions.
Armed with this understanding of the microscopics, we

can begin to address the experimental phenomenology. We
propose that this system spontaneously breaks the valley
Uvð1Þ symmetry—we call the resulting order “intervalley
coherent” (IVC). We discuss microscopic mechanisms that
stabilize IVC symmetry breaking. We point out that, even
when the IVC is fully polarized, it cannot, by itself, lead to

a fully insulating state but rather leads to a Dirac semimetal.
The development of a true insulator needs a further
symmetry breaking (or some more exotic mechanism) to
gap out the Dirac points. We show that, once the valley
symmetry is spontaneously broken, the physics at lower
energy scales can be straightforwardly formulated in terms
of a real-space honeycomb lattice tight-binding model with
a dominant cluster-charging interaction and other weaker
interactions. We outline a number of different possible
routes in which a true insulator [19] can be obtained in such
an IVC-ordered system. A concrete example is a state that
further breaks C3 rotational symmetry. We show how
doping this specific IVC insulator can explain the phe-
nomenology of the experiments. We present a possible
pairing mechanism due to an attractive interaction mediated
by Goldstone fluctuations of the IVC phase. We describe
and contrast features of other distinct routes by which the
IVC state can become a true insulator at ν ¼ �2. We
propose a number of future experiments that can distin-
guish between the different routes through which an IVC
can become a true insulator.
In addition, very recently, a heterostructure of ABC-

stacked trilayer graphene and boron nitride (TLG/hBN),
which also forms a triangular moiré superlattice even at a
zero twist angle, was studied [20]. This system also features
nearly flat bands that are separated from the rest of the
spectrum. Correlated Mott insulating states are seen at
fractional fillings of the nearly flat band. Unlike the TBG,
here the nearly flat band has no Dirac crossing, which
makes the details of the two systems potentially rather
different. In particular, the nearly flat band of the TLG/hBN
can be modeled in real space as a triangular-lattice model
with two orbitals per site, supplemented with interactions.
However, the hopping matrix elements are, in general,
complex (but subjected to some symmetry restrictions). We
describe some properties of this model and suggest that this
system offers a good possibility to realize novel kinds of
quantum spin-orbital liquid states.

II. ELECTRONIC STRUCTURE OF TWISTED
BILAYER GRAPHENE: GENERAL

CONSIDERATIONS

A. Setup

First, to establish the notation, let us consider a graphene
monolayer, with lattice vectors A1 and A2 (see Appendix A
for details). The honeycomb lattice sites are located at
r1;2 ¼ 1

2
ðA1 þ A2Þ ∓ 1

6
ðA1 − A2Þ, where the − andþ signs

are, respectively, for the sites labeled by 1 and 2.
Now consider the moiré pattern generated in the twisted

bilayer problem. For concreteness, imagine we begin with a
pair of perfectly aligned graphene sheets, and consider
twisting the top layer by an angle θ relative to the bottom
one. Now we have two pairs of reciprocal lattice vectors,
the original ones Ba and B0

a ¼ RθBa. Like Refs. [7,12], we
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approximate the moiré superlattice by the relative wave
vectors, leading to a periodic structure with reciprocal
lattice vectors ba ¼ B0

a − Ba ¼ ðRθ − IÞBa. For small θ,
we can approximate this by ba ¼ θẑ × Ba. Thus, the moiré
pattern also has triangular-lattice symmetry, but it is rotated
by 90° and has a much larger lattice constant. Note that, in
this dominant harmonic approximation, questions of com-
mensuration or incommensuration are avoided, since no
comparison is made between the other sets of harmonics of
the moiré superlattice that are not commensurate to the
dominant one.
Let us now briefly review the low-energy electronic

structure of monolayer graphene to set the notation.
Parameterizing k ¼ P

j¼1;2 gjBj for gj ∈ ð−1=2; 1=2�,
the Bloch Hamiltonian for the nearest-neighbor hopping
model is

HðgÞ ¼ tðe−ið2π=3Þðg1−g2Þ þ e−ið2π=3Þðg1þ2g2Þ

þ eið2π=3Þð2g1þg2ÞÞσ− þ H:c: ð1Þ

Note that, as a general property of our present choice
of Fourier transform, the Bloch Hamiltonian is not
manifestly periodic in the Brillouin zone (BZ). Rather,
for any reciprocal lattice vector B, we have HðkþBÞ¼
ηBHðkÞη†B, where ηB¼diagðe−iB·raÞ. One can now pass to a
continuum limit near each Dirac point K¼ð2B1−B2Þ=
3 and −K. We then have the linearized Hamiltonian

HðK þ kÞ ¼ −ℏvFk · σ;

Hð−K þ kÞ ¼ ℏvFk · σ�; ð2Þ

where ℏvF ¼ ffiffiffi
3

p
ta=2 in our simple nearest-neighbor

model. Since HðqÞ is not periodic in the BZ, expanding
about the other equivalent Dirac points leads to a slightly
modified form of the Hamiltonian (due to conjugation by
some η). In second quantized notation, we can write the
continuum Hamiltonian:

ĥþ ¼ −ℏvF
Z

d−2kψ̂†
þ;kðk · σÞψ̂þ;k;

ĥ− ¼ þℏvF

Z
d−2k0ψ̂†

−;k0 ðk0 · σ�Þψ̂−;k0 ; ð3Þ

where the momentum integration is understood to be
implemented near the Dirac point momentum by introduc-
ing a cutoff jkj ≤ Λ and d−2k ¼ ½ðdkxdkyÞ=ð2πÞ2�. The
symmetry implementation on the continuum fields is
tabulated in Appendix A. For example, C3-rotation sym-
metry is represented as Ĉ3ψ̂�μ;kĈ

−1
3 ¼ e∓ið2π=3Þσ3 ψ̂�μ;C3k,

where μ ¼ t, b is the layer index.
Next, we couple the degrees of freedom in the two layers

of graphene and arrive at a continuum theory for the twisted
bilayer graphene system [7,12]. First, we note that the

rotated Bloch Hamiltonian of a monolayer can then be
identified as HφðkÞ ¼ HðR−φkÞ. Linearizing about the
rotated K point RφK obtains ĥ�ðφÞ, with ĥ�ðφÞ defined
by replacing σ ↦ σφ in ĥ�, where

σφ ≡ e−iφσ3=2σeiφσ3=2: ð4Þ

Focusing on a single valley, say, K, the continuum theory
[7,12] of the twisted bilayer graphene system is described
by the Hamiltonian Ĥcont ¼ ĤDirac þ ĤT , where

ĤDirac ¼ ĥþðφtÞ þ ĥþðφbÞ;

ĤT ¼
Z

Λ

0

d2kψ̂†
þb;kTq1 ψ̂þt;kþq1 þ H:c:

þ symmetry-related terms; ð5Þ

t and b, respectively, denote the top and bottom layers, and
we set φt ¼ θ=2 and φb ¼ −θ=2. Here, we introduce
q1 ≡ R−θ=2K − Rθ=2K, which characterizes the momentum
transfer between the electronic degrees of freedom of the
two layers [12]. Assuming Tq1 is real, the symmetries of the
system, which we discuss in the following subsection,
constrain Tq1 [21] to take the form Tq1 ¼ w0 − w1σ1, where
w0;1 are real parameters [22]. Similarly, one can generate
the omitted symmetry-related terms by applying sym-
metries on Tq1 .

B. Symmetries of the continuum theory

Let us discuss how the symmetries of the graphene
monolayer are modified in the twisted bilayer problem
within the dominant harmonic approximation. We see
that, in addition to the moiré translation symmetry, we
have C6 rotation, time reversal, and a mirror symmetry.
Furthermore, a U(1) valley symmetry that allows us to
assign valley charge to the electrons emerges in the low-
energy limit. The generator of C6 rotation and time reversal
flips the valley charge, while reflection leaves it invariant.
Microscopically, the stacking pattern of the two layers

can be specified as follows [12,21,23]: First, we align the
two layers perfectly in a site-on-site manner, corresponding
to the “AA-stacking” pattern, and then rotate the top and
bottom layers about a hexagon center by angles θ=2 and
−θ=2 clockwise, respectively; second, we shift the top layer
by a vector d parallel to the plane. For generic values of θ
and d, one expects that almost all of the spatial symmetries
are broken.
However, within the dominant harmonic approximation,

it is found that, on top of possessing moiré lattice trans-
lation symmetries, the effective theory is also insensitive to
d [12]. This finding implies that, given θ, the effective
theory will at least possess all the exact symmetries for any
choice of d. A particularly convenient choice is when we
take d ¼ 0. In this case, we can infer all the point-group
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symmetries of the system by focusing on the center of the
hexagons [Fig. 1(a)]. Aside from the rotational symmetries
generated by the sixfold rotation C6, we see that there is an
additional mirror plane My, which, in fact, combines a
mirror perpendicular to the 2D plane together with an in-
plane mirror which flips the top and bottom layers. Strictly
speaking, this process leads to a twofold rotation in 3D
space, but when restricting our attention to a 2D system it
acts as a mirror.
In summary, the effective theory will at least have the

following spatial symmetries: lattice translations, a sixfold
rotation, and a mirror, which allows one to uniquely
identify its wallpaper group (i.e., 2D space group) as
p6mm (numbered 17 in Ref. [24]). Having identified the
symmetries of the system, one can derive the model
following a phenomenological approach by systematically
incorporating all symmetry-allowed terms with some cutoff

[21]. We tabulate the explicit symmetry transformation of
the electron operators in Appendix A.
In the effective theory, the degrees of freedom arising

from the microscopic K and K0 points are also essentially
decoupled [7,12], which is because, for a small twist angle
satisfying j sin θj ≪ 1, we have jbaj ≪ jKj, and therefore
the coupling between the K and K0 points is a very high-
order process. Hence, on top of the usual electron-charge
conservation, the effective theory has an additional, emer-
gent Uvð1Þ conservation corresponding to the independent
conservation of charge in the two valleys K and K0.
Henceforth, we refer to this as “valley conservation.”
The valley-charge operator is given by

Îz ¼
Z

đ2kðψ̂†
þ;kψ̂þ;k − ψ̂†

−;kψ̂−;kÞ: ð6Þ

Note that, as time reversal T interchanges the K and K0
valleys, it is not a symmetry of a single valley. Similarly, C6

also interchanges the two valleys; thus,

T̂ ÎzT̂
−1 ¼ −Îz; ð7Þ

Ĉ6ÎzĈ6
−1 ¼ −Îz; ð8Þ

M̂yÎzM̂y
−1 ¼ þÎz: ð9Þ

We then see that their combined symmetry C6T is a
symmetry in the single-valley problem. In fact, one can
check that the symmetry of the single-valley problem is
described by the magnetic space group 183.188 (BNS
notation; Ref. [25]). We tabulate the generating symmetries
in Table I.

(b)(a)

(c) (d)

(e) (f )

FIG. 1. Effective symmetries and constraints on band struc-
tures. (a) The effective symmetries of the twisted bilayer
graphene system can be inferred by inspecting the point-group
symmetry of a hexagon center in real space, taken to be the
rotation axis of the layers. (b) Schematic band structure along a
high-symmetry path in the moiré Brillouin zone. (c)–(f) Effect of
symmetry breaking. (c) Breaking the C2 rotation gaps out the
Dirac points. (d) An external perpendicular electric field breaks
the mirror My symmetry, which only modifies the energetics but
cannot open a band gap at charge neutrality [7]. (e) When C3

rotation is broken, but the combined symmetry of twofold
rotation C2 and time reversal T is preserved, the Dirac points
remain protected, although unpinned from KM and K0

M. (f) When
valley conservationUvð1Þ symmetry is broken, one can no longer
label the bands using their valley index. The gaplessness at charge
neutrality is no longer symmetry required, although, depending
on detailed energetics, there can still be remnant Dirac points. In
contrast, at the quarter filling relevant for the observed Mott
physics, there are necessarily Dirac points present in this case.
The other symmetry-breaking patterns listed above also do not
open band gaps at quarter filling.

TABLE I. Summary of key effective symmetries. From top to
bottom, the listed symmetries are time reversal, moiré lattice
translation, a perpendicular 2D mirror, threefold rotation, com-
bined symmetry of twofold rotation and time reversal, and valley
Uvð1Þ conservation. For any symmetry g, it either commutes
(ηg ¼ þ1) or anticommutes (ηg ¼ −1) with the valley-charge
operator Îz.

Symmetry ηg Remarks

T −1 Broken by valley polarization hIzi ≠ 0
ta þ1 � � �
My þ1 Broken by perpendicular electric field
C3 þ1 Pins Dirac points to KM and K0

M
C2T þ1 Protects the local stability of the

Dirac points
exp ð−iθÎzÞ þ1 � � �
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III. LOW-ENERGY THEORY: TWO-BAND
PROJECTION

Formally, the continuum effective theory [7,12] we
describe corresponds to an infinite-band problem for each
valley. However, near charge neutrality it is found that, for
some range of angles, the moiré potential can induce
additional band gaps at a certain commensurate filling of
the moiré unit cell. The “nearly flat bands” identified near
the magic angle correspond to two bands per valley,
separated from all other bands by band gaps, that form
Dirac points at the KM and K0

M points in the moiré BZ.
These bands correspond to the relevant degrees of freedom
for the correlated states observed in Refs. [5,6], and, in the
following, we focus our attention to the properties of these
bands. In this section, we always focus on a single valley,
say, that corresponding to the K point in the microscopic
description.

A. Symmetry-enforced band contacts

A salient feature of the effective theory is the presence of
Dirac points at charge neutrality, whose velocity is strongly
renormalized and approaches zero near the magic angle
[7,12]. The stability of the Dirac points can be understood
from symmetries: For a single valley, KM is symmetric
under the (magnetic) point group generated by C6T . In
particular, ðC6T Þ2 ¼ C3, and therefore we can label each
band at KM by its C3 eigenvalue, which takes a value in
f1;ω ¼ e−ið2π=3Þ;ω�g. In particular, a band with C3 eigen-
value ω is necessarily degenerate with another with
eigenvalue ω�, as ðC6T Þ2 ≠ 1 on these bands and enforces
a Kramers-like degeneracy. The observed Dirac points
at charge neutrality correspond precisely to this two-
dimensional representation [Fig. 1(b)].
While we allude to the presence of C6T symmetry in

explaining the stability of the Dirac points, these band
contacts are actually locally stable so long as the symmetry
ðC6T Þ3 ¼ C2T is kept. This stability can be reasoned by
noting thatC2T quantizes the Berry phase along any closed
loop to 0; π mod 2π, and a Dirac point corresponds
precisely to the case of a nontrivial π Berry phase [26].
Let us now consider the effect of breaking the various

symmetries (spontaneously or explicitly) in the system.
First, as C2T is crucial in protecting the local stability of
the Dirac points, once it is broken, the Dirac points can be
immediately gapped out [Fig. 1(c)]. However, as long as
C2T symmetry is preserved, a small breaking of any other
point-group symmetries will not lead to a gapped band
structure at charge neutrality. For instance, the mirror My

maps KM to K0
M, and its presence ensures only that the two

inequivalent Dirac points are at the same energy. Therefore,
even when a perpendicular electric field is externally
applied such that My is broken, as in the setup in
Refs. [5,6], it can only induce an energy difference between
the two Dirac points [7] [Fig. 1(d)]. This result should be

contrasted with the case of Bernal-stacked bilayer gra-
phene, whose quadratic band touching at charge neutrality
can be gapped by an external electric field [27]. Alter-
natively, if C3 symmetry is broken, the Dirac points are
unpinned from KM and K0

M [Fig. 1(e)]. As such, for a
sufficiently strong C3 breaking, a band gap might open at
charge neutrality if the Dirac points could meet their
oppositely charged partners and annihilate. (Though, as
we argue later, this situation is impossible without further
symmetry breaking [28].)
Now consider the case when valley conservation is

spontaneously broken by an IVC, i.e., the valley charge
Îz is no longer conserved. In this case, we should first
consider the full four-band problem consisting of both
valleys. At, say, Km, the combined symmetry of MyT
ensures that the Dirac points from the two valleys are
degenerate. While such degeneracy is lifted in the presence
of an IVC, as long as the remaining symmetries are all
intact, we can only split the degeneracy according to
4 ¼ 2 ⊕ 2 [Fig. 1(f)]. This remaining twofold degeneracy
rules out an interpretation of the experimentally observed
Mott insulator as a Slater insulator with a spatial-symmetry-
respecting (ferro) IVC incorporated at the Hartree-Fock
level. Instead, one must either introduce additional sym-
metry breaking, say, that of C3 or lattice translations, or
consider an IVC which also breaks some additional spatial
symmetries. We elaborate on these points in Sec. VI. We
also note that an essentially identical argument holds for the
case of spontaneously ferromagnetic order leading to fully
spin-polarized bands of Iz ordering. In this way, it connects
to the quarter-filled Mott insulator we are interested in.

