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We build symmetry-adapted maximally localized Wannier states and construct the low-energy
tight-binding model for the four narrow bands of twisted bilayer graphene. We do so when the twist
angle is commensurate near the “magic” value and the narrow bands are separated from the rest of the
bands by energy gaps. On each layer and sublattice, every Wannier state has three peaks near the triangular
moiré lattice sites. However, each Wannier state is localized and centered around a site of the honeycomb
lattice that is dual to the triangular moiré lattice. The space group and the time-reversal symmetries are
realized locally. The corresponding tight-binding model provides a starting point for studying the correlated
many-body phases.
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I. INTRODUCTION

The discovery of superconductivity and correlated insu-
lator(s) in the “magic” angle twisted bilayer graphene [1,2]
has resulted in a remarkable flurry of theoretical activity
[3–18]. Central theoretical challenges are to understand the
nature and the mechanism of the insulator(s) and the super-
conductor. Should the most prominent insulating states—
which onset at twoelectrons or holes per triangularmoiré unit
cell, i.e., at quarter filling of the four narrow bands—be
thought of as a largely featureless Mott state in which charge
motion is arrested by the Coulomb repulsion, or is a
spontaneously broken symmetry responsible for the charge
gap? Is the superconductivity unconventional in that it breaks
some of the lattice symmetries and perhaps originates from
the electron-electron repulsion without a major role from
electron-phonon interaction, or is it conventional?
In order to address the above questions, it is necessary to

first construct a realistic but simple model of the electron
motion in the narrow bands. As pointed out in Refs. [5,6],
this is not an obvious task. When the twist angle is
commensurate, the moiré pattern becomes periodic and
leads to the triangular superlattice; see, e.g., Ref. [19]. At
small twist angles, a unit cell contains a large number of
carbon atoms, and, consequently, the moiré Brillouin zone
(MBZ) becomes small. Indeed, the low-energy band

structure of twisted bilayer graphene (TBG) differs in
important aspects from that of two isolated monolayers
due to the sizable interlayer tunneling. The four bands
around the charge neutrality point have a strongly reduced
bandwidth and Fermi velocity. When the twist angle is fine-
tuned to the magic values, the bandwidth becomes very
narrow (but nonzero), the Fermi velocity at the Dirac cones
vanishes, and the quadratic band touching points appear at
the corners of the MBZ [1].
Although the local charge density at quarter filling is

peaked at the triangular moiré lattice sites [1], as recognized
in Refs. [5,6], the salient features of the narrow-band
structure cannot be recovered unless the Wannier states
(WSs) are centered at the dual honeycomb sites. We prove
this using different arguments below. In addition, we
diagonalize a microscopic tight-binding model with a large
number of atoms in the unit cell according to the pre-
scription by Moon and Koshino [20]. Based on the layer
and the microscopic carbon sublattice structure of the
resulting Bloch states at the MBZ center, we construct
the initial ansatz for the localized WSs which we project
onto the Hilbert space spanned by the four narrow bands
[21]. By construction, our ansatz realizes the lattice and the
time-reversal symmetries locally and forms a nontrivial
representation of the site symmetry group. The result is
then used as the initial step in the iterative procedure of
Marzari and Vanderbilt [21] to construct maximally local-
ized, yet symmetry adapted [22], WSs. They, as well as the
initial ansatz, are then used to construct and compare the
low-energy tight-binding models.
Several theories have been proposed to address the

insulating and superconducting phases [3–18]. The closest
to ours are Refs. [5,6]. However, there are also important
differences. In the theory of Ref. [6], the valley Uð1Þ
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symmetry and its spontaneous breaking play an important
role. Such a valley symmetry, together with the product of
C2 and time reversal, is claimed to be an obstruction to
building a tight-binding model for the four narrow bands
[6]. In our microscopic construction, we have only the
threefold rotation about the axis formed by the AA stacked
carbon atoms (C3), the twofold rotation about the axis
perpendicular to the two atoms (C0

2), and the time-reversal
symmetry [see Fig. 1(a)]. We find the same group repre-
sentations of the Bloch states at the high-symmetry MBZ
points as conjectured in Ref. [5]. Although the WSs were
not constructed explicitly in Ref. [5], the WS symmetry
was insightfully deduced and is in agreement with our
findings. The three-peak structure of the WSs, which we
find explicitly [see Fig. 3(c)], was also recognized in
Ref. [6] and dubbed “fidget spinner.”

