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Pursuing complementary field-theoretic and numerical methods, we here paint the global phase diagram
of a three-dimensional dirty Weyl system. The generalized Harris criterion, augmented by a perturbative
renormalization-group analysis shows that weak disorder is an irrelevant perturbation at the Weyl
semimetal (WSM)-insulator quantum-critical point. But, a metallic phase sets in through a quantum phase
transition (QPT) at strong disorder across a multicritical point. The field-theoretic predictions for the
correlation length exponent ν ¼ 2 and dynamic scaling exponent z ¼ 5=4 at this multicritical point are in
good agreement with the ones extracted numerically, yielding ν ¼ 1.98� 0.10 and z ¼ 1.26� 0.05, from
the scaling of the average density of states (DOS). Deep inside the WSM phase, generic disorder is also an
irrelevant perturbation, while a metallic phase appears at strong disorder through a QPT. We here
demonstrate that in the presence of generic but strong disorder, the WSM-metal QPT is ultimately always
characterized by the exponents ν ¼ 1 and z ¼ 3=2 (to one-loop order), originating from intranode or chiral-
symmetric (e.g., regular and axial potential) disorder. We here anchor such emergent chiral super-
universality through complementary renormalization-group calculations, controlled via ϵ expansions, and
numerical analysis of average DOS across WSM-metal QPT. In addition, we also discuss a subsequent
QPT (at even stronger disorder) of a Weyl metal into an Anderson insulator by numerically computing the
typical DOS at zero energy. The scaling behavior of various physical observables, such as residue of
quasiparticle pole, dynamic conductivity, specific heat, Grüneisen ratio, inside various phases as well as
across various QPTs in the global phase diagram of a dirty Weyl liquid, are discussed.
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I. INTRODUCTION

The complex energy landscape of electronic quantum-
mechanical states in solid-state compounds, commonly
known as band structure, can display accidental or
symmetry-protected band touching at isolated points in
the Brillouin zone [1–9]. In the vicinity of such diabolic
points, low-energy excitations can often be described as
quasirelativistic Dirac or Weyl fermions [10–12], which
may provide an ideal platform for condensed matter
realization of various peculiar phenomena, such as chiral
anomaly, Casimir effect, and axionic electrodynamics
[13–15]. Recently, three-dimensional Weyl semimetals

(WSMs) have attracted a lot of interest due to the growing
evidence of their material realization [16–25].
A WSM, the prime example of a gapless topological

phase of matter, is constituted by so-called Weyl nodes that
in the reciprocal space (Brillouin zone) act as the source
and sinks of Abelian Berry curvature, and thus always
appear in pairs [26]. In a nutshell, the Abelian Berry flux
enclosed by the system determines the integer topological
invariant of a WSM and the degeneracy of topologically
protected surface Fermi arcs. A question of fundamental
and practical importance in this context concerns the
stability of such a gapless topological phase against
impurities or disorder, inevitably present in real materials.
Combining complementary field-theoretic renormalization-
group (RG) calculations and a numerical analysis of the
average density of states (ADOS), we here study the role of
randomness in various regimes of the phase diagram of a
Weyl system to arrive at the global phase diagram,
schematically illustrated in Fig. 1.
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A WSM can be constructed by appropriately stacking
two-dimensional layers of quantum anomalous Hall insu-
lator (QAHI) in the momentum space along the kz
direction, for example. Thus, by construction a WSM
inherits the two-dimensional integer topological invariant
of constituting layers of QAHI, and the momentum space
Skyrmion number of QAHI jumps by an integer amount
across twoWeyl nodes. As a result, the Weyl nodes serve as
the sources and sinks for Abelian Berry curvature, and in a
clean system WSM is sandwiched between a topological
Chern and a trivial insulating phase, as shown in Fig. 1. In
an effective tight-binding model a WSM-insulator quantum
phase transition (QPT), the blue dot in Fig. 1, can be tuned
by changing the effective hopping in the kz direction, as
demonstrated in Sec. II. In this work, we first assess the
stability of such a clean semimetal-insulator quantum-
critical point (QCP) in the presence of generic randomness
in the system, and arrive at the following conclusions.
(1) By generalizing the Harris criterion [27], we find

that WSM-insulator QCP is stable against suffi-
ciently weak, but otherwise generic, disorder (see
Sec. III). Such an outcome is further substantiated
from the scaling analysis of disorder couplings,
suggesting that any disorder is an irrelevant pertur-
bation at such a clean QCP.

(2) From an appropriate ϵ expansion (see Sec. III),
we demonstrate that a multicritical point (MCP)

emerges at stronger disorder, where the WSM, a
band insulator (either Chern or trivial), and a
metallic phase meet, the red dot in Fig. 1. The
critical semimetal residing at the phase boundary
between a WSM and an insulator (along the black
dashed line in Fig. 1) then becomes unstable toward
the formation of a compressible metal through such
a MCP. The exponents capturing the instability of
critical excitations toward the onset of a metal are
(a) correlation length exponent (CLE) ν ¼ 2 and
(b) dynamic scaling exponent (DSE) z ¼ 5=4 to the
leading order in the ϵ expansion. These two ex-
ponents also determine the scaling behavior of
physical observables across the anisotropic critical
semimetal-metal QPT.

(3) By following the scaling of DOS along the phase
boundary (the black dashed line in Fig. 1) between
the WSM and insulator with increasing randomness
in the system, we numerically extract ν and z at the
MCP across the critical semimetal-metal QPT (see
Fig. 2). Numerically extracted values of these two
exponents are ν ¼ 1.98� 0.10 and z ¼ 1.26� 0.05
(see Sec. III B), which are in good agreement with
our prediction from the leading-order ϵ expansion
(see Appendix E, Table IV).

We now turn our focus on the WSM phase (the green
shaded region in Fig. 1). The study of disorder effects in
topological phases of matter has recently attracted a lot of
attention, leading to a surge of analytical [28–50] and
numerical [51–65] works. In particular, the focus has been
concentrated on the massless Dirac critical point separating
two topologically distinct insulators (electrical or thermal),
as well as inside Dirac and Weyl semimetal phases. Even
though the effects of generic disorders have been studied
to some extent theoretically [30,36,42–44], most of the
numerical works solely focused on random charge impu-
rities (for exceptions, see Refs. [54,56]). By now there is
both analytical and numerical evidence that chemical
potential disorder when strong enough drives a QPT from
the WSM to a diffusive metal, leaving its imprint on
different observables, e.g., average DOS, specific heat, and
conductivity (see Sec. VIII). Deep inside the WSM phase,
the system possesses various emergent symmetries (see
Table III), such as a continuous global chiral U(1) sym-
metry that is tied with the translational symmetry of a clean
noninteracting WSM in the continuum limit [66]. In the
absence of both inversion and time-reversal symmetries, the
simplest realization of a WSMwith only two Weyl nodes is
susceptible to 16 possible sources of elastic scattering,
displayed in Table III. They can be grouped in eight classes,
among which only four preserve the emergent global chiral
symmetry (intranode scattering), while the remaining ones
directly mix two Weyl nodes with opposite (left and right)
chiralities (internode scattering) [67]. As we demonstrate in
this paper, such characterization of disorders based on the
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FIG. 1. A schematic phase diagram of a dirty Weyl semimetal.
Here, Δ is a tuning parameter that drives quantum phase
transition from Weyl semimetal to (Chern or normal) insulator
in clean system [see Sec. II], and W denotes the strength of
disorder (the nature of which is not specified here). Semimetal-
insulator quantum-critical points are denoted by the blue dots.
The red dots represent multicritical points, where an insulator, a
metal, and the Weyl semimetal meet [see Sec. III]. The string of
green dots represents a line of quantum-critical points through
one of which (depending on the bare value of Δ) the Weyl
semimetal undergoes a quantum phase transition into a metallic
phase (see Secs. IV, V, VI, and VII). At stronger disorder the
metallic phase undergoes a second quantum phase transition into
the Anderson insulator phase (see Sec. IX). The shape of the
phase boundaries is, however, nonuniversal. See, for example,
Fig. 2 for numerically obtained phase diagram from a lattice
model.
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chiral symmetry allows us to classify the WSM-metal
QPTs (across one of the green dots shown in Fig. 1) in
the presence of generic disorder.
To motivate our theoretical analysis, we now discuss

the possible microscopic origin of disorders in the Weyl
materials. Furthermore, knowing this in the future may
facilitate a control over randomness in experiments on these
materials. For example, chemical potential disorder can be
controlled by modifying the concentration of random
charge impurities. Random asymmetric shifts of chemical
potential between the left and right chiral Weyl cones
correspond to the axial potential disorder. Therefore, in an
inversion asymmetric WSM such disorder is always
present. Magnetic disorder is yet another type of chiral
symmetry-preserving (CSP) disorder, and the strength of
random magnetic scatterers can be efficiently tuned by
systematically injecting magnetic ions in the system. [We
here do not consider Kondo effect or Ruderman–Kittel–
Kasuya–Yosida (RKKY) interaction.] In contrast, all
chiral-symmetry-breaking (CSB) disorders cause mixing
of two Weyl nodes, and in an effective model for WSMs,
they stem from various types of random bond disorder
that also cause random fluctuation of bandwidth (see
Appendix D). Therefore, strength of CSB disorder may
be tuned by applying inhomogeneous pressure (hydrostatic
or chemical) in the Weyl materials. Since the WSMs are
found in strong spin-orbit-coupled materials, a random spin-
orbit coupling can be achieved when hopping (hybridization)

between two orbitals with opposite parity acquires random
spatial modulation. Yet another CSB but vectorlike type of
disorder is a random axial Zeeman coupling. Its source is the
different g factor of two hybridizing bands that touch at the
Weyl point [68–70]. Therefore, when magnetic impurities
are injected in the system, such disorder is naturally
introduced, and depending on the relative strength of the
g factor in different bands, one can access regular (intranode)
or axial (internode) random magnetic coupling. Finally, two
different types of CSBmass disorders that tend to gap out the
Weyl points are represented by random charge- or spin-
density-wave order, depending on the microscopic details
[71]. These disorders correspond to random scalar and
pseudoscalar mass in the field-theory language. Because
of their presence,Weyl nodes are gapped out in each disorder
configuration, but the sign of the gap is random from
realization to realization, and in the thermodynamic limit
the nodes remain gapless. To the best of our knowledge, it is
currently unknown how to tune the strength of all individual
sources of elastic scattering in real Weyl materials.
Nevertheless, we elucidate how all possible disorders can
be obtained from a simple effective tight-binding model on a
cubic lattice for a WSM with two nodes (see Appendix D),
allowing us to numerically investigate the effects of generic
disorder in this system.
Here we address the stability of a disordered WSM (i) in

the field-theoretical framework by using two different RG
schemes: (a) an ϵm expansion about a critical disorder
distribution, where ϵm ¼ 1 −m, with the Gaussian white
noise distribution realized as m → 0, and (b) ϵd ¼ d − 2
expansion about dl ¼ 2, the lower critical spatial dimen-
sion for WSM-metal QPT; and (ii) lattice-based numerical
evaluation of average DOS by using the kernel polynomial
method (KPM) [72] in the presence of generic chiral-
symmetric disorder [see Fig. 3 (upper panel)] as well as
nonchiral disorder [see Fig. 3 (lower panel)]. Comparisons
between the field-theoretic predictions and numerical
findings for all chiral disorders are given in Table I. Our
central results can be summarized as follows.
(1) From the scaling analysis we show in Sec. IV that all

types of disorder (both CSP and CSB) are irrelevant
perturbations in a WSM. This outcome is also
supported numerically, see Fig. 3, depicting that
DOS scales as ϱðEÞ ∼ jEj2 for small energy (E),
when generic disorder is sufficiently weak.

(2) We show in Sec. V that irrespectively of the details
of two distinct ϵ expansions, in the presence of a
CSP disorder, the WSM-metal QPT takes place
through either a QCP (when either potential or axial
potential disorder is present) or a line of QCPs (when
both types of scalar disorder are present simulta-
neously), characterized by critical exponents,

z ¼ 1þ ϵ

2
þOðϵ2Þ; ν−1 ¼ ϵþOðϵ2Þ; ð1Þ

FIG. 2. Left: Numerically obtained phase diagram of a Weyl
material residing in the proximity of the WSM-insulator QCP
(blue dot forW ¼ 0) in the presence of random charge impurities
(W). The black dashed line represents the phase boundary
between these two phases, and the blue square is the multicritical
point (MCP) where the WSM, a band insulator (Chern in
the present situation), and a metal meet. The density of states
at the phase semimetal-insulator phase boundary scales as
ϱðEÞ ∼ jEj1.5, as shown in the right-hand panel (see Sec. III
for details). With increasing strength of disorder the direct
transition between WSM and insulator gets avoided by an
intervening metallic phase, where DOS at zero energy is finite
(see the right-hand panel). The metallicity sets in through the
MCP, where the DOS scales roughly as ϱðEÞ ∼ jEj. These
findings are in qualitative agreement with the field-theoretic
predictions (see Fig. 6).

GLOBAL PHASE DIAGRAM OF A DIRTY WEYL LIQUID … PHYS. REV. X 8, 031076 (2018)

031076-3



obtained from the leading order in ϵ expansions,
where ϵ ¼ ϵm or ϵd, and ϵ ¼ 1 corresponds to the
physical situation. Therefore, irrespective of the
nature of elastic scatterers, the universality class
of the WSM-metal QPT in the presence of a CSP
disorder is unique, and we name such a universality
class chiral superuniversality. Even though the ex-
ponents ν and z can receive higher-order corrections
Oðϵ2Þ, presently there is no controlled way to
compute them beyond leading order in ϵ [40,45].

(3) In Sec. VI, we carry out a thorough numerical analysis
of DOS in the presence of all four CSP disorders,
obtained by using KPM from a lattice model [see
Figs. 3(a)–3(d)]. Within the numerical accuracy we
find that z ≈ 1.5 and ν ≈ 1 across possible CSP
disorder-driven WSM-metal QPTs (see Fig. 13 and
Table I). Thus, numerically extracted values of critical
exponents are in excellent agreement with the field-
theoretic predictions from leading-order ϵ expansions,
and strongly support the proposed scenario of emer-
gent chiral superuniversality.

(4) In Sec. VII, we show that the CSB disorder can also
drive a WSM-metal QPT through either an isolated
QCP or a line of QCPs. Irrespective of the actual
details of an ϵ-expansion scheme, the values of the

critical exponents at such QCP or line of QCPs are
in stark contrast to the ones reported in Eq. (1), and
typically z > d. In particular, the DSE varies con-
tinuously across the line of QCPs supported by a
strong CSB disorder. On the other hand, ν−1 ¼ ϵ to
the leading order in an ϵ expansion, irrespective of
the RG scheme.

(5) Since z > d (always), the CSP disorder as well as the
higher gradient terms (inevitably present in a lattice
model) become relevant at the CSB disorder-driven
QCPs separating a WSM from a metallic phase.
Consequently, in lattice-based simulations the
WSM-metal QPT is expected to ultimately be
controlled by the QCPs associated with CSP dis-
order. We anchor this outcome by numerically
computing the DOS in the presence of all four
internode scatterings (see Fig. 3 (lower panel)] and
find that across WSM-metal QPTs, driven by any
CSB disorder, z ≈ 1.5 and ν ≈ 1 [see Table II].
Therefore, generic disorder-driven WSM-metal
QPT offers a rather sparse example of superuniver-
sality, characterized by the critical exponents z ¼
3=2 and ν ¼ 1, to the leading order in ϵ expansions,
which are in a reasonable good agreement with
numerical findings (within error bars); see Eq. (1).

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Scaling of numerically evaluated (using the kernel polynomial method [72]) average density of states in dirty Weyl semimetals
in the presence of (a) potential, (b) axial, (c) axial current, (d) current, (e) spin-orbit (represented by temporal component of tensor),
(f) axial magnetic (represented by spatial component of tensor), (g) scalar mass, and (h) pseudoscalar mass disorder for weak to strong
disorder regime, in a cubic lattice of linear dimension L ¼ 220 (see Table III for definition and field-theoretic nomenclature). Notice that
for weak enough disorder, ADOS ϱðEÞ ∼ jEj2 for jEj ≪ 1. In the metallic phase, appearing for strong enough disorder, ADOS at zero
energy ϱð0Þ becomes finite. Around a (nonuniversal) critical strength of disorder W ¼ Wc the ADOS scales as ϱðEÞ ∼ jEj for jEj ≪ 1.
Since ϱðEÞ ∼ jEjd=z−1, the dynamic scaling exponent z ≈ 1.5 across the WSM-metal quantum phase transitions, irrespective of the
nature of the elastic scatterers. Disorders in (a)–(d) preserve the emergent global chiral symmetry and represent intranode scattering,
while the remaining ones [(e)–(h)] break that symmetry and represent internode scattering. Numerically extracted critical exponents
across WSM-metal QPTs and their comparison with the field-theoretic predictions are displayed in Tables I and II, suggesting an
excellent agreement between these two methods and emergence of a superuniversality across WSM-metal QPT. The strength of disorder
increases monotonically in the direction of the red arrow in each panel.
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(6) In Sec. VIII, we show that various experimentally
measurable quantities, such as average DOS, dy-
namic conductivity, specific heat, and Grüneisen
ratio, exhibit distinct scaling behavior in terms of
CLE and DSE in different phases of a dirty WSM.
As such, they may be useful to distinguish types of
disorder in a WSM. Most importantly, distinct
scaling of observables can allow one to pin the
onset of various phases in real materials.

We point out that the notion of superuniversality is
realized rather sparsely in condensed matter systems. Most
prominent examples in this regard include the quantum
Hall plateau transitions [73–75] and one-dimensional dis-
ordered superconducting wires [76]. Therefore, dirty Weyl
semimetal represents, to the best of our knowledge, the
only example of a three-dimensional system exhibiting
superuniversality.
It is worth mentioning that for sufficiently strong

disorder the metallic phase in a Weyl system undergoes
a second continuous QPT into an Anderson insulating
phase [28,54,77], across the red dashed line shown in
Fig. 1. In Sec. IX, we address the metal-insulator Anderson
transition (AT), but only in the presence of random charge
impurities. Our central achievements regarding the fate of
the AT in strongly disordered Weyl metal are the following.
(1) We show that a Weyl metal undergoes a second

transition at stronger disorder into an Anderson
insulator (AI) phase. By numerically computing
the typical density of states (TDOS) at zero energy
[ϱtð0Þ], we show that ϱtð0Þ vanishes smoothly across
the Weyl metal-AI QPT, while displaying critical
and single-paramter scaling. In particular, ϱtð0Þ is
pinned at zero in the WSM and AI phases, while it is
finite inside the entire metallic phase. By contrast,

the average DOS at zero energy [ϱð0Þ] remains finite
in the metallic as well as AI phases, while being zero
only in the weakly disordered WSM. Otherwise,
ϱð0Þ decreases smoothly and monotonically across
the Weyl metal-AI QCP.

(2) We demonstrate that TDOS at zero energy displays
single-parameter scaling across both (a) WSM-metal
and (b) metal-AI QPTs. Specifically, the order-
parameter exponent for ϱtð0Þ, βt, defined as ϱtð0Þ∼
jδjβt , where δ defines the reduced distance from
transition point, is βt ¼ 1.80� 0.20 across the
WSM-metal QPT (which is different from the one
for the average DOS at zero energy for which
βa ¼ 1.50� 0.05).

(3) We show that inside the metallic phase the mobility
edge, separating the localized states from the ex-
tended ones, reside at finite energy. With increasing
strength of disorder the mobility edge slides down to
smaller energy and across the AT the entire energy
widow is occupied by localized states.

The rest of the paper is organized as follows. In Sec. II,
we introduce a simple tight-binding model for a Weyl
system and discuss possible phases and the phase tran-
sitions in the clean limit. In Sec. III, we demonstrate the
effects of generic disorder near the clean WSM-insulator
QCP and perturbatively address the effects of strong
disorder. In Sec. IV, we set up the theoretical framework
for addressing the role of randomness deep inside theWSM
phase and introduce the notion of ϵm and ϵd expansions for
perturbative treatment of disorder. This section is rather
technical and readers familiar with the formalism or
interested in physical outcomes may wish to skip it. We
devote Sec. V to the effects of CSP disorder and promote
the notion of chiral superuniversality. Detailed numerical
analysis of the scaling of DOS is presented in Sec. VI.
Effects of CSB disorder are discussed in Sec VII, and
scaling of various physical observables, such as DOS,
specific heat, conductivity, etc., across the WSM-metal

TABLE II. Numerically extracted critical strength of disorder
for WSM-metal QPT (Wc), dynamic scaling exponent (z), and
correlation length exponent (ν) in the presence of four individual
disorder potentials that mix two Weyl nodes (nonchiral disorder),
obtained from the scaling of averageDOS. The fact that z ≈ 1.5 for
all types of disorder reflects through almost linear scaling of DOS
around the WSM-metal QPT; see Fig. 3 (lower panel). For field-
theoretic analysis of internode scatterers or nonchiral disorder, see
Sec. VII. Here, error bars in z and ν are fitting error bars (see
Fig. 14). For detailed discussion, see Appendix E and Table IV.

Disorder Wc z ν

Spin-orbit 0.90� 0.05 1.53� 0.05 1.01� 0.10
Axial magnetic 0.90� 0.05 1.53� 0.05 0.99� 0.12
Scalar mass 1.50� 0.05 1.49� 0.05 0.99� 0.12
Pseudoscalar mass 1.40� 0.05 1.49� 0.05 1.01� 0.11

TABLE I. Comparison of numerically extracted values of
dynamic scaling exponent (z) and correlation length exponent
(ν) across theWSM-metal QPT (takes place atW ¼ Wc), with the
ones obtained from the leading-order ϵ expansions using field-
theoretic techniques. All four disorders preserve continuous global
chiral symmetry of a WSM. This comparison strongly suggests
that a WSM-metal transition driven by a CSP disorder is
insensitive to the nature of elastic scatterers, thus motivating an
emergent chiral superuniversality class of theQPTs, cf. Sec.V. The
fact that z ≈ 1.5 for all types of disorder reflects through almost
linear scaling of DOS around theWSM-metal QPT; see Fig. 3 (top
panel). Here, error bars in z and ν are “fitting error bars” (see
Fig. 13). For detailed discussion, see Appendix E and Table IV.

Disorder

Numerical analysis Field theory

Wc z ν z ν

Potential 1.65� 0.05 1.47� 0.05 1.00� 0.08 3=2 1
Axial 2.60� 0.05 1.47� 0.05 1.06� 0.10 3=2 1
Magnetic 1.80� 0.05 1.51� 0.05 1.03� 0.10 3=2 1
Current 1.65� 0.05 1.48� 0.05 1.02� 0.09 3=2 1
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QPT is discussed in Sec. VIII. We discuss the Anderson
transition of the metallic phase at stronger disorder in
Sec. IX. Concluding remarks and a summary of our main
findings are presented in Sec. X. Some additional technical
details are relegated to the Appendixes.

II. LATTICE MODEL FOR WEYL SYSTEM

Let us begin the discussion with a lattice realization of
chiral Weyl fermions in a three-dimensional cubic lattice.
Even though in most of the commonly known Weyl
materials, such as the binary alloys TaAs and NbP, Weyl
fermions emerge from complex band structures in non-
centrosymmetric lattices, their salient features can be
captured from a simple tight-binding model:

H ¼
X
k

ψ†
k½NðkÞ · σ�ψk: ð2Þ

The two-component spinor is defined as ψ⊤
k ¼ ðck;↑; ck;↓Þ,

where ck;s is the fermionic annihilation operator with
momentum k and spin or pseudospin projection s ¼ ↑;↓,
and σ’s are standard Pauli matrices. We here choose

N3ðkÞ ¼ tz cosðkzaÞ −mz þ t0½2 − cosðkxaÞ − cosðkyaÞ�;
ð3Þ

where a is the lattice spacing. The first term gives rise to two
isolated Weyl nodes along the kz axis at kz ¼ �k0z , where

cosðk0zaÞ ¼
t0
tz

�
mz

t0
þ cosðkxaÞ þ cosðkyaÞ − 2

�
; ð4Þ

with the following choice of pseudospin vectors:

N1ðkÞ ¼ t sinðkxaÞ; N2ðkÞ ¼ t sinðkyaÞ: ð5Þ

The second term in Eq. (3), namely, NM
3 ðkÞ ¼

t0½2 − cosðkxaÞ − cosðkyaÞ�, plays the role of a momen-
tum-dependent Wilson mass [58,59]. The resulting phase
diagram of the above tight-binding model is displayed
in Fig. 4. We subscribe to this tight-binding model in
Secs. III B, VI, and IX to numerically study the effects of
randomness in various regimes of a dirty Weyl system.
For the sake of simplicity, we hereafter consider only the

parameter regime −t0 < mz < t0 and tz ≤ t0, so that only
a single pair of Weyl fermions is realized at k0 ¼ ð0; 0;
�cos−1jmz=tzjÞ. In the vicinity of these two points the
Weyl quasiparticles can be identified as left and right
chiral fermions, respectively. A WSM can be found when
jmz=tj ≤ 1 and the system becomes an insulator for
jmz=tj > 1. Even though we here restrict our analysis
within the aforementioned parameter regime, this analysis
can be generalized to study the semimetal-insulator QPTs
in various other regimes shown in Fig. 4.