B. Triangular versus honeycomb lattice

A conventional route for understanding the correlated
states observed in Refs. [5,6] is to first build a real-space
tight-binding model for the relevant bands and then
incorporate short-range interactions to arrive at, say, a
Fermi-Hubbard model. Typically, the orbital degrees of
freedom involved in the tight-binding model can be
identified from either applying chemistry insight or, more
systematically, studying the projected density of states for
the relevant bands, both of which are inapplicable to the
current moiré potential problem; furthermore, an under-
standing of the structure of the wave functions is required.
Indeed, as is noted in Refs. [9,23,29], the local density
states for the flat bands are well localized to the AA regions
of the moiré pattern, which form a triangular lattice. This
theoretical prediction is also confirmed experimentally
[8,11,14]. Based on this observation, it is natural to
consider a real-space model starting from effective orbitals
centered at the AA sites, which corresponds to a tight-
binding model defined on the triangular lattice [5,6]. In
addition, by treating the two valleys separately, one
envisions a model with two orbitals localized to each of
the triangular sites (i.e., AA regions of the moiré pattern).
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From symmetry representations, however, we can
immediately rule out such a model. This observation can
be readily inferred from the computed band structure
[7,12,21,23] [Fig. 4(j)]: While the two bands are non-
degenerate at Γ, as we have explained, they form sym-
metry-protected Dirac points at KM and K0

M. Using such a
pattern of degeneracies, one can infer the possible sym-
metry representations at these high-symmetry points, and
from a real-space analysis [30–32] one finds that a
triangular-lattice model always leads to the same symmetry
representation at all three of the high-symmetry points; i.e.,
they are either all nondegenerate or are all Dirac points.
This result is inconsistent with the observed pattern of
degeneracies, which rules out all triangular-lattice models.
In fact, the degeneracy pattern described is familiar—

it corresponds exactly to the monolayer graphene
problem. One can further check that this is the only possible
solution using the methods described in Refs. [30,32].
Symmetrywise, this correspondence implies that any
tight-binding model must correspond to orbitals forming
a honeycomb lattice. To reconcile with the predicted and
observed local density of states [8,9,11,14,23], however,
these orbitals must have nontrivial shapes: Although each
orbital is centered at a honeycomb site,which corresponds to
the AB=BA region of the moiré pattern, the weight of the
orbitals is mainly localized to the AA sites. Therefore, we
expect the shape of the orbitals to resemble a (three-lobed)
fidget spinner [Figs. 3(a) and 3(b)].

C. Obstructions to symmetric Wannier states

Our symmetry analysis suggests that one should
model the system by orbitals centered at the AB=BA
regions of the moiré potential, which form a honeycomb
lattice. A minimal tight-binding model of a single valley
would then be

Ĥminimal ¼
X
ρi

tρi e
iϕρi ĉ†r ĉrþρi þ H:c:; ð10Þ

where ĉ†r is an electron-creation operator centered at a
honeycomb site (for a single valley) and ρi connects two ith
nearest-neighbor sites. Given that this equation describes a
single valley which breaks time-reversal symmetry, the
hoppings are, in general, complex unless constrained by a
space-group symmetry.
A pedestrian approach involves optimizing the param-

eters ftρi ;ϕρig to reproduce the energy eigenvalues
obtained from the continuum description. Would this be
a good starting point for building up a real-space effective
model upon which we can incorporate interaction terms?
Contrary to usual expectations, we argue that such an
approach has a serious flaw in capturing certain essential
properties. Specifically, we show that, while the energy
eigenvalues may be well approximated, the topology of the
resulting Bloch wave functions will necessarily be incor-
rect. This result has important dynamical consequences,

relating to the stability of band contacts under different
symmetry assumptions, which, in turn, dictate whether an
insulator will result at particular fillings. In particular, we
find two symmetry obstructions to deriving a single-valley
tight-binding model. The first concerns the symmetry
representations of My: We find that the two bands have
oppositeMy eigenvalues of �1, whereas, from a real-space
analysis [30–32], one can show that the two bands in a
tight-binding model must have the same My eigenvalue.
There is a second, more serious, obstruction: Aside from

a quantized Berry phase of π for any closed loop encircling
a single Dirac point, one can further define a Z-valued
winding number [28]. In contrast to the conventional case
of graphene, the two inequivalent Dirac points in the single-
valley model are known to have the same winding number
[5,28,33]. As the net winding number of the Dirac points
arising in any two-band tight-binding model would nec-
essarily be zero, we can then conclude that there is an
obstruction for a symmetric real-space description; i.e.,
there is an obstruction for constructing localized Wannier
functions that reproduces just the two bands of interest,
represents C2T naturally, and preserves valley quantum
numbers. A more detailed description of this obstruction,
by relating it to the anomalous surface state of a three-
dimensional topological phase, is contained in Appendix B.
Essentially, this argument invokes three key ingredients:
(i) a two-band model, (ii) C2T symmetry, and (iii) net
winding of the Dirac points in the Brillouin zone.
We return to the question of tight-binding models in

Sec. VIII, but, for the discussion below, we work directly in
the momentum space in the manifold of states spanned by
the nearly flat bands.

IV. INTERVALLEY COHERENT ORDER:
PHENOMENOLOGICAL MOTIVATION

We first describe some important clues from experiments
[5,6] on the nature of both the Mott state and the super-
conductor. We begin with the observation that—at optimal
doping—an in-plane magnetic field suppresses the super-
conductivity when the Zeeman energy scale is of the order
of the zero field Tc. This observation shows that the
superconductor has spin-singlet pairing. Upon hole
doping the ν ¼ −2 insulator, quantum oscillations are seen
with a frequency set by the density of doped holes in
perpendicular B fields exceeding approximately 1T. This
result tells us that the “normal” metallic state and the
superconductor that emerges from it should be regarded
as doped Mott insulators: The charge carriers that are
available to form the normal state Fermi surface or the
superconducting condensate are the doped holes. Thus,
the hole-doped superconductor retains information about
the Mott insulator. In contrast, electron doping this Mott
insulator leads very quickly to quantum oscillations with a
high frequency that is set by the deviation of the charge
density from the charge neutrality point (ν ¼ 0). This result
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may indicate a first-order transition between a metal and
Mott insulator on the electron-doped side. It will be
important to search for signs of hysteresis in transport
experiments as the gate voltage is tuned. As the super-
conductor is better developed and characterized on the
hole-doped side, we restrict our attention to hole doping
from now on.
A further important clue from the quantum oscillation

data is that the Landau levels (per flux quantum) are
twofold degenerate, whereas one would expect fourfold
degeneracy coming from the spin and valley degeneracy.
The doped holes have thus lost either their spin or valley
quantum numbers (or some combination thereof). Losing
spin makes it hard to reconcile with spin-singlet pairing that
can be suppressed with a Zeeman field. Thus, we propose
instead that the valley quantum number is lost. The simplest
option [34] then is that the valley quantum number is frozen
due to symmetry breaking, i.e., hIi ≠ 0. Here, we may
define I using the electron operators ĉðkÞ for the nearly flat-
band states:

I ¼
X

a;b;n;α;k

ĉanαðkÞ†τabĉbnαðkÞ; ð11Þ

where a; b ¼ � correspond to the valley index, α is the spin
index, n labels the two bands for each valley, and τ denotes
the standard Pauli matrices.
A nonzero expectation value for Iz breaks time-reversal

symmetry, which leads to a sharp finite-temperature phase
transition in 2d and would likely have been detected in the
experiments. Given the absence of any evidence of a sharp
finite-temperature transition, we propose that the ordering
is in the pseudospin xy plane. These phenomenological
considerations therefore lead us to an IVC-ordered state.
We note that, for IVC ordering to be useful to explain

the quantum oscillations, it has to occur at a scale that is
large compared to the scales set by the magnetic field.
Specifically, the band splitting due to IVC ordering must
be bigger than the Landau level spacing approximately
15–30 K at the biggest fields used (of the order of 5T),
which means that the IVC order is much more robust than
the superconductivity and occurs at a higher temperature
scale. We further need the IVC order to be present already
in the Mott insulator, so that upon doping it can impact the
quantum oscillations.
Thus, our view is that the first thing that happens as

the sample is cooled from a high temperature is IVC
ordering. This order then sets the stage for other phenom-
ena to occur at lower temperatures (the Mott insulation or
the superconductivity).

V. SIMPLE THEORY OF THE
IVC-ORDERED STATE

We now describe a mechanism that stabilizes IVC
ordering and describe the properties of the resultant state.

Interestingly, to treat this stage of the problem, it is
sufficient to work within a momentum-space formulation,
which enables us to sidestep the difficulties elaborated in
Sec. III C with a real-space tight-binding formulation.
Consider the nearly flat bands in the limit of strong

Coulomb repulsion. Note that the dominant part of the
interaction is fully SUð4Þ invariant. We expect that the
Coulomb interaction prefers an SUð4Þ ferromagnetic
state—similar to the SUð4Þ ferromagnetism favored by
Coulomb interaction in the zeroth Landau level in mono-
layer graphene [35–37] or in the extensive literature on
flat-band ferromagnetism [38]. Indeed, the difficulties
with Wannier localization of the nearly flat bands also
suggest that, when Coulomb interactions dominate, an
SUð4Þ ferromagnetic ground state will be favored. The
banddispersion, however, is notSUð4Þ symmetric, and hence
therewill be a selectionof a particular directionof polarization
in the SUð4Þ space. To address this, we consider the energies
of different orientations of the SUð4Þ ferromagnet within a
simple Hartree-Fock theory. Specifically, we compare a spin-
polarized state, a pseudospin Iz-polarized state, and the IVC
state with Ix polarization.
Assume a Hamiltonian

H ¼ H0 þ V ð12Þ

with

H0 ¼
X
anαk

ϵanðkÞc†anαðkÞcanαðkÞ: ð13Þ

Similarly to before, a is the valley index, α is the spin
index, and n labels the two bands for each valley. The
dispersion ϵanðkÞ is independent of the spin, and, due to
time reversal, ϵanðkÞ ¼ ϵ−anð−kÞ. We assume a simple
form of interaction:

V ¼ g
N

X
k1k2q

c†anαðk1 þ qÞcanαðk1Þ · c†a0n0α0 ðk2 − qÞca0n0α0 ðk2Þ;

ð14Þ
where N is the number of k points in the moiré Brillouin
zone. Repeated indices are summed over here. This
interaction actually has an SUð8Þ symmetry, but it is
strongly broken down to SUð4Þ by the difference in
dispersion between the two bands and eventually down
to Uð2Þ ×Uð2Þ by the asymmetry of the dispersion under
k → −k. Each Uð2Þ factor corresponds simply to indepen-
dent Uð1Þ charge and SUð2Þ spin-conservation symmetries
of the two valleys.
We also remark that Eq. (14) is overly simplified,

for it does not incorporate form factors arising from the
modulation of the Bloch wave functions over the BZ when
projecting onto the nearly flat bands. With such form
factors included, the interaction projected onto the nearly
flat bands should be written as
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V¼ g
N

X
k1k2q

Λa
nn0 ðk1þq;k1ÞΛa0

mm0 ðk2−q;k2Þ

·c†anαðk1þqÞcan0αðk1Þ ·c†a0mα0 ðk2−qÞca0m0α0 ðk2Þ ð15Þ

with the form factors given by the Bloch wave functions of
the states in the nearly flat bands via

Λa
nn0 ðk1; k2Þ ¼ huanðk1Þjuan0 ðk2Þi; ð16Þ

where juanðkÞi is the Bloch wave function of a state in the
nearly flat bands labeled by valley index a, band index n,
and momentum k (it has no dependence on the spin
indices). These form factors are potentially important for
the present problem due to the nontrivial band topology
present in the valley-resolved band structure. Our prelimi-
nary analysis suggests that the results of the Hartree-Fock
calculation are modified in the ultra-flat-band limit, i.e.,
when the interaction term overwhelms the kinetic energy,
whereas the key conclusions below are stable within a
range of intermediate interaction strengths. In view of this
analysis, in the following, we first pursue the simplified
Hartree-Fock theory and leave the task of settling down the
real ground state for future (numerical) studies; it is an
interesting question answering whether the actual exper-
imental systems demand a more sophisticated treatment.
Details of the Hartree-Fock calculation are presented in

Appendix E. In summary, we find that the IVC state has a
lower energy than both spin- and Iz-polarized states. The
physical reason is that, for both the spin- and Iz-polarized
states, the order parameter is conserved, and, hence, there
is a linear shift of the band when the order parameter
is nonzero. In contrast, due to the k → −k dispersion
anisotropy, the IVC order parameter does not commute
with the Hamiltonian. IVC order thus does not simply shift
the band but modifies it more significantly. Assuming a
near full polarization in the Hartree-Fock Hamiltonian,
the noncommutativity leads to an extra energy gain at
second order in the IVC state compared to the spin-
polarized or Iz-polarized states.
Note that, in the presence of Uð2Þ ×Uð2Þ symmetry, the

spin-singlet IVC state is degenerate with states that have
spin-triplet IVC ordering with an order parameter IxS. The
selection between the singlet and triplet IVC order has to
occur due to other terms in the Hamiltonian that have been
ignored so far. We do not attempt to pin down the details of
this selection in this paper and simply assume, as suggested
by the phenomenology, that the spin-singlet IVC is
preferred and discuss its consequences.
Next, we turn to a description of the properties of the

IVC state. We assume that the order parameter is large and
first study its effects on the band structure. In the absence of
valley ordering, at the two Dirac points, there is a fourfold
band degeneracy. As explained in Sec. III A, the valley
ordering splits this fourfold degeneracy into two sets of
twofold degenerate Dirac points. When the order parameter

is large, the four nearly flat bands split into two sets of two
bands [Fig. 1(f)]. At quarter filling, we fill the bottommost
band, which, however, results in not a Mott insulator but a
Dirac semimetal. Thus, the IVC state by itself does not lead
to a Mott insulator, and a further mechanism is needed. We
discuss this in the next section. We note that the semimetals
obtained from planar valley order versus Iz order are rather
different, the latter being similar to spin-ordered states.
Furthermore, while additionally breaking C3 symmetry
alone can eventually gap the Dirac points of the IVC
semimetal, the same is not true of spin- or Iz-ordered
semimetals, which need further symmetry breaking due to
their Dirac points carrying the same chirality.
Going beyond the mean field, the universal properties of

the IVC-ordered state are determined by its symmetry
breaking. It has a Goldstone mode with linear dispersion at
the longest scales. Furthermore, it has a finite-temperature
Berezinskii-Kosterlitz-Thouless transition, which has weak
signatures in standard experimental probes [39].