II. SUPERLATTICE AND BAND
STRUCTURE OF THE TBG

For a commensurate twist angle, the moiré pattern can be
specified by two integers ðm; nÞ; see, e.g., Ref. [19]. The
primitive translation vectors are L1 ¼ ma1 þ na2 ¼ nb1 þ
mb2 and L2 ¼ −na1 þ ðmþ nÞa2 ¼ −mb1 þ ðmþ nÞb2,
where a1 and a2 (b1 and b2) are the primitive vectors of the
top (bottom) layer graphene lattice. As shown in Fig. 1, the
triangular superlattice sites are the positions of AA stacking.
The point group symmetry operations form the D3

group generated by C3 and C0
2, leading to nontrivial

symmetry representations of the Bloch states at the high-
symmetry points in MBZ, especially at Γ (k ¼ 0) and
K (k ¼ ½ð4πÞ=ð3L2

1Þ�L1).

We calculate the band structure based the microscopic
model of Ref. [20], which gives the values of the intralayer
and the interlayer carbon-carbon tunneling amplitudes.
Their tight-binding Hamiltonian is written as

H ¼ −
X
ri;rj

tðri − rjÞc†ricrj with

tðdÞ ¼ −Vppπ

�
1 −

�
d · ez
d

�
2
�
− Vppσ

�
d · ez
d

�
2

;

Vppπ ¼ V0
ppπ exp

�
−
d − a0

δ

�
;

Vppσ ¼ V0
ppσ exp

�
−
d − d0

δ

�
; ð1Þ

where cri and c†ri are the annihilation and creation
operators of the electron at the carbon site ri. We set
V0
ppπ ¼ −2.7 eV, V0

ppσ ¼ 0.48 eV. a0 ¼ 0.142 nm is the
distance between the two nearest-neighbor carbon atoms on
the same layer; d0 ¼ 0.335 nm is the interlayer distance.
The decay length for the hopping is δ ¼ 0.319a0. The
hopping with d > 4a0 is exponentially small and, thus, is
neglected in the model. All these detailed parameters are
reproduced from Ref. [20] and listed here for completeness.
The MBZ contains three high-symmetry points Γ, K, and
K0. The time-reversal symmetry (TRS) transforms K and K0
into each other and leaves Γ invariant.
As illustrated in Fig. 2, this model contains four narrow

bands with very small bandwidths near the charge neutrality
point where the zero of energy is defined. Depending on the
value of the twist angle, these four bands may or may not be
separated by an energy gap from the other bands in the
spectrum.Whenm − n ¼ �1 mod 3 [19] at theK point, two
bands form a Dirac cone, and the remaining two bands are
split by a tiny gap (< 0.01 meV). These four Bloch states at
K form a two-dimensional representation (E) and two one-
dimensional representations (A1 andA2) of the groupD3 [5],

(a) (b)

FIG. 1. (a) The superlattice of twisted bilayer graphene. Blue
(red) sites are the carbon atoms on the bottom (top) layers. The
triangular lattice forms when twisted angle is commensurate. The
plot shows the lattice when m ¼ 2 and n ¼ 1. (b) The center of
the local Wannier states. Black dots are the sites of the triangular
superlattice. Red and blue dots are two nonequivalent Wyckoff
sites, where the local Wannier states are centered. In our
construction, w1 and w2 are placed at one Wyckoff position,
and w3 and w4 are placed at another position. Note that the
Wychoff sites form an emergent honeycomb lattice.

5

5
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based

bands

FIG. 2. Red dots: The four narrow bands produced from the
tight-binding model with hopping parameters given in Ref. [20]
with the twist angle of 1.30°. Blue dots: The interpolated band
structure by the projection method.
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consistent with the degeneracy described above. The Bloch
states at the center of the MBZ Γ are doubly degenerate; the
energy difference between the two pairs defines the (narrow)
bandwidth. The doublets are the two-dimensional represen-
tations (E) of the groupD3 [5]. Using ϵ to represent the phase
factor ϵ ¼ expði2π=3Þ [23], we choose the two components
of each doublet to transform as the eigenstates ofC3 with the
eigenvalues of either ϵ or ϵ�, and label the four Bloch states at
Γ as ψΓ;E�;ϵ�1 . Here, E� refers to the doublet with higher
(lower) energy, and ϵ�1 refers to the component of the
doublet which has the eigenvalue of ϵ (ϵ�) under C3. While
the two components of each doublet are the eigenstates ofC3,
they transform into each other under C0

2 and the TRS. We
wish to stress that there is no simple transformation which
relates the two doublets at different energy, i.e., ψΓ;E� . This
fact can be seen in Figs. 3(a) and 3(b)where jψΓj2 are plotted.

III. WANNIER STATES

Our next step is to construct the localized WSs by
applying the projection method [21]. For this purpose, it is
necessary that the four bands are separated by a gap from
all others. The experiments of Refs. [1,2] determined that
the closest simple commensurate values are m ¼ 30 and
n ¼ 31. However, the four bands produced by Eq. (1) are
gapped only near the band maximum, not near the band
minimum; this is also seen in Ref. [1] Fig. 1. Such a
connection with the bands below contradicts the exper-
imental finding that the four bands of interest are separated
from either side by insulating states [1]. Therefore, we
construct the WSs for the case ofm ¼ 25 and n ¼ 26 (with
the twist angle θ ¼ 1.30°); the four bands are then separated
by a gap on both sides. We expect that the values of the
hopping parameters of the low-energy Hamiltonian at the

magic angle to be almost the same, and, importantly, can be
fine-tuned to it by slight modification. We confirm that the
quadratic band touching at K, which can be taken to be the
defining property of the magic angle, can be realized in
such a way.