Within this parameter regime, to capture the Weyl
semimetal-insulator QPT, which occurs along the line
tz=mz ¼ 1, we expand the tight-binding model around
the Γ ¼ ð0; 0; 0Þ point of the Brillouin zone to arrive at
the effective low-energy Hamiltonian

ĤQðΔÞ ¼ vðσ1kx þ σ2kyÞ þ σ3ðbk2z − ΔÞ; ð6Þ

where v ¼ ta is the Fermi velocity in the xy plane and
b ¼ tza2=2 bears the dimension of inverse mass. For
Δ ¼ tz −mz < 0, the system becomes an insulator
(Chern or trivial). On the other hand, when Δ > 0, the
lattice model describes a WSM. The QPT in this clean
model between these two phases takes place at Δ ¼ 0.
Hence, Δ plays the role of a tuning parameter across the
WSM-insulator QPT. The QCP separating these two phases
is described by an anisotropic semimetal, captured by the
Hamiltonian HQð0Þ in Eq. (6), that in turn also determines
the universality class of the transition. Notice that the
expansion of the lattice Hamiltonian [see Eq. (5)] also
yields terms ∼k2x and ∼k2y and higher order (from the
Wilson mass), which are, however, irrelevant in the RG
sense, and therefore do not affect the critical theory for the
WSM-insulator QPT. Hence, we omit these higher gradient
terms for now. We discuss the paramount importance of
such higher gradient terms close to the CSB disorder-driven
WSM-metal QPT in Sec. VII. Next, we address the stability
of this quantum-critical semimetal against disorder in the
system using scaling theory and RG analysis.

FIG. 4. The phase diagram of the clean noninteracting tight-
binding model defined through Eqs. (5) and (3). Here, NI and CI,
respectively, represent trivial (normal) and Chern insulators. Weyl
nodes in the WSM phase are always located along the kz
direction. Respectively, WSM1;2;3 supports one, two, and one
pair of Weyl nodes. The projection of the Weyl nodes on the xy
plane in these phases are at the (0,0) point, ð0; πÞ and ðπ; 0Þ
points, and ðπ; πÞ point. This model therefore supports transla-
tionally active topological phases [9,78]. The transitions between
the WSM and insulating phases (solid lines) and the ones
between two distinct WSM phases (dashed lines) are continuous.
We emphasize that there is no symmetry distinction among these
phases.
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III. EFFECTS OF DISORDER ON
SEMIMETAL-INSULATOR TRANSITION

The imaginary time (τ) action associated with the low-
energy Hamiltonian [see Eq. (6)] reads as

S0 ¼
Z

dτd2x⊥dx3ψ†½∂τ − iv∂jσj − σ3ðb∂2
3 þ ΔÞ�ψ : ð7Þ

In proximity to the Weyl semimetal-insulator QPT, the
system can be susceptible to both random charge and
random magnetic impurities, and their effect can be
captured by the Euclidean action,

SD ¼
Z

dτd2x⊥dx3ψ†½V0ðxÞσ0 þ V⊥ðxÞðσ1 þ σ2Þ

þ VzðxÞσ3�ψ ; ð8Þ
where VjðxÞ are random variables. The effect of random
charge impurities is captured by V0ðxÞ, while V⊥ðxÞ and
VzðxÞ represents random magnetic impurities with the
magnetic moment residing in the easy or xy plane and
in the z direction (denoted here by x3 for notational clarity),
respectively, which we allow due to the anisotropy of the
Hamiltonian [see Eq. (6)]. All types of disorder are
assumed to be characterized by Gaussian white noise
distributions.
The scale invariance of the noninteracting action [see

Eq. (7)] mandates the following scaling ansatz: τ → elτ,
ðx; yÞ → elðx; yÞ, and x3 → el=2x3, followed by the rescal-
ing of the field operator ψ → e−5l=4ψ, where l is the
logarithm of running RG scale. The scaling dimension

of the tuning parameter Δ is then given by ½Δ� ¼ 1,
implying that Δ is a relevant perturbation at the WSM-
insulator QCP, located at Δ ¼ 0. The scaling dimension of
the tuning parameter Δ plays the role of the correlation
length exponent (ν) at this QCP, implying ν ¼ 1. In the
presence of disorder, as we show in Appendix A, the Harris
stability criterion [27] can be generalized for the WSM-
insulator QCP with the quantum-critical theory of the form
given by Eq. (6), but in a system with the topological or
monopole charge c [see Eq. (A1)]. The generalized Harris
criterion then suggests that WSM-insulator QCP in a clean
system remains stable against sufficiently weak disorder
only if

ν >
2

d�
; with

2

d�
¼ 4c

ð4þ cÞ ; ð9Þ

and d� as the effective spatial dimensionality of the system
under the coarse-graining procedure. At theWSM-insulator
QCP ν ¼ 1, and the critical excitations residing at Δ ¼ 0
are therefore stable against weak disorder when c ¼ 1
[regular WSM; see Eq. (6)]. We next analyze the effects of
disorder on the WSM-insulator QCP using a RG approach.
The same outcome can be arrived at from the computation
of inverse scattering lifetime (1=τ) within the framework of
self-consistent Born approximation (see Appendix J).

A. Perturbative RG analysis

After performing the disorder averaging in the action
[see Eq. (8)] within the replica formalism, we arrive at the
replicated Euclidean action,

S̄ ¼
Z

dτd2x⊥dx3ψ†
af∂τ − ivð∂xσ1 þ ∂yσ2Þ þ σ3½ð−iÞnbn∂n

3 − Δ�gψa −
Z

dτdτ0d2x⊥dx3
�
Δ0

2
ðψ†

aψaÞðx;τÞðψ†
bψbÞðx;τ0Þ

þ Δ⊥
2

X
j¼1;2

ðψ†
aσjψaÞðx;τÞðψ†

bσjψbÞðx;τ0Þ þ
Δz

2
ðψ†

aσ3ψaÞðx;τÞðψ†
bσ3ψbÞðx;τ0Þ

�
; ð10Þ

where a, b are replica indices. Notice that here we
have replaced k23 → kn3, with n as an even integer so that
such deformation of spectrum does not change the
symmetry of the system. We will show that such
deformation of the quasiparticle spectrum allows us to
control the perturbative RG calculation in terms of
disorder coupling. The above imaginary-time action (S̄)
remains invariant under the space-time scaling
ðx; yÞ → elðx; yÞ, x3 → el=nx3, and τ → ezlτ. At the bare
level the scale invariance of the free part of the action
requires the field-renormalization factor Zψ ¼ e−ð2þ1=nÞl
and ψ → Z−1=2

ψ ψ . From this scaling analysis we immedi-
ately find that the scaling dimension of disorder couplings
is ½Δj� ¼ −1=n, for j ¼ 0, ⊥, z. Therefore, at the WSM-
insulator QCP, characterized by n ¼ 2, disorder is an
irrelevant perturbation, in accordance with the prediction

from the generalized Harris criterion, implying the sta-
bility of this QCP against sufficiently weak randomness.
Note that disorder couplings are marginal in a hypotheti-
cal limit n → ∞, for which the system effectively
becomes a two-dimensional Weyl semimetal. Therefore,
perturbative analysis in the presence of generic disorder is
controlled via an ϵn expansion, where ϵn ¼ 1=n, about
n → ∞, following the spirit of ϵ expansions about upper
or lower critical dimension [79] and infinite monopole
charge [80,81].
Upon integrating out the fast Fourier modes within the

momentum shell Λe−l < k⊥ < Λ, where k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
,

0 < k23 < ∞, and accounting for pertubative corrections to
one-loop order (see Fig. 5), we arrive at the following flow
equations:
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βX ¼ −XðΔ0 þ 2Δ⊥ þ ΔzÞ ¼ ð1 − zÞX;
βΔ ¼ Δ½1þ Δ0 − 2Δ⊥ þ Δz�;
βΔ0

¼ −ϵnΔ0 þ 2Δ0ðΔ0 þ 2Δ⊥ þ ΔzÞ;
βΔ⊥ ¼ −ϵnΔ⊥ þ 2Δ0Δz;

βΔz
¼ −ϵnΔz þ 2Δzð2Δ⊥ − Δ0 − ΔzÞ þ 4Δ0Δ⊥; ð11Þ

in terms of dimensionless parameters,

Δ̂ ¼ Δ
vΛ

; Δ̂j ¼ Δj

�
Λϵn

ð2πÞ2bϵnn v2−ϵn
�
;

for X ¼ v, bn, j ¼ 0, ⊥, z, βQ ≡ dQ=dl is the β function
for the running parameter Q, and for brevity we omit the
hat notation in Eq. (11). In the above flow equations, we
have kept only the leading divergent contribution that
survives as n → ∞. Inclusion of subleading divergences
yields only nonuniversal corrections, as shown in
Appendix B. The β function for in-plane Fermi velocity
(v) and bn leads to a scale-dependent DSE:

zðlÞ ¼ 1þ ðΔ0 þ 2Δ⊥ þ ΔzÞðlÞ: ð12Þ

Note that in this formalism the random charge impurities do
not generate any new disorder, allowing us to depict the RG
flow in the (Δ;Δ0) plane, as shown in Fig. 6(a).
The coupled RG flow equations [Eq. (11)] support only

two fixed points.
(1) ðΔ;Δ0;Δ⊥;ΔzÞ ¼ ð0; 0; 0; 0Þ, which has only one

unstable direction along the Δ direction that serves
as the tuning parameter for WSM-insulator QPT.
This fixed point stands as a QCP in the four-
dimensional coupling constant space. The correla-
tion length exponent at this QCP is ν−1 ¼ 1. All
disorder couplings are irrelevant perturbations at this
QCP [see the blue dot in Fig. 6(a)].

(2) ðΔ;Δ0;Δ⊥;ΔzÞ ≈ ð0; ϵn=2; 0; 0Þ stands as a multi-
critical point with two unstable directions. At this
MCP the WSM, an insulator, and the metallic phase
meet. Two correlation-length exponents are ν−1M ¼ ϵn
determining the relevance of disorder coupling Δ0,

which drives the anisotropic critical semimetal
[described by ĤQð0Þ] into a diffusive metallic phase,
and ν−1 ¼ 1 that determines the relevance of the
tuning parameter Δ, controlling the WSM-insulator
transition. The DSE for critical semimmetal-metal
QPT is z ¼ 1þ ðϵn=2Þ þOðϵ2nÞ. Therefore, for a
three-dimensional anisotropic critical semimetal-
metal QPT, setting ϵn ¼ 1=2, the critical exponents
are νM ¼ 2 and z ¼ 1.25, to the leading order in ϵn
expansion.

The RG flow and the resulting phase diagrams are
shown in Figs. 6(a) and 6(b), respectively. At the multi-
critical point the average DOS scales as ϱðEÞ ∼ jEjd�=z−1 ≈
jEj to one-loop order, since d� ¼ 5=2 for c ¼ 1, as given
by Eq. (9). Beyond the critical strength of disorder
system becomes a metal where the average DOS at zero
energy ½ϱð0Þ� is finite and the order parameter exponent
β ¼ ðd� − zÞν ¼ 2.5 determines the scaling of ϱð0Þ accord-
ing to ϱð0Þ ∼ δβ ¼ δ2.5 in the metallic phase, where δ ¼
ðΔ0 − Δ�

0Þ=Δ�
0 is the reduced disorder coupling from the

critical one at Δ0 ¼ Δ�
0. Next, we numerically demonstrate

(a) stability of WSM-insulator QCP at weak disorder and
(b) emergence of a metallic phase through a MCP at finite
disorder coupling that masks the direct transition between
WSM and insulator by numerically computing the average
DOS using the kernel polynomial method. As a natural
outcome of this exercise, wewill also show that numerically
extracted values of the exponents, z and ν, at the MCP,
associatedwith the critical excitations-metal QPTagreewith
the predictions from the leading-order ϵn expansion.We also
note that the same spirit of RG analysis, controlled via “band
flattening”, can also be applied to address the effect of
randomness deep inside the WSM phase. We, however,
relegate that discussion to Appendix I.
For the sake of simplicity, we here neglect quantum

corrections to RG flow equations due to nontrivial

FIG. 5. One-loop diagrams contributing to the self-energy
correction (a), and renormalization of disorder coupling (b)–(d).
Notice that contributions from (c) ladder and (d) crossing diagram
are ultraviolet divergent only in ϵn (Sec. III A) and ϵd (Sec. IV C)
expansions, while they produce ultraviolet finite contribution in
ϵm expansion (Sec. IV B). Here, solid (dashed) lines represent
fermionic (disorder) field.

−0.2 −0.1
0

0.25

0.5

(a)

−0.2 −0.1 0 0.1
0

0.25

0.5

rotalusnI MSW

Metal

(b)

0 0.1 0.2

00

0.2

FIG. 6. (a) The RG flow diagram obtained from Eq. (11) and
(b) the resulting phase diagram in theΔ − Δ0 plane, for ϵn ¼ 1=2.
Here, Δ is the tuning parameter for WSM-insulator transition
[see Eq. (6)], and Δ0 is the strength of random charge impurities.
The blue dot and red dot, respectively, represent a critical and a
multicritical point. The metallicity sets in through the multi-
critical point.
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dispersion along kz. Nonetheless, our formal approach
allows us to systematically account for such quantum
corrections, controlled via another small parameter 1=n
(in the spirit of a 1=N expansion, where N counts the
number of fermion flavors [79]). Therefore, our RG
analysis is ultimately controlled by two small parameters
ϵn (measuring the deviation from the marginality condition
for disorder, i.e., two spatial dimensions, leading to non-
trivial bare scaling dimension ½Δj� ¼ −ϵn for all disorder
couplings with j ¼ 0, ⊥, z) and 1=n [measuring the
strength of the band dispersion in kz direction and thus
controlling the quantum (loop) corrections arising from
finite band curvature in this direction]. In this regard the RG
analysis follows the spirit of simultaneous ϵ and 1=N
expansions [79]. Only at the very end of the calculation we
set ϵn ¼ 1=2 and n ¼ 2 (physically relevant situation). This
analysis is presented in detail in Appendix B 1. The
resulting exponents (after accounting for 1=n quantum
corrections), namely, z ¼ 1.245 and ν ¼ 2, are sufficiently
close to the ones we report here by taking n → ∞ in the
perturbative loop corrections.

B. Scaling of density of states near WSM-insulator
QCP: Numerical demonstration of the MCP

Before we discuss the scaling behavior of the average
DOS along the WSM-insulator phase boundary and inside
the metallic phase, setting in through the instability of the
critical semimetallic phase, let us point out some crucial
subtle issues associated with such analysis. Note that the
ADOS of the critical semimetal [described by ĤQð0Þ in
Eq. (6)] vanishes as ϱðEÞ ∼ jEj3=2, while that in the WSM
phase vanishes as ϱðEÞ ∼ jEj2. But, in the insulating phase,
average DOS displays hard gap. Based on scaling analysis
we expect WSM, insulator, and the critical semimetal to be
stable against sufficiently weak disorder. We exploit these
characteristic features to pin the WSM-insulator phase
boundary for weak disorder. On the other hand, for stronger
disorder onset of a metallic phase can be identified from the
existence of finite ADOS at zero energy. Following these
diagnostic tools we arrive at the phase diagram of a Weyl
material residing in close proximity to the WSM-insulator
QPT; see Fig. 2 (left). We are ultimately interested in
exposing the existence of a MCP in the (mz, tz) plane [the
red dot in Fig. 6(a)], which has two relevant directions. One
of them controls critical semimetal-metal QPT, while the
other one drives WSM-insulator QPT. Since we consider
the former transition, our focus will be restricted on the
black dashed line shown in Fig. 2.
More specifically, we here compute the average DOS by

employing the KPM [72] starting with the tight-binding
model, introduced in Eqs. (2), (3), and (5), and staying in
close vicinity ofmz=t0 ¼ 0.5 and tz=t0 ¼ 0.5 (see the phase
diargam in Fig. 4). The tight-binding model is implemented
on a cubic lattice with periodic boundary conditions in all
three directions and the linear dimensionality of the system

in each direction is L ¼ 140. Even though average DOS is
a self-averaged quantity, we perform average over 20
random disorder realizations to minimize the residual
statistical fluctuations, compute 4096 Chebyshev moments,
and take trace over 12 random vectors to obtain the average
DOS. For the sake of simplicity we here account for only
random charge impurities. Potential disorder is distributed
uniformly and randomly within the range ½−W;W�. The
scaling of average DOS can be derived in the follow-
ing way.
Since we are following only one relevant direction

associated with the MCP, effectively it can be treated as
a simple QCP across which various physical observables
(such as average DOS) display single parameter scaling.
Note that the total number of states NðE;LÞ in a d-
dimensional system of linear dimension L, below the
energy E, is proportional to Ld, and in general is a function
of two dimensionless parameters L=ξ and E=E0. Here, ξ ∼
δ−ν is the correlation length that diverges at the QCP,
located at δ ¼ 0, where δ ¼ ½ðW −WcÞ=Wc� is the reduced
distance from the QCP, located at W ¼ Wc. Consequently,
the correlation energy, defined as E0 ∼ δνz, vanishes as the
QCP is approached from either side of the transition [82].
Following the standard formalism of scaling theory, we
then can write

NðE; LÞ ¼ ðL=ξÞdGðE=δνz; L=δ−νÞ; ð13Þ

where G is an universal but unknown scaling function.
Therefore, from the definition of average DOS,
ϱðE; LÞ ¼ L−ddNðE;LÞ=dE, we arrive at the following
scaling form:

ϱðE;LÞ ¼ δνðd−zÞFðjEjδ−νz; δL1=νÞ; ð14Þ

where F is yet another universal, but typically unknown,
scaling function. However, we can access the behavior of
the scaling function in different regimes along the black
dashed line shown in Fig. 2 (left), which we exploit to
compute critical exponents characterizing the critical semi-
metal-metal QPT across the MCP. In the final step we have
used the fact that average DOS remains particle-hole
symmetric, but on average. Note that we will use exactly
the same scaling function deep inside the WSM phase in
the presence of generic disorder, discussed in Sec. VI. We
must stress here that in the above expression d ¼ d�, the
effective dimensionality of the system, defined in Eq. (9),
when we address the scaling of ADOS along the phase
boundary between the WSM and an insulator, and across
the QPT to a metallic phase through the MCP, shown in
Fig. 2 (left). On the other hand, we set d ¼ 3 (physical
dimensionality) while addressing the WSM-metal transi-
tion, since the electronic dispersion is linear and isotropic
in a WSM.
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First of all, notice that ADOS ϱð0Þ is pinned to zero
along the phase boundary between the WSM and insulator
for weak enough disorder, as shown in Fig. 7(a). Therefore,
critical semimetal separating these two phases remains
stable against weak disorder and the nature of the WSM-
insulator direct transition remains unchanged for weak
enough randomness. However, beyond a critical strength of
disorder, Wc ¼ 1.20� 0.05, ϱð0Þ becomes finite and
metallicity sets in through the MCP; see Figs. 2 (left)
and 7(a). Beyond this point there exists no direct transition
between theWSM and an insulator. Also note forW ≪ Wc,
ϱðEÞ ∼ jEj1.5, as shown in Fig. 2 (right), as expected, since
in the clean system z ¼ 1 and d� ¼ 5=2.
Now we consider very close proximity to the MCP,

located at W ¼ Wc along the disorder axis. At this MCP
average DOS becomes independent of δ, yielding FðxÞ∼
xd�=z−1. By comparing ϱðEÞ with E, we obtain the DSE
associated with critical semimetal-metal QPT to be
z ¼ 1.26� 0.05; see Fig. 7(b).
Next we move into the metallic phase, but continue to

follow the black dashed line from Fig. 2 (left). In the
metallic phase ϱð0Þ becomes finite [see Fig. 7(a)]. Thus
to the leading order FðxÞ ∼ x0 and consequently ϱð0Þ∼
δðd�−zÞν. With the prior notion of z ¼ 1.26� 0.05, now by
comparing ϱð0Þ versus δ we obtain the CLE at the MCP
associated with the critical semimetal-metal QPT to be
ν ¼ 1.97� 0.05, as shown in Fig. 7(c). [After accounting
for the variation in the location ofWc and determination of
z, we finally obtain ν ¼ 1.98� 0.10; see Appendix E for
discussion and Table IV (last row) for analysis.]

Therefore, numerically extracted values of two
critical exponents, namely, ν ¼ 1.97 and z ¼ 1.26, at
the MCP associated with the critical semimetal-metal
QPT match quite satisfactorily with the field-theoretic
prediction obtained from an ϵn expansion introduced in
this work, which allows us to control the RG calculation
by tuning the flatness of the quasiparticle dispersion
along the kz direction: a controlled ascent from two
spatial dimensions.
We now discuss two different types of data collapse

across the disorder-driven MCP. The results are shown in
Fig. 8. First, we focus on the largest system with
L ¼ 220. From Eq. (14), upon neglecting the finite-size
effects, we compare ϱðEÞjδj−ðd�−zÞν versus jEjjδj−νz along
the black line from Fig. 2 (left). With numerically
obtained values of ν and z we find that all data nicely
collapse onto two branches (corresponding to the aniso-
tropic semimetal and metallic sides of the QPT), which
meet in the critical regime, as shown in Fig. 8 (left).
Next, we compare the ADOS at zero energy in the
metallic phase, namely, ϱð0ÞLd�−z versus L1=νδ, in
systems of different sizes (L), as shown in Fig. 8 (right).
We also obtain excellent finite-size data collapse for a
wide range of system sizes using already numerically
extracted values of ν and z. Therefore, field-theoretic
predictions and numerical findings across the disorder-
driven MCP are in good agreement with each other.
Next, we address the effects of disorder inside the WSM
phase by pursing complementary field-theoretic and
numeric approaches.

(a) (b) (c)

FIG. 7. Analysis of average density of states in various regimes along the black dashed line shown in Fig. 2 (left). Recall the black
dashed line for weak disorder defines the phase boundary between the WSM and insulator, while when extended into the metallic phase
[the red shaded regime in Fig. 2 (left)] captures the instability of critical excitations residing at the WSM-insulator QCP toward the
formation of a metallic phase. (a) Scaling of average DOS at zero energy [ϱð0Þ] along the black dashed line as a function of increasing
disorder (W), showing that ϱð0Þ remains pinned at zero up to a critical strength of disorder, Wc ¼ 1.20� 0.05. (b) Scaling of average
DOS at finite energy [ϱðEÞ] around the multicritical point residing in the two-dimensional coupling constant space ðmz;WÞ, indicating
the dynamic scaling exponent for critical excitation-metal QPT is z ¼ 1.26� 0.05. (c) Scaling of ϱð0Þ along the black dashed line inside
the metallic phase indicating that correlation length exponent for critical excitation-metal QPT is ν ¼ 1.97� 0.05. Details of the data
analysis are presented in Sec. III B. The quoted error bars in z and ν are fitting error bars. See Appendix E and Table IV (last row) for
further details of data analysis.
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Note that the MCP, where WSM, an insulator, a metal,
and the critical anisotropic semimetal meet, possesses two
relevant directions; see Fig. 6(a). Hence, at finite energies
two quantum-critical fans associated with (1) critical
anisotropic semimetal-metal and (2) WSM-metal QPTs
(characterized by distinct sets of critical exponents) inter-
twine. Thus, obtaining a high-quality data collapse at finite
energies [see Fig. 8 (left)] across this MCP is quite
challenging, and qualitatively it is slightly worse than that
across the WSM-metal QPT (sufficiently far from the
MCP), shown in Figs. 13 and 14 (third column). Still,
roughly 300 data points effectively fall on two branches
[the top (bottom) one representing metallic (anisotropic
semimetallic) phase] with numerically extracted mean
values of the exponents, z ¼ 1.26 and ν ¼ 1.97, in good
agreement with analytical predictions from leading order in
ϵn expansion (z ¼ 1.25 and ν ¼ 2). The quality of finite-
size data collapse obtained from the scaling of ϱð0Þ in
different systems [see Fig. 8 (right)] is yet quite comparable
to the ones shown in Figs. 13 and 14 (fourth column) across
the WSM-metal QPT.

IV. DIRTY WEYL SEMIMETAL: MODEL
AND SCALING ANALYSIS

In this section, we set up the field-theoretical framework
to analyze the role of disorder when the system is deep
inside the WSM phase. We introduce the notion of two
different ϵ expansions: (a) an ϵm expansion about a critical
disorder distribution, where ϵm ¼ 1 −m with Gaussian
white noise distribution recovered as m → 0, and (b) an
ϵd expansion, with Gaussian white noise distribution from
the outset, about the lower critical dimension dc ¼ 2 for
WSM-metal QPT, where ϵd ¼ d − 2, and therefore for
three spatial dimensions ϵd ¼ 1.