VI. INTERVALLEY COHERENT MOTT
INSULATORS: GENERALITIES AND A

CONCRETE EXAMPLE

We see that IVC ordering by itself gives us only a Dirac
semimetal and not a Mott insulator. We now consider the
physics below the IVC-ordering scale. First, we note that
that, once Uvð1Þ symmetry is broken, there is no difficulty
with writing down a real-space tight-binding model for the
two lowest bands. This model lives on the honeycomb
lattice and must be supplemented with interactions.
Naively, we might imagine that the dominant interaction
is an on-site Hubbard repulsion. However, we know that the
orbital shapes are such that the actual charge density is
concentrated at the original triangular sites, i.e., at the
center of the hexagons of the honeycomb lattice. Now, if
there is an electron at a honeycomb site r, its wave function
is spread equally between the three hexagonal plaquettes
that the site r is a part of. The integral of the modulus square
of the wave function in any one such plaquette is 1=3. The
total charge that is localized at the center R of each hexagon
(i.e., the triangular moiré sites) is therefore

QR ¼
X

r∈hexagon

X
rα

nαðrÞ
3

: ð17Þ

Now, let us make the reasonable approximation that the
primary Coulomb interaction is on site on the triangular-
lattice sites R. Then, in terms of the honeycomb model, the
appropriate Coulomb interaction is a “cluster Hubbard”
term:

HU ¼ U
X
R

ðQR − 2Þ2: ð18Þ

We also specialize to ν ¼ −2 when this honeycomb lattice
is half filled. This interaction penalizes charge fluctuations
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on each honeycomb plaquette. Thus, a suitable model
Hamiltonian at scales much smaller than the intervalley
coherence scale takes the form

H ¼ Ht þHU; ð19Þ

Ht ¼ −
X
rr0

X
α

trr0c
†
rαcr0α þ H:c: ð20Þ

For the usual Hubbard model with a strong on-site
repulsion, the Mott insulating state has the usual two-
sublattice Néel order. However, when the cluster-charging
energy is dominant, this is not obviously the case. We
therefore allow ourselves to consider a few different
possibilities for the Mott insulator. Naturally, in all these
options, the charge gap of the insulator is much lower than
the scale of IVC ordering. In the experiments, the charge
gap is estimated to be about 5 K. The IVC ordering should
then occur at a much higher scale, consistent with what we
already concluded based on the phenomenology. In this
section, to be concrete, we focus on a particular Mott
insulator where the C3 rotation symmetry is spontaneously
broken while preserving other symmetries (Fig. 2).
In passing, we note that insulators driven by cluster

charging have been considered in a number of different
contexts before. For instance, Refs. [40,41] study models
with extended Coulomb interactions as a route to access
Wigner-Mott insulators. Cluster-charging insulators have
also been long studied [42–44] as a platform for various
fractionalized insulating phases of matter. In contrast to
these earlier works, where a dominant cluster-charging
interaction is simply postulated and the resulting physics
explored, here we identify a natural mechanism for such an
interaction.

A. C3-broken insulator

Breaking the C3 symmetry allows gapping out the Dirac
points and leads to an insulator. As the C3 breaking order
parameter increases, the two Dirac points move towards

each other [Fig. 1(e)] and eventually annihilate to produce a
fully gapped insulator. This annihilation (and, correspond-
ingly, the gap minimum just into the insulator) occurs at
either the Γ or M point depending on the details of the
dispersion. Note that, within this picture, the C3 breaking
also occurs at a scale bigger than the approximately 5 K
charge gap of the Mott insulator. Clearly, the excitations
above the charge gap are ordinary electrons, and their gap
can be readily closed by a Zeeman field.
Upon doping this insulator, charge enters as ordinary

holes and forms a small Fermi pocket. This pocket is
centered at either Γ or M depending on the location of
the minimum insulating gap. In either choice, due to the
absence of C3 symmetry, there is just a single such Fermi
pocket which will accommodate the full density of doped
holes. Because of the intervalley ordering, these holes are
valley polarized in the Ix direction. Naturally, this explains
the quantum oscillation experiments—the frequency is set
by the density of doped holes, and the Landau level
degeneracy (per flux quantum) is only twofold (from
the spin).
A natural pairing mechanism emerges from the coupling

of the holes to Goldstone fluctuations of the intervalley
order, as we now elaborate. In the presence of an intervalley
condensate, an appropriate effective action is

S ¼ S0½ψ � þ S1½ψ ; θ�; ð21Þ

S0 ¼
Z

dτ

�Z
d2xψ̄ð∂τ þ μÞψ þ

Z
d2kψ̄khkψk

�
; ð22Þ

S1 ¼
Z

dτd2xΦ0ðe−iθψ̄þψ− þ c:c:Þ: ð23Þ

Here, ψ is a continuum electron field that represents the
electrons in the low-energy nearly flat bands, θ is the phase
of the intervalley condensate, and Φ0 is its amplitude.
Note that hk ¼ ϵsðkÞ þ ϵaðkÞτz is a 2 × 2 matrix for each k
point [45]. We allow for slow Goldstone fluctuations of the
phase and obtain a convenient form of the electron-electron
interaction induced by these fluctuations. To that end, we
first define new fermion variables χ through

ψ ¼ eiθτz=2χ: ð24Þ
This redefinition removes the θ dependence from S1, but S0
now takes the form

S0½ψ � ¼ S0½χ� þ S00½χ; θ�; ð25Þ

S00½χ; θ� ¼
Z
x;τ

i
2
∂τθχ̄τ

zχ þ 1

2
∂iθJvi ðxÞ: ð26Þ

Here, Jv is the contribution to the Uvð1Þ current from the
fermions. It is conveniently written down in momentum
space as

FIG. 2. A C3 symmetry-breaking order which preserves other
symmetries.
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Jvi ðqÞ ¼
Z

d2kχ̄kþq
∂hk
∂ki χk: ð27Þ

Now we assume that Φ0 is near maximum polarization and
diagonalize the χ Hamiltonian obtained from S0½χ� þ S1½χ�.
As discussed earlier, there are two sets of bands per spin
(corresponding to Ix ¼ �1) that are well separated from
each other. The low-energy electrons are those that have
valley polarization Ix ≈ 1. We wish to obtain the coupling
of these electrons to the θ fluctuations. For the bands with
Ix ≈ 1, we write

χþα ¼ χ−α ≡ dα: ð28Þ

It follows that χ̄τzχ≈0 and similarly χ̄f½∂ϵsðkÞ�=∂kigτzχk ≈
0. The only nonvanishing coupling, therefore, is to the
contribution from ϵaðkÞ. We get

Jvi ðqÞ≈
Z

d2kd̄kþq
∂ϵaðkÞ
∂ki dk≡

Z
d2kvai ðkÞd̄kþqdk: ð29Þ

Now we assume we have integrated out the fermions
everywhere except in the close vicinity of the Fermi
surface, which gives a long-wavelength, low-frequency
effective action for the θ fluctuations of the form

Seff ½θ� ¼
Z
q;ω

K

�
ω2

v2
þ q2

�
jθðq;ωÞj2: ð30Þ

Here, K is the phase stiffness of the θ field, and v is the
velocity of the linear dispersing θ fluctuations. We now
integrate out θ to get an effective interaction between the c
electrons:

Sint ¼ −
Z
q;ω

q2

32Kðω2

v2 þ q2Þ jJ
v
i ðq;ωÞj2; ð31Þ

which is an attractive interaction. Anticipating that the
important regime for pairing is jωj ≪ vq for an approxi-
mate treatment, we set ω ¼ 0 in the prefactor to get a
simplified effective interaction:

Sint ¼ −
1

32K

Z
q;ω

jJvi ðq;ωÞj2: ð32Þ

We emphasize again that—within our approximate
treatment—the only contribution to Jvi comes from the
antisymmetric part of the “normal” state dispersion. This
attractive interaction can now be treated within a BCS mean
field and leads to a superconducting state.
Note that, in real space, since the large repulsion will be

on the hexagon center and not on the honeycomb site,
there is no particular reason to disfavor on-site s-wave
pairing. Though we do not give a detailed description of the
pairing symmetry, the route to superconductivity sketched

above naturally leads to a spin-singlet superconductor.
Furthermore, it forms out of a “normal” metal of ordinary
holes through a BCS-like pairing mechanism. We expect
then that Zeeman fields of the order of Tc efficiently
suppress the superconductivity except possibly at very low
doping (where eventually phase fluctuations kill Tc). At
low doping, and when one is near a high-symmetry point of
the Brillouin zone (which is consistent with the fact that
there is no additional degeneracy seen in quantum oscil-
lations), the antisymmetric part of the dispersion is
expected to be constrained by symmetry to be small. For
example, near the Γ point, it vanishes as the cube of the
crystal momentum, which would lead to a small valley
current (the derivative of the antisymmetric dispersion with
respect to momentum) and, hence, a weakening of the
coupling to valley Goldstone modes, as the doping is
reduced. However, if C3 rotation symmetry is broken, the
antisymmetric dispersion can include a term that is linear in
momentum, leading to a nonvanishing valley current at
small doping.
It is also important to ask if a conventional pairing

mechanism due to coupling to phonons might be operative.
We note that the bandwidths of the nearly flat bands
(approximately 10 meV) are much smaller than the typical
phonon energies in graphene. Thus, the magic-angle
twisted bilayer graphene system is far from a regime in
which phonon effects can be treated within the usual
adiabatic approximation. Furthermore, the observation of
superconductivity only in the vicinity of the correlated
insulator appears unnatural within a phonon-based theory.
Nevertheless, it is possible that phonon effects play a role in
various aspects of our physics and contribute to the
effective interactions between the electrons. We leave for
the future a proper treatment of the electron-phonon
coupling in these systems and focus instead here on
electron-electron interaction effects, which clearly must
play an important role given the proximity of the super-
conductor to a correlation-driven Mott insulator.

VII. OTHER POSSIBLE MOTT
INSULATING STATES

The C3-broken insulator is a concrete example of how an
intervalley condensate of the twisted bilayer system can
eventually become a Mott insulator. However, given the
current experimental information, it is not clear that this is
uniquely dictated. Therefore, we sketch a few different
Mott insulating states and present some of their phenom-
enological consequences.
(1) Translation-broken insulator.—Broken moiré

translations—for instance, Kekule ordering on the
effective honeycomb lattice—can also gap out the
Dirac points. The properties of this state and its
evolution into the doped superconductor are similar
to the C3-broken insulator discussed above.
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(2) Antiferromagnetic insulator.—This state is the
familiar Mott insulator of the usual honeycomb
Hubbard model. Upon doping, it is expected to
evolve into a spin-singlet superconductor as seen in
numerical studies of the t − J honeycomb model
[46]. The pairing symmetry appears to be dþ id. It
will be interesting to look for signatures of broken
time-reversal symmetry if this scenario is realized.
Furthermore, this state is known to have quantized
spin and thermal Hall effects and associated gapless
edge states [47,48]. Other properties related to this
state are also discussed in the literature [49,50].

(3) Featureless Mott insulators.—Given that the honey-
comb lattice features two sites in the unit cell, it
evades theLieb-Shultz-Mattis theorem and allows for
a featureless ground state (i.e., a gapped insulator
with neither topological order nor symmetry break-
ing) at half filling [51–56]. Pictorially, this state is
viewed as a spin-singlet Cooper pair of electrons
being localized on orbitals composed of equal-weight
superpositions of the hexagons of the honeycomb
lattice. While model wave functions of this phase
have been constructed, the interactions that can drive
a system into this phase remain to be understood.

(4) Quantum spin liquids.—The simplest possibility is a
fully gapped quantum spin liquid. In this case, there
are neutral spin-1=2 excitations (spinons) in the
insulator. Upon doping, a natural possibility is that
the charge goes in as bosonic holons (spinless
charge-e quasiparticles) whose condensation leads
to superconductivity. This process is the classic
resonating valence bond (RVB) mechanism [1] for
superconductivity in a doped Mott insulator. How-
ever, in this scenario, at low doping the super-
conducting Tc will not have anything to do with
the spin gap (measured by the Zeeman scale needed
to suppress pairing).

We do not attempt to decide between these different
options in this paper. However, we outline experiments that
can distinguish between them in Sec. X.

VIII. TIGHT-BINDING MODELS

A. For TBG

As we argue, there is an obstruction for writing down any
tight-binding model for the single-valley problem. A
natural way out, therefore, is to instead consider the
four-band problem consisting of both valleys. Our earlier
argument requiring the orbitals to be centered on the sites of
the honeycomb lattice still applies, but now with two
orbitals associated with every site. In addition, to resolve
the mirror-eigenvalue obstruction we describe, these two
orbitals should transform oppositely under the mirror
symmetry. These orbitals, however, cannot have definite
valley charge, for otherwise the problem is reduced back to

the earlier case with each valley considered separately.
Instead, it is natural to demand each of the two orbitals to be
a time-reversal singlet, which leads to a standard repre-
sentation for the symmetry group of p6mm together with
time reversal. However, due to the aforementioned
anomaly, the representation of valley Uvð1Þ is necessarily
complicated, and we address that later.
Forgetting about valley conservation for the time being, the

construction of Wannier functions becomes a rather standard
problem, and well-established protocols apply. In particular,
we construct well-localized Wannier functions using the
projection method [57], starting from a set of well-localized
trial wave functions as the “seed” of the Wannier functions
(Appendix C). Specifically, we start with the continuum
theory of Ref. [12], as described around Eq. (5), with the
parameters w0¼ 110meV and w1 ¼ 120 meV. The success
of the construction hinges crucially on having a nonsingular
projection everywhere in the BZ, which can be monitored by
ensuring that the overlap between the seed and the actual
Bloch wave functions neither vanish nor diverge anywhere in
the BZ [57]. Using this approach, we construct Wannier
functions for a particular choice of parameters, detailed in
Appendix C, for the four nearly flat bands near charge
neutrality (spin ignored). Our trial wave functions attain a
minimum and maximum overlap of 0.38 and 3.80, respec-
tively, indicating a satisfactory construction. Indeed, the
Wannier functions we obtain are quite well localized
[Figs. 3(a) and 3(b)], with approximately 90% of their weight
containedwithin one lattice constant from theWannier center.
In addition, theWannier functions we construct are exponen-
tially localized [Figs. 3(c) and 3(d)], as anticipated from the
nonsingular trial wave-function projection.
Having constructed the Wannier functions, one can

readily extract an effective tight-binding model ĤWF by
first projecting the full Bloch Hamiltonian into the Wannier
basis and then performing Fourier transform. Because of
the exponential tail, however, the resulting tight-binding
model has infinite-range hopping despite an exponentially
suppressed amplitude. To capture the salient behavior of the
model, it is typically sufficient to keep only the bonds with
strength larger than some cutoff tc. In other words, tc
serves as a control parameter, and one recovers the exact
band structure in the limit of tc → 0, albeit at the cost of
admitting infinite-range hoppings.
The obtained band structures for different value of tc are

plotted in Figs. 4(a)–4(d). We find that a fairly long-range
model (see Appendix D for parameters), keeping terms that
connect sites up to two lattice constants apart, is needed to
capture all the salient features of the energetics. It should be
noted that the range of the approximate models generally
depends on the localization of the Wannier function, and in
this work we have not optimized the Wannier functions. It
is therefore possible that, by further optimization, one may
capture the energetics more faithfully using only shorter-
range terms.
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Although spatial and time-reversal symmetries are
respected in the tight-binding model, valley conservation
is explicitly broken, which is because our Wannier func-
tions cannot be chosen to represent valley conservation
naturally, similar to the case of topological insulators
[58], and, therefore, any truncation of the transformed
Hamiltonian generically introduces explicit valley-
conservation symmetry breaking. Furthermore, one can
ask how the operator Iz is represented. In particular, we
want to construct the projection operators for the single-
particle problem, P� ¼ 1