A. Symmetry of the Wannier states

As mentioned, it is crucial to identify the positions of the
WSs. One naive choice is to place centers of all four states
on the triangular moiré superlattice sites. With this option,
the WSs transform as

gjwi;Ri ¼
X
j

jwj;gRiUjiðgÞ; ð2Þ

where i; j ¼ 1;…; 4 are the indices of the WSs, R is the
position of the triangular superlattice site, and g is the
symmetry operation. The Bloch state ψ i;k is the linear
superposition of the WSs. Under the same symmetry
operation g, we find

gjψ i;ki ¼ g
X
R

eik·Rjwi;Ri ¼
X
R

eik·Rjwj;gRiUjiðgÞ

¼
X
R

eigk·gRjwj;gRiUjiðgÞ ¼ jψ j;gkiUjiðgÞ: ð3Þ

It is interesting to study the special case when the
momentum is symmetry invariant, i.e., Γ and K in the
MBZ. We immediately conclude that the Bloch states
should transform as UðgÞ, and, therefore, the Bloch states
should transform in the same way at Γ and K. As we point
out, the four Bloch states transform as two doublets at Γ
and one doublet and two singlets at K. This proves that the

FIG. 3. (a),(b) The square of the magnitude of the Bloch states jψΓ;Eþ;ϵj2 and jψΓ;E−;ϵj2 and (c) the localization of the WSs obtained
from the projected method. The four panels show jw1j2 at (upper left) the top layer sublattice A, (upper right) the top layer sublattice B,
(lower left) the bottom layer sublattice A, and (lower right) the bottom layer sublattice B.
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symmetry of the Bloch states cannot be reproduced if all the
WSs are placed at the sites of the triangular superlattice.
The argument above suggests that the centers of the four

WSs should be placed at nonequivalent sites (Wyckoff
positions) to reproduce the symmetry representations at Γ
and K. A better choice is to place them at the centers of the
equilateral triangles [Fig. 1(b)], which form the dual
honeycomb lattice [5,6]. Note that each triangular super-
lattice unit cell contains two honeycomb lattice sites. The
twoWSs w1 and w2 should be placed at one site and w3 and
w4 at another site.
To illustrate the symmetry of the Wannier states, we start

by modifying Eq. (2) for the dual honeycomb lattice [22],

gjwi;Ri ¼
X
j

jwj;gRþR0ðg;iÞiUjiðgÞ; ð4Þ

where R and R0 are still the triangular lattice translation
vectors, and the latter vector depends only on g and the WS
index i. Equation (3) now takes the form [22]

gjψ i;ki ¼ jψ j;gkie−igk·R0
UjiðgÞ: ð5Þ

Note that the extra phase factor e−igk·R
0
now differentiates

between Γ (where it is 1) and K (in general, nontrivial). For
g ¼ C3 and k ¼ Γ, the matrix U must be diagonal; i.e., all
fourWSs must be eigenstates of theC3 followed by a lattice
translation with the same eigenvalues as those of jψ i;Γi. We
therefore choose w1;4 and w2;3 to have the eigenvalues ϵ and
ϵ�, respectively. Next, because C0

2 interchanges the two
nonequivalent Wyckoff positions and the C3 eigenvalues,
we can set C0

2w1 ¼ w3 and C0
2w2 ¼ w4; see Fig. 1(b).

Finally, the time-reversal symmetry does not change the
position of the WSs, but it does conjugate the eigenvalue of
C3. Therefore, T w1 ¼ w2 and T w3 ¼ w4. These trans-
formation rules together with translation symmetry enforce
the symmetry of any low-energy model.

B. Projection method

In this subsection, we explain the projection method we
use to produce the localized WSs as the input of the
WANNIER90 program. We follow the approach in Ref. [21].
As explained in the text, we first construct the trial
functions jhii (i ¼ 1;…; 4), which transform in the same
way as the WSs. These trial states are not necessarily
orthogonal or normalized. For the Bloch states jψ i;ki, we
define the matrix AðkÞij ¼ hψ i;kjhji. The states

jϕi;ki ¼
X
j

jψ j;kihψ j;kjhii ¼
X
j

jψ j;kiAjiðkÞ

are smooth in k as long as the matrix A is nonsingular
because the arbitrary k-dependent phase cancels in the
projector. Smoothness in k is required in order for WSs to
be localized in real space. However, they are not
orthonormal. To construct the orthonormalized k-smooth