A. Hamiltonian and action

The effective low-energy description of WSM can be
obtained by expanding the lattice Hamiltonian [see Eq. (5)]
around the Weyl nodes located at k0 ¼ ð0; 0;�k0zÞ, with
k0z ¼ cos−1ðmz=tzÞ. The resulting low-energy Hamiltonian
reads

HW ¼ τ0 ⊗ vðkxσ1 þ kyσ2Þ þ τ3 ⊗ σ3vzkz; ð15Þ

where v ¼ ta, vz ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2z −m2

z

p
, and the momentum is

measured from the Weyl nodes. For simplicity we hereafter
take the Fermi velocity to be isotropic, v ¼ vz, so that the
low-energy Hamiltonian becomes rotationally symmetric.
Upon performing a unitary rotation with U ¼ σ0 ⊕ σ3, the
above Hamiltonian assumes a quasirelativistic form
HW ¼ iγ0γjvkj, where γ0 ¼ τ1 ⊗ σ0, γj ¼ τ2 ⊗ σj for
j ¼ 1, 2, 3 are mutually anticommuting 4 × 4 Hermitian
matrices, and summation over repeated spatial indices is
assumed. To close the Clifford algebra of five mutually
anticommuting matrices, we define γ5 ¼ τ3 ⊗ σ0. Two sets
of Pauli matrices σμ and τμ, respectively, operate on spin or
pseudospin and valley or chiral (left and right) indices. The
low-energy effective Hamiltonian enjoys a variety of
emergent discrete and continuous symmetries. The above
Hamiltonian is invariant under a pseudo-time-reversal
symmetry, generated by an antiunitary operator T ¼
γ0γ2K, where K is the complex conjugation, a charge
conjugation symmetry, generated by C ¼ γ2, and parity or
inversion symmetry generated by P ¼ γ0. Furthermore, the
Hamiltonian [see Eq. (15)] also possesses a global chiral
U(1) symmetry, generated by γ5, which in the low-
energy limit corresponds to the generator of translational
symmetry [66].
To incorporate the effects of disorder we consider the

following minimal continuum action for a dirty WSM:

S ¼
Z

ddxdτ½Ψ̄ðγ0∂τ þ vγj∂jÞΨ − φNðΨ̄NΨÞ�; ð16Þ

with x as d-dimensional spatial coordinates, the four-
component spinor Ψ† ¼ ðu†↑;þ; u†↓;þ; u†↑;−; u†↓;−Þ, where

u†σ;τ is the fermionic creation operator near the Weyl point
at τk0 for τ ¼ � (left or right) and with spin σ ¼ ↑;↓, while
Ψ̄ ¼ Ψ†γ0, as usual. Various disorder fields φN , coupled to
the fermion bilinears, are realized with different choices of
4 × 4 matrices N, as shown in Table III. Notice that the
matrices associated with four types of disorder anticom-
mute with γ5 and represent chiral-symmetric disorder,
while for the other four types of disorder, ½N; γ5� ¼ 0
and the corresponding disorder vertex breaks the U(1)
chiral symmetry. As we demonstrate in this paper, such a
global chiral symmetry plays a fundamental role in clas-
sifying the disorder-driven WSM-metal QPTs.

(a) (b)

FIG. 8. (a) Collapse of average DOS at finite energy (obtained
in system with L ¼ 220) across the multicritical point shown in
Fig. 2 (left). All data collapse reasonably well onto two branches
corresponding to anisotropic semimetal (upper branch) and
metallic phase (lower branch), which tend to meet in the critical
regime. (b) Data collapse of average DOS at zero energy for
different system sizes inside the metallic phase, appearing across
the MCP. These two data collapses are obtained with numerically
extracted critical exponents z ¼ 1.26 and ν ¼ 1.97 (see Fig. 7),
with d� ¼ 5=2.
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B. ϵm expansion in three dimensions

We assume that the disorder field obeys the distribution
[38,83]

hφNðxÞφNðyÞi ¼ ΔN
1

jx − yjd−m ; ð17Þ

or in the momentum space,

hφNðqÞφNð0Þi ¼ Δ̃N
1

jqjm ; ð18Þ

and the limit m → 0 corresponds to the Gaussian white
noise distribution, which we are ultimately interested
in. This form of the white noise distribution stems
from the following representation of the d-dimensional δ
function [44]:

δðdÞðx − yÞ ¼ lim
m→0

Γðd−m
2
Þ

2mπd=2Γðm=2Þ
1

jx − yjd−m : ð19Þ

We now carry out the scaling analysis of the continuum
action for a WSM given by Eq. (16). The scaling

dimensions of the momentum and frequency are ½q� ¼ 1
and ½ω� ¼ z. The form of the Euclidean action [see
Eq. (16)] then implies that the engineering scaling dimen-
sion of the fermionic field ½Ψ� ¼ d=2 and ½v� ¼ z − 1,
while the scaling dimension of the disorder field is ½φN � ¼
zþ ηφN

, since the engineering dimension of the disorder
field is equal to the DSE z for any choice ofN, and ηφN

is its
anomalous dimension. Equation (17) then yields

½ΔN � ¼ 2ðzþ ηφN
Þ − dþm: ð20Þ

Because of linearly dispersing low-energy quasiparticles, a
WSM corresponds to z ¼ 1 fixed point, and in d ¼ 3 the
engineering dimension of the disorder strength is
½ΔN � ¼ m − 1. A first implication of this result is that
the white noise disorder, m ¼ 0, is irrelevant close to
the WSM ground state in d ¼ 3. Second, for m ¼ 1, the
disorder is marginal and we use that to introduce the
deviation from this value as an expansion parameter
ϵm ¼ 1 −m.
The β function (infrared) for the disorder coupling ΔN in

the ϵm expansion is given in terms of its scaling dimension
in Eq. (20), yielding

βΔN
¼ ΔN ½−ϵm þ 2ðz − 1Þ þ 2ηφN

�; ð21Þ

in d ¼ 3. Therefore, to obtain the explicit form of this β
function in terms of the disorder couplings, we have to
compute the DSE and the anomalous dimension of the
disorder field. The former is obtained from the fermion self-
energy with the diagram shown in Fig. 9(a), while the latter
is found from the vertex diagram in Fig. 9(b). Evaluation of
these two diagrams has been carried out using the field-
theoretic method (see Appendix C). Alternatively, one may
choose to integrate out the fast modes within the momen-
tum shell Λe−l < k < Λ, with Λ as an ultraviolet cutoff in
the momentum, to arrive at the RG flow equations for ΔN.
We note that in the ϵm expansion two ladder diagrams
shown in Figs. 5(c) and 5(d) are ultraviolet convergent (see
Appendix C 3) irrespective of the choice of disorder
vertices. Therefore, during the coarse graining no new or
short-range disorder gets generated (see also Appendix G
1). This conclusion remains operative even beyond the
leading order in ϵm expansion.

1. Self-energy and dynamic scaling exponent

We first show the computation of the self-energy
diagram, shown in Fig. 9(a), yielding the dynamical
exponent and the anomalous dimension for the fermion
field within the regularization scheme defined by the
parameter ϵm ¼ 1 −m, the deviation from the critical
disorder distribution. All the integrals are therefore per-
formed in d ¼ 3. The divergent part of the integral appears
as a pole ∼1=ϵm, analogously to the case of the dimensional
regularization where the deviation from the upper or lower

TABLE III. Various types of disorder represented by fermionic
bilinears (j ¼ 1, 2, 3), together with their symmetries under
pseudo-time-reversal (T ), parity (P), continuous chiral rotation
(Uc), and charge conjugation (C). The disorder couplings are
represented by ΔN and Σμν ¼ ½γμ; γν�=ð2iÞ. Note that true time-
reversal symmetry in WSM is already broken. The pseudo-time-
reversal symmetry T is generated by an antiunitary operator
γ0γ2K, where K is complex conjugation, such that T 2 ¼ −1 (the
true time-reversal operator is γ1γ3K). The parity operator is
P ¼ γ0, while the charge-conjugation operator is C ¼ γ2. The
continuous chiral symmetry (Uc) is generated by γ5, the generator
of translational symmetry in the continuum limit in a clean Weyl
semimetal [66]. The Hermitain γ matrices satisfy standard
anticommutation relation fγμ; γνg ¼ 2δμν for μ, ν ¼ 0, 1, 2, 3,
5, and for explicit representation of γ matrices, see Sec. IVA.
Here ✓ and × signify even and odd under a symmetry operation,
respectively. With a slightly different tight-binding model, where
NjðkÞ ¼ t cosðkjaÞ and NM

3 ðkÞ ¼ ½sinðk1aÞ þ sinðk2aÞ −
2 sinðk3aÞ� [see Eq. (2)], the axial current corresponds to
magnetization, temporal and spatial tensors to spin-orbit and
axial magnetization, respectively. However, such microscopic
details do not alter any physical outcome.

Bilinear Physical quantity T P Uc C Coupling

Ψ̄γ0Ψ Chemical potential ✓ ✓ ✓ ✗ ΔV

Ψ̄γ0γ5Ψ Axial potential ✓ ✗ ✓ ✓ ΔA

Ψ̄Ψ Scalar mass ✗ ✓ ✗ ✓ ΔS

Ψ̄iγ5Ψ Pseudoscalar mass ✓ ✗ ✗ ✓ ΔPS

Ψ̄iγ5γjΨ Axial current ✗ ✓ ✓ ✓ ΔM

Ψ̄iγjΨ Current ✗ ✗ ✓ ✗ ΔC

Ψ̄iΣ0jΨ Temporal tensor ✗ ✗ ✗ ✗ ΔSO

Ψ̄ΣjkΨ Spatial tensor ✓ ✓ ✗ ✗ ΔAM
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critical space-time dimension plays the role of an expansion
parameter. To find renormalization constants, we use
minimal subtraction; i.e., we keep only the divergent part
appearing in the corresponding diagrams.
The action [see Eq. (16)] without the disorder yields

the inverse free-fermion propagator G−1
0 ðiω;kÞ¼ iðγ0ωþ

v0γjkjÞ, with v0 as the bare Fermi velocity. Taking into
account the self-energy correction, the inverse dressed
fermion propagator is

G−1ðiω;kÞ ¼ G−1
0 ðiω;kÞ þ Σðiω;kÞ; ð22Þ

with Σðiω;kÞ as the self-energy. After accounting for all
possible disorders, we arrive at the following compact
expression for the self-energy (see Appendix C for details):

Σðiω; kÞ ¼ iγ0ω

�
f1ðΔjÞ
ϵm

�
þ iv0γjkj

�
f2ðΔjÞ
3ϵm

�
; ð23Þ

where

f1ðΔjÞ ¼ ΔV þ ΔA þ 3ΔM þ 3ΔC þ 3ΔSO þ 3ΔAM

þ ΔS þ ΔPS; ð24Þ

f2ðΔjÞ ¼ −ΔV − ΔA þ ΔM þ ΔC − ΔSO − ΔAM

þ ΔS þ ΔPS; ð25Þ

with Δ̂j ¼ Δjkϵm=ð2π2v2Þ as the dimensionless disorder
strength, and for brevity we here drop the hat symbol in the
final expression. From the above expression of the self-
energy, together with the renormalization condition
G−1ðω;kÞ ¼ ZΨðiγ0ωþ ZvviγjkjÞ, with v as the renor-
malized Fermi velocity, we arrive at the expression for the
fermion-field renormalization ðZΨÞ and velocity renorm-
alization ðZvÞ:

ZΨ ¼ 1þ f1ðΔjÞ
ϵm

; Zv ¼ 1 −
1

ϵm

�
f1ðΔjÞ −

f2ðΔjÞ
3

�
:

ð26Þ

This equation then yields the anomalous dimension for the
fermion field:

ηΨ ¼ −
X
j

d lnZΨ

dΔj
βΔj

: ð27Þ

Furthermore, the renormalization factor Zv enters the
renormalization condition for the Fermi velocity
Zvv ¼ v0. Using Eq. (26), together with βΔN

¼ −ϵmΔN þ
OðΔ2

jÞ, we find

βv ¼ −
1

3
v½3f1ðΔjÞ − f2ðΔjÞ�: ð28Þ

Finally, the β function of the Fermi velocity is
βv ¼ ð1 − zÞv, which together with Eq. (28) determines
the DSE:

z ¼ 1þ 1

3
½3f1ðΔjÞ − f2ðΔjÞ�: ð29Þ

2. Vertex correction: Anomalous dimension
of disorder field

We now turn to the vertex correction due to the disorder,
shown in Fig. 9(b), which yields the anomalous dimension
of the disorder field. As shown in Appendix C, the vertex
represented by the matrix N receives the correction of
the form

VNðkÞ ¼
X
M

½MγjNγjM� ΔM

3ϵm
: ð30Þ

The corresponding renormalization condition that deter-
mines the renormalization constant ZφN

for the disorder
field reads

ZΨZφN
N þ VN ¼ N; ð31Þ

with ZΨ given by Eq. (26). The above condition in turn
yields the anomalous dimension of the disorder field as

ηφN
¼ −

X
j

d lnZφN

dΔj
βΔj

; ð32Þ

which we then use to write the explicit form of the β
function, given by Eq. (21) in terms of the disorder
couplings.

C. ϵd expansion about d = 2

Alternatively, one may take the Gaussian white noise
distribution in Eq. (17) with m → 0 from the outset. In that
case, the engineering dimension of the disorder coupling is
equal to 2 − d, since z ¼ 1 in a clean WSM. Therefore,
d ¼ 2 is the lower critical dimension in the problem and we
can use ϵd ¼ d − 2 as an expansion parameter, following

FIG. 9. One-loop (a) self-energy and (b) vertex diagram.
Contributions from only these two diagrams are ultraviolet
divergent in ϵm ¼ m − 1 expansion. Evaluations of these two
diagrams are shown in Appendix C. Here, solid (dashed) lines
represent fermion (disorder) fields.
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the spirit of ϵ expansion [30,36,37,40,42,45,56,79,84]. In
this scheme, after performing the disorder averaging using
the replica method, the imaginary time action assumes a
similar form of Eq (10).
Within the framework of the ϵd expansion only the

temporal (frequency-dependent) component of self-energy
acquires a disorder-dependent correction to the leading
order. The self-energy correction due to disorder reads as

Σðiω; kÞ ¼ iγ0ω

�
f1ðΔjÞ
ϵd

�
; ð33Þ

with the function f1ðΔjÞ given by Eq. (24), and
ΔjΛϵd=ð2πv2Þ → Δj. This result is obtained from
Eq. (C1) with d ¼ 2þ ϵd and m ¼ 0. As a result, the
field-renormalization factor ZΨ ¼ 1þ f1ðΔjÞ=ϵd and the
velocity renormalization factor is Zv ¼ 1 − f1ðΔjÞ=ϵd.
Using the renormalization condition Zvv ¼ v0, together
with βΔN

¼ −ϵdΔN þOðΔ2
jÞ, we obtain the leading-order

RG flow equation for the Fermi velocity,

βv ¼ vð1 − zÞ ¼ −vf1ðΔjÞ; ð34Þ

which yields a scale-dependent dynamic exponent
z ¼ 1þ f1ðΔjÞ. The seemingly different expressions for
the flow equation and DSE in these two schemes stems
from underlying different methodology of capturing the
ultraviolet divergences of various diagrams. However, such
details do not alter any physical outcome. While extracting
the RG flow of all disorder couplings, we first complete the
γ matrix algebra in d ¼ 3 and subsequently perform the
momentum integral in d ¼ 2þ ϵ. Such a procedure is safe
at least to the leading order in ϵd expansion as the relevant
Feynman diagrams (see Fig. 5) do not contain any over-
lapping divergence. For next-to-leading-order calculation
one also needs to perform the γ-matrix algebra in
d ¼ 2þ ϵ. However, in the ϵm-expansion scheme we do
not need to continue the γ matrix algebra in general
dimension, as the entire analysis is performed in d ¼ 3.

V. CHIRAL-SYMMETRIC
OR INTRANODE DISORDER

We first focus on chiral-symmetric disorders. For a
single pair of Weyl fermions there are four such disorders,
namely, chemical potential, axial potential, current, and
axial current disorders, as shown in Table III. With
appropriate lattice model axial current disorder corresponds
to magnetic impurities, and from here onward we use this
terminology. We address the effect of weak and strong
chiral-symmetric disorder using both ϵm and ϵd expansions.

A. ϵm expansion

Let us first analyze this problem pursuing the ϵm
expansion. Using Eqs. (21), (29), (31), and (32), we obtain

the following RG flow equations for the coupling constants
to the leading order in ϵm:

βΔV
¼ ΔV

�
−ϵm þ 8

3
ðΔV þ ΔAÞ þ

16

3
ðΔC þ ΔMÞ

�
;

βΔA
¼ ΔA

�
−ϵm þ 8

3
ðΔV þ ΔAÞ þ

16

3
ðΔC þ ΔMÞ

�
;

βΔM
¼ −ϵmΔM; βΔC

¼ −ϵmΔC: ð35Þ

The above set of flow equations supports a line of quantum-
critical points in the ΔV − ΔA plane, determined by

ΔV;� þ ΔA;� ¼
3

8
ϵm; ð36Þ

where the quantities with subscript “*” represent their
critical values for WSM-metal QPT. The RG flow in this
plane is shown in Fig. 10(a). The line of QCPs also
determines the WSM-metal phase boundary, and the
corresponding phase diagram in the ΔV − ΔA plane is
shown in Fig. 10(b). At each point of this line of QCPs the
DSE and CLE are respectively given by

z ¼ 1þ ϵm
2
þOðϵ2mÞ; ν−1 ¼ ϵm þOðϵ2mÞ: ð37Þ

Therefore, for the Gaussian white noise distribution,
realized for ϵm ¼ 1, we obtain z ¼ 3=2 and ν ¼ 1 from
the leading-order ϵm expansion. If the bare value of either
the chemical potential or axial potential disorder strength is
zero, the quantum-critical behavior is governed by the QCP
corresponding to the disorder of a nonvanishing bare value
[44]. This QCP features the critical exponents of the same

(a) (b)

FIG. 10. (a) The RG flow diagram and (b) the phase diagram in
the ΔV − ΔA plane, for ϵm ¼ 1, obtained from Eq. (35). Here ΔV
and ΔA are, respectively, the strength of potential and axial
potential disorder. The red line in (a) corresponds to the line of
quantum-critical points [see Eq. (36)] that in turn defines the
phase boundary between the Weyl semimetal and metallic phases,
as shown in (b). A similar flow and phase diagram is obtained
from the RG calculation performed within the framework of an ϵd
expansion [see Eq. (39)] [30,42,44].
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value to the one-loop order, as in the case of the quantum-
critical line, given by Eq. (37).
From the RG flow equations [see Eq. (35)], we find that

both magnetic and current disorder are always irrelevant
perturbations, at least to the leading order in the ϵm
expansion. In the ΔX − ΔY plane, where X ¼ V, A and
Y ¼ M, C, the RG flow diagram is shown in Fig. 11(a) and
the corresponding phase diagram is shown in Fig. 11(b).
Importantly, the QPT separating the metallic and the
semimetallic phase in any ΔX − ΔY plane is governed by
the QCP located at ΔX;� ¼ 3ϵm=8. The phase boundary
between these two phases is determined by the irrelevant
direction at this QCP. Therefore, across the entire
WSM-metal phase boundary in these planes the univer-
sality class of the QPT is identical and characterized by
z ¼ 1þ ϵm=2þOðϵ2mÞ and ν−1 ¼ ϵm þOðϵ2mÞ to the lead-
ing order in ϵm expansion.

B. ϵd expansion

The RG flow equations for the chiral-symmetric disorder
coupling constants within the framework of the leading-
order ϵd expansion are

βΔV
¼ΔV ½−ϵdþ2FþðΔjÞ�þ8ΔMΔC;

βΔA
¼ΔA½−ϵdþ2FþðΔjÞ�þ4ðΔ2

MþΔ2
CÞ;

βΔM
¼ΔM

�
−ϵdþ

2

3
F−ðΔjÞ

�
þ8

3
ðΔCΔVþΔAΔMÞ;

βΔC
¼ΔC

�
−ϵdþ

2

3
F−ðΔjÞ

�
þ8

3
ðΔCΔVþΔAΔMÞ; ð38Þ

where F�ðΔjÞ¼ðΔVþΔAÞ�ðΔCþΔMÞ. These coupled
flow equations also support only a line of QCPs in the
ΔV − ΔA plane, as we previously found from Eq. (35) using
ϵm expansion, now determined by

ΔV;� þ ΔA;� ¼
ϵd
2
; ð39Þ

similar to the one in Eq. (36). The critical exponents at each
point of such line of QCPs are z ¼ 1þ ϵd=2þOðϵ2dÞ and
ν−1 ¼ ϵd þOðϵ2dÞ. We here stress that presently there is no
known method to compute these two exponents beyond
leading order in ϵd in a controlled fashion [40,45].
Therefore, in three spatial dimensions, ϵd ¼ 1, and we find
z ¼ 3=2 and ν ¼ 1 [30,42]. The RG flow diagram and the
corresponding phase diagram are similar to the ones shown
in Figs. 10(a) and 10(b). Only the location of the line of
QCPs and the phase boundary shift in a nonuniversal
fashion. The differences in the flow equations [Eqs. (36)
and (38)] arise from two diagrams shown in Figs. 5(c) and
5(d), which produce ultraviolet divergent contributions, but
only within the ϵd-expansion scheme. In the presence
of only potential disorder, we find z ¼ 3=2 and ν ¼ 1
[30,36,37,40,42,45].
Notice that if we start with only magnetic or current

disorder, the axial disorder gets generated from Feynman
diagrams in Figs. 5(c) and 5(d). Thus, to close the RG flow
equations, we need to account for ΔA coupling from the
outset, and the resulting RG flow equations read

βΔA
¼ ΔA½−ϵd þ 2ðΔA þ 3ΔYÞ� þ 4Δ2

Y;

βΔY
¼ ΔY

�
−ϵd þ

2

3
ðΔY − ΔAÞ

�
þ 8

3
ΔAΔY; ð40Þ

for Y ¼ M, C. The above set of coupled RG flow equations
supports only one QCP, located at ΔA;� ¼ ϵd=2, ΔY ¼ 0.
The RG flow and the resulting phase diagrams are shown in
Figs. 12(a) and 12(b), respectively. Hence, in the presence
of magnetic and current disorder, the transition to the

(a) (b)

FIG. 11. (a) The renormalization-group flow diagram and
(b) corresponding phase diagram in the ΔX − ΔY plane, where
X ¼ V, A and Y ¼ M, C obtained from Eq. (35). In these planes
there is only one QCP at ΔX ¼ 3ϵm=8, ΔY ¼ 0 (red dot). The
phase boundary between the Weyl semimetal and metal in (b) is
determined by the irrelevant direction, shown by blue dotted line
in (a).

(a) (b)

FIG. 12. (a) The renormalization-group flow diagram and
(b) corresponding phase diagram in the ΔA − ΔY plane, where
Y ¼ M, C obtained from ϵd expansion for ϵd ¼ 1. There is only
one quantum-critical point at ΔA ¼ ϵd=2, ΔY ¼ 0 (red dot). The
phase boundary between the Weyl semimetal and metal in (b) is
determined by the irrelevant direction, shown by the blue dotted
line in (a). These figures are qualitatively similar to the ones
shown in Fig. 11, apart from the nonuniversal shift in the phase
boundary.
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metallic phase is controlled by the QCP due to axial
disorder. If we also take into account the presence of
potential disorder, then such a semimetal-metal QPT takes
place through one of the points residing on the line of QCPs
in the ΔV − ΔA plane, depending on the bare relative
strength of these two disorder couplings.

C. Chiral superuniversality

From the discussion in the previous two sections, we can
conclude that in the presence of chiral-symmetric disorder in
aWSM, the semimetal-metalQPT takes place through either
a QCP or a line of QCPs. The location of the line of QCPs
and the resulting phase boundaries are nonuniversal and thus
dependent on the RG scheme. However, the universal
quantum-critical behavior with chiral-symmetric disorder
couplings is insensitive to these details, at least to the leading
order in the expansion parameter, and all QPTs in the four-
dimensional hyperplane of disorder coupling constants are
characterized by an identical set of critical exponents,
namely, z ¼ 1þ ϵ=2þOðϵ2Þ and ν−1 ¼ ϵþOðϵ2Þ, with
ϵ ¼ 1. The importance of the higher-order corrections is
presently unknown. Therefore, emergent quantum-critical
behavior for strong chiral-symmetric disorder stands as a
rare example of superuniversality, and we name it chiral
superuniversality. Next, we demonstrate emergence of such
superuniversality across WSM-metal QPT by numerically
analyzing the scaling of average DOS in the presence of
generic chiral-symmetric disorder.

VI. NUMERICAL DEMONSTRATION
OF CHIRAL SUPERUNIVERSALITY

Motivated by the field-theoretic prediction of emergent
chiral superuniversality across theWSM-metal QPTs driven
byCSP disorder, next we numerically investigate the scaling
of average DOS across such QPTs. Since ϱð0Þ vanishes and
is finite in theWSM andmetallic phases, respectively, it can
be promoted as a bona fide order parameter across the
WSM-metal QPT [52,54,56,57,59,63]. In addition, such
analysis endows an opportunity to extract the critical
exponents for the transition nonperturbatively and, at the
same time, test the validity of the proposed scenario for
chiral superuniversality. The WSM phase is realized from
the tight-binding model, defined through Eqs. (3) and (5),
which we implement on a cubic lattice of linear dimension
L. For numerical analysis we always set mz ¼ 0, and for
current disorder take t ¼ tz ¼ 1 ¼ t0, while t ¼ 1 ¼ t0,
tz ¼ 1

2
for the remaining seven types of elastic scatterers

[see Table III], in the clean model, given by Eqs. (2)–(5).
We use lattice realizations of disorder introduced in
Appendix D. We impose periodic boundary condition in
all three directions. The average DOS is computed by using
the kernel polynomial method [72]. The average is taken
over 20 random realizations of disorder that minimizes
the residual statistical error in average DOS, which is a

self-averaged quantity. We typically compute 4096
Chebyshev moments and take the trace over ∼12 random
vectors to compute the average DOS. All types of disorder
are distributed uniformly and randomly within the range
½−W;W�. The scaling theory for average DOS has already
been discussed in Sec. III B. Thus, we can readily start from
the final expression of the general scaling form of the
average DOS, presented in Eq. (14), and continue with our
numerical analysis.