2
ð1� IzÞ, which project into the

valleys. It would be most desirable if one can formulate Iz,
and hence P�, directly in real space. Given that Iz is also a
free-electron Hermitian operator, this formulation amounts
to finding a symmetric Wannier representation of Iz.
However, we find that there are again obstructions, which
mirror exactly the obstructions we face when attempting to
construct Wannier functions for the single-valley two-band
model of the nearly flat bands, i.e., a mismatch in the mirror
eigenvalues, as well as a nonzero net charge of the Dirac
points. Such an inheritance of the obstructions is presum-
ably a manifestation of the underlying anomaly of the
single-valley description.
Towards recovering valley conservation.—It is desirable

to restore valley conservation even approximately, for our
truncated model, and we describe a method below. Recall
that we denote the Hermitian valley-charge operator in the
continuum effective theory by Îz [Eq. (6)]. Projecting Îz
into the four-band subspace of the nearly flat bands and
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FIG. 4. Effective tight-binding model for the nearly flat bands. (a)–(d) Effective tight-binding models for the nearly flat bands are
derived by projecting the Hamiltonian in the continuum theory into the Wannier basis. Bonds with strength < tc are truncated from the
model, and the resulting band structures for three choices of tc are shown. (e) One can also derive the effective valley-charge operator
ÎWF
z , using the same procedure with cutoff t0c. Similar to the Hamiltonian, the truncation of terms in the effective operator leads to an
error, and so the eigenvalues of IWF

z ðkÞ have a small deviation from the exact values of�1. (f)–(i) Valley conservation can be reenforced
on the effective model through projection. (f)–(i) correspond, respectively, to the effective models shown in (a)–(d). As tc is reduced, the
effective model more faithfully reproduces the salient energetics features of the continuum theory, the latter of which is plotted in (j).
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rotating into the Wannier function basis, we arrive at
another Hermitian operator defined on the honeycomb
sites, which we can simply interpret as yet another
Hamiltonian-like object in our problem. Similar to the
earlier discussion for the Hamiltonian, the effective Îz
operator ÎWF

z has infinite-range hopping with an exponen-
tially suppressed amplitude, and it is natural to approximate
it by truncation, keeping again only terms with a strength
larger than some t0c. Such a truncation, however, introduces
a deviation in the eigenvalues of Îz from the physical values
of �1 [Fig. 4(e)]. To fix this deviation, therefore, we can
further perform spectral flattening of the corresponding
bands to �1 in momentum space. This procedure is well
defined so long as a band gap is sustained between the
second and third bands of ÎWF

z , which is generically true as
long as t0c is chosen to be reasonably small. We denote this

flattened version by ˆ̃I
WF
z . Physically, this corresponds to an

approximation of the actual representation of the valley-
charge operator in our tight-binding model, and again our
approximation can be made exact in the limit of t0c → 0.
We can now restore valley conservation in our effective

Hamiltonian. To this end, for n ∈ Z define the projection
operator

P̂n ¼
X
α

jn; αihn; αj; ð33Þ

which projects into the sector with ˆ̃I
WF
z eigenvalue n (in the

many-body Hilbert space) and satisfies P̂nP̂m ¼ P̂nδn;m.
We can now define

ˆ̃H
WF ≡X

n∈Z
P̂nĤ

WFP̂n; ð34Þ

for which valley conservation is restored. In essence,
through this procedure we introduce a pair of Hermitian

operators ð ˆ̃HWF
; ˆ̃I

WF
z Þ, corresponding, respectively, to the

Hamiltonian and the valley charge, that converge to the
exact operators in the limit tc, t0c → 0.
The valley projection procedure we describe applies

equally well to an interacting Hamiltonian ĤWF
U obtained

by projecting the microscopic interaction terms to our
Wannier basis, which again would not be automatically
valley conserving due to the truncation errors. For the free
part of the Hamiltonian, however, the projection procedure

can be greatly simplified, because the Bloch states of ˆ̃I
WF
z ,

which equal those of ÎWF
z by definition, are known, and

using which we can decompose HWFðkÞ into the valley-
conserving and valley-breaking parts. The projection then
proceeds simply by retaining only the valley-conserving
part. More concretely, write the Bloch “Hamiltonian” of the
valley-charge operator as ĨzðkÞ ¼ Ψþ;kΨ†

þ;k −Ψ−;kΨ†
−;k,

where Ψ�;k are 4 × 2 matrices. Note that the columns of
Ψ�;k are simply the �-valley-charge eigenstates. We can
then perform the projection by

H̃WFðkÞ ¼ Ψ†
þ;kH

WFðkÞΨþ;k þ Ψ†
−;kH

WFðkÞΨ−;k; ð35Þ

giving an easy way to perform the described projection.
As is shown in Figs. 4(f)–4(i), the projected effective

tight-binding model reexhibits all the symmetry features of
the bands from the continuum theory [Fig. 4(j)], for any
choice of truncation parameter tc. In particular, Figs. 4(a)
and 4(f) represent the simplest model which demonstrates
the utility of our approach, with the valley projection alone
converting an otherwise hopping-free Hamiltonian into one
exhibiting the charge-neutrality Dirac points. We further
remark that, although generically HWF does not respect
Uvð1Þ, the effective Hamiltonian corresponding to Fig. 4(b)
comes very close to being Uvð1Þ symmetric in terms of its
energetics along the high-symmetry line. We provide an
explicit tabulation of the bonds in this HWF and that of IWF

z
in Appendix D.

B. Nearly flat bands in trilayer graphene-boron
nitride moiré superlattices

Recently, Mott insulating phases (but not superconduc-
tivity, at the time of writing) were observed [20] in a
heterostructure of ABC trilayer graphene encapsulated in
boron nitride (TLG/hBN), where a moiré superlattice is
present even at zero twisting between the graphene layers.
Four minibands are observed close to neutrality, whose
bandwidth and separation can be tuned by a vertical electric
field. Half filling one of the nearly flat bands results in a
Mott insulator.
We remark that the symmetry setup for this trilayer

heterostructure bears more resemblance to the Bernal-
stacked bilayer graphene than the TBG system we discuss
above. In particular, the absence of Dirac points among the
minibands suggests that no C2 symmetry is present, and the
system is potentially described by a wallpaper group for
which the two sublattices of the honeycomb lattice are no
longer symmetry related (say, the wallpaper group p3m1,
No. 14 [24]). If that is indeed the case, one expects the
valley-resolved band structure to admit a tight-binding
model defined on the triangular lattice, although it remains
to be checked whether or not the charge density profile
exhibits any nontrivial features, akin to that found for the
TBG system [Fig. 3(c)]. It will be of great interest to derive
a concrete real-space effective model for the TLG/hBN, but
we leave this derivation as a future work.

IX. MODEL FOR CORRELATED STATES IN
TRILAYER GRAPHENE HETEROSTRUCTURE

In this section, we briefly consider the case of triangular
moiré superlattices in a trilayer graphene heterostructure.
Correlated insulating states were observed very recently in
this system [20]. Just like in the twisted bilayer, here, too,
there are nearly flat bands that are separated from the rest of
the spectrum. However, unlike the TBG, here there are no
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Dirac crossings in this nearly flat band, and the
low-energy degrees of freedom are in the trivial repre-
sentation of C3. In addition, it is known that a vertical
electric field can induce a gap for ABC-stacked trilayer
graphene, and, depending on the direction of the electric
field, the band structure can have a zero Chern for one
direction of the electric field or a nonzero Chern number
for the other direction of the electric field [59]. It is
thus reasonable that, in the case where the direction of
the electric field is such that the nearly flat bands
possess no net Chern number, the nearly flat band can
be modeled in real space by a triangular-lattice model
with two orbitals (corresponding to the two valleys) per
site supplemented with interactions. However, some care
is still necessary. Time reversal and C2 both act by
flipping the valley index. Thus, the band dispersion
ϵ�ðkÞ within a single valley is not symmetric under
k → −k:

ϵ�ðkÞ ≠ ϵ�ð−kÞ; ð36Þ

though

ϵþðkÞ ¼ ϵ−ð−kÞ ð37Þ

is satisfied. A real-space tight-binding description on the
triangular lattice therefore takes the form

Ht
trilayer ¼ −

X
RR0

X
a¼�

X
α

tRR0c†Raαðeiϕrr0 τzÞaa0cR0a0α þ H:c:;

ð38Þ

with trr0 real and positive. The phases ϕrr0 are, in
general, nonzero. The phase ϕ even on nearest-neighbor
bonds cannot be removed, as, in general, the symmetries
permit a nonzero flux Φ for any single valley through an
elementary triangle (and the opposite flux for the other
valley).
When the Coulomb interaction dominates, the SUð4Þ

ferromagnet with a further selection of IVC order is once
again a possibility. From a real-space point of view, the
projection of the Coulomb interaction to the Wannier basis
used to formulate the tight-binding model leads to an
appropriate interaction Hamiltonian. If the Wannier orbitals
are not tightly confined to each triangular site, then there
will be a significant intersite ferromagnetic Hund’s
exchange which promotes SUð4Þ ferromagnetism with a
further selection of IVC ordering.
It is interesting to consider the limit where the Wannier

functions are sufficiently tightly localized that such a
ferromagnetic intersite exchange is weak and can be
ignored. In that limit, to obtain a minimal model for this
system we restrict the hopping to just be nearest neighbor
and include an on-site repulsion. The minimal model then
takes the form

Htrilayer ¼ H0 þ V;

H0 ¼ −
X
hRR0i

X
a¼�

X
α

tRR0c†Raαðeiϕrr0 τzÞaa0cR0a0α þ H:c:;

V ¼ U
2

X
R

ðNR − N0Þ2 ð39Þ

with ϕ12 þ ϕ23 þ ϕ31 ¼ �Φ with a þ sign for up-facing
triangles and a − sign for down-facing ones. Here, sites
1, 2, and 3 are assumed to be arranged counterclockwise on
each triangle. NR is the total electron number at site R, and
N0 controls the filling factor. As in previous sections, this
Hamiltonian has a Uð2Þ ×Uð2Þ symmetry corresponding
to independent Uð2Þ rotations of each valley in addition to
the discrete symmetries described above. The model thus
needs to be supplemented with further weaker interactions
that break the continuous symmetry down to Uð2Þ, though
we do not specify them here. Note that if the flux Φ ¼ 0,
then the model actually has an even higher SUð4Þ sym-
metry. Also, this model has an extraC2 rotational symmetry
that flips the valleys, which should be viewed as an
emergent symmetry of the model defined above, which
should be broken by other terms. In particular, it should be
differentiated from a microscopic C2 symmetry; if such a
microscopic symmetry was present, it would combine with
time-reversal symmetry and protect an odd number of Dirac
points in the single-valley trilayer graphene band structure,
which suffers from a parity anomaly [60,61]. Our effective
model does not suffer from this parity anomaly, because
this microscopic C2 symmetry is absent.
The minimal model above allows for a discussion of

the Mott insulator in the strongly correlated regime of large
U at integer N0. In the experiments, Mott insulators at
fillings N0 ¼ 1, 2 have been reported. In the large-U limit,
the effective model takes the form of a “spin-orbital”
Hamiltonian on a triangular lattice that has four states per
site: two spins and two valleys. A systematic t=U expansion
is readily performed to yield this spin-orbital Hamiltonian.
AtOðt2=UÞ, the “superexchange” is not sensitive to the flux
Φ, and we end up with an SUð4Þ quantum antiferromagnet
on the triangular lattice (This is not actually correct. As
shown in Ref. [62], there is a second order process which
depends on the phase of t. This leads to a term that breaks
SUð4Þ symmetry. However we anticipate that the more
interesting dependence on flux comes from the third order
term identified below.). For N0 ¼ 1, the SUð4Þ spins are in
the fundamental representation, while forN0 ¼ 2 they are in
the six-dimensional representation.
Antiferromagnetic models of SUð4Þ spins have been

studied on a variety of lattices with different motivations
(for some representative recent papers, see Refs. [63–65]). It
seems likely that they go into “paramagnetic” states that
preserve SUð4Þ symmetry. However, a new feature in the
present problem is thepresence of the fluxΦ in theunderlying
Hubbard model which breaks SUð4Þ to Uð2Þ × Uð2Þ. This
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feature modifies the spin-orbital model at Oðt3=U2Þ. In the
experiments, the ratio of Coulomb interactions to the band-
width of the nearly flat bands may be controlled by a
perpendicular electric field, and it may thus be possible to
tune the strength of these third-order terms relative to the
second-order ones. In Appendix F, we derive the spin-orbital
Hamiltonian to third order, showing how the flux Φ leads to
new terms not present in an SUð4Þ-invariant model. We,
however, leave for the future a detailed study of these
interesting spin-orbital models.
At any rate, we emphasize that this trilayer system is thus

qualitatively different from the twisted bilayer graphene
where we argue that a real-space triangular-lattice descrip-
tion is not possible due to Dirac crossings within the nearly
flat bands.

X. PROPOSED FUTURE EXPERIMENTS

As discussed in previous sections, the ideas presented in
this paper suggest a number of experiments which will be
extremely useful in revealing the physics. Here, we reiterate
and elaborate on some of these suggestions.
A crucial clue from the existing experiments is that an in-

plane field suppresses the superconductivity—at optimal
doping—when the Zeeman energy is of the order of the
zero-fieldTc. This suppression indicates spin-singlet pairing
and that Tc at optimal doping is associated with the loss of
pairing. It will be extremely useful to study this systemati-
cally as a function of doping. For the doped C3-broken
insulator, the superconductivitymay be driven by the pairing
of a small Fermi surface of electrons. Then (except perhaps
at very small doping), Tc and the critical Zeeman scale
continue to track each other as the doping is decreased. In
contrast, if the pairing (in the form of singlet valence-bond
formation) already happens in the Mott insulator—as in the
usual RVB theory, or with the featureless Mott insulator—
then, with decreasing doping, Tc and the critical Zeeman
field should part ways significantly.
A second crucial clue from the experiments is the

2; 4; 6; 8;… degeneracy pattern of the Landau fan emanat-
ing from the Mott insulator. We propose that this pattern is
due to the freezing of the valley degree of freedom, which
can be distinguished from the alternate possibility that there
is spin freezing by studying the quantum oscillations in a
tilted field. Zeeman splitting, if it exists, should show up in
a characteristic way as a function of the tilt angle.
Our proposal is the intervalley phase coherence at a scale

higher than both the superconducting Tc ≈ 1.5 K and the
Mott insulating scale approximately 5 K. The valley sym-
metry is, as usual, related to translational symmetry of the
microscopic graphene lattice. In the twisted bilayer, there is an
approximate translation symmetry that holds at some short
scale associated with translation by one unit cell of the
microscopic graphene lattices. Under this approximate trans-
lation operation, electrons at the different valleys get different
phases, which is a Uvð1Þ rotation. Therefore, intervalley

ordering strongly breaks this approximate short translation
symmetry. Within each moiré site, the density of states is
uniform at the lattice scale when there is no intervalley
ordering but oscillates once this order sets in. This difference
may be detectable through scanning tunneling microscopy
(though, if the bilayer graphene is fully encapsulated by boron
nitride, it may be challenging to see the graphene layer).
Assuming there is intervalley ordering, if the undoped

Mott insulator develops antiferromagnetic order, it appears
likely that the doped superconductor is a spin-singlet
dx2−y2 þ idxy superconductor, which spontaneously breaks
time-reversal symmetry. In contrast, for a doped C3-broken
state, either s-wave or dþ id spin-singlet superconductiv-
ity seem possible. It is also useful to directly search for
broken C3 or moiré translational symmetry in the experi-
ments. Finally, the very different behavior in quantum
oscillations between electron and hole doping away from
the Mott insulator suggests that there may be a first-order
transition into the Mott state as it is approached from the
charge neutrality point, which will lead to a hysteretic
response as the gate voltage is tuned towards charge
neutrality from the Mott insulator.