Bloch-like states, we define the matrix SðkÞ ¼ A†ðkÞAðkÞ
and

jψ̃ i;ki ¼
X
j

jϕj;kiS−1=2ji ðkÞ ¼
X
j

jψ j;ki½AðkÞS−1=2ðkÞ�ji:

In practice, we apply the singular value decomposition to
the matrix AðkÞ ¼ UðkÞDðkÞV†ðkÞ, where the matrices
UðkÞ and VðkÞ are unitary, and DðkÞ is diagonal. It is easy
to show that AðkÞS−1=2ðkÞ ¼ UðkÞV†ðkÞ is unitary and,
thus, jψ̃i is orthogonal and normalized. With the projection
method, the WSs are

jwi;Ri ¼
Z

ddk
ð2πÞd jψ̃ i;kie−ik·R:

With this method, the Bloch states jψ̃ i;ki constructed from
the WSs jwi;Ri differ from the Bloch states jψ i;ki only by a
unitary transformation and, therefore, faithfully reproduce
the Hilbert space spanned by jψ i;ki.
It is crucial to choose the appropriate initial trial states as

an input of the projection method. As shown in Figs. 3(a)
and 3(b), we find that the magnitudes of the Bloch states at
Γ display a smooth structure in real space when separated
out by the layer and the microscopic carbon sublattice. This
observation, along with the above considerations, suggests
that a good initial ansatz for w1 can be constructed as
follows: First imagine placing a Gaussian-like cutoff
centered at the first dual honeycomb site on ψΓ;Eþ;ϵ but
only on the top layer and sublattice A and the bottom layer
and sublattice B. The amplitudes at the top layer and the
sublattice B and the bottom layer and the sublattice A are
taken from the similarly cut off ψΓ;E−;ϵ. This choice
guarantees good overlap with the Bloch states. C0

2 now
generates w3, and the TRS generates w2; when the TRS is
applied to w3, it finally gives w4. In addition to the
symmetry considerations, our initial trial states are chosen
in this way to obtain a good overlap with all four Bloch
states ΨΓ.
Figure 3(c) shows the shape of the resulting jw1j2 on

different layers and different sublattices. As seen, w1 is well
localized and centered around the dual honeycomb lattice
site; it also displays three different peaks located around the
triangular lattice sites. This shape is consistent with the
local density of states obtained by density-functional-
theory (DFT) calculations which is also peaked around
the triangular lattice sites. We checked that the remaining
WSs obtained in this way are related by the mentioned
symmetry: w2 ¼ w�

1, w3 ¼ C0
2w1, and w4 ¼ w�

3. Fourier
transformation is done on the WSs to explore the valley
distribution of each WS. We find that more than 90% of the
WSs w1 and w4 are contributed by the electron states
around the valley Kt (Kb), where Kt ¼ ½ð4πÞ=ð3ja1j2Þ�a1
and Kb ¼ ½ð4πÞ=ð3jb1j2Þ�b1. Because of the time-reversal
symmetry, the same percentage of the WSs w2 and w3 are
from the electron states around the opposite valley, −Kt and
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−Kb. This suggests that the two valleys are almost
separated in the WSs obtained from the projection method.
In the next step, we use the initial ansatz as an input to the

WANNIER90 program [24] with site symmetry enforced on
the 30 × 30k-spacemesh, and after 200 iterations,we obtain
the four maximally localizedWSs. Compared with theWSs
before WANNIER90, the localization improves by about 20%.
However, we find the two valleys are significantly mixed in
each WS. In the next section, we compare the hopping
amplitudes for these two sets of WSs to illustrate the impact
of the approximate valley Uð1Þ symmetry.

IV. TIGHT-BINDING MODEL

In this section, we construct a minimal tight-binding
model for the localized WSs. The structure of WSs seen
in Fig. 3(c) suggests that the overlap of the next and even the
next-next-nearest-neighboring WSs is sizable and, thus,
cannot be neglected even in the minimal model. We first
derive themost general form of the tight-bindingmodel up to
the next-next-nearest-neighbor hopping, and then we calcu-
late the values of the hopping constants for two sets of the
WSs: the one obtained from the projection method and the
maximally localized WSs obtained from the WANNIER90

program.