A. Numerical analysis with random intra-node
scatterers or chiral-symmetric disorder

We begin the discussion on the effects of randomness on
WSM by focusing on the intranode or chiral-symmetric
disorder. Let us first focus on the quantum-critical regime
and for now we assume that the system size is sufficiently
large so that we can neglect the L dependence in Eq. (14).
In this regime the scaling function must be independent of
δ, dictating FðxÞ ∼ xd=z−1. Therefore, when W ¼ Wc we
compare ϱðEÞ versus Ed=z−1 and extract the DSE z. Such
analysis for all four possible CSP disorders is shown in the
first column of Fig. 13 and numerically extracted values of
z are quoted in Table I. Within the numerical accuracy,
we always find z ≈ 1.5, in excellent agreement with the
field-theoretic result, obtained from the leading-order ϵ
expansions.
Next we proceed to the metallic side of the transition,

where average DOS at zero energy becomes finite. From
the scaling function in Eq. (14), we obtain ϱð0Þ ∼ δðd−zÞν.
Thus, by comparing ϱð0Þ versus δ, we extract the CLE ν,
using already-obtained value of the DSE z, as shown in the
second column of Fig. 13. The numerically found CLE is
also quoted in Table I, and within numerical accuracy ν ≈ 1
always, irrespective of the nature of CSP disorder. Once
again we find an excellent agreement of numerically
extracted values of ν with the one obtained from the
leading-order ϵ expansions. These two results strongly
support the picture of chiral superuniversality.
To test the quality of our numerical analysis we search

for two types of data collapse. First, we compare
ϱðEÞjδj−νðd−zÞ versus jδj−νzjEj, motivated by the scaling
form of average DOS, displayed in Eq. (14). Using
numerically obtained values of ν and z, we find that for
energies much smaller than the bandwidth (jEj ≪ 1), all
data collapse onto two separate branches for all four
disorders, as shown in the third column of Fig. 13.
While the top branch corresponds to the metallic phase,
the lower one stems from the WSM phase, and eventually
these two branches meet in the quantum-critical regime.
Finally, we demonstrate a finite-size data collapse for

ϱð0Þ for different system sizes (L) by focusing on the
metallic side of the transition. Setting E ¼ 0 in Eq. (14),
we obtain ϱð0Þ ¼ Lz−dFð0; δL1=νÞ. Hence, we compare
ϱð0ÞLd−z versus δL1=ν and find an excellent data collapse
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for 100 < L < 220, using numerically obtained values of ν
and z for all four disorders, as shown in the fourth column
of Fig. 13. The data collapse becomes systematically worse
for large values of δ or stronger disorder due to the
existence of a second transition that takes the system from
a metallic phase to an Anderson insulator. Therefore, our
thorough numerical analysis provides a valuable and
unprecedented insight into the nature of the WSM-metal

QPTs driven by generic chiral-symmetric disorder, and
staunchly supports the proposal of an emergent chiral
superuniversality across such QPTs.
Finally, we note that one can attempt to extract the

CLE (ν) from the scaling of ADOS at finite energy in
the semimetallic side of the transition in the following
way. In the WSM phase the universal scaling function
(after neglecting the L dependence) FðxÞ ∼ xd−1, yielding

FIG. 13. Scaling analysis of average density of states in various regimes of the phase diagram of a dirty WSM for all four possible
intranode scatterings; plots from top to bottom rows correspond to potential (ΔV), axial potential (ΔA), axial current (ΔM), and current
(ΔC) disorder. First column shows the scaling of ADOS ϱðEÞ versus E around the critical strength of disorder (W ¼ Wc). The second
column depicts the scaling of ADOS at zero energy ϱð0Þ versus δ, the reduced distance from the critical disorder defined as
δ ¼ ½ðW −WcÞ=Wc�. In the third column we display ϱðEÞδ−ðd−zÞν versus jEjjδj−νz for weak (W < Wc) and strong (W > Wc) disorder
and jEj ≪ tð¼ 1Þ. All data collapse onto two branches. The top branch represents the metallic phase, while the lower branch represents
WSM. Note that these two branches meet at large values of jEjjδj−νz, corresponding to the quantum-critical regime. All data in the first
three columns are obtained from a system of linear dimension L ¼ 220. The finite-size data collapse inside the metallic phase is shown
in the fourth column, where we compare ϱð0ÞLd−z versus δL1=ν for 100 ≤ L ≤ 220. Notice that all data collapse onto one branch for
small to moderate values of δL1=ν, with the numerically extracted values of the critical exponents z and ν, quoted in the figure and
summarized in Table I. The quality of the data collapse progressively worsens for larger values of δL1=ν due to the existence of a second
QPT of a three-dimensional dirty Weyl metal into the Anderson insulating phase, discussed in Sec. IX. Scaling of ADOS and data
analysis are discussed in detail in Sec. VI. The quoted error bars in z and ν are fitting error bars. See Appendix E and Table IV (first four
rows) for details of data analysis.

GLOBAL PHASE DIAGRAM OF A DIRTY WEYL LIQUID … PHYS. REV. X 8, 031076 (2018)

031076-17



ϱðEÞ ∼ δð1−zÞdνjEjd−1; see Eq. (14) for sufficiently small
energy. By contrast, for moderately high energy (still
jEj ≪ 1), ϱðEÞ ∼ jEj inside the critical regime. There-
fore, by tracking the scaling of the crossover boundary
between the WSM [displaying ϱðEÞ ∼ jEj2] and critical
regime [displaying ϱðEÞ ∼ jEj2] at finite energy for sub-
critical disorder, one can extract the CLE ν. However,
determination of such crossover boundary does not rest on
any strict criterion and is often (if not always) associated
with a large error, which in turn produces a large error bar
in the determination of CLE [52,56,57,59]. Therefore, this
methodology of determining ν and the corresponding error
bar is questionable.

B. Numerical analysis with random internode
scatterers or nonchiral disorder

Motivated by the intriguing possibility of realizing an
emergent superuniversality, we further seek to examine its

robustness in the presence of internode scattering (also
referred to as nonchiral disorder). In the simplest version
of a Weyl semimetal composed of only two Weyl nodes,
there are four sources of internode scattering, highlighted
in Table III, and their lattice realization is shown in
Appendix D. We rely on the scaling of average DOS in
the presence of nonchiral disorder as well, and all the
parameters and numerical strategies are identical to the
ones pursued for chiral-symmetric (intranode) disorder.
The analyses of average DOS in various regimes of the
phase diagram of disordered WSM are performed in the
same fashion. The locations of WSM-metal QPTare shown
in Fig. 22 (lower row), and numerically extracted values of
two critical exponents ν and z are reported in Table II. The
details of the data analysis are displayed in Fig. 14.
Within the numerical accuracy we find that the WSM-

metal QPT driven by CSB disorder is also characterized by
ν ≈ 1 and z ≈ 1.5. Therefore, the chiral superuniversality

FIG. 14. Scaling analysis of numerically extracted ADOS in various regimes of the phase diagram of a dirty WSM in the presence of
internode scattering. Each column is identical to the corresponding one in Fig. 13 (including methods of analysis and system size). The
plots from top to bottom rows correspond to temporal (ΔSO) and spatial (ΔAM) component of tensor, scalar (ΔS), and pseudoscalar (ΔPS)
mass disorder (see Table III). Final results of our analysis are quoted in Table II. The quoted error bars in z and ν are fitting error bars. See
also Appendix E and Table IV (from fourth to eighth row) for additional details.
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appears to be generic in a dirty WSM, and the WSM-metal
QPTs belong to the same universality class, irrespective of
the nature of impurities. Such an intriguing outcome further
motivates us to understand the effect of internode scattering
in a WSM from a field-theoretic point of view, which we
present in the following section by carrying out two
different ϵ expansions, described in Secs. IV B and IV C.

VII. CHIRAL-SYMMETRY-BREAKING
OR INTERNODE DISORDER

In a WSM constituted by a single pair of Weyl nodes,
there are four CSB disorders, namely temporal and spatial
components of a tensor disorder, which in a suitable lattice
model respectively represent spin-orbit and axial magnetic
disorder, as well as scalar and pseudoscalar mass disorder;
see Table III. We address the effects of weak and strong
CSB disorder by using both ϵm and ϵd expansions.

A. ϵm expansion

Within the framework of an ϵm expansion, the RG flow
equations to one-loop order read as

βΔSO
¼ ΔSO

�
−ϵm þ 4

3
ðΔAM − ΔSÞ

�
;

βΔAM
¼ ΔAM

�
−ϵm þ 4

3
ðΔSO − ΔPÞ

�
; ð41Þ

βΔS
¼ ΔS

�
−ϵm þ 4

3
ð5ΔSO − 4ΔAM − 2ΔS þ ΔPSÞ

�
;

βΔPS
¼ ΔPS

�
−ϵm þ 4

3
ð5ΔAM − 4ΔSO − 2ΔPS þ ΔSÞ

�
:

Therefore, individually each CSB disorder is always an
irrelevant perturbation, at least to the leading order in the ϵm
expansion, and as such does not lead to any QPTs.
However, in the absence of chiral symmetry all four
disorder couplings are present, and to address the critical
properties in this situation, we recast the above flow
equations in terms of newly defined coupling constants as

βΔþ
V
¼ −ϵmΔþ

V þ 2

3
½ðgþV Þ2 − ðΔ−

VÞ2 − Δþ
VΔ

þ
S − Δ−

VΔ−
S �;

βΔ−
V
¼ −ϵmΔ−

V −
2

3
½Δ−

VΔ
þ
S þ Δþ

VΔ−
S �;

βΔþ
S
¼ −ϵmΔþ

S −
2

3
½ðΔþ

S Þ2 þ 3ðΔ−
S Þ2 − Δþ

VΔ
þ
S − 9Δ−

VΔ−
S �;

βΔ−
S
¼ −ϵmΔ−

S −
2

3
½Δ−

SΔ
þ
V − 4Δþ

SΔ−
S − 9Δþ

SΔ−
V �; ð42Þ

where Δ�
V ¼ ΔSO � ΔAM, Δ�

S ¼ ΔS � ΔPS. The above set
of RG flow equations supports a line of QCPs determined
by the equation

Δþ
V;� ¼ Δþ

S;� þ
3ϵm
2

; Δ−
V;� ¼ 0; Δ−

S;� ¼ 0: ð43Þ

Notice that if we tune the CSB disorders, so that
Δ−

V ¼ Δ−
S ¼ 0, these two coupling constants do not get

generated through quantum corrections, and the plane with
Δ−

V ¼ Δ−
S ¼ 0, shown in Fig. 15, remains invariant under

the RG. The RG flow in this plane is shown in Fig. 15(a),
and the corresponding phase diagram is presented in
Fig. 15(b). The WSM-metal phase boundary in the
Δþ

V − Δþ
S plane is determined by the line of QCPs, given

by Eq. (43), qualitatively similar to the situation in the
presence of potential and axial disorders, as shown in
Fig. 10. However, these two scenarios are fundamentally
different in the sense that while the DSE z ¼ 1þ ϵ=2, with
ϵ ¼ ϵm or ϵd, is fixed along the entire line of QCPs in the
ΔV − ΔA plane, it varies continuously along the line of
QCPs in the Δþ

V − Δ−
S plane according to

z ¼ 1þ 2

3
½5Δþ

V;� þ Δþ
S;�� ¼ 1þ 5ϵm þ 4Δþ

S;�; ð44Þ

where the quantity with subscript “*” denotes the critical
value for WSM-metal transition. Such continuously vary-
ing DSE leaves its signature in critical scaling of various
physical observables, as we discuss below, and qualita-
tively mimics the picture of Kosterlitz-Thouless transition.
Notice that the end point of such a line of QCPs on the Δþ

V
axis resides in the ΔSO − ΔAM plane at ΔSO ¼ ΔAM ¼
3ϵm=4, and the RG flow in this plane is shown in Fig. 16(a).
The phase diagram of a dirty WSM containing only spin-
orbit and axial magnetic disorder in this plane is shown in
Fig. 16(b), with z ¼ 1þ 5ϵm, which is directly obtained
from Eq. (44) by setting Δþ

S ¼ 0. It is worth pointing out
that in the ΔSO − ΔAM plane the phase boundary between
the WSM and metallic phase is set by the irrelevant
parameter associated with the QCP, while when such

(a) (b)

FIG. 15. (a) The renormalization-group flow diagram and
(b) corresponding phase diagram in the Δþ

V − Δþ
S plane obtained

from ϵm expansion for ϵm ¼ 1. The WSM-metal QPT in this
coupling constant space is controlled by the line of QCPs [see
Eq. (43)], shown by the red line in (a) that in turn also determines
the phase boundary between these two phases, as shown in (b).
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QCP percolates through theΔþ
V − Δþ

S plane in the form of a
line of QCPs, it is determined by the relevant direction at
each point on the line of QCPs.

B. ϵd expansion

Next let us address the effects of CSB disorder within
the framework of an ϵd expansion. In this method the RG
flow equations become very complicated due to the ultra-
violet divergent contribution arising from the class of the
Feynman diagrams shown in Figs. 5(c) and 5(d), and it is
challenging to decode the emergent quantum-critical phe-
nomena. Thus we attempt to unearth critical properties by
focusing on various coupling constant subspaces that
remain closed under the RG, at least to the leading order.
Let us first focus on spin-orbit or axial magnetic disorder.
The RG flow equations read

βΔX
¼ −ϵdΔX −

2

3
Δ2

X þ 2ΔXΔA;

βΔA
¼ −ϵdΔA þ 2Δ2

A − 6ΔAΔX þ 4Δ2
X; ð45Þ

where X ¼ SO; AM. Notice that even though the bare
theory contains only spin-orbit or axial magnetic disorders,
the CSP axial disorder gets generated, and in order to keep
the RG flow equations closed, we need to include the latter
from the outset. The coupled flow equations support one
QCP, located at ΔX;� ¼ 9ϵd=10, ΔA;� ¼ 6ϵd=5 [30,42]. The
RG flow diagram is shown in Fig. 17(a), and the resulting
phase diagram is displayed in Fig. 17(b). Note that QCP
obtained in the absence of the CSB disorders, located at
ΔA;� ¼ ϵd=2, now becomes unstable in the presence of
either spin-orbit or axial magnetic disorder, and a new QCP
results from the competition between these two disorders,
as mentioned above. This outcome, although is in contrast
with our previously reported results obtained from ϵm

expansion, still shows some qualitative similarities, as
we argue below. Notice that the DSE and CLE at the
new QCP, shown in Fig. 17(a), are respectively given by

z ¼ 1þ 9

2
ϵd þOðϵ2dÞ; ν−1 ¼ ϵd þOðϵ2dÞ: ð46Þ

As a result, the mean DOS at the QCP diverges as ϱðEÞ ∼
jEj−5=11 for ϵd ¼ 1 or d ¼ 3, since z > d. Hence, both ϵ
expansions give rise to diverging DOS at the QCP con-
trolled via spin-orbit and axial magnetic disorder. Although
the calculated values of DSE depend on the RG scheme,
to the leading order they do not differ significantly; z ¼ 6
for ϵm ¼ 1, and z ¼ 11=2 for ϵd ¼ 1, while ν ¼ 1 is
independent of the RG scheme.

C. Mass disorder

We now discuss the role of mass disorder in WSMs. It
should be noted that a WSM can be susceptible to two
different types of mass disorder: (a) scalar mass disorder
and (b) pseudoscalar mass disorder. Both of them break the
chiral symmetry, but can be rotated into each other by the
generator of the chiral symmetry γ5. The flow equation
for mass disorder within the framework of an ϵ expansion
reads as

βΔX
¼ −ϵjΔX − αjΔ2

X; ð47Þ

for X ¼ S, PS, where αm ¼ 8=3 and αd ¼ 2, j ¼ m, d
corresponds to ϵm and ϵd expansions, respectively. Hence,
by itself scalar or pseudoscalar mass disorder does not drive
any WSM-metal QCP, at least within the leading order in ϵ
expansions. In this regard, both ϵm and ϵd expansions yield
an identical result.

(a) (b)

FIG. 16. (a) The renormalization-group flow diagram and
(b) corresponding phase diagram in the ΔAM − ΔSO plane
obtained from ϵm expansion for ϵm ¼ 1. There is only one
quantum-critical point at ΔAM ¼ ΔSO ¼ 3ϵm=4 (red dot). The
phase boundary between the Weyl semimetal and metal in (b) is
determined by the irrelevant direction, shown by blue dotted
line in (a).

(a) (b)

FIG. 17. (a) The renormalization-group flow diagram and
(b) corresponding phase diagram in the ΔA − ΔX plane obtained
from ϵd expansion for ϵd ¼ 1, where X ¼ SO; AM. There exists
only one QCP at ΔA ¼ 6ϵd=5, ΔX ¼ 9ϵd=10. The QCP at ΔA ¼
ϵd=2 in the absence of a CSB disorder now possesses two
unstable directions. Note that a new critical point emerges from
the competition between the chiral and nonchiral disorder
[30,42].
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Finally, we discuss yet another interesting aspect of mass
disorder, when it coexists with the axial one. The flow
equations in the presence of these two disorders are

βΔA
¼ −ΔA½ϵj − α̃jΔ−�; βΔX

¼ −ΔX½ϵj þ α̃jΔ−�; ð48Þ

for X ¼ S; PS, where Δ− ¼ ΔA − ΔX, α̃m ¼ 8=3, α̃d ¼ 2,
and, respectively, j ¼ m, d, corresponds to ϵm and ϵd
expansions. These two flow equations support a line of
QCPs, determined by

ΔA;� ¼
ϵj
α̃j

þ 2ΔX;�: ð49Þ

The location of such a line of QCPs is regularization
dependent (through α̃j), along which the DSE and CLE,
given by

z ¼ 1þ ϵj
2
þ 2ΔS;�; ν−1 ¼ ϵj; ð50Þ

are identical in both ϵ-expansion schemes. Therefore, in a
WSM with these two disorders the DSE continuously
increases from z ¼ 3=2 in an unbounded fashion, while
the CLE remains fixed. The numerical investigation of such
an interesting possibility is left for a future work.

D. Why is the chiral superuniversality so robust?

Leaving aside the interesting possibilities of realizing
such a line of QCPs with continuously varying critical
exponents, perhaps the most urgent issue to be addressed is
the following: Why does the disorder-driven WSM-metal
QPT always display the same universality class, charac-
terized by ν ≈ 1 and z ≈ 1.5?
The answer to this question in the presence of intranode

or chiral-symmetric disorders has already been provided
in Sec. V. Note that the scaling dimension of any disorder
coupling in a d-dimensional WSM is ½Δa� ¼ 2z − d. But at
all CSB disorder-driven QCPs, controlling the WSM-
metal QPT, z > d irrespective of the RG methodology.
Therefore, even though the bare values of CSP disorders
in lattice-based simulations are set to be zero, discussed in
Sec VI B, they do get generated as we approach the Weyl
points through the coarse-graining procedure. Ultimately
the CSP disorder becomes relevant at CSB disorder-driven
WSM-metal QCPs. As a result, the dirty system, even
though it initially tends to flow toward the QCPs with
z > d, described in this section, flows back toward the
chiral-symmetric QCP or line of QCPs shown in
Fig. 10(a). This is the reason why the WSM-metal
QPTs are always characterized by CLE ν ≈ 1 and DSE
z ≈ 1.5 (within numerical accuracy), the characteristics of
the proposed chiral superuniversality. The above argu-
ment is very generic and does not depend on the number
of Weyl nodes. Therefore, in any lattice system, we expect

WSM-metal QPT to always belong to the chiral super-
universality. This outcome can be anchored from the RG
calculation in the presence of all eight possible disorder
couplings (since in a strong disorder regime all disorders
get generated even if the bare coupling for some specific
channel is set to be zero), as shown in Appendix G within
the framework of both ϵm and ϵd expansions. Such
analysis confirms that only the line of QCPs, defined
through Eq. (36) or Eq. (39), and shown in Fig. 10(a),
ultimately controls the quantum-critical behavior. Among
all possible WSM-metal QCPs, we note that along the
entire line of QCPs in the plane of regular and axial
potential disorders, shown in Fig. 10, the DSE possesses
the least (and constant) value. As a consequence, ADOS is
smallest along this line of QCPs, which is thus expected to
be robust against any perturbation. Therefore, we believe
that the proposed notion of emergent superuniversality
across such a line of QCPs in the chiral-symmetric
hyperplane is nonperturbative in nature, which is further
substantiated by our complementary numerical analysis,
always yielding z ≈ 1.5 and ν ≈ 1 (within numerical error
bars); see Table I and Table II. This strongly supports the
above argument in favor of chiral superuniversality under
generic circumstances [85].
The specific tight-binding model we subscribe in this

work (see Sec. II) also contains Wilson mass that bears
higher gradient terms, such that τ3b⊥ðk2x þ k2yÞ, with b⊥ ¼
t0a2=2. The scaling dimension of such an operator is
½b⊥� ¼ z − 2. Hence, the higher gradient terms are irrel-
evant at the clean WSM fixed point (½b⊥� ¼ −1) as well as
at the chiral-symmetric line of QCPs (½b⊥� ¼ −1=2), but
become relevant at pure CSB disorder-driven QCPs (since
z > d > 2). This is also the reason why chiral super-
universality is such a generic and utmost stable situation.
Furthermore, we also show that the chiral superuniver-

sality does not depend on the choice of disorder distribu-
tion. For example, in Appendix F we perform similar
analysis of average DOS in the presence of correlated
potential disorder that by construction significantly sup-
presses the intervalley scattering (at least when disorder is
sufficiently weak). However, the universality class of the
WSM-metal QPT (characterized by z and ν) remains
unchanged (within numerical accuracy) by the profile of
the distribution function. This observation should further
strengthen the proposed scenario of emergent superuniver-
sality (insensitive to the nature of disorder and its distri-
bution) across the WSM-metal QPT.
Nevertheless, we believe pure CSB disorder-driven

QCPs (with z > d) can in principle be realized in a
numerical simulation performed in momentum space,
where forward or intranode or CSP scattering processes
can be suppressed deliberately and higher gradient terms
can be avoided completely. Such an analysis is an interest-
ing exercise of a pure academic interest, and we leave it for
a future investigation.
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VIII. QUANTUM-CRITICAL SCALING OF
PHYSICAL OBSERVABLES

As demonstrated in the previous two sections, QPT
from a WSM to a diffusive metal can be driven by different
types of elastic scatters, and the critical exponents are
remarkably independent of the actual nature of random-
ness. We here highlight how these exponents can affect the
scaling behavior of measurable quantities as the Weyl
material undergoes this QPT [86].

A. Residue of quasiparticle pole

As the WSM-metal QCP is approached from the semi-
metallic phase, the residue of the quasiparticle pole
vanishes, and beyond the critical strength of disorder
Weyl fermions cease to exist as sharp quasiparticle exci-
tations, similar to the situation for two-dimensional Dirac
fermion-Mott insulator QPT in the presence of a strong
Hubbard interaction [87,88]. The residue of quasiparticle
pole (Z) vanishes as

Z ∼
�
Δ� − Δ
Δ�

�
νηΨ ≡ δνηΨ ; ð51Þ

where ηΨ is the fermionic anomalous dimension at the
critical point located at the disorder strength Δ ¼ Δ�.
Within the framework of an ϵd expansion, ηΨ ¼ 0 to the
leading order in ϵd, and one needs to account for two-loop
diagrams to obtain finite ηΨ. In contrast, in the ϵm
expansion we obtain nontrivial fermionic anomalous
dimension even to the one-loop order, and ηψ ∼ ϵ, as
shown in Eq. (27). Therefore, at the WSM-metal QCP,
the quasiparticle spectrum displays a branch cut and the
critical point represents a strongly coupled non-Fermi
liquid. Alternatively, the residue of quasiparticle pole plays
the role of a bona fide order parameter on the semimetallic
side. It is worth mentioning that the disappearance of
residue of quasiparticle pole has recently been tracked in
quantum Monte Carlo simulations for the Hubbard model
in a two-dimensional honeycomb lattice [88], and we can
expect that future numerical work can verify our proposed
scaling form in Eq. (51) across the disorder-driven WSM-
metal QPTs. The Fermi velocity scales as v ∼ jδjνðz−1Þ, and
since z > 1 at the QCP or the quantum-critical line, the
Fermi velocity vanishes at the transition to the metallic
phase. A subsequent numerical work has demonstrated the
suppression of residue of quasiparticle pole [89].

B. Average density of states

The most widely studied physical quantity in numerical
simulations across the WSM-metal QPT is the average
DOS [52,54,56,57,59,63]. Since throughout the paper we
have already extensively used the average DOS to char-
acterize phases, for the sake of completeness we here
review only its salient features. We can infer the scaling

form of the average DOS in the thermodynamic limit
L → ∞ in different phases by using its scaling function
[see Eq. (14)]. In the quantum-critical regime ϱðEÞ should
be independent of δ, yielding ϱQðEÞ ∼ Ed=z−1. Inside the
WSM phase, the average DOS scales as ϱWðEÞ∼
δð1−zÞdνjEj2. In the metallic phase, average DOS at zero
energy is finite and scales as ϱð0Þ ∼ δðd−zÞν. From the
quoted values of DSE and CLE, it is straightforward to find
the scaling of average DOS in these three regimes of the
phase diagram in a dirty WSM, which we have used in the
numerical analysis of this observable in the previous
sections.