XI. CONCLUSION

In this paper, we addressed some of the theoretical
challenges posed by the remarkable observations of Mott
insulating states and proximate superconductivity in
twisted bilayer graphene.
We proposed that both the Mott insulator and the super-

conductor develop out of a state with spontaneous inter-
valley coherence that breaks independent conservation of
electrons at the two valleys. We described a mechanism for
the selection of this order over other spin- or valley-polarized
states owing to the peculiarities of the symmetry realization
in the band structure.We showed that intervalley ordering by
itself does not lead to aMott insulator and described possible
routes through which a Mott insulator can develop at a low
temperature. A specific concrete example is a C3-broken
insulator. We showed how doping such an insulator leads to
an understanding of the quantum oscillation data and
presented a possible pairingmechanism for the development
of superconductivity. We described potentially useful
experiments to distinguish the various possible routes to a
Mott insulator from an intervalley coherent state.
Ourworkwas rooted in amicroscopic understanding of the

twisted graphene bilayer. We showed that the momentum-
space structure of the nearly flat bands places strong con-
straints on real space descriptions. In particular, contrary to
natural expectations, we showed that a real-space lattice
model is necessarily different from a correlated triangular-
lattice model with two orbitals (corresponding to the two
valleys) per site. This difference is due to a symmetry-
enforced obstruction to constructing Wannier functions cen-
tered at the triangular sites that can capture theDirac crossings
of the nearly flat bands. We showed that a honeycomb lattice
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representation may be possible but requires a nonlocal
implementation of valleyUvð1Þ symmetry. In our description
of the intervalley ordered state and its subsequent low-
temperature evolution into theMott or superconducting states,
we sidestepped these difficulties by first treating the problem
directly in momentum space and defining a real-space model
only at scales below the intervalley ordering (when the
obstruction to a honeycomb representation is gone). We also
contrasted the bilayer system with trilayer graphene where
Mott insulators have recently been observed. In the trilayer
system, it is reasonable to construct a real-space triangular-
lattice two-orbital model, but the symmetries allow for
complex hopping (with some restrictions). We argue that this
system may offer a valuable platform to realize interesting
quantum spin-orbital liquids.
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Note added.—Recently, Ref. [66] appeared, which has
significant differences from the present paper; Refs. [67–
69], which discuss, in particular, the symmetries and
constructions of Wannier functions, also appeared. Note
that these discussions on Wannier functions disregard the
presence of the (emergent) sixfold rotation symmetry, and,
consequentially, the Dirac points observed at charge
neutrality are not symmetry-protected features of these
models. A more detailed discussion can be found in our
subsequent work reported in Ref. [70].

APPENDIX A: LATTICE AND SYMMETRIES

In this Appendix, we document some details on the
conventions and the symmetry transformations.
Consider a monolayer of graphene. We let the primitive

lattice vectors A and reciprocal lattice vectors B be

A1 ¼ ax̂; A2 ¼ a

�
−
1

2
x̂þ

ffiffiffi
3

p

2
ŷ

�
;

B1 ¼
4πffiffiffi
3

p
a

� ffiffiffi
3

p

2
x̂þ 1

2
ŷ

�
; B2 ¼

4πffiffiffi
3

p
a
ŷ; ðA1Þ

where a ¼ 2.46 Å is the lattice constant (some authors use
a to denote the C—C bond length, which is a factor of

ffiffiffi
3

p
smaller than the lattice constant we are using here). In this
choice, we can choose the basis of the honeycomb lattice
sites to be

r1 ¼
1

3
A1 þ

2

3
A2; r2 ¼

2

3
A1 þ

1

3
A2: ðA2Þ

In momentum space, the K and K0 points are given by
�ðB1 þ B2Þ=3 or, for the equivalent ones lying on the x
axis, �ð2B1 − B2Þ=3. Note that jKj ¼ 4π=ð3aÞ, as is well
known. Furthermore, we take the Dirac speed vF to be
106 ms−1. Besides, we choose the moiré lattice vectors to be

a1 ¼
a

2sinðθ=2Þ
� ffiffiffi

3
p

2
;
1

2

�
; a2 ¼

a
2sinðθ=2Þ

�
−

ffiffiffi
3

p

2
;
1

2

�
:

ðA3Þ

In the main text, we list all the symmetries of the
continuum theory (Table I). Here, we tabulate explicitly
the symmetry transformations of the electron operators,
which follow from that of the Dirac points in the monolayer
problem:

t̂ρψ̂�μ;k t̂−1ρ ∝ eik·ρψ̂�μ;k;

Ĉ6ψ̂�μ;kĈ
−1
6 ¼ σ1e∓ið2π=3Þσ3 ψ̂∓μ;C6k;

M̂yψ̂�μ;kM̂
−1
y ¼ σ1ψ̂�My½μ�;Myk;

T̂ ψ̂�μ;kT̂
−1 ¼ ψ̂∓μ;−k; ðA4Þ

where μ ¼ t, b. Note that My is the only symmetry which
flips the two layers, i.e., My½t� ¼ b and vice versa.
The symmetries listed in Eq. (A4) generate all the spatial

symmetries of the continuum theory of the TBG [7,12,21]
(in wallpaper group 17). In particular, we see that tρ andMy
preserve the valley index (K versus −K) whereas C6 and T
do not. However, their (pairwise) nontrivial products leave
valley invariant, and it is helpful to also document their
symmetry action explicitly (which are fixed by the above):

Ĉ3ψ̂�μ;kĈ
−1
3 ¼ e∓ið2π=3Þσ3 ψ̂�μ;C3k;

ðĈ6T̂ Þψ̂�μ;kðĈ6T̂ Þ−1 ¼ σ1e�ið2π=3Þσ3 ψ̂�μ;−C6k;

ðĈ2T̂ Þψ̂�μ;kðĈ2T̂ Þ−1 ¼ σ1ψ̂�μ;k: ðA5Þ

Here, we make two remarks regarding the subtleties in
the symmetry representation documented here: First, the
momenta k appearing above are defined as the deviation
from the original Dirac points in the monolayer problem.
Generally, they correspond to different momenta in the
moiré BZ. For instance, the Dirac point labeled by ðþ; tÞ,
i.e., that of the K point in the top layer, is mapped to KM,
whereas ð−; tÞ is mapped to K0

M. Similarly, ðþ; bÞ and
ð−; bÞ are, respectively, mapped to K0

M and KM. If desired,
one can also rewrite Eqs. (A4) and (A5) using a common
set of momentum coordinates defined with respect to the
origin of the moiré BZ.
Second, the representation of the translation symmetry t̂ρ

has a subtlety in its definition, which is because the
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microscopic translation effectively becomes an internal
symmetry for the slowly varying fields appearing in the
continuum theory. As such, for a single layer one can
deduce its representation only up to an undetermined phase,
hence the appearance of ∝ in Eq. (A4). However, the
relative momentum across the different slowly varying
fields, say, the operators corresponding to the þ valley of
the top and bottom layers, is a physical quantity.
Consequentially, there is really only one common ambi-
guity across all the degrees of freedom appearing in the
continuum theory.

APPENDIX B: VALLEY SYMMETRY AND
WANNIER OBSTRUCTION

We argue here that the valley-symmetry-resolved band
structure does not admit a Wannier representation. Note,
since we ignore spin, that this is a two-band model, which
will be crucial for what follows. If one were to include other
bands, the arguments below would fail, although precisely
what selection of bands would lead to localized Wannier
functions (LWFs) remains to be determined. In some ways,
it is not very surprising that a valley-resolved band structure
does not admit a Wannier description, and a simple
example is a single valley of monolayer graphene, which
is just an isolated Dirac node. But in those cases the band
structure does not terminate on raising the energy and,
hence, does not form a band. In contrast, in our present
problem for TBG, there is an isolated band, and so one may
expect to capture the physics with LWFs. Nonetheless, we
argue that there is an obstruction, as can be seen as follows.
We begin with three ingredients: (i) a two-band model;

(ii) C2T symmetry; and a third ingredient which will be
specified shortly. The two ingredients above enforce the
following form on the momentum-space Hamiltonian:

H ¼ ϵ0ðpÞ þ ϵ1ðpÞσ1 þ ϵ2ðpÞσ2; ðB1Þ

where there is no condition on the function ϵiðpÞ. Similar to
the main text, we implement C2T by σ1K, whereK denotes
complex conjugation. Check that C2T leaves the
Hamiltonian above invariant. Now, if we are interested
in the band wave functions, they are independent of the first
term in the Hamiltonian, and we could pass to the following
one by imposing a constraint:

H0 ¼ ϵ1ðpÞσ1 þ ϵ2ðpÞσ2: ðB2Þ

The obvious constraint is to demand

σ3H0σ3 ¼ −H0; ðB3Þ

which is nothing but the chiral condition that specifies
class AIII, and one can show that this condition can be
implemented as an on-site symmetry for a two-band
system. Now, we introduce the third ingredient: (iii) The

two Dirac points at the middle of this band structure have
the same chirality. This ingredient allows us to write down
the following effective Hamiltonian close to neutrality:

H0
low ¼ −ivF½∂xσ1 þ ∂yσ2� ⊗ 1; ðB4Þ

wherewenowhave a four-component structure to include the
twoDirac nodes. Note that there is nomass term that will gap
out these nodes and also preserve the chiral condition (B3);
hence, this Hamiltonian corresponds to the surface of a three-
dimensional topological phase in class AIII, with index
ν ¼ 2, corresponding to the two Dirac nodes. Since this
Hamiltonian is the surface state of a nontrivial 3D topological
phase, it does not admit a Wannier representation. However,
when combined with the opposite valley band structure,
together the pair of band structures does admit LWFs but at
the price of losing valley conservation symmetry.
Finally, let us address a conundrum that the careful

reader may be puzzled by. The valley-resolved bands are
stated to be the anomalous surface states of a 3D topo-
logical phase; nevertheless, they appear as isolated bands,
which seems to contradict the usual expectation that such
anomalous bands cannot be separated in energy. The way
this conundrum is resolved in the present case is through
the two-band condition, which further allows us to map the
problem to one with particle-hole symmetry (class AIII).
The later problem can have anomalous surface states that
are disconnected from the bulk bands, because they are
forced to stick at a zero chemical potential, and hence
cannot be deformed into the bulk. This mapping to class
AIII holds only for the two-band model; hence, if we add
bands or fold the Brillouin zone from translation symmetry
breaking, the presented arguments no longer hold.

APPENDIX C: WANNIER FUNCTIONS

We construct Wannier functions using the projection
method [57]. The method proceeds by first specifying a
collection of well-localized, symmetric trial wave functions
in real space, which serves as the seed for constructing a
smooth gauge required in obtaining well-localized Wannier
functions for the problem of interest.
Let us begin by considering the symmetry properties of a

real-space wave function in our present problem. For
simplicity, we let β be a collective index for the valleys
and layers, i.e., β ¼ ðþ; tÞ; ð−; tÞ; ðþ; bÞ; ð−; bÞ. Define the
real-space electron operators

ψ̂†
β;r ∝

Z
Λ

0

d2k̄e−ik̄·rψ̂†
β;k̄
; ðC1Þ

where we do not keep track of the overall normalization of
the operator. Here, k̄ is defined as the momentum measured
with respect to the origin of the moiré BZ. Note that ψ̂†

β;r

inherits symmetry transformation from that of ψ̂†
β;k̄
.
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To construct a collection of well-localized, symmetric
trial wave functions, one can follow the standard discussion
concerning the symmetry representation associated with
such a real-space basis, say, as reviewed in Supplemental
Materials of Ref. [30]. We briefly sketch the main ideas
below. Let Wβ

h0
ðrÞ be a two-component (column) vector

localized to h0 (the two components here originate from the
sublattice degree of freedom in the microscopic problem).
Define

Ŵ†
h0
≡X

β

Z
d2rψ̂†

β;rW
β
h0
ðrÞ ðC2Þ

and its associated momentum-space operator

Γ̂†
h0;k

≡ 1

V

X
a

eik·aŴ†
h0þa ¼

Z
d2kψ̂β;kΓ

β
h0
ðkÞ; ðC3Þ

where a is a moiré lattice vector and we assume a periodic
system with V moiré unit cells.
For our purpose, we want Ŵ†

h0
to serve as our seed for the

construction of symmetric Wannier functions. To this end,
suppose h0 ¼ ða1 − a2Þ=3, which corresponds to a honey-
comb site in the moiré potential, i.e., an AB=BA region. We
demand Ŵ†

h0
to be invariant under time reversal, the mirror

My, and the threefold rotation about h0, which we denote
by C̄3. In addition, recall that the previously predicted
charge density profile [8,9,11,14,23] suggests that the
Wannier functions take the shape shown in Fig. 3(a).
Therefore, it is natural to consider a trial Ŵ†

h0
taking the

form

Ŵ†
h0

¼ ŵ†
0 þ ˆ̄C3ŵ

†
0
ˆ̄C†
3 þ ˆ̄C2

3ŵ
†
0
ˆ̄C2†
3 ; ðC4Þ

where ŵ†
0 is localized to the unit-cell origin (an AA site). By

definition, Ŵ†
h0

transforms trivially under C̄3, which one
can verify leads to the correct C3 representations for the
nearly flat bands.
It remains to ensure that ŵ†

0 is symmetric under T and
My. In the spirit of Eq. (C2), we may write ŵ†

0 ¼
P

βŵ
β†
0 for

β ¼ ðþ; tÞ; ð−; tÞ; ðþ; bÞ; ð−; bÞ. From the symmetry trans-
formation in Eq. (A4), we set

ŵ−t†
0 ¼ T̂ ŵþt†

0 T̂ −1; ŵ−b†
0 ¼ T̂ ŵþb†

0 T̂ −1: ðC5Þ

Similarly, to respect My symmetry, we set

ŵþb†
0 ¼ ζMy

M̂yŵ
þt†
0 M̂−1

y ; ðC6Þ

where ζMy
¼ �1. As such, we reduce our degree of

freedom on the specification of the trial wave function
Ŵ†

h0
down to our choice of ŵþt†

0 ¼ R
d2rψ̂†

β;rw
þt
0 ðrÞ. Our

only condition on wþt
0 ðrÞ is that it is a two-component wave

function well localized to 0; however, we simply assume a
Gaussian form:

wþt
0 ðrÞ ¼ e−jrj2=2ξ2ϕþt

0 ; ðC7Þ

where ξ is the localization length and ϕ0 is a constant two-
component vector. Correspondingly, all the other two-
component wave functions take a similar form, although
they can be localized to a different point, say, C̄30. Such a
choice is particularly convenient, as its Fourier transform
can be readily evaluated:

γβcðkÞ ¼
Z

d2re−ik·re−jr−cj2=2ξ2ϕβ
c ∝ e−ik·ce−jkj2ξ2=2ϕβ

c ;

ðC8Þ

which enables an efficient computation of the overlap
between our trial and the Bloch wave functions.
Thus far, we have focused on only one well-localized

wave function in real space. In our problem, the two sites of
the effective honeycomb lattice are related by C6; i.e., we
simply construct the wave function localized to h1 ≡ C6h0
through

Ŵ†
h1
≡ Ĉ6Ŵ

†
h0
Ĉ−1
6 : ðC9Þ

Besides, to describe a four-band problem, we should have
two orbitals on each of the honeycomb sites. These two
orbitals are not symmetry related. However, to reproduce
theMy representation in momentum space, we have to take
the two orbitals to, respectively, correspond to ζMy

¼ þ1

and ζMy
¼ −1.