A. Symmetry constraints

The tight-binding model based on the localized WSs can
be readily constructed. In this subsection, we discuss the
most general form of the hopping amplitudes allowed by
symmetry. The on-site term must be of the form

Hon site ¼ −μ
X
R

X4
j¼1

f†j;Rfj;R; ð6Þ

where f†i;R and fi;R are the creation and annihilation
operators of the WSs wi;R. This form of the on-site term
is guaranteed because C3 prohibits mixing between w1 and
w2, and w3 and w4; C0

2 and TRS then force a single real
parameter μ. In contrast, there are two such parameters
in Ref. [6].
The next term is the nearest-neighbor hopping between

w1;2;Ri
and the neighboring w3;4;Rj

. Thus, the Hamiltonian is
of the form

Hn ¼
X
R

X
i¼1;2
j¼3;4

f†i;Rðtnijfj;R þ tn
0

ijfj;RþL1−L2
þ tn

00
ij fj;RþL1

Þ

þ H:c: ð7Þ

It should be invariant under all the symmetry transforma-
tions. First, consider C3, which brings WSs wR into wR0 in a
different unit cell. In addition, w1 and w4 have the
eigenvalue of ϵ, and w2 and w3 have the eigenvalue of
ϵ�. The C3 invariance of the Hamiltonian forces

tn14 ¼ tn
0

14 ¼ tn
00

14; tn23 ¼ tn
0

23 ¼ tn
00

23; ð8Þ

tn13 ¼ ϵtn
0

13 ¼ ϵ�tn0013; tn24 ¼ ϵ�tn024 ¼ ϵtn
00

24: ð9Þ

C0
2 transforms w1 ↔ w3 and w2 ↔ w4, and brings

L1 → L2 − L1, and L2 → L2. Combined with the
Hermiticity of the Hamiltonian, the C0

2 invariance leads
to tn14 ¼ ðtn23Þ�, tn13 ¼ ðtn13Þ�, and tn24 ¼ ðtn24Þ�. Finally, the
TRS enforces tn13 ¼ ðtn24Þ�.
Combining all constraints, we set tn13 ¼ t1 and tn14 ¼ t01,

where t1 is real and t01 is, in general, a complex number.
Thus, the nearest-neighbor hopping term can be written as

Hn ¼
X
R

�
f1;R
f2;R

�†�� t1 t10

ðt10Þ� t1

��
f3;R
f4;R

�

þ
�

ϵ�t1 t10

ðt10Þ� ϵt1

��
f3;RþL1−L2

f4;RþL1−L2

�

þ
�

ϵt1 t10

ðt10Þ� ϵ�t1

��
f3;RþL1

f4;RþL1

��
þ H:c: ð10Þ

It seems that t01 is a complex number. If we apply a gauge
transformation w1;3 → eiθw1;3 and w2;4 → e−iθw2;4, the
hopping constant t1 is invariant but t01 → e2iθt01. Thus,
the phase of t01 can be always removed by choosing a
particular gauge of the WSs. Therefore, there are only two
free parameters for the nearest-neighbor hopping [5].
Next, consider the next-nearest-neighbor hopping HNN:

HNN ¼
X
R

�X2
i;j¼1

þ
X4
i;j¼3

�
f†i;RðtNN;1ij fj;RþL1

þtNN;2ij fj;RþL2−L1
þ tNN;3ij fj;R−L2

Þ þ H:c: ð11Þ

Let us first consider the symmetry constraints on tNNij when
i, j ¼ 1, 2. The C3 invariance enforces

tNN;111 ¼ tNN;211 ¼ tNN;311 ; tNN;122 ¼ tNN;222 ¼ tNN;32 ; ð12Þ

tNN;112 ¼ ϵtNN;212 ¼ ϵ�tNN;312 ; tNN;121 ¼ ϵ�tNN;221 ¼ ϵtNN;321 : ð13Þ

The TRS leads to

tNN;122 ¼ ðtNN;111 Þ�; tNN;121 ¼ ðtNN;112 Þ�:

The hopping constants tNNij (i, j ¼ 3 or 4) can be obtained
by applying C0

2 symmetry operation. Therefore, the next-
nearest-neighbor hopping can be described by two complex
numbers t2 ¼ tNN;111 and t02 ¼ tNN;112 . The general form is
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HNN ¼
X
R

�
f1;R
f2;R

�†�� t2 t02
ðt02Þ� t�2

��
f1;RþL1

f2;RþL1

�
þ
�

t2 ϵ�t02
ϵðt02Þ� t�2

��
f1;RþL2−L1

f2;RþL2−L1

�
þ
�

t2 ϵt02
ϵ�ðt02Þ� t�2

��
f1;R−L2

f2;R−L2

��

þ
�
f3;R
f4;R

�†�� t2 t02
ðt02Þ� t�2

��
f3;RþL2−L1

f4;RþL2−L1

�
þ
�

t2 ϵ�t02
ϵðt02Þ� t�2

��
f3;RþL1

f4;RþL1

�
þ
�

t2 ϵt02
ϵ�ðt02Þ� t�2

��
f3;R−L2

f4;R−L2

��
þ H:c:

ð14Þ

Finally, we consider the symmetry constraints on the
next-next-nearest-neighbor hopping with the most general
form of