C. Conductivity

The optical conductivity (σ) at T ¼ 0 can as well serve as
an order parameter across the WSM-metal QPT, and
assumes the following scaling ansatz for frequency (Ω)
much smaller than the bandwidth [43],

σðΩÞ ¼ δνðd−2ÞGðΩδ−νzÞ; ð52Þ

where G is yet another unknown universal scaling function.
This scaling form remains operative even at finite temper-
ature as long as Ω ≫ T, i.e., in the collisionless regime. In
the collision-dominated regime at T ≫ Ω, the dc conduc-
tivity also assumes a similar scaling form as in Eq. (52),
upon replacing the frequency (Ω) by temperature (T)
[37,53,90]. In the WSM side of the transition, the optical
conductivity vanishes linearly with Ω and scales as
σWðΩÞ ∼ δνð1−zÞðd−2ÞΩd−2. Inside the critical regime the
optical conductivity scales as σQðΩÞ ∼ Ωðd−2Þ=z. In the
presence of strong CSP disorder z ≈ 3=2, and the optical
conductivity inside the quantum-critical regime thus van-
ishes as σQðΩÞ ∼Ω2=3. Since for nonchiral disorder the
DSE is typically much bigger than in the presence of a
chiral-symmetric one, the optical conductivity vanishes
with a weaker power as Ω → 0 when the system is still
dominated by CSB disorder before CSP disorder takes
over. Hence, in this regime the system becomes more
metallic in the presence of CSB disorder than with only
CSP disorder. Inside the metallic phase, the optical con-
ductivity becomes finite and scales as σMð0Þ ∼ δνðd−2Þ as
Ω → 0. Within the leading-order ϵm or ϵd expansions, the
conductivity of the metal is therefore always independent
of the actual nature of elastic scatterers, since ν−1 ¼ ϵm or
ϵd, and ϵm ¼ 1, ϵd ¼ 1. Otherwise, weak disorder (such
as potential) causes enhancement of optical conductivity
without altering σ ∼ Ω scaling [43] (see also Appendix H
for a simple derivation).

D. Specific heat

The specific heat (Cv) also displays distinct scaling
behavior in three regimes of the phase diagram of a dirty
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WSM. The scaling of specific heat at temperature much
smaller than bandwidth follows the ansatz [36]

CVðTÞ ¼
Td=z

vd
HðTδ−νzÞ; ð53Þ

where H is also an unknown universal scaling function. In
the WSM phase, HðxÞ ∼ xdðz−1Þ=z and the specific heat
scales as CV ∼ δdνð1−zÞTd, so that we recover T3 depend-
ence for the three-dimensional Weyl fermion. Inside the
metallic phase, HðxÞ ∼ x1−d=z, yielding CV ∼ δνðd−zÞT, and
we obtain T-linear specific heat, similar to the situation in
Fermi liquids. By contrast, inside the critical regime
HðxÞ ∼ x0, yieldingCV ∼ T3=z. Therefore, the specific heat,
analogous to the conductivity, displays distinct power-law
dependence on temperature inside the quantum-critical
regime depending on the dominant source of disorder,
while its scaling inside the WSM and metallic phases is
insensitive to the nature of random impurities. Hence, the
scaling of specific heat can be used to extract the extent of
the critical regime and crossover boundaries among differ-
ent phases of a dirty Weyl system at finite temperature [56].

E. Mean-free path

The quasiparticle mean-free path (L) also follows the
critical scaling

½LðEÞ�−1 ¼ δνJ ðEδ−νzÞ; ð54Þ

where J is a universal, but unknown, scaling function, with
energy much smaller than bandwidth. At the QCP (δ ¼ 0)
the mean-free path should be independent of δ, implying
J ðxÞ ∼ x−1=z. Therefore, inside the quantum-critical fan,
the mean-free path at zero energy diverges as LðEÞ∼
E−1=z. In the metallic phase, J ðxÞ ∼ x0 as x → 0, leading
to finite mean-free path at zero energy, and Lð0Þ ∼ δ−ν.
On the other hand, in the WSM phase, the mean-free path
LWðEÞ ∼ δνðz−1ÞE−1, as E → 0. Since at all disorder-driven
QCPs z > 1, LWðEÞ decreases with increasing disorder,
indicating propensity toward the onset of a metallicity in
the system.

F. Grüneisen parameter

Yet another directly measurable quantity is the Grüneisen
parameter, defined as γ ¼ α=CP, where α is the thermal
expansion parameter, and CP is the specific heat measured at
constant pressure. The Grüneisen ratio in the WSM phase is
γW ∼ T−4, while inside the critical regime γQ ∼ T−ð1þd=zÞ.
Inside the metallic phase γM ∼ T−2. Therefore, the
Grüneisen parameter displays distinct power-law behavior
in three different phases of a dirty WSM.
Fascinating scaling behavior can also be observed for the

magnetic Grüneisen ratio, defined as ΓH¼ð∂M=∂TÞH=
CH, where M ∝ H is magnetization, CH is the molar

specific heat, and H is the magnetic field strength. In
the presence of sufficiently weak randomness when Landau
quantization is sharp (ωcτ ≫ 1, where ωc is cyclotron
frequency and τ is scattering lifetime) and it dominates over
the Zeeman coupling, leading to ΓH ∼ T−4=z. On the other
hand, in the presence of strong elastic scattering, when
ωcτ ≪ 1, the Landau levels are sufficiently broadened and
the dominant energy scale is set by Zeeman coupling,
yielding ΓH ∼ T−2, which is independent of dimensionality
(d) or DSE (z). Therefore, for a fixed weak magnetic field,
as the strength of impurities is gradually increased, the
magnetic Grüneisen ratio should display a smooth cross-
over from T−4 to T−2 dependence. Note that such a
crossover will take place even before the system enters
the quantum-critical regime and will persist in the metallic
regime as well, since elastic scattering is strong in these
two phases.

IX. ANDERSON TRANSITION

As a final topic, we discuss the Anderson transition (AT)
of a disordered diffusive Weyl metal at stronger strength of
disorder. For the sake of simplicity we here focus only on
the effects of random charge impurities. Possible AT in the
presence of all other disorder is left for a future inves-
tigation. To study the AT we compare three different types
of DOS, namely ADOS [ϱaðEÞ], local DOS (LDOS)
[ϱLðEÞ] and typical DOS (TDOS) [ϱtðEÞ], respectively
defined as [72,77]

ϱaðEÞ ¼
�

1

2L3

XL3

i¼1

X2
α¼1

δðE − Ei;αÞ
�
; ð55Þ

ϱi;αL ðEÞ ¼
X
k;β

jhk; βji; αij2δðE − Ek;βÞ; ð56Þ

ϱtðEÞ ¼ exp

�
1

2Ns

XNs

j¼1

X2
α¼1

hlog ϱi;αL ðEÞi
�
: ð57Þ

Here, L3 is the system size, and ji; αi is the eigenstate with
site index i and orbital index αð¼ 1; 2Þ at energy Ei;α. As
previously discussed, ADOS is a self-averaging quantity,
so to minimize statistical fluctuations we only extract the
disorder-averaged smoothened data, which we carry out by
computing Nm ¼ 1024 Chebyshev moments and perform-
ing disorder average over 20 random disorder realizations.
On the other hand, LDOS and TDOS are not self-averaging
quantities. Therefore, numerical extraction of TDOS is
extremely demanding, for which we compute Nm ¼ 8192
moments and perform disorder average over 100 random
disorder realizations to construct the TDOS. To further
suppress statistical fluctuations in TDOS we average over
a small cube of size Ns ¼ L3

s ≪ L3, and we here take
Ls ¼ 4. Such averaging is justified since translational
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symmetry gets restored after disorder averaging has been
performed.
The scaling of ADOS and TDOS over a wide range of

disorder strength is shown in Fig. 18(a). Note that in the
WSM phase both ADOS and TDOS at zero energy are
pinned to zero, which then become finite across the WSM-
metal QPT atWc;1 ¼ 1.65� 0.05. Therefore, either ADOS
or TDOS can be identified as a bona fide order parameter to
pin the WSM-metal QCP. Respectively these two quantities
scale as

ϱað0Þ ∼
�
W −Wc;1

Wc;1

�
βa
; ϱtð0Þ ∼

�
W −Wc;1

Wc;1

�
βt
; ð58Þ

near the WSM-metal QCP, with

βa ¼ 1.50� 0.05; βt ¼ 1.80� 0.20; ð59Þ

as shown in Fig. 18(b). Even though the numerical error bar
for βt is quite large, in general, we expect it to be different
from βa, as their difference, Δβ ¼ βt − β, is intimately tied
with the multifractal dimension of the wave function across
a disorder-driven QPT [91–94]. However, more precise
determination of βt requires additional extensive numerical
simulation. Therefore, we leave this issue as a subject for a
future investigation.
Inside the compressible diffusive metallic phase these

two quantities increase monotonically and follow each
other up to a moderate strength of disorderW� ≈ 3.5. Upon
further increasing strength of disorder the TDOS smoothly
vanishes around Wc;2 ¼ 9.30� 0.25. Therefore, a metal-
insulator transition (MIT) takes place at W ¼ Wc;2, com-
monly known as AT. Note that the ADOS decreases
monotonically across the AT, but remains noncritical, as
shown in Fig. 18(a). In Fig. 19(a), we present the scaling
of TDOS with the number of Chebyshev moments (Nm).

We explicitly compute TDOS from moderate to strong
disorder regime (6 ≤ W ≤ 10), in close vicinity of the AT,
for Nm ¼ 2048, 4096, and 8192. From the scaling of ϱtð0Þ
versus Nm we conclude that AT [identified with ϱtð0Þ → 0]
takes place around Wc;2 ¼ 9.30 in the Nm → ∞ limit.
Therefore, we can conclude that a three-dimensional
diffusive Weyl metal is a stable phase of matter for
moderately strong disorder, which ultimately undergoes
a QPT into the Anderson insulator phase for sufficiently
strong disorder. Across the AT the TDOS at zero energy
display single-parameter scaling,

ϱtð0Þ ∼
�
W −Wc;2

Wc;2

�
β

; ð60Þ

with β ¼ 1.5� 0.15. Critical scaling of typical DOS across
the Anderson transition strongly suggests that wave func-
tions at the Anderson critical point become multifractal in
nature [77]. A detailed analysis of a multifractal spectrum
requires the notion of exact wave function, which is
numerically very time consuming. Nevertheless, analysis
of the multifractal nature of wave functions in a time-
reversal symmetry-breaking topological metal is a problem
of fundamental importance, which we leave for future
investigation.
Recall that for weak disorder ADOS ϱaðEÞ ∼ jEj2 and

around the WSM-metal QCP it scales as ϱðEÞ ∼ jEj. Inside
the metallic phase ϱað0Þ is finite. In Fig. 20(a), we show
that within the range of disorder strength 0.50 (weak) ≤
W ≤ 3.5 (moderate), the TDOS also displays the same
scaling behavior as ADOS. This observation confirms that
TDOS can also be subscribed as a bona fide order
parameter across the WSM-metal QPT. On the other hand,
for strong enough disorder the TDOS ϱtðEÞ decreases

(a) (b)

FIG. 18. (a) Scaling of average [ϱað0Þ] and typical [ϱtð0Þ]
density of states at zero energy as a function of disorder strength.
The Weyl semimetal-metal and metal-Anderson insulator quan-
tum phase transitions, respectively, take place at Wc;1 ¼ 1.65�
0.05 and Wc;2 ¼ 9.30� 0.25. (b) Scaling of these two quantities
as a function of δ ¼ ðW −Wc;1Þ=Wc;1, yielding corresponding
order-parameter exponents [defined in Eq. (58)] βa ¼ 1.50�
0.05 and βt ¼ 1.80� 0.20.

(a) (b)

FIG. 19. (a) Scaling of typical density of states at zero energy
ϱtð0Þ for disorder (W) within the range 6.0 ≤ W ≤ 10.0 with the
number of Chebyshev moments Nm. We here compute ϱtð0Þ for
Nm ¼ 2048, 4096, and 8192. From the scaling of ϱtð0Þ versus
Nm, we find that metal-insulator Anderson transition takes palce
at Wc;2 ¼ 9.30 in the Nm → ∞ limit. (b) Mobility edge MeðEÞ
[defined in Eq. (61)] as a function of energy (E) and disorder (W).
Respectively, the green and the dark regions accommodate
extended or metallic and localized states. Scale of MeðEÞ is
shown in the legend. Here the system size is L ¼ 80.
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monotonically for any energy E, and ultimately ϱtð0Þ
becomes zero across the AT. Therefore, TDOS can serve
as the order parameter across all possible disorder-driven
QPTs considered here.
Finally, we focus on the evolution of the location of the

mobility edge in a dirtyWeyl metal as a function of disorder
strength by numerically computing the mobility edge,
defined as

MeðEÞ ¼
ϱtðEÞ
ϱaðEÞ

: ð61Þ

In particular, the mobility edge defines the boundary
between the extended and localized states, and we here
focus on this quantity in the strong disorder regime
W ≥ 2 > Wc;1. The results are shown in Fig. 19(b). For
weak disorder the mobility edge resides at high energy,
indicating the metallic nature of a moderately dirty Weyl
system. However, the mobility edge progressively slides
down toward smaller energy with increasing randomness in
the system. Finally, across the AT the mobility edge comes
down to zero energy, indicating that all states inside the
Anderson insulator are localized. Notice that the shape of
the mobility edge is quite distinct in a Weyl metal in
comparison to its counterpart in conventional metal [95],
which, however, can solely be attributed to the linear
dispersion of Weyl quasiparticles in the clean system.

X. SUMMARY AND DISCUSSION

In this paper, we study the role of generic disorder in a
Weyl semimetal, by considering its simplest realization,
composed of only two Weyl nodes. When the system
resides in the proximity of semimetal-insulator quantum

phase transition, the generalized Harris criterion suggests
that such a critical point is stable in the presence of weak
but generic disorder. By contrast, a multicritical point
appears in the phase diagram for strong disorder, where
the Weyl semimetal, an insulator, and a metallic phase
meet. Within the framework of an appropriate ϵ expansion
we show that, to the leading order, the critical exponents at
such multicritical point are (i) dynamic scaling exponent
z ¼ 1þ ϵn=2 and (ii) correlation length exponent ν ¼ 1=ϵn
that controls the relevance of disorder coupling, where
ϵn ¼ 1=2 for a physical system. These findings are in good
agreement with the ones obtained numerically, yielding
ν ¼ 1.98� 0.10 and z ¼ 1.26� 0.05.
On the other hand, when the system is deep inside the

Weyl semimetal phase, we have shown that the continuous
global chiral U(1) symmetry plays a fundamental rule in
classifying the disorder-driven Weyl semimetal-metal
quantum phase transitions. The simplest realization of a
Weyl semimetal is susceptible to eight types of disorder,
among which only four preserve such chiral symmetry.
Using two different ϵ expansions, we show that the chiral-
symmetric disorder-driven semimetal-metal transition takes
place through either a quantum-critical point or a line of
quantum-critical points. Irrespective of details, the critical
exponents to the leading order in ϵ expansions are given by
z ¼ 1þ ϵ=2þOðϵ2Þ and ν ¼ ϵ−1 þOðϵ2Þ, and ϵ ¼ 1
corresponds to the physical situation. Even though these
exponents can receive higher-order corrections Oðϵ2Þ,
presently there is no known route to compute them in a
controlled fashion beyond the leading order in ϵ. Such a
unique set of exponents in the presence of generic chiral-
symmetric disorder gives birth to an emergent chiral
superuniversality across the Weyl semimetal-metal quan-
tum phase transition.
Furthermore, we have performed a thorough numerical

analysis of average density of states in Weyl semimetals
with chiral-symmetric disorder. The emergence of chiral
superuniversality has been demonstrated through numerical
analysis of average density of states near zero energy. We
show that for any such disorder, Weyl semimetal undergoes
a continuous quantum phase transition into a diffusive
metallic phase. Within the numerical accuracy, we find that
across this transition z ≈ 1.5 and ν ≈ 1, in excellent agree-
ment with our field-theoretic predictions obtained from
leading-order ϵ expansions (see Table I for comparison).
The quality as well as reliability of our numerical analysis
have been anchored through two completely different types
of high-quality data collapses, shown in Fig. 13, in the
entire phase diagram of a dirty Weyl semimetal for all
possible chiral disorder.
For chiral-symmetry-breaking disorder, the Weyl semi-

metal-metal quantum phase transition also takes place
through a critical point or a line of critical points, but
the critical exponents are significantly different from the
ones reported in the presence of chiral disorder. Even

(a) (b)

FIG. 20. (a) Scaling of typical density of states [ϱtðEÞ] versus
energy (E) from weak to moderately strong disorder, showing
that ϱTðEÞ ∼ jEj2 of weak disorder. Also note that ϱtðEÞ ∼ jEj
around W ¼ Wc;1 ≈ 1.65, and inside the metallic phase ϱtð0Þ is
finite. These features are qualitatively similar to the ones for the
average density of states [see Fig. 3]. (b) Scaling of ϱtðEÞ versus
E for stronger disorder (close proximity to the Anderson metal-
insulator transition), showing that ϱð0Þ smoothly vanishes across
the Anderson transition, and remains pinned at zero inside an
Anderson insulator. Here we compute 8192 Chebyshev moments
to construct ϱtðEÞ in a system with linear dimension L ¼ 80.
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though the critical exponents across such a semimetal-
metal transition turn out to be slightly dependent on the
renormalization-group scheme, we always find z > d and
ν ¼ 1=ϵ from leading-order ϵ expansions. Consequently,
all chiral-symmetric or intranode disorder (as well as higher
gradient terms that are inevitably present in a lattice)
become relevant at such a putative line of critical points.
As a result, internode disorder-driven semimetal-metal
phase transition is ultimately always governed by the
chiral-symmetric disorder, yielding ν ≈ 1 and z ≈ 3=2,
characteristic of chiral superuniversality. We anchor these
outcomes by numerically extracting the scaling of average
density of states in the presence of internode disorder, and
the results are shown in Table II, Fig. 3 (lower panel),
and Fig. 14.
Even though we promote such a classification scheme in

aWeyl semimetal with only two nodes, our prescription can
easily be generalized toWeyl systems with multiple flavors,
as well as topological Dirac semimetals with bona fide
time-reversal symmetry that has recently been found in
Cd2As3 [96] and Na3Bi [97] and the ones at the quantum-
critical point residing between two topologically distinct
insulating vacua.
We here mention that ϵd expansion can be problematic

beyond the leading order in ϵd, since the contribution from
Figs. 5(c) and 5(d) and their higher-loop cousins are
typically ultraviolet divergent and one loses the order-
by-order control over the perturbative calculation [40,45].
For example, it was shown in Refs. [40,45] that to the order
ϵ3d the correlation length exponent is (see also Ref. [41])

ν−1 ¼ ϵd þ
1

2
ϵ2d þ

3

8
ϵ3d; ð62Þ

respectively yielding νð2Þ ¼ 0.66 and νð3Þ ¼ 0.53 to the
two- and three-loop order for ϵd ¼ 1. Upon implementing
the Padé resummation [note that νð2Þ ¼ 0.5 is obtained from
Padé ½1j1� resummation, while νð3Þ ¼ 0.33 and 0.375 are,
respectively, obtained from Padé ½2j1� and Padé ½1j2�
resummation; see Refs. [40,45] for details], we obtain
νð2Þ ¼ 0.5 and νð3Þ ¼ 0.33 or 0.375 (both being smaller
than the mean-field value of ν ¼ 1=2). Hence, ϵd expansion
runs into the serious problem of convergence beyond
the leading order. Such a class of diagrams is, however,
ultraviolet finite and thus does not contribute to
renormalization-group flow equations in the ϵm expansion
scheme (see Appendix C 3). We, therefore, believe that
higher-order perturbation theory within the framework of
an ϵm expansion should be more controlled. Explicit
higher-order calculation in ϵm expansion and its corrobo-
ration with a newly proposed nonperturbative approach
combined with the functional renormalization-group analy-
sis [98] is, however, left as a challenging interesting
problem for future investigation. Nonetheless, we note
that leading-order ϵd and ϵm expansions, as well as the

functional renormalization-group approach from Ref. [98],
yield identical values for the critical exponents, namely,
z ¼ 3=2 and ν ¼ 1.
In addition to the Weyl semimetal-metal quantum phase

transition, we also establish that a compressible Weyl metal
undergoes a subsequent transition at stronger disorder into
an Anderson insulator. We track the typical density of states
to pin the onset of such an insulating phase that only
accommodates localized states. In particular, we show that
across the Weyl metal-insulator transition the typical
density of states at zero energy [ϱtð0Þ] smoothly vanishes,
and thus serves as a bona fide order parameter, while the
average density of states remains noncritical across this
transition. In addition, we also find that ϱtð0Þ remains
pinned in the Weyl semimetal phase and becomes finite in
the metallic phase. Therefore, typical density of states at
zero energy serves as a unified order parameter across all
possible disorder-driven quantum phase transitions in a
Weyl semimetal.
Finally, we comment on some nonperturbative effects of

disorder in Weyl semimetals, such as puddles [99], Lishiftz
tail [100], and rare-region states and Griffiths physics
[34,61]. Puddles are inevitable in real materials as there
are always density fluctuations that locally shift the
chemical potential away from the Weyl nodes, while
maintaining the overall charge neutrality of the system.
In addition, the presence of disorder can also support
quasilocalized rare states at zero energy even for subcritical
strength of disorder [34,61]. Although such effects are
important and interesting, they possibly do not affect the
quantum-critical behavior. Also, the presence of finite
average DOS close to zero energy for subcritical disorder
does not necessarily imply a finite typical DOS at zero
energy [ϱtð0Þ] and a finite dc conductivity as T → 0, the
hallmark signatures of a metal. By contrast, we find that
ϱtð0Þ remains pinned to zero for weak enough disorder; see
Fig. 18(a). In addition, whether generic disorder (inter- and
intranode) accommodates rare regions remains to be
examined. Furthermore, it is not clear if the rare states
can survive when they hybridize with nonrare or critical
states, residing close in energy. On the other hand, a recent
numerical work has demonstrated that such nonperturba-
tive effects can be systematically suppressed with a suitable
choice of the distribution of disorder, while the critical
properties across the Weyl semimetal-metal quantum phase
transition remain almost unchanged [63]. Therefore, rare
and critical excitations appear to be decoupled from each
other (based on present numerical evidence) and these
effects do not alter any physical outcome we report in
this paper.
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APPENDIX A: GENERALIZED HARRIS
CRITERION AT WSM-INSULATOR QCP

In this appendix, we present a generalization of the
Harris criterion applicable near the clean WSM-insulator
QCP. Let us first consider a generalized version of the
Hamiltonian from Eq. (6) describing the gapless excitations
residing at general WSM-insulator QCP [80],

Ĥc
Qðk;ΔÞ ¼ αc½σ1kc⊥ cosðcϕkÞ þ σ2kc⊥ sinðcϕkÞ�

þ σ3ðbk23 − ΔÞ; ðA1Þ

where k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
and ϕk ¼ tan−1 ðky=kxÞ. The above

Hamiltonain for any value of Δ possesses the same
symmetry, but describes two distinct phases: (i) a band
insulator for Δ < 0 and (ii) WSM for Δ > 0, with c
representing the monopole charge of the Weyl nodes.
Respectively, for c ¼ 1, 2, and 3, single, double, and triple
WSMs are realized in a crystalline environment [101–103].
The effective dimensionality (d�) of such critical semi-
metallic phase can be found from the corresponding
imaginary time Euclidean action,

Sc ¼
Z

dτd2x⊥dx3ψ†½∂τ þ Ĥc
Qðk → −i∇;ΔÞ�ψ ; ðA2Þ

where ψ is a two-component spinor, describing the
critical excitations residing at the WSM-insulator QCP.
All parameters, such as αc and b, remain invariant under the
rescaling of space-time (imaginary) coordinates according
to τ → elτ, ðx; yÞ → el=cðx; yÞ, x3 → el=2x3, when accom-
panied by the field normalization ψ → Z1=2

ψ ψ , where
Zψ ¼ exp f½−ð2=cÞ þ 1

2
�lg≡ exp½−d�l�. The spatial mea-

sure d2x⊥dx3 → ed�ld2x⊥dx3, where d� ¼ ½ð2=cÞ þ 1
2
� is

the effective dimensionality of the system under the
rescaling of spatial coordinates. Note that Δ in Eq. (A1)
is the tuning (relevant) parameter at the WSM-insulator
QCP, and the scaling dimension of Δ, denoted by [Δ],
is tied with the CLE (ν) at this QCP, according to
ν−1 ¼ ½Δ� ¼ 1. The stability of the clean WSM-insulator
QCP against mass disorder [denoted by VzðxÞ in Eq. (8)]
can be assessed from the generalized Harris criterion,
suggesting that such QCP is stable against mass disorder
when

ν >
2

d�
¼ 4c

4þ c
: ðA3Þ

Therefore, only the single (c ¼ 1) WSM-insulator QCP is
stable against sufficiently weak mass or bond disorder.
Furthermore, the stability of the WSM-insulator QCP in
the presence of generic disorder, which appears similar to
VzðxÞ in Eq. (8), can be established from the generalized
Harris criterion [see Eq. (A3)]. Hence, a single WSM-
insulator QCP is guaranteed to be stable against generic
disorder. In this regard a comment is due. Our derivation of
generalized Harris criterion differs from the original one in
Ref. [27], where d� is replaced by the physical dimension-
ality of the system (d) and the CLE ν varies depending on
the nature of the phase transition. On the other hand, within
the framework of anisotropic scaling of spatial coordinates,
we always find ν ¼ 1, but actual spatial dimension gets
replaced by an effective dimensionality of the system (d�)
under the process of coarse graining. We believe that these
two methods are complementary to each other.