In our numerical construction of the Wannier functions,
we take the localization length to be 0.15ja1j and the two-
component vectors

ϕ
þt;ζMy¼þ1

0 ¼
�−0.416þ 0.168i

0.820þ 0.356i

�
;

ϕ
þt;ζMy¼−1
0 ¼

�
0.296 − 0.380i

0.776þ 0.407i

�
: ðC10Þ

These choices are found simply by a search of the
parameter space to optimize the minimum overlap between
the trial and the Bloch wave functions. We check the
overlap for approximately 1180 momenta along the high-
symmetry line MM − KM − ΓM −MM, as well as for an
additional 1000 randomly sampled points in the BZ. The
minimum and maximum over the overlap are, respectively,
found to be 0.38 and 3.80, indicating a satisfactory
construction of the Wannier functions. In Fig. 3 in the
main text, we present the results for the two symmetry-
related Wannier functions labeled by ζMy

¼ þ1; the
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corresponding results for the pair with ζMy
¼ −1 are shown

in Fig. 5. Remarkably, the localization properties of the two
sets are essentially identical.

APPENDIX D: TIGHT-BINDING MODEL

In this Appendix, we provide an explicit tabulation of the
bonds in the HWF corresponding to Figs. 4(b) and 4(g) in
the main text, as well as the associated IWF

z , whose
eigenvalues are plotted in Fig. 4(e).

In the following, we parametrize a “bond” by

tĉ†rToþaĉrFr þ H:c:; ðD1Þ

where a is a moiré lattice vector and To, Fr ¼ 1;…; 4 labels
the four Wannier functions localized to each unit cell.
Physically, orbital 1 corresponds to the one localized to h0
with ζMy

¼ þ1; orbital 2 is the one localized to h1

2

4
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×10-3
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FIG. 5. Localization of the other set of constructed Wannier
functions.

TABLE II. Effective Hamiltonian HWF and valley-charge
operator IWF

z . We denote a lattice vector a ¼ l1a1 þ l2a2 by
ðl1; l2Þ.

(a) HWF

To Fr a tðμeVÞ
1 1 (0,0) 213.8
2 2 (0,0) 213.8
3 3 (0,0) −213.8
4 4 (0,0) −213.8
2 3 (0,1) −76.2
4 1 (0,1) −76.2
1 1 (0,2) 81.2
1 4 (0,2) 76.2
2 2 (0,2) 81.2
3 2 (0,2) 76.2
3 3 (0,2) −67.2
4 4 (0,2) −67.2
2 3 ð1;−1Þ −76.2
3 3 ð1;−1Þ 66.4
4 1 ð1;−1Þ −76.2
4 4 ð1;−1Þ 66.4
2 3 (1,1) 76.2

(Table continued)

TABLE II. (Continued)

(a) HWF

To Fr a tðμeVÞ
4 1 (1,1) 76.2
3 3 (1,2) 66.4
4 4 (1,2) 66.4
1 1 (2,0) 81.2
2 2 (2,0) 81.2
3 3 (2,0) −67.2
4 4 (2,0) −67.2
1 4 (2,1) 76.2
3 2 (2,1) 76.2
3 3 (2,1) 66.4
4 4 (2,1) 66.4
1 1 (2,2) 81.2
1 4 (2,2) −76.2
2 2 (2,2) 81.2
3 2 (2,2) −76.2
3 3 (2,2) −67.2
4 4 (2,2) −67.2

(b) IWF
z

To Fr a t

1 2 (0,0) 0.451i
3 4 (0,0) −0.443i
1 2 (0,1) 0.451i
1 3 (0,1) −0.217i
2 4 (0,1) −0.217i
3 1 (0,1) −0.217i
3 4 (0,1) −0.443i
4 2 (0,1) −0.217i
1 2 (1,0) −0.172i
1 3 (1,0) −0.217i
2 1 (1,0) 0.172i
2 4 (1,0) −0.217i
3 1 (1,0) −0.217i
3 4 (1,0) 0.181i
4 2 (1,0) −0.217i
4 3 (1,0) −0.181i
1 2 (1,1) 0.451i
1 3 (1,1) 0.217i
2 4 (1,1) 0.217i
3 1 (1,1) 0.217i
3 4 (1,1) −0.443i
4 2 (1,1) 0.217i
1 2 (1,2) −0.172i
3 4 (1,2) 0.181i
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symmetry related to orbital 1; orbital 3 is localized to h0
with ζMy

¼ −1; and orbital 4 is symmetry related to 3.
The bonds in HWF with tc ¼ 63μeV are tabulated in

Table II(a). Note that we tabulated only half of the bonds, in
the sense that the Hermitian conjugates of the listed bonds
are not included. In particular, for consistency we also
halve the coefficient of the on-site chemical potential
∼tĉ†r ĉr, which is Hermitian by itself. We in addition
subtract the “trace part” of the chemical potential (i.e.,
we remove a constant energy offset) from the model. The
effective valley-charge operator defined with t0c ¼ 0.15 is
similarly tabulated in Table II(b).

APPENDIX E: HARTREE-FOCK THEORY
FOR SELECTION OF IVC ORDERING

Here, we discuss a simple mean-field treatment to
illustrate that an IVC state is favored by the system at
ν ¼ −2, which is described by the following simplified
Hamiltonian of Eq. (12):

H ¼ H0 þ V; ðE1Þ

where the free Hamiltonian is

H0 ¼
X
anαk

ϵanðkÞc†anαðkÞcanαðkÞ ðE2Þ

with a the valley index, n the band index, and α the spin
index. Notice that the dispersion ϵanðkÞ is independent of
the spin and, due to time reversal, ϵanðkÞ ¼ ϵ−anð−kÞ.

We assume a simple form of interaction:

V ¼ g
N

X
k1k2q

c†anαðk1 þ qÞcanαðk1Þc†a0n0α0 ðk2 − qÞca0n0α0 ðk2Þ;

ðE3Þ

where naαðxÞ is the electron density with flavor a and spin
α. Repeated indices are summed over here. This interaction
has an SUð8Þ symmetry. As discussed in the main text, the
more complete form of the interaction that takes into
account the form factors arising from projecting the
interactions onto the nearly flat bands should be

V¼ g
N

X
k1k2q

Λa
nn0 ðk1þq;k1ÞΛa0

mm0 ðk2−q;k2Þ

·c†anαðk1þqÞcan0αðk1Þ ·c†a0mα0 ðk2−qÞca0m0α0 ðk2Þ ðE4Þ
with the form factors given by the Bloch wave functions of
the states in the nearly flat bands via

Λa
nn0 ðk1; k2Þ ¼ huanðk1Þjuan0 ðk2Þi; ðE5Þ

where juanðkÞi is the Bloch wave function of a state in the
nearly flat bands labeled by valley index a, band index n,
and momentum k (it has no dependence on the spin
indices). However, for simplicity, we first present the result
from analyzing the simplified interaction (E3) and com-
ment on the preliminary result from analyzing (E4) at the
end of this Appendix.
We factorize the interaction in a Hartree-Fock mean-field

manner:

VMF ¼
g
N

X
k1k2q

½hc†anαðk1 þ qÞcanαðk1Þic†a0n0α0 ðk2 − qÞca0n0α0 ðk2Þ þ hc†a0n0α0 ðk2 − qÞca0n0α0 ðk2Þic†anαðk1 þ qÞcanαðk1Þ

− hc†anαðk1 þ qÞca0n0α0 ðk2Þic†a0n0α0 ðk2 − qÞcanαðk1Þ − hc†a0n0α0 ðk2 − qÞcanαðk1Þic†anαðk1 þ qÞca0n0α0 ðk2Þ
− hc†anαðk1 þ qÞcanαðk1Þihc†a0n0α0 ðk2 − qÞca0n0α0 ðk2Þi þ hc†anαðk1 þ qÞca0n0α0 ðk2Þihc†a0n0α0 ðk2 − qÞcanαðk1Þi�: ðE6Þ

The first, second, and fifth terms are the Hartree
contributions, while the other terms are the Fock contri-
butions. The Hartree contribution is determined by the local
total electron density alone and independent of ordering, so
for our purposes they can be simply dropped. We thus focus
on the Fock terms.
We would like to compare the energies of a spin-

polarized state (SP), a valley-Z-polarized state (IZP), and
a valley-XY-polarized state (IVC). In state SP, we assume

hc†anαðk1Þca0nα0 ðk2Þi
¼ δaa0δnn0 ½n1nðk1Þδαα0 þ ϕ1nðk1Þσzαα0 �δk1k2 : ðE7Þ

The corresponding macroscopic quantities are defined as

n1n ¼
1

N

X
k

n1nðkÞ; ϕ1n ¼
1

N

X
k

ϕ1nðkÞ: ðE8Þ

In state IZP, we assume

hc†anαðk1Þca0n0α0 ðk2Þi
¼ δnn0δαα0 ½n2nðk1Þδaa0 þ ϕ2ðk1Þτzaa0 �δk1k2 : ðE9Þ

The corresponding macroscopic quantities are defined as

n2n ¼
1

N

X
k

n2nðkÞ; ϕ2 ¼
1

N

X
k

ϕ2ðkÞ ðE10Þ

In the IVC state, we assume
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hc†anαðk1Þca0n0α0 ðk2Þi
¼ δnn0δαα0 ½n3anðk1Þδaa0 þ ϕ3nðk1Þτxaa0 �δk1k2 : ðE11Þ

Notice here that ϕ3n is a complex number, and changing
its phase implies changing the valley order in the
valley-XY plane. For simplicity, we take ϕ3n to be positive
for both n. The corresponding macroscopic quantities are
defined as

n3an ¼
1

N

X
k

n3anðkÞ; ϕ3n ¼
1

N

X
k

ϕ3nðkÞ: ðE12Þ

Below, we calculate the energies of these states by the
mean-field approximation.
(1) Spin-polarized state.—We start with the SP state. In

this case, the interaction Hamiltonian is replaced by
its mean-field representative, which reads

VMF ¼ g
X
k

½−2ϕ1nσ
z
αα0c

†
anαðkÞcanα0 ðkÞ

þ 4ðϕ2
11 þ ϕ2

12 − n211 − n212Þ�: ðE13Þ
The total mean-field Hamiltonian is then

HMF ¼ H0 þ VMF

¼
X
ank

f½ϵanðkÞ − 2gϕ1n�c†anþðkÞcanþðkÞ

þ ½ϵanðkÞ þ 2gϕ1n�c†an−ðkÞcan−ðkÞg
þ 4gNðϕ2

11 þ ϕ2
12 − n21 − n22Þ: ðE14Þ

Consider the limit where g is much larger than the
bandwidth. In this limit, we expect the spin is fully
polarized. Without loss of generality, assume ϕ1n ≥
0 for both n. In this case, all electrons are in the state
with α ¼ þ and n ¼ 1. Self-consistency requires
that

1

N

X
k

hc†a1þðkÞca01þðkÞi¼ δaa0 ¼ δaa0 ðn11þϕ11Þ;

1

N

X
k

hc†a1−ðkÞca01−ðkÞi¼ 0¼ δaa0 ðn11−ϕ11Þ;

1

N

X
k

hc†a2þðkÞca02þðkÞi¼ 0¼ δaa0 ðn12þϕ12Þ;

1

N

X
k

hc†a2−ðkÞca02−ðkÞi¼ 0¼ δaa0 ðn12−ϕ12Þ;

ðE15Þ

which yields

n11 ¼ ϕ11 ¼
1

2
; n12 ¼ ϕ12 ¼ 0: ðE16Þ

This is indeed a fully polarized state.
In this fully polarized state, and further assuming

that the lower flat band is strictly lower than the
higher flat band, the total energy of this state is

E1 ¼
X
ak

ϵa1ðkÞ − 2gN: ðE17Þ

(2) Valley Iz polarized.—Next, we turn to the state
IZP. In this case, the interaction Hamiltonian is
replaced by

VMF ¼ g
X
k

½−2ϕ2τ
z
aa0c

†
anαðkÞca0nαðkÞ

þ 8ϕ2
2 − 4ðn221 þ n222Þ�: ðE18Þ

The total mean-field Hamiltonian is

HMF ¼ H0 þ VMF

¼
X
nαk

f½ϵþnðkÞ − 2gϕ2�c†þnαðkÞcþnαðkÞ

þ ½ϵ−nðkÞ þ 2gϕ2�c†−nαðkÞc−nαðkÞg
þ gN½8ϕ2

2 − 4ðn221 þ n222Þ�: ðE19Þ

Suppose g is much larger than the bandwidth, the
system wants to fully polarize along a ¼ þ, and
both bands with n ¼ 1 and n ¼ 2 are occupied for
a ¼ þ. Self-consistency requires that

1

N

X
k

hc†þ1αðkÞcþ1α0 ðkÞi ¼ δαα0 ¼ δaa0 ðn21 þ ϕ2Þ;

1

N

X
k

hc†þ2αðkÞcþ2α0 ðkÞi ¼ δαα0 ¼ δaa0 ðn22 þ ϕ2Þ;

1

N

X
k

hc†−1αðkÞc−1α0 ðkÞi ¼ 0 ¼ δaa0 ðn21 − ϕ2Þ;

1

N

X
k

hc†−2αðkÞc−2α0 ðkÞi ¼ 0 ¼ δaa0 ðn22 − ϕ2Þ;

ðE20Þ
which yields

n21 ¼ n22 ¼ ϕ2 ¼
1

2
: ðE21Þ

This is indeed a fully valley-Z-polarized state.
In this fully polarized case, the total energy of this

state is

E2 ¼ 2
X
k

ϵþ1ðkÞ − 2gN ¼ E1: ðE22Þ
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(3) IVC state.—Finally, we discuss the IVC state. In this
case, the interaction Hamiltonian is replaced by

VMF ¼ g
X
k

f−2ϕ3n½c†þnαðkÞc−nαðkÞ

þ c†−nαðkÞcþnαðkÞ� þ 2ð2ϕ2
3n − n23anÞg:

ðE23Þ
The total mean-field Hamiltonian is

HMF¼H0þVMF

¼
X
anαk

ϵanðkÞc†anαðkÞcanαðkÞ

−2g
X
nαk

ϕ3n½c†þnαðkÞc−nαðkÞþc†−nαðkÞcþnαðkÞ�

þ2gNð2ϕ2
3n−n23anÞ: ðE24Þ

Denote ϵ̄nðkÞ ¼ f½ϵþnðkÞ þ ϵ−nðkÞ�=2g and
δϵnðkÞ ¼ f½ϵþnðkÞ − ϵ−nðkÞ�=2g, and the spectrum
of the above Hamiltonian is

E�nðkÞ ¼ ϵ̄nðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δϵnðkÞ2 þ 4g2ϕ2