HNNN ¼
X
R

X
i¼1;2
j¼3;4

f†i;RðtNNN;1ij fj;Rþ2L1−L2
þ tNNN;2ij fj;RþL2

þ tNNN;3ij fj;R−L2
Þ þ H:c: ð15Þ

The constraints are very similar to the one for the nearest-
neighbor hopping. We find C3 enforces

tNNN;114 ¼ tNNN;214 ¼ tNNN;314 ; tNNN;123 ¼ tNNN;223 ¼ tNNN;323 ;

tNNN;113 ¼ ϵtNNN;213 ¼ ϵ�tNNN;313 ; tNNN;124 ¼ ϵ�tNNN;224 ¼ ϵtNNN;324 :

Combined with the Hermiticity of the Hamiltonian, C0
2

leads to

tNNN;113 ¼ðtNNN;113 Þ�; tNNN;124 ¼ðtNNN;124 Þ�; tNNN;114 ¼ðtNNN;123 Þ�:

The TRS puts an additional constraint tNNN;113 ¼ ðtNNN;124 Þ�.
Thus, we can introduce one real t3 ¼ tNNN;113 and one

complex t03 ¼ tNNN;114 parameter for the next-next-nearest-
neighbor hopping. The Hamiltonian takes the form

HNNN ¼
X
R

�
f1;R
f2;R

�†�� t3 t03
ðt03Þ� t3

��
f3;Rþ2L1−L2

f4;Rþ2L1−L2

�

þ
�

ϵ�t3 t03
ðt03Þ� ϵt3

��
f3;RþL2

f4;RþL2

�

þ
�

ϵt3 t03
ðt03Þ� ϵ�t3

��
f3;R−L2

f4;R−L2

��
þ H:c: ð16Þ

The symmetry constraints on further range hopping can
be worked out in the same way.

B. Values of the hopping constants

The most general tight-binding Hamiltonian is of the
form

H ¼
X
R;r

X4
i;j¼1

tij;rf
†
i;Rfj;Rþr; ð17Þ

where both R and r are the triangular lattice vectors. The
hopping constants t are indexed by two WS indices i and j,

TABLE I. The hopping constants between w1;2 and w3;4. The number outside (inside) the parentheses is for WSs obtained from the
projection method (WANNIER90). All the numbers are in units of milli-electron volts.

t13;0 ¼ ϵt13;ð1;−1Þ ¼ ϵ�t13;ð1;0Þ −0.011 (0.0831)
t14;0 ¼ t14;ð1;0Þ ¼ t14;ð1;−1Þ 0.0177þ 0.2910i (0.0380þ 0.2603i)
t13;ð2;−1Þ ¼ ϵt13;ð0;1Þ ¼ ϵ�t13;ð0;−1Þ −0.0006 (−0.0853Þ
t14;ð2;−1Þ ¼ t14;ð0;1Þ ¼ t14;ð0;−1Þ −0.1141 − 0.3479i (−0.0916 − 0.2868i)
t13;ð−1;0Þ ¼ t�

13;ð−1;1Þ ¼ ϵ�t�
13;ð1;−2Þ ¼ ϵ�t13;ð1;1Þ ¼ ϵt13;ð2;−2Þ ¼ ϵt�

13;ð2;0Þ −0.0034 − 0.0007i (0.0299 − 0.0279i)

t14;ð−1;0Þ ¼ t14;ð−1;1Þ ¼ t14;ð1;−2Þ ¼ t14;ð1;1Þ ¼ t14;ð2;−2Þ ¼ t14;ð2;0Þ 0.0464þ 0.0831i (0.0339þ 0.0222i)
t13;ð−1;−1Þ ¼ ϵt13;ð3;−2Þ ¼ ϵ�t13;ð0;2Þ ¼ t�

13;ð−1;2Þ ¼ ϵ�t�
13;ð0;−2Þ ¼ ϵt�

13;ð3;−1Þ −0.0012 − 0.0007i (−0.0293þ 0.0009i)

t14;ð−1;−1Þ ¼ t14;ð−1;2Þ ¼ t14;ð0;−2Þ ¼ t14;ð0;2Þ ¼ t14;ð3;−2Þ ¼ t14;ð3;−1Þ −0.0179 − 0.0182i (−0.0089þ 0.0112i)
t13;ð−2;1Þ ¼ ϵt13;ð2;−3Þ ¼ ϵ�t13;ð2;1Þ −0.0005 (0.0280)
t14;ð−2;1Þ ¼ t14;ð2;−3Þ ¼ t14;ð2;1Þ 0.0163þ 0.0213i (0.0021 − 0.0101i)
t13;ð−2;0Þ ¼ ϵt13;ð3;−3Þ ¼ ϵ�t13;ð1;2Þ ¼ t�

13;ð−2;2Þ ¼ ϵ�t�
13;ð1;−3Þ ¼ ϵt�

13;ð3;0Þ −0.0014 − 0.0006i (0.0040þ 0.0256i)

t14;ð−2;0Þ ¼ t14;ð−2;2Þ ¼ t14;ð1;−3Þ ¼ t14;ð1;2Þ ¼ t14;ð3;−3Þ ¼ t14;ð3;0Þ 0.0111þ 0.0310i (0.0131þ 0.0345i)
t13;ð4;−2Þ ¼ ϵt13;ð−1;3Þ ¼ ϵ�t13;ð−1;−2Þ 0.0002ð−0.0359Þ
t14;ð4;−2Þ ¼ t14;ð−1;3Þ ¼ t14;ð−1;−2Þ −0.0145 − 0.0272i (−0.0154 − 0.0398i)
t13;ð−2;−1Þ ¼ ϵt13;ð4;−3Þ ¼ ϵ�t13;ð0;3Þ ¼ t�

13;ð−2;3Þ ¼ ϵ�t13;ð0;−3Þ ¼ ϵt�
13;ð4;−1Þ 0.0005 − 0.0004i (−0.0107 − 0.0040i)

t14;ð−2;−1Þ ¼ t14;ð4;−3Þ ¼ t14;ð0;3Þ ¼ t14;ð−2;3Þ ¼ t14;ð0;−3Þ ¼ t14;ð4;−1Þ 0.0081i (0.0012þ 0.0099i)
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and the lattice vector r. The numerical value of the hopping
constant can be obtained from the energy of the Bloch
states and the transformation between the WS and the
Bloch states. Suppose that

jwi;Ri ¼
Z

ddk
ð2πÞd jψ j;kie−ik·RUjiðkÞ; ð18Þ

then

tij;r ¼ hwi;RjHjwj;Rþri

¼
Z

ddkddk0

ð2πÞ2d eik
0·RU�

i0iðk0Þhψ i0 ðk0ÞjHjψ j0;ki

× e−ik·ðRþrÞUj0jðkÞ

¼
Z

ddk
ð2πÞd U

�
i0iðkÞϵi0 ðkÞUi0jðkÞe−ik·r: ð19Þ

In this subsection, we list the values of the hopping
constants up to jrj ¼ 3jL1j. For notation convenience,
we parametrize r as two numbers ða; bÞ, where
r ¼ aL1 þ bL2. Note that the TRS transforms w1 ↔ w2,
and w3 ↔ w4. Thus, it enforces several constraints, e.g.,
t12;r ¼ t�21;r, t13;r ¼ t�24;r, etc. In Tables I and II, for notation
simplicity, we list only part of the hopping constants; the
others can be obtained from the constraints due to
Hermiticity of the Hamiltonian and the TRS.
We separate the hopping constants into two different

tables. Table I is for the hoppings between w1;2 and w3;4,
and Table II is for the hoppings among w1;2 themselves and
w3;4 themselves. For comparison, two different hopping
amplitudes are listed in each row. The first one is for the
WSs obtained from the projection method. As we can see,
the hoppings between two WSs with different C3 eigen-
values are significantly smaller than those between two
WSs from the same valley. This hierarchy of the hopping
amplitudes emerges as the consequence of the approximate

valley Uð1Þ symmetry. The numbers in the parentheses are
the hopping amplitudes for the maximally localized WSs
obtained from WANNIER90. We find that the hierarchy of
hopping amplitudes is lost after applying the WANNIER90

procedure, suggesting that despite enforcing the exact
symmetries, the WANNIER90 algorithm strongly mixes the
valleys. Because of this mixing, we choose the WSs
obtained from the projection method to compare our
tight-binding model with the DFT result.
Figure 4 illustrates the comparison of the narrow bands

obtained from the microscopic model in Ref. [20] and the
tight-binding model with different hopping range Lc based
on the localized WSs obtained from the projection method.
For small Lc, most features of the band structure can be
reproduced by our tight-binding model, except the peaks
and troughs around Γ.

TABLE II. The hopping constants among w1;2 themselves and w3;4 themselves. The number outside (inside) the parentheses is for
WSs obtained from the projection method (WANNIER90). All the numbers are in units of milli-electron volts.

t11;ð1;0Þ ¼ t11;ð−1;1Þ ¼ t11;ð0;−1Þ ¼ t33;ð1;0Þ ¼ t33;ð−1;1Þ ¼ t33;ð0;−1Þ −0.0023 − 0.0093i (−0.0023 − 0.0161i)
t12;ð1;0Þ ¼ ϵt12;ð−1;1Þ ¼ ϵ�t12;ð0;−1Þ ¼ t34;ð−1;1Þ ¼ ϵt34;ð1;0Þ ¼ ϵ�t34;ð0;−1Þ −0.0017 − 0.0038i (−0.0947 − 0.0663i)
t11;ð−2;1Þ ¼ t11;ð1;−2Þ ¼ t11;ð1;1Þ ¼ t�

33;ð−2;1Þ ¼ t�
33;ð1;−2Þ ¼ t�

33;ð1;1Þ 0.0130 − 0.0599i (0.0131 − 0.0914i)

t12;ð−2;1Þ ¼ ϵt12;ð1;−2Þ ¼ ϵ�t12;ð1;1Þ ¼ t34;ð−2;1Þ ¼ ϵ�t34;ð1;−2Þ ¼ ϵt34;ð1;1Þ 0.0022 − 0.0018i (0.0706 − 0.0004i)
t11;ð2;0Þ ¼ t11;ð−2;2Þ ¼ t11;ð0;−2Þ ¼ t33;ð2;0Þ ¼ t33;ð−2;2Þ ¼ t33;ð0;−2Þ −0.0005 − 0.0135i (−0.0005 − 0.0182i)
t12;ð2;0Þ ¼ ϵt12;ð−2;2Þ ¼ ϵ�t12;ð0;−2Þ ¼ t34;ð−2;2Þ ¼ ϵ�t34;ð0;−2Þ ¼ ϵt34;ð2;0Þ 0.0007 − 0.0017i (−0.0181þ 0.0081i)
t11;ð−3;1Þ ¼ t11;ð2;−3Þ ¼ t11;ð1;2Þ ¼ t33;ð3;−2Þ ¼ t33;ð−1;3Þ ¼ t33;ð−2;−1Þ 0.0204 − 0.0153i (0.0302 − 0.0057i)
t12;ð−3;1Þ ¼ ϵt12;ð2;−3Þ ¼ ϵ�t12;ð1;2Þ ¼ t34;ð3;−2Þ ¼ ϵ�t34;ð−1;3Þ ¼ ϵt34;ð−2;−1Þ 0.0013 − 0.0011i (0.0013þ 0.0139i)
t11;ð−3;2Þ ¼ t11;ð1;−3Þ ¼ t11;ð2;1Þ ¼ t33;ð3;−1Þ ¼ t33;ð−2;3Þ ¼ t33;ð−1;−2Þ −0.0139 − 0.0232i (−0.0237 − 0.0097i)
t12;ð−3;2Þ ¼ ϵt12;ð1;−3Þ ¼ ϵ�t12;ð2;1Þ ¼ t34;ð3;−1Þ ¼ ϵ�t34;ð−2;3Þ ¼ ϵt34;ð−1;−2Þ 0.0002þ 0.0004i (0.0016 − 0.0018i)
t11;ð3;0Þ ¼ t11;ð−3;3Þ ¼ t11;ð0;−3Þ ¼ t33;ð−3;3Þ ¼ t33;ð0;−3Þ ¼ t33;ð3;0Þ 0.0033 − 0.0035i (0.0033 − 0.0033i)
t12;ð3;0Þ ¼ ϵt12;ð−3;3Þ ¼ ϵ�t12;ð0;−3Þ ¼ t34;ð−3;3Þ ¼ ϵ�t34;ð0;−3Þ ¼ ϵt34;ð3;0Þ 0.0007 − 0.0008i (−0.0007þ 0.0073i)

1

1

2

3

(a)

1

1

2

3

(b)

1

1

2

3

(c)

1

1

2

3

(d)

FIG. 4. Comparison of the narrow-band structure produced by
the model given by Ref. [20] (red solid line) and the tight-binding
model based on the WSs (blue dots) with the range of hopping
(a) Lc ¼ 2L, (b) Lc ¼ 4L, (c) Lc ¼ 6L, and (d) Lc ¼ 8L.
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V. DISCUSSION

In this work, we construct the localized WSs based on
the lattice model with the AA stacking configuration.
Although the approximate valley Uð1Þ symmetry is not
explicitly implemented at the beginning, it is manifested in
our four-band model, as shown by the Fourier transform of
the WSs and the hierarchy of the hopping amplitudes. After
the original version of this paper appeared on arXiv, we
noticed that very similar WSs have also been constructed in
Ref. [25] starting from a continuummodel with valleyUð1Þ
symmetry and particle-hole symmetry explicitly present.
Just as in our work, the same spatial symmetry group D3

and TRS are locally realized by the WSs, as well as the
corresponding tight-binding model. As a result of the Uð1Þ
symmetry, the tight-binding model of Ref. [25] contains no
hopping amplitudes between WSs with different eigenval-
ues of C3. In addition, hopping amplitudes violating
particle-hole symmetry are absent. In the microscopic
tight-binding model we study, valley Uð1Þ symmetry is
not exact, and, therefore, small hopping amplitudes
between different C3 eigenvalues are present (see
Tables I and II). Similarly, the particle-hole symmetry is
also violated in the microscopic model and, therefore, not
present in the tight-binding model derived from our WSs.
In conclusion, we present a method for constructing

symmetry-adapted maximally localized Wannier functions
and the corresponding low-energy model for the four
narrow bands of the TBG near the magic angle. The
WSs have three peaks around the moiré triangular lattice
sites but are centered at the dual honeycomb lattice sites.
They form nontrivial representations of the site symmetry
group. Our model provides a firm basis for further study of
the many-body effects.
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