APPENDIX B: RG ANALYSIS NEAR
WSM-INSULATOR QCP

In this appendix, we provide technical details of the RG
calculations near the WSM-insulator QPT with disorder.
First, we show the effects of subleading divergences in the
RG flow equations within the ϵn expansion introduced in
Sec. III and its consequences (see Sec. B 1). Next, we
display the perturbative analysis of disorder near the WSM-
insulator in an expansion about the lower critical dimension
of the theory (see Sec. B 2).

1. ϵn expansion

Within the framework of ϵn expansion, discussed in
Sec. III, after integrating out the fast Fourier modes within
the Wilsonian shell Λe−l < k⊥ < Λ and 0 < k23 < ∞ and
accounting for subleading ultraviolet divergences, the RG
flow equations read

βX ¼ −XðΔ0 þ 2Δ⊥ þ ΔzÞ½h1ðnÞ þ h2ðnÞ� ¼ ð1 − zÞX;
βΔ ¼ Δþ fΔ½h1ðnÞ þ h2ðnÞ� − h3ðnÞgðΔ0 − 2Δ⊥ þ ΔzÞ;
βΔ0

¼ −ϵnΔ0 þ 2Δ0ðΔ0 þ 2Δ⊥ þ ΔzÞ½h1ðnÞ þ h2ðnÞ�
þ 4Δ⊥Δzh1ðnÞ þ 4h2ðnÞ½δn;2mΔ0Δz þ δn;2mþ1Δ2⊥�;

βΔ⊥ ¼ −ϵnΔ⊥ þ 2Δ⊥ðΔz − Δ0Þh2ðnÞ þ 2Δ0Δzh1ðnÞ
þ 4h2ðnÞΔ⊥½δn;2mΔz þ δn;2mþ1Δ0�;

βΔz
¼ −ϵnΔz þ 2Δzð2Δ⊥ − Δ0 − ΔzÞ½h1ðnÞ − h2ðnÞ�
þ 4Δ0Δ⊥h1ðnÞ þ 2h2ðnÞδn;2mðΔ2

0 þ 2Δ2⊥ þ Δ2
zÞ;
ðB1Þ

where δn;m is the Kronecker delta function, n, m are
integers, and X ¼ v, b. Functions hiðnÞ, i ¼ 1, 2, 3, are
defined as
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h1ðnÞ ¼
πð2n − 1Þ cscð π

2nÞ
4n2

¼ 1 −
1

2n
þOðn−3Þ;

h2ðnÞ ¼
π cscð π

2nÞ
4n2

¼ 1

2n
þOðn−2Þ;

h3ðnÞ ¼
πðn − 1Þ secð π

2nÞ
4n2

¼ π

4n
þOðn−2Þ: ðB2Þ

Therefore, as n → ∞ only the contribution from h1ðnÞ
survives, and for any finite n, h2ðnÞ and h3ðnÞ give rise to
subleading divergences. The RG flow equations obtained
by keeping only the leading divergence are shown in
Eq. (11) of the main text. As we demonstrate below, at
least to the leading order in ϵn expansion, inclusion of
subleading divergences affects z only nominally, while
leaving the CLE unchanged, and we find ν−1 ¼ ϵn ¼ 1=2.
In Sec. III A, we neglected the quantum corrections

arising from the nontrivial band dispersion in the kz
direction. Note that the quantum corrections in the RG
flow equations [see Eq. (B1)] can be systematically
incorporated by keeping the terms to the leading order
in 1=n from hjðnÞ for j ¼ 1, 2, 3 [see Eq. (B2)], following
the spirit of 1=N expansion, where N counts the number of
fermion flavors [79]. Therefore, our RG analysis is simul-
taneously controlled by two small parameters ϵn (measur-
ing deviation from marginal two spatial dimensions)
and 1=n (controlling quantum corrections arising
from band curvature along kz), and only at the very
end of the calculation we set ϵn ¼ 1=2 and n ¼ 2. The
resulting RG flow equations still support only two fixed
points (similar to the ones reported in Sec. III A):
(1) ðΔ;Δ0;Δ⊥;ΔzÞ ¼ ð0; 0; 0; 0Þ representing the WSM-
insulator QCP in the clean system and (2) the MCP, where
WSM, an insulator, and the metal meet, is now located at
(obtained numerically)

ðΔ;Δ0;Δ⊥;ΔzÞ ≈
�
π

8n
;
1

2
−
0.40
n

;
0.195
n

;
0.185
n

�
ϵn: ðB3Þ

The DSE at this MCP is [see Eq. (12)]

z ¼ 1þ
�
1

2
−
0.02
n

�
ϵn; ðB4Þ

which for the physical relevant situation ϵn ¼ 1=2 and
n ¼ 2 yields z ¼ 1.245, extremely close to the one reported
in Sec. III A, namely, z ¼ 1.25, obtained by neglecting
quantum corrections arising from the nontrivial dispersion
in the kz direction. Therefore, our proposed methodology
allows us to capture quantum corrections and extract the
critical exponents at the MCP in a controlled fashion. The
CLE, however, does not receive any 1=n corrections,
yielding ν−1 ¼ ϵn as before. The resulting phase diagram
after accounting for 1=n corrections is shown in Fig. 21(a).

2. ϵ0d expansion about lower critical dimension

In this section, we demonstrate the role of disorder in the
vicinity of WSM-insulator QPT perturbatively using an ϵ0d
expansion near the lower critical dimension dl ¼ 5=2 in
the theory, see Ref. [104], where ϵ0d ¼ d − 5=2. As we will
see, the outcomes are qualitatively the same as in the ϵn
regularization scheme. The exact values of the critical
exponents are, however, different from the ones announced
in Sec. III, although only slightly so, at least to the one-loop
order. Upon integrating the fast modes within the shell
Ece−l <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2k2⊥ þ b2k4z

p
< Ec, where Ec is the ultraviolet

energy cutoff for critical excitations residing at the WSM-
insulator QCP, we arrive at the following flow equations to
the leading order in ϵ0d expansion:

βX ¼ −5XðΔ0 þ 2Δ⊥ þ ΔzÞ ¼ ð1 − zÞX;
βΔ ¼ Δþ ðΔ − 1Þ½Δ0 − 2Δ⊥ þ Δz�;
βΔ0

¼ −ϵ0dΔ0 þ 10Δ0ðΔ0 þ 2Δ⊥ þ ΔzÞ − 16ΔzΔ⊥;
βΔ⊥ ¼ −ϵ0dΔ⊥ þ 2Δ⊥ðΔz − Δ0Þ þ 4ΔzðΔ⊥ − 2Δ0Þ;
βΔz

¼ −ϵ0dΔz þ 6Δzð2Δ⊥ − Δ0 − ΔzÞ
þ 4ðΔ2

0 þ Δ2 þ Δ0Δz − 4Δ0Δ⊥ þ 2Δ2⊥Þ; ðB5Þ
for X ¼ v, b, after defining the dimensionless disorder
coupling constant as Δjα → Δj, for j ¼ 0, ⊥, z, where

α ¼ E
ϵ0d
c =ð20π2v2b1=2Þ and Δ=Ec → Δ. Then, the β func-

tion for v and b in the presence of disorder yields a scale-
dependent dynamic scaling exponent:

zðlÞ ¼ 1þ 5½Δ0 þ 2Δ⊥ þ Δz�ðlÞ: ðB6Þ
The coupled RG flow equations from Eq. (B5) also

support only two fixed points: (i) ðΔ;Δ0;Δ⊥;ΔzÞ ¼
ð0; 0; 0; 0Þ, representing the WSM-insulator QCP in the

(a) (b)

FIG. 21. The phase diagram of a dirty Weyl material residing in
close proximity to WSM-insulator QPT, obtained by solving the
RG flow equations Eq. (B1) for (a) and Eq. (B5) for (b). Here, Δ
is the tuning parameter for WSM-insulator transition in the clean
system and Δ0 is the strength of random charge impurities. These
two phase diagrams are qualitatively similar to the one obtained
numerically, see Fig. 2 (left), as the WSM-insulator phase
boundary shifts toward the semimetallic side with increasing
(but weak) disorder.
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clean limit [the blue dot in Fig. 21(b)], and
(ii) ðΔ;Δ0;Δ⊥;ΔzÞ ¼ ð0.058; 0.056; 0.01; 0.02Þϵ0d, repre-
senting a multicritical point. The critical exponents at this
multicritical point for the anisotropic critical semimetal-
metal transition are

ν−1 ¼ ϵ0d; z ¼ 1þ 0.48ϵ0d; ðB7Þ

which is extremely close to the ones reported in
Sec. III A, for ϵ0d ¼ 1=2, leading to z ¼ 1.24 and ν ¼ 2.
Therefore, both methods produce qualitatively similar
results near the WSM-insulator QPT, and the obtained
critical exponents for anisotropic semimetal-metal
transition are extremely close to each other, at least to
the leading order. The resulting phase diagram is shown in
Fig. 21(b).

APPENDIX C: DETAILS OF ϵm EXPANSION

In this appendix, we display the detailed analysis of
various one-loop diagrams, shown in Fig. 9, within the
framework of an ϵm expansion.

1. Self-energy

Let us first consider the self-energy diagram in Fig. 9(a).
The expression for the self-energy reads

Σðiω;kÞ ¼
X
N

Z
ddq
ð2πÞd NG0ðiω;k − qÞN ΔN

qm

≡X
N

ΣNðiω;kÞ; ðC1Þ

with d ¼ 3, the summation is taken over all eight types of
disorder (see Table III), and q≡ jqj.
The contribution from the one-loop self-energy diagram

from the disorder represented by the matrix N reads

ΣNðiω; kÞ ¼ −iΔN

Z
d3q
ð2πÞ3

N½γ0ωþ vγjðk − qÞj�N
½ω2 þ v2ðk − qÞ2�qm :

ðC2Þ

We will evaluate the temporal and spatial components of
the self-energy diagram separately. Let us first set k ¼ 0,
for which

ΣNðiω;0Þ¼ΔNð−iωÞ
Nγ0N
v3−m

Z
d3q
ð2πÞ3

1

ðω2þq2Þqm

¼ΔNð−iωÞ
Nγ0N
v3−m

Γð1þm
2
Þ

Γðm=2Þ

×
Z

1

0

dxxm=2−1
Z

d3q
ð2πÞ3

1

½q2þð1−xÞω2�1þm=2 ;

ðC3Þ

where x is the Feynman parameter. Upon completing the
integrals over q and x, and setting m ¼ 1 − ϵ (for brevity,
we use here shorthand notation ϵm → ϵ), we obtain

ΣNðiω; 0Þ ¼ ½iNγ0ωN�
�

ΔN

2π2v2

�
1

ϵ
þOð1Þ: ðC4Þ

Next we set ω ¼ 0, and the spatial component of self-
energy correction is then given by

ΣNð0;kÞ¼ΔN ½−iNγjN� 1

v3−m

Z
d3q
ð2πÞ3

ðk−qÞj
ðk−qÞ2qm

¼ΔN

�
−iNγjN

v3−m

�
Γð1þm

2
Þ

Γðm=2Þ
Z

1

0

dxxm=2−1

×
Z

d3q
ð2πÞ3

ðk−qÞj
½q2−2ð1−xÞq ·kþð1−xÞk2�1þm=2 :

ðC5Þ

After shifting the momentum variable according to
q − ð1 − xÞk → q and setting m ¼ 1 − ϵ, we obtain

ΣNð0; kÞ ¼ ½iNγjkjN�
�

ΔN

2π2v2

�
kϵ

3ϵ
þOð1Þ: ðC6Þ

Hence, the total self-energy correction reads

ΣNðiω; kÞ ¼ iN

�
γ0ωþ 1

3
γjkj

�
NΔN

1

ϵ
þOð1Þ; ðC7Þ

where we have redefined ΔNkϵ=ð2π2v2Þ → ΔN , which is
Eq. (23) in the main text.

2. Vertex

The vertex correction for the disorder vertex shown in
Fig. 9(b) with the matrix N reads

VNðkÞ¼
X
M

Z
d3q
ð2πÞ3MG0ð0;k−qÞNG0ð0;k−qÞMΔM

qm
;

ðC8Þ

where we kept only one external momentum as an infrared
regulator. The last expression can be compactly written as

VNðkÞ ¼ −
X
M

½MγjNγlM�ΔM

v2
IjlðkÞ; ðC9Þ

where

IjlðkÞ ¼
Z

d3q
ð2πÞ3

ðk − qÞjðk − qÞl
ðq − kÞ4qm : ðC10Þ

We now present the evaluation of the above integral:
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Ijl ¼
Z

d3q
ð2πÞ3

ðk − qÞjðk − qÞl
ðk − qÞ4qm

¼ Γð2þ m
2
Þ

Γðm=2Þ
Z

1

0

dxxð1 − xÞm=2−1

×
Z

d3q
ð2πÞ3

ðk − qÞjðk − qÞl
½xðk − qÞ2 þ ð1 − xÞq2�2þm=2 : ðC11Þ

After shifting the momentum variable as q − xk → q,
we obtain

Ijl ¼
Γð2þ m

2
Þ

Γðm=2Þ
Z

1

0

dxxð1 − xÞm=2−1

×
Z

d3q
ð2πÞ3

½q − ð1 − xÞk�j½q − ð1 − xÞk�l
½q2 þ xð1 − xÞk2�2þm=2

¼ −
kϵ

2π2
δjl
3ϵ

þOð1Þ; ðC12Þ

after taking m ¼ 1 − ϵ, since only the q-dependent part in
the numerator of the integrand yields a divergent contri-
bution. We use the last expression to obtain Eq. (30) in the
main text.

3. Ladder crossing

We now show computation of two ladder diagrams from
Fig. 5, in the ϵm-expansion scheme. After setting all the
external frequencies to zero, Fig. 5(c) yields

ð5cÞ ¼ ΔMΔN

Z
d3q
ð2πÞ3

�
M

iγlðp1 − qÞl
ðp1 − qÞ2 N

�

×

�
N
iγsðp2 þ qÞs
ðp2 þ qÞ2 M

�
1

jqjmjp3 − p1 − qjm : ðC13Þ

Taking then p1 ¼ p3 ¼ 0 and keeping only the most
singular contribution, we obtain

ð5cÞ ∼ ΔMΔN

Z
d3q
ð2πÞ3

1

jqj2mðp2 þ qÞ2 : ðC14Þ

Here, we used that ½γl; X� ¼ 0 or fγl; Xg ¼ 0 for all j ¼ 1,
2, 3 and X ¼ M, N, as well as ½M;N� ¼ 0 or fM;Ng ¼ 0.
Computation of the last integral yields

ð5cÞ ∼ ΔMΔNðp2
2Þ1=2−m

Γð1
2
ÞΓð3

2
−mÞΓðm − 1

2
Þ

ð4πÞ3=2ΓðmÞΓð2 −mÞ ; ðC15Þ

which is finite in the expansion in ϵm ¼ 1 −m as m → 0.
This is also expected based on the power counting of the
integral in Eq. (C14). Figure 5(d) reads

ð5dÞ ¼ ΔMΔN

Z
d3q
ð2πÞ3

�
M

iγlðp1 − qÞl
ðp1 − qÞ2 N

�

×
�
M

iγsðp1 þ p2 − p3 − qÞs
ðp1 þ p2 − p3 − qÞ2 N

�

×
1

jqjmjp1 − p2 − qjm : ðC16Þ

Taking then p1 ¼ p3 ¼ 0 and keeping only the most
singular contribution, we obtain

ð5dÞ ∼ ΔMΔN

Z
d3q
ð2πÞ3

1

jqj2mðp2 − qÞ2 ; ðC17Þ

identical to the integral from Eq. (C14), after substituting
q → −q. Therefore this diagram is also ultraviolet finite,
confirming that both ladder diagrams are finite in the ϵm
expansion, irrespective of the choice of M and N.
The reason for these two diagrams yielding ultraviolet

finite contribution is the following: since the disorder
propagator is momentum dependent in the ϵm-expansion
scheme (unlike the situation in ϵd expansion), only the self-
energy and vertex diagrams [see Fig. 9] containing only
one disorder line are ultraviolet divergent and contribute
RG flow equations. By contrast, each of the two ladder
diagrams [see Figs. 5(c) and 5(d)] contains two disorder
lines, yielding UV finite contribution and thus do not
influence the RG flow equations. Now readers can con-
vince themselves that such a distinction between these two
sets of Feynman diagrams persists to any order in pertur-
bation theory. Hence, in the ϵm-expansion scheme, ladder
diagrams never contribute and we do not generate any
short-range disorder.

APPENDIX D: LATTICE REALIZATION OF
GENERIC DISORDER IN WEYL SEMIMETAL

In this appendix, we demonstrate the lattice realization of
16 possible fermionic bilinears (shown in Table III) from
the two-band tight-binding model, displayed in Eqs. (5)
and (3). By virtue of the chosen tight-binding model, our
construction is based on two features
(1) Since two Weyl nodes are located on the kz axis at

�k0z ¼ �π=ð2aÞ, any fermionic bilinear odd under
the exchange of two Weyl nodes can be realized by
adding h ¼ P

k Ψ
†
k sinðkzaÞσjΨk to the tight-bind-

ing model, where j ¼ 0, 1, 2, 3. Such perturbation
corresponds to an imaginary hopping along the z
direction, and does not renormalize the bandwidth.

(2) Any fermionic bilinear that couples twoWeyl nodes,
which therefore necessarily breaks translational
symmetry, can be realized through a periodic and
commensurate modulation of the nearest-neighbor
hopping amplitude, but only along the z direction.
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With these two construction principles we can realize all
16 fermion bilinears by adding the following terms to the
tight-binding Hamiltonian:
(1) regular chemical potential,

X
r

Ψ†
rVðrÞσ0Ψr;

(2) axial chemical potential,

X
r

Ψ†
r

�
iVðrÞ
2

σ0

�
Ψrþê3 þ H:c:;

(3) Abelian current,

X
r

	
Ψ†

r

�
iVðrÞ
2

σ3

�
Ψrþê3 þ H:c:

þ Ψ†
rVðrÞðσ1 þ σ2ÞΨr



;

(4) Abelian axial current,

X
r

	
Ψ†

r

�
iVðrÞ
2

ðσ1 þ σ2Þ
�
Ψrþê3

þ H:c:þΨ†
rVðrÞσ3Ψr



;

(5) temporal components of tensor,

X
r

X
j

ð−1ÞjΨ†
r;jVðrÞ½σ1þσ2þ iσ0�Ψr;ê3;jþ1þH:c:;

(6) spatial components of tensor,

X
r

X
j

ð−1ÞjΨ†
r;jVðrÞ½σ0þiσ1þiσ2�Ψr;ê3;jþ1þH:c:;

(7) scalar mass,

X
r

X
j

ð−1ÞjΨ†
r;j½VðrÞσ3�Ψr;ê3;jþ1 þ H:c:;

(8) pseudoscalar mass,

X
r

X
j

ð−1ÞjΨ†
r;j½iVðrÞσ3�Ψr;ê3;jþ1 þ H:c:

Thus, within the simplest realization of a Weyl semi-
metal from a tight-binding model on a cubic lattice, one can
realize all possible disorder couplings by choosing VðrÞ as
a random variable, and numerically study possible WSM-
metal QPTs. The scaling of ADOS at zero energy for all the
above eight disorders is shown in Fig. 22.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 22. Scaling of the ADOS at zero energy [ϱð0Þ] as a function of disorder strength W (chosen to be uniformly and independently
distributed within a box ½−W;W�) for (a) potential, (b) axial, (c) axial current (or magnetic), (d) current, (e) temporal tensor (or spin-
orbit), (f) spatial tensor (or axial magnetic), (g) scalar mass, and (h) pseudoscalar mass disorder. The results are obtained by using KPM
in a cubic lattice with linear dimension L ¼ 220 in each direction. Note ϱð0Þ is pinned to zero up to a critical strength of disorder Wc,
quoted in each panel (see also Tables I and II), and then it becomes finite, indicating the onset of a metallic phase. We reduce the
uncertainty in determining the location ofWc within the error bar�0.05, allowing us to minimize the fitting error in the determination of
z and ν (see Appendix E and Table IV).
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APPENDIX E: DETAILS OF DATA ANALYSIS

In this appendix, we present quintessential details of data
analysis, which we employ for (a) anisotropic semimetal-
metal QPT through the MCP [the blue dot in Fig. 2 (left)] as
well as (b) WSM-metal QPT [for both uncorrelated and
correlated disorder (see Appendix F)].

1. Estimation of Wc

We determine the critical strength of disorder (Wc) by
computing the average DOS at zero energy ϱð0Þ. Note
ϱð0Þ ¼ 0 in the semimetallic phase as well as at the
semimetal-metal QCP. But ϱð0Þ is finite in a metal.
Hence, by computing ϱð0Þ we can pin down Wc, as shown
in Figs. 7(a), 22, and 23(b). We minimize the error δWc in
determining Wc by increasing the number of data points
around Wc, and throughout, δWc ¼ 0.05. Note small δWc
is the source of small “fitting error” in the quoted values
of z and ν.

2. Estimation of z

To determine the DSE z, we compare ϱðEÞ versus
jEjd=z−1, for Wc − δWc, Wc, and Wc þ δWc. Since con-
tinuous semimetal-metal QPT is always characterized by a
unique z, we fit ϱðEÞ for a specific value of z. But, due to
the finite-size effects (which are nonuniversal and also
depend on the choice of disorder distribution), such a fit
never goes through zero at E ¼ 0, although ϱð0Þ ≈ 0
(within numerical accuracy). Hence, to find z we search
for its value that yields good fit with ϱðEÞ at finite energy
[i.e., we target to fit ϱðEÞ with jEjd=z−1 within the quantum-
critical regime, where finite-size effects are nominal]. For
three values ofW, namely,Wc − δWc,Wc, andWc þ δWc,
we obtain three values of z, namely, z − δz, z, and zþ δz,
where δz is the fitting error associated with z [see Tables I
and II and Figs. 7(b) and 23(c)]. The red lines shown in
Figs. 7(b), 13 (first column), 14 (first column), and 23(c)

represent plots of ϱðEÞ versus jEjd=z−1 for the mean value
of z.

3. Estimation of ν

Finally, we determine CLE ν, for which we compare
ϱð0Þ in the metallic phase with δ ¼ ðW −WcÞ=Wc (where
Wc is the mean value of critical disorder strength), since
ϱð0Þ ∼ δðd−zÞν. Within the maximally allowed range of
disorder Wc < W < W� (due to the inevitable presence
of a subsequent Anderson transition, explained below), we
fit ϱð0Þ versus δðd−zÞν, yielding CLE ν� δν with the mean
value of DSE z, reported in Fig. 7(c), the second column of
Figs. 13 and 14, and in Fig. 23(d). The black, red, and blue
curves are, respectively, shown for ν ∈ fν − δν; ν; νþ δνg,
encompassing all data points.
To further improveour numerical analysis of ν,wegenerate

two additional data sets for ϱð0Þ versus δ, with Wc →
Wc � δWc, but still within the range Wc � δWc <
W < W�. Performing the same analysis explained above,
we obtain another range ofCLE, ν. Finally, for all three sets of
ϱð0Þ versus δ, we extract the CLE taking z → z� δz. With
such extensive data analysis, summarized in Table IV, we
acquire maximal fitting error in the determination of ν, and
these values are quoted in Tables I and II (for WSM-metal
QPT), reported in Sec. III B for anisotropic semimetal-metal
QPT through the MCP and in Appendix F for correlated
potential disorder.
Finally, we highlight an important issue related to the

range of disorder (δ) over which we perform numerical
analysis for ν. Note that a three-dimensional Weyl metal
undergoes a second QPT into the AI phase (discussed in
Sec. IX; see also Fig. 1). Across the Anderson transition,
although average DOS at zero energy [ϱað0Þ] remains
smooth, it decreases monotonically. As shown in
Fig. 18(a), Anderson transition (for potential disorder)
takes place at Wc;2 ≈ 9.30, but ϱað0Þ starts to decrease
for much weaker disorderW ≥ 2.90. On the other hand, the

(a) (b) (c) (d)

FIG. 23. Numerical analysis of average DOS in the presence of correlated potential disorder [see Appendix F and Eq. (F1)]. Scaling of
(a) average DOS [ϱðEÞ] with increasing strength of disorder (in the direction of the red arrow), (b) average DOS at zero energy [ϱð0Þ]
with increasing disorder in the system, yielding critical disorder strength Wc ¼ 0.90� 0.05, (c) average DOS [ϱðEÞ] around critical
disorder W ¼ 0.85 (blue), 0.90 (yellow), and 0.95 (green) [fitting ϱðEÞ with jEjd=z−1, we obtain z ¼ 1.49� 0.05], (d) ϱð0Þ with the
reduced distance from the WSM-metal critical point (δ), yielding ν ¼ 0.99� 0.05 with Wc ¼ 0.90 and z ¼ 1.49. For discussion on
error analysis in the determination of ν, see Appendixes E and F, as well as Table IV (the second to the last row).
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WSM-metal QPT takes place around Wc;1 ≈ 1.65. Hence,
for W > 2.9, the Weyl metal starts to approach the
Anderson fixed point, and to properly extract ν associated
with the WSM-metal QPTwe can only fit ϱað0Þwith δðd−zÞν
within the range 1.65� 0.05 < W < 2.90, the maxi-
mally allowed range of disorder, mentioned earlier, with
W� < 2.90. The maximal value of δ shown in the second
column of the first row in Fig. 13 is ≈0.60, yielding
correspondingW ≈ 2.65 withWc ¼ 1.65 (ensuring that the
system is still sufficiently far from the Anderson fixed
point). Therefore, in our data analysis for ν, we cover the
maximally allowed range of disorder so that the system still
falls outside the basin of attraction for the Anderson
transition. No further variation of range of δ is permitted
due to the very nature of the global phase diagram, shown
in Fig. 1. This way we acquire a maximal fitting error in
determination of ν arising from the range of δ we consider,
that nonetheless encompasses all data points. We follow the
same strategy for the analysis of ν in the presence of
arbitrary disorder drivingWSM-metal QPTor the transition
across the MCP.