3n

q
: ðE25Þ

Denote the eigenmodes corresponding to E�nðkÞ by
d�nðkÞ, and they satisfy

�
cþnðkÞ
c−nðkÞ

�
¼

0
B@cosθnðkÞ

2
−sinθnðkÞ

2

sinθnðkÞ
2

cosθnðkÞ
2

1
CA
�
dþnðkÞ
d−nðkÞ

�

ðE26Þ
with

cos θnðkÞ ¼
δϵnðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δϵnðkÞ2 þ 4g2ϕ2
3n

p ;

sin θnðkÞ ¼
−2gϕ3nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δϵnðkÞ2 þ 4g2ϕ2
3n

p : ðE27Þ

Again, consider the limit where g is much larger
than the bandwidth; then the system tends to occupy
the bands with energies E−1. Self-consistency re-
quires that

ϕ3n ¼
1

N

X
k

hc†þnαðkÞc−nαðkÞi ¼
X
k

sin θnðkÞ
2N

hd†þnαðkÞdþnαðkÞ − d†−nαðkÞd−nαðkÞi

¼ 1

N

X
k

gϕ3nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δϵnðkÞ2 þ 4g2ϕ2

3n

p hd†−nαðkÞd−nαðkÞ − d†þnαðkÞdþnαðkÞi;

n3þn ¼
1

N

X
k

�
1þ cos θnðkÞ

2
hd†þnαðkÞdþnαðkÞi þ

1 − cos θnðkÞ
2

hd†−nαðkÞd−nαðkÞi
�
;

n3−n ¼
1

N

X
k

�
1þ cos θnðkÞ

2
hd†−nαðkÞd−nαðkÞi þ

1 − cos θnðkÞ
2

hd†þnαðkÞdþnαðkÞi
�
: ðE28Þ

In the limit where g is much larger than the
bandwidth, ϕ3n → 1=2, which means the system
tends to fully polarize along the valley-XY direction.
At the same time, nan → 1=2. The total energy of
this state in this case is

E3 ¼ 2
X
k

½ϵ̄1ðkÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δϵ1ðkÞ2 þ g2

q
�: ðE29Þ

This energy is lower than E2 in Eq. (E22):

E3−E2 ¼ 2
X
k

½ϵ̄1ðkÞ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δϵ1ðkÞ2þg2

q
−ϵþ1ðkÞþg�

¼ 2
X
k

½g−δϵ1ðkÞ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δϵ1ðkÞ2þg2

q
�< 0;

ðE30Þ

where time-reversal symmetry of the noninter-
acting band structure is used in the last step:P

kδϵ1ðkÞ ¼ 0.
Therefore, if the interaction strength is much larger than

the bandwidth, the system tends to be fully polarized.
Within this analysis, among different fully polarized states,
the valley-XY-ordered state (IVC) has a lower energy than a
spin-polarized state and a valley-Z-ordered state.
Finally, we comment on the effect of taking into account

the form factors into the interaction term, as in Eq. (E4). It
turns out that in this case which state has the lowest energy
can potentially be changed from the IVC state if bands are
too flat, and our preliminary calculations show that the
spin-polarized state and the valley-Z-ordered state have a
lower energy compared to the IVC state when the inter-
action strength is around 10 times the bandwidth of the
nearly flat bands. A more reliable way to settle down the
real ground state is to do a numerical calculation formulated
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in momentum space, using the Hamiltonian given by
Eqs. (E1), (E2), and (E4).

APPENDIX F: SPIN-ORBITAL MODEL FOR
MOTT INSULATORS IN TRILAYER GRAPHENE

In this Appendix, we derive an effective spin-orbital
model applicable to the trilayer graphene described in
Sec. IX, in the limit of U ≫ t. This effective model is
applicable for both the cases of ν ¼ −1 and ν ¼ −2, and it
is obtained by a systematic expansion in the large-U limit to
the order of t3=U2.
Besides the translation symmetry of the triangular lattice,

the system is assumed to have Uð2Þ ×Uð2Þ symmetries,
corresponding to charge and flavor Uð1Þ conservations, as
well as spin conservation. In addition, there is a C6

symmetry that maps one flavor into the other and a
time-reversal symmetry that also maps one flavor into
the other (while leaving the spin unchanged, so T2 ¼ 1 for
this time reversal).
We start from a Hubbard model with nearest-neighbor

hopping and on-site Hubbard interactions. Consider three
nearby sites (A, B, andC) forming an elementary triangle of
this triangular lattice. The kinetic Hamiltonian is taken as

H0 ¼ −t
X
aα

eiηaϕ½c†aαðBÞcaαðAÞ þ c†aαðCÞcaαðBÞ

þ c†aαðAÞcaαðCÞ� þ H:c:; ðF1Þ

where a ¼ � labels the flavor, α labels the spin, and ηa ¼
�1 if a ¼ �. The interaction Hamiltonian on each site is
taken as

V ¼ U
2
ðN − N0Þ2; ðF2Þ

where N ¼ P
aα c

†
aαðriÞcaαðriÞ, and we are interested in

both the cases with N0 ¼ 2 and N0 ¼ 1. All other terms of
the many-body system can be generated by applying
various symmetries.
We are looking for an effective spin-orbital model at

largeU to the order of t3=U2. We first present the result and
discuss some simple physical consequences before pre-
senting the details of the derivation. The final result is

Heff ¼ Hð2Þ þHð3Þ ðF3Þ

with

Hð2Þ ¼ 2t2

U
1

n2
ðn2 þ SA · SBÞðn2 þ IA · IBÞ −

4nt2

U
ðF4Þ

and

Hð3Þ ¼ 3t3

U2

�
−

1

4n3
hð3;1Þ þ 1

4n2
hð3;2Þ

�
−
12nt3

U2
; ðF5Þ

where

hð3;1Þ ¼ 8n2 cos 3ϕðn2 þ SA · SB þ SB · SC þ SC · SAÞðn2 þ IzAI
z
B þ IzBI

z
C þ IzCI

z
AÞ

þ 4n2ðn2 þ SA · SB þ SB · SC þ SC · SAÞ · ½eiϕðIþA I−B þ IþB I
−
C þ IþCI

−
BÞ þ H:c:�

þ 8 sin 3ϕ½IzAIzBIzC þ n2ðIzA þ IzB þ IzCÞ� · ½SA · ðSB × SCÞ�
− 4iSA · ðSB × SCÞ · ½IzAðeiϕIþB I−C − e−iϕI−BI

þ
CÞ þ ðA → B → C → AÞ� ðF6Þ

and

hð3;2Þ ¼ Tkj
B T

jk
C e

2iϕðIzBþ2IzCÞ þ e−2iϕðI
z
Bþ2IzCÞTjk

B T
kj
C þ ðB → C → A → BÞ

¼ 4 · ðn2 þ SA · SBÞ · ð2n2 cos 3ϕþ 2IzAI
z
B cos 3ϕþ e−iϕIþA I

−
B þ eiϕI−AI

þ
B Þ þ ðB → C → A → BÞ: ðF7Þ

In the above, n ¼ 1
2
for N0 ¼ 1, and n ¼ 1 for N0 ¼ 2.

We briefly comment on these results before turning to
the detailed derivation. First, we notice the effective model
indeed has the same set of symmetries as the original
Hubbard model. Second, we note that Hð2Þ is actually
SUð4Þ invariant, and Hð3Þ is also SUð4Þ invariant at ϕ ¼ 0,
which is most easily seen by inspecting Eqs. (F19) and
(F30). These SUð4Þ symmetric interactions can potentially
make the system an SUð4Þ antiferromagnet. Third, there is
a spin chirality term for the two valleys with opposite

coefficients, which can potentially lead to interesting kinds
of topological order, such as a double-semion state. Last,
we note the system may develop an SUð4Þ antiferromag-
netic order in the limit where U ≫ t at N0 ¼ 2, although
there is evidence that the system is disordered at N0 ¼ 1.
Suppose the SUð4Þ antiferromagnetic Heisenberg model
indeed results in an SUð4Þ-broken state; we would like to
understand how the SUð4Þ-breaking terms in the
Hamiltonian affects the ground state.
To this end, we expand Hð3Þ for small ϕ and obtain
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hð3;1Þ ¼ 8n2ðn2 þ SA · SB þ SB · SC þ SC · SAÞðn2 þ IA · IB þ IB · IC þ IC · IAÞ − 8½SA · ðSB × SCÞ� · ½IA · ðIB × ICÞ�
þ 24ϕ½IzAIzBIzC þ n2ðIzA þ IzB þ IzCÞ� · ½SA · ðSB × SCÞ�
− 8ϕn2ðn2 þ SA · SB þ SB · SC þ SC · SAÞ½IyAIxB − IxAI

y
B þ ðA → B → C → AÞ�

þ 4ϕSA · ðSB × SCÞ · ½IzAðIþB I−C þ I−BI
þ
CÞ þ ðA → B → C → AÞ� þOðϕ2Þ ðF8Þ

and

hð3;2Þ ¼8ðn2þSA ·SBÞðn2þIA ·IBÞ
þðA→B→C→AÞþ8ϕðn2þSA ·SBÞðIyAIxB−IxAI

y
BÞ

þðA→B→C→AÞþOðϕ2Þ: ðF9Þ

As we can see, the main effect of SUð4Þ-breaking inter-
actions to the leading order of ϕ, besides giving rise to the
spin chirality terms, is to introduce terms roughly in the
following form to the Hamiltonian:

δH ¼ Jϕ½IyAIxB − IxAI
y
B þ ðA → B → C → AÞ�: ðF10Þ

Consider the I’s as classical spins on the XY plane and
parametrize IxA ¼ cos θA and IAy ¼ sin θA; the above Ham-
iltonian becomes

δH ¼ Jϕ sinðθA − θBÞ þ ðA → B → C → AÞ: ðF11Þ

This term tends to introduce some canting of the I order to
gain energy.
Below, we derive effective spin-orbital Hamiltonians of

such systems in the large-U limit to the order of t3=U2,
for N0 ¼ 1 and N0 ¼ 2 separately. We use the standard
Van Vleck perturbation theory to derive the effective
Hamiltonian, which involves two steps: writing down
the matrix elements of the effective Hamiltonian within
the low-energy manifold and expressing these matrix
elements in terms of charge-neutral operators.
In this problem, the effective Hamiltonian can be

written as

Heff ¼ Hð2Þ þHð3Þ þ � � � ðF12Þ

with

Hð2Þ ¼ PH0DH0P ðF13Þ

and

Hð3Þ ¼ PH0DH0DH0P; ðF14Þ

where P is the projector into the ground-state manifold
of V and

D ¼ 1 − P
E0 − V

: ðF15Þ

1. Mott insulator at N0 = 1

We first discuss the effective Hamiltonian for N0 ¼ 1.
We first write the results in terms of some SUð4Þ generators
and convert them into a form in terms of the S and I
operators later. The final result in terms of SUð4Þ gen-
erators is

Hð2Þ ¼ 2t2

U

X4
i;j¼1

Tij
AT

ji
B −

2t2

U
; ðF16Þ

where

Tij ¼ c†i cj; ðF17Þ

with i ¼ 1, 2, 3, 4, and j1i ¼ j þ ↑i, j2i ¼ j þ ↓i,
j3i ¼ j − ↑i, and j4i ¼ j − ↓i. In terms of these states,
the action of Tij is

Tij ¼ δjkjii; ðF18Þ

and

Hð3Þ ¼ −
6t3

U2

X4
i;j;k¼1

½Tji
AT

kj
B T

ik
Ce

−2iϕðIzAþIzBþIzCÞ

þ e2iϕðI
z
AþIzBþIzCÞTij

AT
jk
B T

ki
C �

þ 3t3

U2

X4
j;k¼1

½Tkj
B T

jk
C e

2iϕðIzBþ2IzCÞ þ e−2iϕðI
z
Bþ2IzCÞTjk

B T
kj
C

þ ðB → C → A → BÞ� − 6t3

U2
cos 3ϕ: ðF19Þ

The details of the calculations are below.

a. Order t2=U

To get the effective Hamiltonian at the order t2=U, it is
sufficient to consider a single bond of the triangular
lattice, and all other terms can be generated by applying
symmetries.
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Now we first calculate the matrix elements of the
effective Hamiltonian at the order t2=U. Denote the two
sites linked by this bond by A and B, and then ji; ji ¼
c†i ðAÞc†jðBÞj0i.
There are only two types of nonzero matrix elements:

hi; jjHð2Þji; ji ¼ −
2t2

U
;

hj; ijHð2Þji; ji ¼ 2t2

U
ðF20Þ

for i ≠ j.
These matrix elements can be recast into the effective

Hamiltonian

Hð2Þ ¼ 2t2

U

X4
i;j¼1

Tij
AT

ji
B −

2t2

U
; ðF21Þ

where

Tij ¼ c†i cj ðF22Þ

such that

Tijjki ¼ δjkjii: ðF23Þ

These operators satisfy the commutation relation of SUð4Þ
generators:

½Tij; Tkl� ¼ δjkTil − δilTkj: ðF24Þ

b. Order t3=U2

Now we turn to the order t3=U2. A simple inspection of
the model shows that, to calculate the effective Hamiltonian
at the order of t3=U2 in this problem, we need to consider
only a single elementary triangle; then all other terms can
be obtained by symmetries.
Now we first calculate the matrix elements of the

effective Hamiltonian to the order t3=U2. To this end,
we need to first have a systematic way to label the states in
the ground-state manifold of the three-site problem of a
single elementary triangle. It turns out that we can classify
the states into three classes: ji; j; ki, ji; i; ki, and ji; i; iiwith
i ≠ j ≠ k ≠ i, such that the matrix elements between states
from two different classes always vanish. Now we need
only to calculate the matrix elements between states within
the same classes.
The results are

hi; i; ijHð3Þji; i; ii ¼ 0; ðF25Þ

hi; i; jjHð3Þji; i; ji ¼ −
t3

U2
ð−2 cos ηiϕþ 2 cos ηjϕÞ ¼ 0;

hi; j; ijHð3Þji; i; ji ¼ 3t3

U2
ðeiηiϕþ2iηjϕ − e−iηjϕ−2iηiϕÞ; ðF26Þ

hi;j;kjHð3Þji;j;ki¼−
2t3

U2
ðcos3ηiϕþ cos3ηjϕþ cos3ηkϕÞ

¼−
6t3

U2
cos3ϕ;

hi;k;jjHð3Þji;j;ki¼ 3t3

U2
ðe2iηkϕþiηjϕþe−2iηjϕ−iηkϕÞ;

hj;k;ijHð3Þji;j;ki¼−
6t3

U2
e−iηiϕ−iηjϕ−iηkϕ;

hk;i;jjHð3Þji;j;ki¼−
6t3

U2
eiηiϕþiηjϕþiηkϕ: ðF27Þ

Recasting these matrix elements into a compact form
yields

Hð3Þ ¼ −
6t3

U2

X4
i;j;k¼1

½Tji
AT

kj
B T

ik
Ce

−2iϕðIzAþIzBþIzCÞ

þ e2iϕðI
z
AþIzBþIzCÞTij

AT
jk
B T

ki
C �

þ 3t3

U2

X4
j;k¼1

½Tkj
B T

jk
C e

2iϕðIzBþ2IzCÞ þ e−2iϕðI
z
Bþ2IzCÞTjk

B T
kj
C

þ ðB → C → A → BÞ� − 6t3

U2
cos 3ϕ: ðF28Þ

2. Mott insulator at N0 = 2

Now we discuss the effective Hamiltonian for N0 ¼ 2. In
this case, there are six states on each site, which can be
denoted as jiji≡ c†i c

†
j j0i ¼ −jjii.