APPENDIX F: CORRELATED DISORDER

So far we have assumed disorder to be a random variable
within the range ½−W;W� at each site of the cubic lattice
with linear dimension L in each direction. Hence, disorder

is uncorrelated, which involves both intravalley as well as
intervalley scattering (since in any lattice model left and
right chiral Weyl points are always connected at high
energies). However, our proposed scenario of the emergent
superuniversality (see Sec. VII D) suggests that in the
presence of generic disorder, the WSM-metal QPT is
characterized by a unique set of exponents, namely, z ¼
1.5 and ν ¼ 1 (obtained from leading-order ϵ expansions,
in good agreement with numerical findings). Otherwise,
such emergent superuniversality does not depend on the
actual nature of the disorder (see Figs. 13 and 14 and
Tables I and II) nor does it depend on the distribution of
disorder. To anchor the last statement we now present the
numerical analysis of average DOS in the presence of
correlated random charge impurities for which intervalley
scattering is suppressed (although finite) by construction (at
least when disorder is sufficiently weak). As we demon-
strate, the universality class of the WSM-metal transition
remains unaffected (within numerical accuracy) by the
choice of disorder distribution, apart from causing a
nonuniversal shift of WSM-metal QCP (Wc).
We introduce a Gaussian disorder potential WðrÞ, such

that the mean hWðrÞi ¼ 0, but

hWðrÞWðr0Þ ¼ W
ξ2

exp

�
−
jr − r0j2
2ξ2

�
: ðF1Þ

TABLE IV. Details of the data analysis for the computation of the correlation length exponent ν across the WSM-metal QPT driven by
potential (ΔV), axial potential (ΔA), magnetic (ΔM), current (ΔC), spin-orbit (ΔSO), axial magnetic (ΔAM), scalar mass (ΔS), and
pseudoscalar mass (ΔPS) disorder (see Table III for definition), where the disorder is assumed to be uniformly and independently
distributed within ½−W;W� (first eight rows). We here show the variation of ν with (a) the variation of the location of the WSM-metal
QCP (denoted byWc � δWc) and (b) from the fitting error of z (denoted by z� δz). See Tables I and II forWc, z, and δz, and throughout
we have δWc ¼ 0.05. The second to the last row represents the same analysis but in the presence of correlated potential disorder (Δcorr

V ),
discussed in Appendix F, while the last row shows similar analysis across the potential disorder-driven critical anisotropic semimetal-
metal transition through the multicritical point (discussed in Sec. III). The quantities in parentheses represent corresponding fitting error
for a given value of ν for the specific value of critical disorder strength and dynamic scaling exponent; see Appendix E for discussion.
Each value of ν and the corresponding fitting error is determined by comparing ϱð0Þ with δðd−zÞν for given values of Wc and z, see, for
example, Fig. 7(c), second column of Figs. 13 and 14, and Fig. 23(d). The last column shows the corresponding values of the correlation
length exponent, accompanied by maximal fitting error. These analyses were performed in the largest system (see Secs. III B and VI and
Appendix F for details). Data collapse in Figs. 8, 13, 14, and 24 are shown with the values for Wc, z, and ν shown in bold font.

Disorder

Wc − δWc Wc Wc þ δWc

ν

z − δz z zþ δz z − δz z zþ δz z − δz z zþ δz

ν ν ν ν ν ν ν ν ν

ΔV 0.97(0.06) 1.00(0.05) 1.02(0.06) 0.97(0.05) 0.99ð0.05Þ 1.01(0.07) 0.98(0.06) 0.99(0.07) 1.01(0.05) 1.00(0.08)
ΔA 1.04(0.06) 1.07(0.05) 1.09(0.05) 1.01 (0.05) 1.03ð0.05Þ 1.08(0.08) 1.04(0.05) 1.06(0.07) 1.08(0.08) 1.06(0.10)
ΔM 0.99(0.06) 1.02(0.05) 1.05(0.05) 1.00(0.06) 1.03ð0.05Þ 1.05(0.05) 1.01(0.05) 1.05(0.05) 1.07(0.06) 1.03(0.10)
ΔC 1.01(0.05) 1.04(0.06) 1.07(0.06) 0.99(0.05) 1.03ð0.05Þ 1.06(0.06) 0.99(0.05) 1.03(0.06) 1.06(0.05) 1.02(0.09)
ΔSO 1.01(0.05) 1.03(0.06) 1.06(0.05) 0.97(0.07) 1.01ð0.05Þ 1.04(0.05) 0.99(0.06) 1.02(0.06) 1.05(0.05) 1.01(0.10)
ΔAM 0.99(0.07) 1.03(0.06) 1.07(0.05) 0.97(0.08) 1.01ð0.05Þ 1.05(0.06) 0.97(0.06) 1.02(0.05) 1.06(0.06) 0.99(0.12)
ΔS 0.95(0.06) 0.99(0.05) 1.03(0.07) 0.95(0.05) 0.97ð0.05Þ 1.01(0.07) 0.95(0.07) 0.99(0.05) 1.02(0.06) 0.99(0.12)
ΔPS 0.99(0.08) 1.02(0.05) 1.05(0.06) 0.99(0.05) 1.02ð0.06Þ 1.06(0.05) 0.97(0.05) 1.01(0.05) 1.05(0.06) 1.01(0.11)
Δcorr

V 0.96(0.07) 1.00(0.05) 1.04(0.06) 0.96(0.05) 0.99ð0.05Þ 1.03(0.07) 0.96(0.08) 1.01(0.05) 1.05(0.05) 0.99(0.11)
ΔV (MCP) 1.94(0.07) 1.97(0.06) 2.03(0.05) 1.92(0.05) 1.97ð0.05Þ 2.01(0.06) 1.97(0.06) 1.99(0.05) 2.02(0.06) 1.98(0.10)
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In the lattice implementation, we set ξ ¼ 4a, where a is the
lattice constant, leading to a strong suppression of inter-
valley scattering by a factor exp ½−ðΔkÞ2ξ2=2� < 10−34,
whereΔk ¼ π=a is the separation between twoWeyl nodes
[105]. Now we proceed with the numerical analysis of the
average DOS using KPM in a cubic lattice with linear
dimension L ¼ 160 in each direction. We average over 20
random disorder realizations, compute 4096 Chebyshev
moments, and take trace over 12 random vectors to
compute ϱðEÞ.
First, notice that scaling of average DOS ϱðEÞ as a

function of increasing disorder [see Fig. 23(a)] is similar to
the ones found with box distribution (see Fig. 3), showing a
smooth crossover from ϱðEÞ ∼ jEj2 to jEj scaling as we
approach the critical disorder strength Wc ¼ 0.90� 0.05
from the semimetallic side, beyond which ϱð0Þ becomes
finite [see Fig. 23(b)] and the system enters a metallic
phase. By fitting DOS ϱðEÞ with jEjd=z−1, we obtain
z ¼ 1.49� 0.05; see Fig. 23(c). Finally, we compare the
DOS at zero energy ϱð0) with δ ¼ ðW −WcÞ=Wc, and with
mean values of Wcð¼ 0.90Þ and zð¼ 1.49Þ, and find
ν ¼ 0.99� 0.05 [see Fig. 23(d)]. We here compare ϱð0Þ
versus δ up toW ¼ 1.75, such that ϱð0Þ increases smoothly
within 0.90 < W < 1.75 (see last paragraph of
Appendix E). Finally, performing a similar data analysis
by accounting for the variation of Wc and z, we find
ν ¼ 0.99� 0.11, containing maximal fitting error in the
determination of ν (see second to the last row of Table IV).
Now, with the mean values of these parameters, namely,

Wc ¼ 0.90, z ¼ 1.49, and ν ¼ 0.99, we proceed to the data
collapse. The results are displayed in Figs. 24(a) and 24(b),
discerning satisfactory data collapse over a large parameter
space. In corroboration with the numerical results we
presented for all possible disorder with uncorrelated box
distribution, the present numerical analysis for correlated
potential disorder supports the following fact: the univer-
sality class of the WSM-metal QPT is insensitive to the
nature of disorder as well as its distribution, which in
conjunction with our field-theoretic predictions supports

the proposed scenario of emergent superuniversality across
the WSM-metal QPT.

APPENDIX G: RG ANALYSIS IN THE PRESENCE
OF GENERIC DISORDER COUPLINGS

In this appendix, we present the coupled RG flow
equations for eight disorder couplings shown in
Table III, obtained within the framework of ϵm expansion
(defined in Sec. IV B) and ϵd expansion (defined in
Sec. IV C). We show that under generic circumstances
the line of QCPs, defined in Eq. (36) (obtained from ϵm
expansion) or Eq. (39) (obtained from ϵd expansion), in the
ðΔV;ΔAÞ plane (two chiral-symmetric disorders), is the
legitimate solution, which provides a strong justification for
the chiral superuniversality across generic disorder-driven
WSM-metal QPT, qualitatively discussed in Sec. VII D.

1. RG flow equations from ϵm expansion

The leading-order coupled RG flow equations in the
presence of all eight disorder couplings within the frame-
work of an ϵm expansion read as

βΔV
¼ ΔV

�
−ϵm þ 4

3
ð2ΔA þ 5ΔAM þ 4ΔC þ 4ΔM þ ΔPS þ ΔS þ 5ΔSO þ 2ΔVÞ

�
; ðG1Þ

βΔA
¼ ΔA

�
−ϵm þ 8

3
ðΔA − 2ΔAM þ 2Δc þ 2ΔM − ΔPS − ΔS − 2ΔSO þ ΔVÞ

�
; ðG2Þ

βΔM
¼ ΔM

�
−ϵm þ 4

3
ðΔAM − ΔPS − ΔS þ ΔSOÞ

�
; ðG3Þ

βΔC
¼ −ϵmΔC; ðG4Þ

βΔSO
¼ ΔSO

�
−ϵm þ 4

3
ðΔAM − ΔM − ΔS þ ΔVÞ

�
; ðG5Þ

(a) (b)

FIG. 24. Two types of data collapse in the presence of
correlated potential disorder. (a) Finite energy collapse of
ϱðEÞjδjðd−zÞν versus jEjδ−νz in a system with L ¼ 160. All data
fall on two branches: top one corresponds to the metallic phase,
while the bottom one corresponds to the semimetallic phase.
(b) Finite-size data collapse of ϱð0ÞLd−z versus δL1=ν. For these
two data collapses we take Wc ¼ 0.9, z ¼ 1.49, and ν ¼ 0.99.
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βΔAM
¼ ΔAM

�
−ϵm −

4

3
ðΔM þ ΔPS − ΔSO − ΔVÞ

�
; ðG6Þ

βΔS
¼ ΔS

�
−ϵm þ 4

3
ð2ΔA − 4ΔAM þ 4ΔC − 5ΔM þ ΔPS − 2ΔS þ 5ΔSO − ΔVÞ

�
; ðG7Þ

βΔPS
¼ ΔPS

�
−ϵm þ 4

3
ð2ΔA þ 5ΔAM þ 4ΔC − 5ΔM − 2ΔPS þ ΔS − 4ΔSO − ΔVÞ

�
: ðG8Þ

The above set of coupled flow equations only supports a line of QCPs, given by Eq. (36). Along the entire line of QCPs the
exponents are given by ν−1 ¼ ϵm þOðϵ2mÞ and z ¼ 1þ ϵm=2þOðϵ2mÞ in three dimensions, to the leading order in ϵm.
Therefore, for Gaussian white noise distribution (ϵm ¼ 1), we obtain ν ¼ 1 and z ¼ 3=2. This outcome strongly supports
the proposed emergent superuniversality across the WSM-metal QPT, driven by arbitrary disorder.

2. RG flow equations from ϵd expansion

The coupled RG flow equations for eight symmetry-allowed disorder couplings to the leading order in the ϵd expansion
read as

βΔV
¼ −ϵdΔV þ 2ΔVðΔA þ 3ΔAM þ 3ΔC þ 3ΔM þ ΔPS þ ΔS þ 3ΔSO þ ΔVÞ þ 4ð2ΔCΔM þ ΔAMΔPS þ ΔSΔSOÞ; ðG9Þ

βΔA
¼ −ϵdΔA þ 2ΔAðΔA − 3ΔAM þ 3ΔC þ 3ΔM − ΔPS − ΔS − 3ΔSO þ ΔVÞ þ 4ðΔ2

AM þ Δ2
C þ Δ2

M þ Δ2
SOÞ; ðG10Þ

βΔM
¼−ϵdΔMþ2

3
ΔMð−ΔAþΔAMþΔCþΔM−ΔPS−ΔSþΔSO−ΔVÞþ

4

3
ð2ΔAΔMþ7ΔAMΔSOþ2ΔCΔVþΔPSΔSÞ;

ðG11Þ

βΔC
¼ −ΔC þ 2

3
ΔCð−ΔA − ΔAM þ ΔC þ ΔM þ ΔPS þ ΔS − ΔSO − ΔVÞ þ

8

3
ðΔAΔC þ ΔAMΔS þ ΔMΔV þ ΔPSΔSOÞ;

ðG12Þ

βΔSO
¼ ϵdΔSO−

2

3
ΔSOðΔA−ΔAM−ΔCþΔM−ΔPSþΔSþΔSO−ΔVÞþ

4

3
ð2ΔAΔSOþ7ΔAMΔMþ2ΔCΔPSþΔSΔVÞ;

ðG13Þ

βΔAM
¼−ϵdΔAM−

2

3
ΔAMðΔAþΔAM−ΔCþΔMþΔPS−ΔS−ΔSO−ΔVÞþ

4

3
ð2ΔAΔAMþ2ΔCΔSþ7ΔMΔSOþΔPSΔVÞ;

ðG14Þ

βΔS
¼ −ϵdΔS þ 2ΔSðΔA − 3ΔAM þ 3ΔC − 3ΔM þ ΔPS − ΔS þ 3ΔSO − ΔVÞ þ 4ð2ΔAMΔC þ ΔMΔPS þ ΔSOΔVÞ; ðG15Þ

βΔPS
¼ −ϵdΔPS þ 2ΔPSðΔA þ 3ΔAM þ 3ΔC − 3ΔM − ΔPS þ ΔS − 3ΔSO − ΔVÞ þ 4ðΔAMΔV þ 2ΔCΔSO þ ΔMΔSÞ:

ðG16Þ

The above set of coupled flow equations supports only a
line of QCPs, given by Eq. (39), in the ΔV − ΔA plane,
shown in Fig. 10. Along the entire line of QPCs, the
exponents are ν−1 ¼ ϵd and z ¼ 1þ ϵd=2 (to the leading
order in ϵd). Therefore, in a three-dimensional WSM
(ϵd ¼ 1) the semimetal-metal QPT driven by arbitrary
disorder potential is always characterized by ν ¼ 1 and
z ¼ 3=2, thus strongly supporting the proposed emergent

chiral superuniversality. Even though symmetry of a WSM
is different from its two-dimensional counterpart graphene
(for example, graphene does not allow the presence of time-
reversal symmetry-breaking magnetic or current disorder),
at least the coupled RG flow equations for potential (ΔV)
and regular mass (ΔS) disorder (present in both WSM and
graphene) are in agreement with Ref. [84], if we set ϵd ¼ 0
or equivalently d ¼ 2.
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APPENDIX H: ALTERNATIVE DERIVATION OF
CORRECTION TO OPTICAL CONDUCTIVITY

Direct computation of the correction to the optical
conductivity due to arbitrary disorder by using the Kubo
formula has already been presented in Ref. [43].
Specifically, we compute the disorder-driven correction
to the current-current correlation function (involving com-
putation of two-loop diagrams), and then via analytic
continuation we found the OC at frequency Ω in a weakly
disordered WSM to be

σðΩÞ ¼ Ne20Ω
12hv

�
1þ ΔVΛ

π2v2

�
≡ σ0ðΩÞ

�
1þ ΔVΛ

π2v2

�
; ðH1Þ

whereN is the number of Weyl nodes, and e0 is the electron
charge in vacuum [see Eq. (3) of Ref. [43] ]. For concrete-
ness, we here restrict ourselves to potential disorder or
random charge impurities (ΔV), possessing Gaussian white
noise distribution in three dimensions. In the absence of
disorder (ΔV ¼ 0), we recover the OC in a clean WSM,
σ0ðΩÞ [30,32,106]. We now present an alternative deriva-
tion of the same expression.
The OC is given by

σðΩÞ ¼ lim
Ω→0

1

Ω

Z
dDxeiΩx0hjxðxÞjxð0ÞiR

¼ Z2
Ψ

�
lim
Ω→0

1

Ω

Z
dDxeiΩx0hjxðxÞjxð0Þi0

�

¼ Z2
Ψ

�
Ne20Ω
12hv

�
; ðH2Þ

where ZΨ ¼ ½1þ ΔVΛ=ð2π2v2Þ� is the field-renormaliza-
tion factor, as presented in Sec. IV C, for ϵd ¼ 1. The same
expression for the field-renormalization factor can directly
be obtained by integrating over the entire Weyl band with
0 ≤ jkj ≤ Λ, which is legitimate since we are interested in
the OC of a weakly disordered WSM for which sharp
quasiparticle excitations persist all the way down to zero
energy or momentum. Upon substituting Zψ in the above
expression we immediately recover Eq. (H1).

APPENDIX I: ϵn EXPANSION FOR
WSM-METAL QPT

We devote this appendix of the paper to address yet
another controlled route to address the effects of disorder
deep inside the WSM phase. Without any loss of generality
we can express the Weyl Hamiltonian as

HW ¼ v⊥
X
j¼1;2

iγ0γjkj þ v3iγ0γ3k3; ðI1Þ

and so far we have considered v⊥ ¼ v3 ¼ v. Following the
spirit of the “band-flattening” method, demonstrated in
Sec. III A, we deform the above Hamiltonian to

HW → Hn
W ¼ v⊥

X
j¼1;2

iγ0γjkj þ Cniγ0γ3kn3; ðI2Þ

with the restriction that n can now only take odd integer
values, so that all symmetry properties of a WSM remain
unaffected. The DOS of such a deformed system is
ϱðEÞ ∼ jEj1þ1=n. Notice in the limit n → ∞ the DOS scales
linearly with E, and disorder then become a marginal
variable (outcome from a self-consistent Born calculation).
Such a special limit represents a two-dimensional Weyl
system (since quasiparticles do not possess any dispersion
along kz). Otherwise, following the same steps of coarse
graining we find that the scaling dimension of disorder
couplings after performing the disorder averaging using the
replica formalism is ½Δj� ¼ −1=n. Therefore, we can
perform a controlled RG calculation about the n → ∞
limit, following the spirit of an ϵn expansion, with
ϵn ¼ 1=n, since ½Δj� ¼ −ϵn. For the physically relevant
case ϵn ¼ 1. Otherwise, the steps are identical to the ones
presented in Sec. III A and the relevant Feynman diagrams
are already shown in Fig. 5. For the sake of simplicity, we
here focus only on the potential disorder. A detailed RG
analysis within the framework of the ϵn expansion in the
presence of eight disorders is left for a future investigation.
The leading-order RG calculation yields the following flow
equations:

βX ¼ −ΔVH0ðnÞX ¼ ð1 − zÞX;
βΔV

¼ ΔV ½−ϵn þ ΔVH0ðnÞ�; ðI3Þ

where X ¼ v⊥; Cn, Δ̂V ¼ 2ΔVΛϵn=½ð2πÞ2Cϵnv2−ϵn⊥ � is the
dimensionless disorder coupling, and for brevity we have
dropped the hat notation in the last set of equations. The
function H0ðnÞ reads as

H0ðnÞ ¼ 1þ π2

24

1

n2
þOðn−4Þ: ðI4Þ

Therefore, H0ðnÞ is a well-controlled function of 1=n.
Keeping the leading-order term inH0ðnÞ, the RG equations
become

βX ¼ −ΔVX ¼ ð1 − zÞX; βΔV
¼ ΔV ½−ϵn þ ΔV �: ðI5Þ

The DSE from the first equation reads as z ¼ 1þ ΔV . The
second equation supports only two fixed points: (i) the one
at ΔV ¼ 0 represents the stable WSM phase, while (ii) the
unstable fixed point at ΔV ¼ ϵn=2 represents the WSM-
metal QCP. The DSE and the CLE at this fixed point are,
respectively,

z ¼ 1þ ϵn
2
; ν−1 ¼ ϵn: ðI6Þ

Therefore, for the physically relevant case of simple WSM
(ϵn ¼ 1), we obtain z ¼ 3=2 and ν ¼ 1, same as the ones
obtained from ϵm and ϵd expansions, declared in Sec. V.
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Note that even if we chose to keep the entire functionH0ðnÞ
in the RG flow equations, we obtain the same set of critical
exponents.

APPENDIX J: SELF-CONSISTENT BORN
APPROXIMATION AT WSM-INSULATOR QCP

In this appendix, we present the computation of the
inverse scattering lifetime (1=τs) within the framework of
the self-consistent Born approximation, in the presence
of disorder. In this formalism, τs is computed from the
following self-consistent equation:

Z
EΛ

0

dE
ϱðEÞ

ðℏ=τsÞ2 þ E2
¼ 1

W
; ðJ1Þ

where EΛ is the ultraviolet energy cutoff up to which
critical excitations separating a WSM and an insulator
possess anisotropic dispersion, captured by HQð0Þ in
Eq. (6). Since at the WSM-insulator QCP the average
DOS scales as ϱðEÞ ∼ jEj3=2, the right-hand side of the
above equation displays ultraviolet divergence ∼E1=2

Λ . Such
divergence can be regulated by introducing a parameter

1

Wc
¼

Z
EΛ

0

dE
ϱðEÞ
E2

; ðJ2Þ

where Wc corresponds to the critical strength of disorder
for the instability of ballistic critical fermions. The above
gap equation can then be cast as

δ ¼
Z

EΛ

0

dEϱðEÞ
�

1

E2
−

1

ðℏ=τsÞ2 þ E2

�
; ðJ3Þ

where δ ¼ W −Wc=ðWWcÞmeasures the reduced disorder
strength from the critical one (W ¼ Wc). After regularizing
the ultraviolet divergence we can take the limit EΛ → ∞
without encountering any divergence. The self-consistent
solution of the scattering lifetime is then obtained from the
following universal scaling form,

ffiffiffiffi
ℏ
τs

s
¼

ffiffiffi
2

p

π
δ; ðJ4Þ

which immediately implies that τ−1s is finite only when
δ > 0 or W > Wc, and for W < Wc we get τ−1s ¼ 0.
Therefore, critical fermions separating a WSM and an
insulator retain its ballistic nature up to a critical strength of
disorder Wc ∼ E1=2

Λ . Only for strong disorder W > Wc a
metallic phase emerges where τ−1s is finite. Therefore, the
conclusion from the self-consistent Born approximation is
in qualitative agreement with our results found by field-
theoretic RG analysis and numerical calculation, presented
in Sec. III.

[1] C. Herring, Accidental Degeneracy in the Energy Bands of
Crystals, Phys. Rev. 52, 365 (1937).

[2] R. Dornhaus, G. Nimtz, and B. Schlicht, Narrow-Gap
Semicounductors (Springer-Verlag, Berlin, 1983).

[3] G. E. Volovik, The Universe in a Helium Droplet (Oxford
University Press, New York, 2003).

[4] T. O. Wehling, A. M. Black-Schaffer, and A. V. Balatsky,
Dirac Materials, Adv. Phys. 63, 1 (2014).

[5] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu,
Classification of Topological Quantum Matter with Sym-
metries, Rev. Mod. Phys. 88, 035005 (2016).

[6] A. Bansil, Hsin Lin, and Tanmoy Das, Colloquium:
Topological Band Theory, Rev. Mod. Phys. 88, 021004
(2016).

[7] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser,
R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl
Fermions: Unconventional Quasiparticles in Conven-
tional Crystals, Science 353, aaf5037 (2016).

[8] B. J. Wieder and C. L. Kane, Spin-Orbit Semimetals in the
Layer Groups, Phys. Rev. B 94, 155108 (2016).

[9] R.-J. Slager, V. Juricic, V. Lahtinen, and J. Zaanen, Self-
Organized Pseudo-Graphene on Grain Boundaries in
Topological Band Insulators, Phys. Rev. B 93, 245406
(2016).