Again, we first write the result in terms of some SUð4Þ
generators and then convert it to a form in terms of the
original S and I operators. The final result is

Hð2Þ ¼ 2t2

U

X
ij

Tij
AT

ji
B −

4t2

U
; ðF29Þ

where Tij ¼ c†i cj. And

Hð3Þ ¼−
6t3

U2
½Tlj

AT
jk
B T

kl
C e

2iϕðĨzAþĨzBþĨzCÞ

þe−2iϕðĨ
z
AþĨzBþĨzCÞTjl

AT
kj
B T

lk
C �

þ3t3

U2
½Tij

BT
ji
Ce

2iϕðĨzBþ2ĨzCÞ þH:c:þðB→C→A→BÞ�

−
12t3

U2
cos3ϕ; ðF30Þ
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where ĨzA gives the flavor of the particle that is acted
by the T operators. For example, Tlj

AT
jk
B T

kl
C e

2iϕðĨzAþĨzBþĨzCÞ ¼
Tlj
AT

jk
B T

kl
Ce

iϕðηjþηkþηlÞ ¼ e2iϕðĨ
z
AþĨzBþĨzCÞTlj

AT
jk
B T

kl
C .

The details of the calculations are below.

a. Order t2=U

To get the effective Hamiltonian at the order t2=U, it is
sufficient to consider a single bond of the triangular lattice,
and all other terms can be generated by applying symmetries.
Now we first calculate the matrix elements of the

effective Hamiltonian at the order of t2=U. Denote the
two sites linked by this bond by A and B, and then
jij; kli ¼ c†i ðAÞc†jðAÞc†kðBÞc†l ðBÞj0i.
It is useful to distinguish three types of states: jij; kli,

jij; iki, and jij; iji, where different letters denote different
states. Clearly, there are no matrix elements between two
states from two different types, and all we need is to
calculate the matrix elements between states within the
same type.
The independent matrix elements include

hij; ijjHð2Þjij; iji ¼ 0; ðF31Þ

hij; ikjHð2Þjij; iki ¼ −
2t2

U
;

hij; ikjHð2Þjik; iji ¼ 2t2

U
; ðF32Þ

hij; kljHð2Þjij; kli ¼ −
4t2

U
;

hik; jljHð2Þjij; kli ¼ 2t2

U
: ðF33Þ

All other matrix elements at this order either vanish or can
be obtained from the above by permutations.

From these matrix elements, we obtain Hð2Þ:

Hð2Þ ¼ 2t2

U

X
ij

Tij
AT

ji
B −

4t2

U
: ðF34Þ

As in the case of N0 ¼ 1, Tij ¼ c†i cj that satisfies
Eq. (F24), the commutation relations of the generators
of SUð4Þ. Now acting on two-particle states on each site,
the actions of these operators are

Tijjkli ¼ δjkjili þ δjljkii: ðF35Þ

b. Order t3=U2

Now we turn to the order t3=U2. A simple inspection of
the model shows that, to calculate the effective Hamiltonian
at the order of t3=U2 in this problem, we need to consider
only a single elementary triangle, and then all other terms
can be obtained by symmetries.
Now we first calculate the matrix elements of the

effective Hamiltonian to the order t3=U2. To this end,
we need to first have a systematic way to label the states in
the ground-state manifold of the three-site problem of a
single elementary triangle.
It turns out there are five types of states: jij; ij; iji,

jij;jk;iji, jij;jk;iki, fjij;kl;ili;jij;kl;ijig, and jij; ik; ili,
where, for example,

jij;jk;kii¼c†i ðAÞc†jðAÞc†jðBÞc†kðBÞc†kðCÞc†i ðCÞj0i: ðF36Þ
All other states can be related to these states by certain
permutations.
Now we calculate the matrix elements of the effective

model between these states at the order of t3=U2. The
matrix elements between different types of the above states
always vanish. So we need to calculate only the matrix
elements between states within the same type:

hij; ij; ijjHð3Þjij; ij; iji ¼ 0; ðF37Þ
hij; jk; ijjHð3Þjij; jk; iji ¼ −

t3

U2
½2 cosð3ηkϕÞ − 2 cosð3ηiϕÞ� ¼ 0;

hij; ij; jkjHð3Þjij; jk; iji ¼ −
3t3

U2
ðeiηkϕþ2iηiϕ − e−2iηkϕ−iηiϕÞ; ðF38Þ

hij; jk; ikjHð3Þjij; jk; iki ¼ −
t3

U2
½−2 cosð3ηiϕÞ − 2 cosð3ηjϕÞ − 2 cosð3ηkϕÞ� ¼

6t3

U2
cos 3ϕ;

hij; ik; jkjHð3Þjij; jk; iki ¼ −
3t3

U2
ðe2iηiϕþiηjϕ þ e−2iηjϕ−iηiϕÞ; ðF39Þ

hij; kl; iljHð3Þjij; kl; ili ¼ −
t3

U2
½2 cosð3ηjϕÞ þ 2 cosð3ηkϕÞ − 2 cosð3ηlϕÞ − 2 cosð3ηiϕÞ� ¼ 0;

hij; kl; iljHð3Þjij; il; kli ¼ 3t3

U2
ðe2iηkϕþiηiϕ − e−iηkϕ−2iηiϕÞ;

hij; kl; ijjHð3Þjij; kl; iji ¼ −
t3

U2
½2 cosð3ηkϕÞ þ 2 cosð3ηlϕÞ − 2 cosð3ηjϕÞ − 2 cosð3ηiϕÞ� ¼ 0;

hij; kl; ijjHð3Þjij; ij; kli ¼ 0; ðF40Þ
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hij; kl; ijjHð3Þjik; lj; iji ¼ −
3t3

U2
ðeiηkϕþ2iηjϕ − e−2iηkϕ−iηjϕÞ;

hij; ik; iljHð3Þjij; ik; ili ¼ −
t3

U2
½2 cosð3ηjϕÞ þ 2 cosð3ηkϕÞ þ 2 cosð3ηlϕÞ� ¼ −

6t3

U2
cos 3ϕ;

hij; il; ikjHð3Þjij; ik; ili ¼ 3t3

U2
ðeiηkϕþ2iηlϕ þ e−iηlϕ−2iηkϕÞ;

hil; ij; ikjHð3Þjij; ik; ili ¼ −
6t3

U2
eiηjϕþiηkϕþiηlϕ: ðF41Þ

Recasting these matrix elements into a compact form yields

Hð3Þ ¼ −
6t3

U2
½Tlj

AT
jk
B T

kl
C e

2iϕðĨzAþĨzBþĨzCÞ þ e−2iϕðĨ
z
AþĨzBþĨzCÞTjl

AT
kj
B T

lk
C �

þ 3t3

U2
½Tij

BT
ji
Ce

2iϕðĨzBþ2ĨzCÞ þ H:c:þ ðB → C → A → BÞ� − 12t3

U2
cos 3ϕ; ðF42Þ

where ĨzA gives the flavor of the particle that is acted by the T operators.

3. Effective models in terms of spin and orbital operators

As seen in the above, the effective Hamiltonian expressed in terms the operators Tij is relatively concise, and they are the
same for both N0 ¼ −1 and N0 ¼ −2 up to some constants. However, to gain more intuition, it is helpful to express these
effective Hamiltonians in terms of spin operators S and valley operator I, where

Sþ ¼ c†þ↑cþ↓ þ c†−↑c−↓ ¼ T12 þ T34; S− ¼ c†þ↓cþ↑ þ c†−↓c−↑ ¼ T21 þ T43;

Sz ¼ 1

2
ðc†þ↑cþ↑ þ c†−↑c−↑ − c†þ↓cþ↓ − c†−↓c−↓Þ ¼

1

2
ðT11 þ T33 − T22 − T44Þ;

Iþ ¼ c†þ↑c−↑ þ c†þ↓c−↓ ¼ T13 þ T24; I− ¼ c†−↑cþ↑ þ c†−↓cþ↓ ¼ T31 þ T42;

Iz ¼ 1

2
ðc†þ↑cþ↑ þ c†þ↓cþ↓ − c†−↑c−↑ − c†−↓c−↓Þ ¼

1

2
ðT11 þ T22 − T33 − T44Þ; ðF43Þ

as well as filling fraction

n ¼ 1

2
ðc†þ↑cþ↑ þ c†þ↓cþ↓ þ c†−↑c−↑ þ c†−↓c−↓Þ ¼

1

2
ðT11 þ T22 þ T33 þ T44Þ: ðF44Þ

Here, n ¼ 1=2 means N0 ¼ 1 and n ¼ 1 means N0 ¼ 2. In the above, S and I form two decoupled SUð2Þ algebras, and n
commutes with all others.

a. Effective Hamiltonian for N0 = 1

To this end, we first reexpress the operators Tij in terms of S, I, and n. For n ¼ 1=2 (N0 ¼ 1),

T11 ¼ ðnþ SzÞðnþ IzÞ; T12 ¼ Sþðnþ IzÞ; T13 ¼ Iþðnþ SzÞ; T14 ¼ SþIþ;

T22 ¼ ðn − SzÞðnþ IzÞ; T23 ¼ S−Iþ; T24 ¼ Iþðn − SzÞ;
T33 ¼ ðnþ SzÞðn − IzÞ; T34 ¼ Sþðn − IzÞ;
T44 ¼ ðn − SzÞðn − IzÞ: ðF45Þ

Substituting these into Eqs. (F16) and (F19) yields
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�
Hð2Þ þ 2t2

U

�
·
U
2t2

¼
X
ij

Tij
AT

ji
B

¼ 1

2
ðSþAS−B þ IþA I

−
B þ H:c:Þ þ ðSþAS−B þ S−AS

þ
B ÞðIþA I−B þ I−AI

þ
B Þ þ 2IzAI

z
BðSþAS−B þ S−AS

þ
B Þ

þ 2SzAS
z
BðIþA I−B þ I−AI

þ
B Þ þ 4ðn2 þ SzAS

z
BÞðn2 þ IzAI

z
BÞ

¼ 4 · ðn2 þ SA · SBÞ · ðn2 þ IA · IBÞ ðF46Þ

and

�
Hð3Þ þ 6t3

U2
cos 3ϕ

�
U2

3t3
¼ −2hð3;1Þ þ hð3;2Þ ðF47Þ

with

hð3;1Þ ¼ 8n2 cos 3ϕðn2 þ SA · SB þ SB · SC þ SC · SAÞðn2 þ IzAI
z
B þ IzBI

z
C þ IzCI

z
AÞ

þ 4n2ðn2 þ SA · SB þ SB · SC þ SC · SAÞ · ½eiϕðIþA I−B þ IþB I
−
C þ IþCI

−
BÞ þ H:c:�

þ 8 sin 3ϕ½IzAIzBIzC þ n2ðIzA þ IzB þ IzCÞ� · ½SA · ðSB × SCÞ�
− 4iSA · ðSB × SCÞ · ½IzAðeiϕIþB I−C − e−iϕI−BI

þ
CÞ þ ðA → B → C → AÞ� ðF48Þ

and

hð3;2Þ ¼ Tkj
B T

jk
C e

2iϕðIzBþ2IzCÞ þ e−2iϕðI
z
Bþ2IzCÞTjk

B T
kj
C þ ðB → C → A → BÞ

¼ 4 · ðn2 þ SA · SBÞ · ð2n2 cos 3ϕþ 2IzAI
z
B cos 3ϕþ e−iϕIþA I

−
B þ eiϕI−AI

þ
B Þ þ ðB → C → A → BÞ: ðF49Þ

b. Effective Hamiltonian for N0 = 2

For n ¼ 1 (N0 ¼ 2), it is useful to first consider the general relation TijTkl ¼ δjkTil − c†i c
†
kcjci. Restricting to two-

particle states, we can use this general relation to write down

SþIþ ¼ 2T14; SþI− ¼ 2T32; SþIz ¼ T12 − T34;

S−Iþ ¼ 2T23; S−I− ¼ 2T41; S−Iz ¼ T21 − T43;

SzIþ ¼ T13 − T24; SzI− ¼ T31 − T42; SzIz ¼ 1

2
ðT11 − T22 − T33 þ T44Þ: ðF50Þ

Using these, we can convert the relations and get

T11 ¼ ðnþ SzÞðnþ IzÞ
2

; T12 ¼ Sþðnþ IzÞ
2

; T13 ¼ Iþðnþ SzÞ
2

; T14 ¼ SþIþ

2
;

T22 ¼ ðn − SzÞðnþ IzÞ
2

; T23 ¼ S−Iþ

2
; T24 ¼ Iþðn − SzÞ

2
;

T33 ¼ ðnþ SzÞðn − IzÞ
2

; T34 ¼ Sþðn − IzÞ
2

;

T44 ¼ ðn − SzÞðn − IzÞ
2

; ðF51Þ

which differs from Eq. (F46) only by factors of 2.
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Substituting these into Eqs. (F29) and (F30) yields

�
Hð2Þ þ4t2

U

�
U
2t2

¼
X
ij

Tij
AT

ji
B

¼ðn2þSA ·SBÞ · ðn2þ IA · IBÞ ðF52Þ

and

�
Hð3Þ þ 12t3

U2
cos 3ϕ

�
·
U2

3t3
¼ −2hð3;1Þ þ hð3;2Þ ðF53Þ

with 8hð3;1Þ and 4hð3;2Þ given by the same expressions as in
Eqs. (F48) and (F49), respectively, but notice that the value
of n is changed from 1=2 to 1.

[1] P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a Mott
Insulator: Physics of High-Temperature Superconductivity,
Rev. Mod. Phys. 78, 17 (2006).

[2] B. J. Powell and R. H. McKenzie, Quantum Frustration in
Organic Mott Insulators: From Spin Liquids to Unconven-
tional Superconductors, Rep. Prog. Phys. 74, 056501
(2011).

[3] Y. Iwasa and T. Takenobu, Superconductivity, Mott-
Hubbard States, and Molecular Orbital Order in Interca-
lated Fullerides, J. Phys. Condens. Matter 15, R495 (2003).

[4] Y. Song, Z. Yamani, C. Cao, Y. Li, C. Zhang, J. S. Chen,
Q. Huang, H. Wu, J. Tao, Y. Zhu, W. Tian, S. Chi, H.
Cao, Y.-B. Huang, M. Dantz, T. Schmitt, R. Yu, A. H.
Nevidomskyy, E. Morosan, Q. Si, and P. Dai, A Mott
Insulator Continuously Connected to Iron Pnictide Super-
conductors, Nat. Commun. 7, 13879 (2016).

[5] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated
Insulator Behaviour at Half-Filling in Magic-Angle
Graphene Superlattices, Nature (London) 556, 80 (2018).

[6] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional Supercon-
ductivity in Magic-Angle Graphene Superlattices, Nature
(London) 556, 43 (2018).

[7] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Graphene Bilayer with a Twist: Electronic Structure,
Phys. Rev. Lett. 99, 256802 (2007).

[8] G. Li, A. Luican, J. M. B. Lopes dos Santos, A. H. Castro
Neto, A. Reina, J. Kong, and E. Y. Andrei, Observation of
van Hove Singularities in Twisted Graphene Layers, Nat.
Phys. 6, 109 (2010).

[9] G. T. de Laissardière, D. Mayou, and L. Magaud, Locali-
zation of Dirac Electrons in Rotated Graphene Bilayers,
Nano Lett. 10, 804 (2010).

[10] E. J. Mele, Commensuration and Interlayer Coherence in
Twisted Bilayer Graphene, Phys. Rev. B 81, 161405 (2010).

[11] A. Luican, G. Li, A. Reina, J. Kong, R. R. Nair, K. S.
Novoselov, A. K. Geim, and E. Y. Andrei, Single-Layer
Behavior and Its Breakdown in Twisted Graphene Layers,
Phys. Rev. Lett. 106, 126802 (2011).

[12] R. Bistritzer and A. H. MacDonald,Moiré Bands in Twisted
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