[10] P. A. M. Dirac, The Quantum Theory of the Electron, Proc.
R. Soc. A 117, 610 (1928).

[11] P. A. M. Dirac, A Theory of Electrons and Protons, Proc.
R. Soc. A 126, 360 (1930).

[12] H. Weyl, Elektron und Gravitation. I, Z. Phys. 56, 330
(1929).

[13] A. A. Burkov, Chiral Anomaly and Transport in Weyl
Metals, J. Phys. Condens. Matter 27, 113201 (2015).

[14] S. Rao, Weyl Semi-Metals: A Short Review, arXiv:1603
.02821.

[15] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and
Dirac Semimetals in Three Dimensional Solids, Rev. Mod.
Phys. 90, 015001 (2018).

[16] C. Zhang, Z. Yuan, S. Xu, Z. Lin, B. Tong, M. Z. Hasan,
J. Wang, C. Zhang, and S. Jia, Electron Scattering
in Tantalum Monoarsenide, Phys. Rev. B 95, 085202
(2017).

[17] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane,
C. Zhang, R. Sankar, S.-M. Huang, C.-C. Lee, G. Chang,
B. Wang, G. Bian, H. Zheng, D. S. Sanchez, F. Chou,
H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl
Fermion Semimetal and Topological Fermi Arcs, Science
349, 613 (2015).

[18] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J.
Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen,
Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental
Discovery of Weyl Semimetal TaAs, Phys. Rev. X 5,
031013 (2015).

[19] S.-Y. Xu et al., Discovery of a Weyl Fermion State with
Fermi Arcs in Niobium Arsenide, Nat. Phys. 11, 748
(2015).

[20] N. Xu et al., Observation of Weyl Nodes and Fermi Arcs in
Tantalum Phosphide, Nat. Commun. 7, 11006 (2016).

[21] C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M.
Nicklas, I. Leermakers, U. Zeitler, Z. Liu, Y. Chen, W.
Schnelle, J. Grin, C. Felser, and B. Yan, Extremely Large

GLOBAL PHASE DIAGRAM OF A DIRTY WEYL LIQUID … PHYS. REV. X 8, 031076 (2018)

031076-37

https://doi.org/10.1103/PhysRev.52.365
https://doi.org/10.1080/00018732.2014.927109
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1103/PhysRevB.94.155108
https://doi.org/10.1103/PhysRevB.93.245406
https://doi.org/10.1103/PhysRevB.93.245406
https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1098/rspa.1930.0013
https://doi.org/10.1098/rspa.1930.0013
https://doi.org/10.1007/BF01339504
https://doi.org/10.1007/BF01339504
https://doi.org/10.1088/0953-8984/27/11/113201
http://arXiv.org/abs/1603.02821
http://arXiv.org/abs/1603.02821
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/PhysRevB.95.085202
https://doi.org/10.1103/PhysRevB.95.085202
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1038/nphys3437
https://doi.org/10.1038/nphys3437
https://doi.org/10.1038/ncomms11006


Magnetoresistance and Ultrahigh Mobility in the Topo-
logical Weyl Semimetal Candidate NbP, Nat. Phys. 11, 645
(2015).

[22] Z. Wang, Y. Zheng, Z. Shen, Y. Zhou, X. Yang, Y. Li, C.
Feng, and Z.-A. Xu, Helicity-Protected Ultrahigh Mobility
Weyl Fermions in NbP, Phys. Rev. B 93, 121112 (2016).

[23] G. Chang, S.-Y. Xu, D. S. Sanchez, S.-M. Huang, C.-C.
Lee, T.-R. Chang, H. Zheng, G. Bian, I. Belopolski, N.
Alidoust, H.-T. Jeng, A. Bansil, H. Lin, and M. Z. Hasan, A
Strongly Robust Type II Weyl Fermion Semimetal State in
Ta2S3, Sci. Adv. 2, e1600295 (2016).

[24] S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, T.
Kim, M. N. Ali, B. Buechner, M. Hoesch, and R. J. Cava,
Time-Reversal Symmetry Breaking Type-II Weyl State in
YbMnBi2, arXiv:1507.04847.

[25] J. Y. Liu, J. Hu, Q. Zhang, D. Graf, H. B. Cao, S. M. A.
Radmanesh, D. J. Adams, Y. L. Zhu, G. F. Cheng, X. Liu,
W. A. Phelan, J. Wei, D. A. Tennant, J. F. DiTusa, I.
Chiorescu, L. Spinu, and Z. Q. Mao, Discovery of a
Topological Semimetal Phase Coexisting with Ferromag-
netic Behavior in Sr1−yMnSb2 (y ∼ 0.08), Nat. Mater. 16,
905 (2017).

[26] H. B. Nielsen andM. Ninomiya, Absence of Neutrinos on a
Lattice: (I). Proof by Homotopy Theory, Nucl. Phys. B185,
20 (1981); A No-Go Theorem for Regularizing Chiral
Fermions, Phys. Lett. B 105, 219 (1981).

[27] A. B. Harris, Effect of Random Defects on the Critical
Behaviour of Ising Models, J. Phys. C 7, 1671 (1974).

[28] E. Fradkin, Critical Behavior of Disordered Degenerate
Semiconductors. II. Spectrum and Transport Properties in
Mean-Field Theory, Phys. Rev. B 33, 3263 (1986).

[29] R. Shindou and S. Murakami, Effects of Disorder in Three-
Dimensional Z2 Quantum Spin Hall Systems, Phys. Rev. B
79, 045321 (2009).

[30] P. Goswami and S. Chakravarty, Quantum Criticality
between Topological and Band Insulators in 3þ 1

Dimensions, Phys. Rev. Lett. 107, 196803 (2011).
[31] S. Ryu and K. Nomura, Disorder-Induced Quantum Phase

Transitions in Three-Dimensional Topological Insulators
and Superconductors, Phys. Rev. B 85, 155138 (2012).

[32] P. Hosur, S. A. Parameswaran, and A. Vishwanath, Charge
Transport in Weyl Semimetals, Phys. Rev. Lett. 108,
046602 (2012).

[33] Z. Huang, T. Das, A. V. Balatsky, and D. P. Arovas,
Stability of Weyl Metals under Impurity Scattering, Phys.
Rev. B 87, 155123 (2013).

[34] R. Nandkishore, D. A. Huse, and S. L. Sondhi, Rare
Region Effects Dominate Weakly Disordered Three-
Dimensional Dirac Points, Phys. Rev. B 89, 245110
(2014).

[35] Y. Ominato and M. Koshino, Quantum Transport in a
Three-Dimensional Weyl Electron System, Phys. Rev. B
89, 054202 (2014); Quantum Transport in Three-
Dimensional Weyl Electron System in the Presence of
Charged Impurity Scattering, Phys. Rev. B 91, 035202
(2015).

[36] B. Roy and S. Das Sarma, Diffusive Quantum Criticality in
Three-Dimensional Disordered Dirac Semimetals, Phys.
Rev. B 90, 241112(R) (2014).

[37] S. V. Syzranov, L. Radzihovsky, and V. Gurarie, Critical
Transport in Weakly Disordered Semiconductors and
Semimetals, Phys. Rev. Lett. 114, 166601 (2015); S. V.
Syzranov, V. Gurarie, and L. Radzihovsky, Unconven-
tional Localization Transition in High Dimensions, Phys.
Rev. B 91, 035133 (2015).

[38] E.-G. Moon and Y.-B. Kim, Non-Fermi Liquid in Dirac
Semi-Metals, arXiv:1409.0573.

[39] A. Altland and D. Bagrets, Effective Field Theory of the
Disordered Weyl Semimetal, Phys. Rev. Lett. 114, 257201
(2015).

[40] B. Roy and S. Das Sarma, Erratum: Diffusive Quantum
Criticality in Three-Dimensional Disordered Dirac Semi-
metals, Phys. Rev. B 90, 241112(R) (2014); 93, 119911(E)
(2016).

[41] S. V. Syzranov, P. M. Ostrovsky, V. Gurarie, and L.
Radzihovsky, Critical Exponents at the Unconventional
Disorder-Driven Transition in a Weyl Semimetal, Phys.
Rev. B 93, 155113 (2016).

[42] B. Roy and S. Das Sarma, Quantum Phases of Interacting
Electrons in Three-Dimensional Dirty Dirac Semimetals,
Phys. Rev. B 94, 115137 (2016).

[43] B. Roy, V. Juričić, and S. Das Sarma, Universal Optical
Conductivity of a Disordered Weyl Semimetal, Sci. Rep. 6,
32446 (2016).

[44] P. Goswami and S. Chakravarty, Superuniversality of
Topological Quantum Phase Transition and Global Phase
Diagram of Dirty Topological Systems in Three Dimen-
sions, Phys. Rev. B 95, 075131 (2017).

[45] T. Louvet, D. Carpentier, and A. A. Fedorenko, On
the Disorder-Driven Quantum Transition in Three-
Dimensional Relativistic Metals, Phys. Rev. B 94,
220201(R) (2016).

[46] S. V. Syzranov, V. Gurarie, and L. Radzihovsky, Multi-
fractality at Non-Anderson Disorder-Driven Transitions
in Weyl Semimetals and Other Systems, Ann. Phys.
(Amsterdam) 373, 694 (2016).

[47] A. K. Mitchell and L. Fritz, Signatures of Weyl Semimetals
in Quasiparticle Interference, Phys. Rev. B 93, 035137
(2016).

[48] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O.
Sukhachov, Origin of Dissipative Fermi Arc Transport in
Weyl Semimetals, Phys. Rev. B 93, 235127 (2016).

[49] M. J. Park, B. Basa, and M. J. Gilbert, Disorder-Induced
Phase Transitions of Type-II Weyl Semimetals, Phys. Rev.
B 95, 094201 (2017).

[50] T. Louvet, D. Carpentier, and A. A. Fedorenko, New
Quantum Transition in Weyl Semimetals with Correlated
Disorder, Phys. Rev. B 95, 014204 (2017).

[51] K. Kobayashi, T. Ohtsuki, and K.-I. Imura, Disordered
Weak and Strong Topological Insulators, Phys. Rev. Lett.
110, 236803 (2013).

[52] K. Kobayashi, T. Ohtsuki, K.-I. Imura, and I. F. Herbut,
Density of States Scaling at the Semimetal to Metal
Transition in Three Dimensional Topological Insulators,
Phys. Rev. Lett. 112, 016402 (2014).

[53] B. Sbierski, G. Pohl, E. J. Bergholtz, and P. W. Brouwer,
Quantum Transport of Disordered Weyl Semimetals at the
Nodal Point, Phys. Rev. Lett. 113, 026602 (2014).

ROY, SLAGER, and JURIČIĆ PHYS. REV. X 8, 031076 (2018)

031076-38

https://doi.org/10.1038/nphys3372
https://doi.org/10.1038/nphys3372
https://doi.org/10.1103/PhysRevB.93.121112
https://doi.org/10.1126/sciadv.1600295
http://arXiv.org/abs/1507.04847
https://doi.org/10.1038/nmat4953
https://doi.org/10.1038/nmat4953
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1088/0022-3719/7/9/009
https://doi.org/10.1103/PhysRevB.33.3263
https://doi.org/10.1103/PhysRevB.79.045321
https://doi.org/10.1103/PhysRevB.79.045321
https://doi.org/10.1103/PhysRevLett.107.196803
https://doi.org/10.1103/PhysRevB.85.155138
https://doi.org/10.1103/PhysRevLett.108.046602
https://doi.org/10.1103/PhysRevLett.108.046602
https://doi.org/10.1103/PhysRevB.87.155123
https://doi.org/10.1103/PhysRevB.87.155123
https://doi.org/10.1103/PhysRevB.89.245110
https://doi.org/10.1103/PhysRevB.89.245110
https://doi.org/10.1103/PhysRevB.89.054202
https://doi.org/10.1103/PhysRevB.89.054202
https://doi.org/10.1103/PhysRevB.91.035202
https://doi.org/10.1103/PhysRevB.91.035202
https://doi.org/10.1103/PhysRevB.90.241112
https://doi.org/10.1103/PhysRevB.90.241112
https://doi.org/10.1103/PhysRevLett.114.166601
https://doi.org/10.1103/PhysRevB.91.035133
https://doi.org/10.1103/PhysRevB.91.035133
http://arXiv.org/abs/1409.0573
https://doi.org/10.1103/PhysRevLett.114.257201
https://doi.org/10.1103/PhysRevLett.114.257201
https://doi.org/10.1103/PhysRevB.90.241112
https://doi.org/10.1103/PhysRevB.93.119911
https://doi.org/10.1103/PhysRevB.93.119911
https://doi.org/10.1103/PhysRevB.93.155113
https://doi.org/10.1103/PhysRevB.93.155113
https://doi.org/10.1103/PhysRevB.94.115137
https://doi.org/10.1038/srep32446
https://doi.org/10.1038/srep32446
https://doi.org/10.1103/PhysRevB.95.075131
https://doi.org/10.1103/PhysRevB.94.220201
https://doi.org/10.1103/PhysRevB.94.220201
https://doi.org/10.1016/j.aop.2016.08.012
https://doi.org/10.1016/j.aop.2016.08.012
https://doi.org/10.1103/PhysRevB.93.035137
https://doi.org/10.1103/PhysRevB.93.035137
https://doi.org/10.1103/PhysRevB.93.235127
https://doi.org/10.1103/PhysRevB.95.094201
https://doi.org/10.1103/PhysRevB.95.094201
https://doi.org/10.1103/PhysRevB.95.014204
https://doi.org/10.1103/PhysRevLett.110.236803
https://doi.org/10.1103/PhysRevLett.110.236803
https://doi.org/10.1103/PhysRevLett.112.016402
https://doi.org/10.1103/PhysRevLett.113.026602


[54] J. H. Pixley, P. Goswami, and S. Das Sarma, Anderson
Localization and the Quantum Phase Diagram of Three
Dimensional Disordered Dirac Semimetals, Phys. Rev.
Lett. 115, 076601 (2015).

[55] B. Sbierski, E. J. Bergholtz, and P. W. Brouwer, Quantum
Critical Exponents for a Disordered Three-Dimensional
Weyl Node, Phys. Rev. B 92, 115145 (2015).

[56] J. H.Pixley, P.Goswami, andS.DasSarma,Disorder-Driven
Itinerant Quantum Criticality of Three-Dimensional Mass-
less Dirac Fermions, Phys. Rev. B 93, 085103 (2016).

[57] S. Liu, T. Ohtsuki, and R. Shindou, Effect of Disorder in a
Three-Dimensional Layered Chern Insulator, Phys. Rev.
Lett. 116, 066401 (2016).

[58] C.-Z. Chen, J. Song, H. Jiang, Q.-F. Sun, Z. Wang, and
X. C. Xie, Disorder and Metal-Insulator Transitions in
Weyl Semimetals, Phys. Rev. Lett. 115, 246603 (2015).

[59] S. Bera, J. D. Sau, and B. Roy, Dirty Weyl Semimetals:
Stability, Phase Transition, and Quantum Criticality,
Phys. Rev. B 93, 201302 (2016).

[60] H. Shapourian and T. L. Hughes, Phase Diagrams of
Disordered Weyl Semimetals, Phys. Rev. B 93, 075108
(2016).

[61] J. H. Pixley, D. A. Huse, and S. Das Sarma, Rare-Region-
Induced Avoided Quantum Criticality in Disordered
Three-Dimensional Dirac and Weyl Semimetals, Phys.
Rev. X 6, 021042 (2016).

[62] B. Roy, Y. Alavirad, and J. D. Sau, Global Phase Diagram
of a Three-Dimensional Dirty Topological Superconduc-
tor, Phys. Rev. Lett. 118, 227002 (2017).

[63] J. H. Pixley, D. A. Huse, and S. Das Sarma,Uncovering the
Hidden Quantum Critical Point in Disordered Massless
Dirac and Weyl Semimetals, Phys. Rev. B 94, 121107(R)
(2016).

[64] Y. Takane, Disorder Effect on Chiral Edge Modes and
Anomalous Hall Conductance in Weyl Semimetals, J.
Phys. Soc. Jpn. 85, 124711 (2016).

[65] R.-J. Slager, V. Juričić, and B. Roy, Dissolution of
Topological Fermi Arcs in a Dirty Weyl Semimetal, Phys.
Rev. B 96, 201401 (2017).

[66] B. Roy and J. D. Sau, Magnetic Catalysis and Axionic
Charge Density Wave in Weyl Semimetals, Phys. Rev. B
92, 125141 (2015).

[67] Throughout this paper, we use chiral-symmetric and
intranode disorder synonymously. We also use chiral
symmetry breaking and internode disorder synonymously.
However, such classification is only germane for infini-
tesimal strength of randomness. At strong disorder all
possible types of randomness are generated, leading to the
notion of emergent superuniversality across the disorder-
driven WSM-metal QPT.

[68] C.-X. Liu, X.-L. Qi, H.-J. Zhang, X. Dai, Z. Fang, and
S.-C. Zhang, Model Hamiltonian for Topological Insula-
tors, Phys. Rev. B 82, 045122 (2010).

[69] C.-X. Liu, P. Ye, and X.-L. Qi, Chiral Gauge Field and
Axial Anomaly in a Weyl Semimetal, Phys. Rev. B 87,
235306 (2013).

[70] P. Goswami and B. Roy, Effective Field Theory, Chiral
Anomaly and Vortex Zero Modes for Odd Parity Topo-
logical Superconducting State of Three Dimensional Dirac
Materials, arXiv:1211.4023, and references therein.

[71] X. Li, B. Roy, and S. Das Sarma, Weyl Fermions with
Arbitrary Monopoles in Magnetic Fields: Landau Levels,
Longitudinal Magnetotransport, and Density-Wave
Ordering, Phys. Rev. B 94, 195144 (2016).

[72] A. Weiße, G. Wellein, A. Alverman, and H. Feshke, The
Kernel Polynomial Method, Rev. Mod. Phys. 78, 275
(2006).

[73] S. Kivelson, D.-H. Lee, and S.-C. Zhang, Global Phase
Diagram in the Quantum Hall Effect, Phys. Rev. B 46,
2223 (1992).

[74] C. A. Lütken and G. G. Ross, Delocalization, Duality, and
Scaling in the Quantum Hall System, Phys. Rev. B 48,
2500 (1993).

[75] E. Fradkin and S. Kivelson, Modular Invariance, Self-
Duality and the Phase Transition between Quantum Hall
Plateaus, Nucl. Phys. B474, 543 (1996).

[76] I. A. Gruzberg, N. Read, and S. Vishveshwara, Localiza-
tion in Disordered Superconducting Wires with Broken
Spin-Rotation Symmetry, Phys. Rev. B 71, 245124 (2005).

[77] For a comprehensive discussion on Anderson transition
and See 50 Years of Anderson Localization, 1st ed., edited
by E. Abrahams (World Scientific Publishing Company,
Singapore, 2010).

[78] R.-J. Slager, A. Mesaros, V. Juricic, and J. Zaanen,
The Space Group Classification of Topological Band-
Insulators, Nat. Phys. 9, 98 (2013).

[79] J. Zinn-Justin, Quantum Field Theory and Critical
Phenomena (Oxford University Press, Oxford, 2002).

[80] B. Roy, P. Goswami, and V. Juričić, Interacting Weyl
Fermions: Phases, Phase Transitions, and Global Phase
Diagram, Phys. Rev. B 95, 201102(R) (2017).

[81] B. Roy and M. S. Foster,QuantumMulticriticality near the
Dirac-Semimetal to Band-Insulator Critical Point in Two
Dimensions: A Controlled Ascent from One Dimension,
Phys. Rev. X 8, 011049 (2018).

[82] S. Sachdev, Quantum Phase Transitions, 2nd ed.
(Cambridge University Press, Cambridge, England, 2007).

[83] See A. Weinrib and B. I. Halperin, Critical Phenomena in
Systems with Long-Range-Correlated Quenched Disorder,
Phys. Rev. B 27, 413 (1983) for general discussion on
correlated disorder.

[84] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Electron
Transport in Disordered Graphene, Phys. Rev. B 74,
235443 (2006).

[85] We note that the quality of the data collapses for CSB
disorders, shown in Fig. 14, is slightly less pronounced
than those for CSP disorder, displayed in Fig. 13, which
can qualitatively be understood in the following way. In
the presence of only internode scatterers, the system first
tends to flow toward the line of QCPs set by purely CSB
disorder, discussed early in this section. Only when
disorder gets sufficiently strong the intranode disorder
becomes relevant and the system starts flowing toward the
line of QCPs discussed in Sec. V. The system then gets
stuck in the crossover regime dominated by CSB disorder,
and consequently the data collapse (involving finite energy
states) becomes slightly less prominent. To achieve equally
good quality data collapse even in the presence of CSB
disorder, we therefore need to subscribe to larger systems,
which can be numerically challenging.

GLOBAL PHASE DIAGRAM OF A DIRTY WEYL LIQUID … PHYS. REV. X 8, 031076 (2018)

031076-39

https://doi.org/10.1103/PhysRevLett.115.076601
https://doi.org/10.1103/PhysRevLett.115.076601
https://doi.org/10.1103/PhysRevB.92.115145
https://doi.org/10.1103/PhysRevB.93.085103
https://doi.org/10.1103/PhysRevLett.116.066401
https://doi.org/10.1103/PhysRevLett.116.066401
https://doi.org/10.1103/PhysRevLett.115.246603
https://doi.org/10.1103/PhysRevB.93.201302
https://doi.org/10.1103/PhysRevB.93.075108
https://doi.org/10.1103/PhysRevB.93.075108
https://doi.org/10.1103/PhysRevX.6.021042
https://doi.org/10.1103/PhysRevX.6.021042
https://doi.org/10.1103/PhysRevLett.118.227002
https://doi.org/10.1103/PhysRevB.94.121107
https://doi.org/10.1103/PhysRevB.94.121107
https://doi.org/10.7566/JPSJ.85.124711
https://doi.org/10.7566/JPSJ.85.124711
https://doi.org/10.1103/PhysRevB.96.201401
https://doi.org/10.1103/PhysRevB.96.201401
https://doi.org/10.1103/PhysRevB.92.125141
https://doi.org/10.1103/PhysRevB.92.125141
https://doi.org/10.1103/PhysRevB.82.045122
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1103/PhysRevB.87.235306
http://arXiv.org/abs/1211.4023
https://doi.org/10.1103/PhysRevB.94.195144
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/PhysRevB.46.2223
https://doi.org/10.1103/PhysRevB.46.2223
https://doi.org/10.1103/PhysRevB.48.2500
https://doi.org/10.1103/PhysRevB.48.2500
https://doi.org/10.1016/0550-3213(96)00310-0
https://doi.org/10.1103/PhysRevB.71.245124
https://doi.org/10.1038/nphys2513
https://doi.org/10.1103/PhysRevB.95.201102
https://doi.org/10.1103/PhysRevX.8.011049
https://doi.org/10.1103/PhysRevB.27.413
https://doi.org/10.1103/PhysRevB.74.235443
https://doi.org/10.1103/PhysRevB.74.235443


[86] In spite of the emergent superuniversality, the putative line
of QCPs driven by CSB disorders with continuously
varying DSE z > d may leave its imprint on the physical
observables in the crossover regime before the CSP
disorders take over and ultimately the system flows toward
the chiral symmetric quantum-critical line with z ¼ 3=2
and ν ¼ 1. In that sense the physical observables we
discuss in this section can also distinguish between differ-
ent types of disorder (internode versus intranode).

[87] I. F. Herbut, V. Juričić, and B. Roy, Theory of Interacting
Electrons on the Honeycomb Lattice, Phys. Rev. B 79,
085116 (2009).

[88] Y. Otsuka, S. Yunoki, and S. Sorella, Universal Quantum
Criticality in the Metal-Insulator Transition of Two-
Dimensional Interacting Dirac Electrons, Phys. Rev. X
6, 011029 (2016).

[89] J. H. Pixley, Y.-Z. Chou, P. Goswami, D. A. Huse, R.
Nandkishore, L. Radzihovsky, and S. Das Sarma, Single-
Particle Excitations in Disordered Weyl Fluids, Phys. Rev.
B 95, 235101 (2017).

[90] F. Wegner, Electrons in Disordered Systems. Scaling near
the Mobility Edge, Z. Phys. B 25, 327 (1976).

[91] D. Belitz and T. R. Kirkpatrick, The Anderson-Mott
transition, Rev. Mod. Phys. 66, 261 (1994).

[92] F. Evers and A. D. Mirlin, Anderson Transitions, Rev.
Mod. Phys. 80, 1355 (2008).

[93] M. Janssen, Statistics and Scaling in Disordered
Mesoscopic Electron Systems, Phys. Rep. 295, 1 (1998).

[94] M. S. Foster, Multifractal Nature of the Surface Local
Density of States in Three-Dimensional Topological
Insulators with Magnetic and Nonmagnetic Disorder,
Phys. Rev. B 85, 085122 (2012).

[95] J. Brndiar and P. Markoš, Universality of the
Metal-Insulator Transition in Three-Dimensional Disor-
dered Systems, Phys. Rev. B 74, 153103 (2006).

[96] S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy,
B. Buechner, and R. J. Cava, Experimental Realization of a
Three-Dimensional Dirac Semimetal, Phys. Rev. Lett. 113,
027603 (2014).

[97] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng,
D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai,
Z. Hussain, and Y. L. Chen, Discovery of a Three-
Dimensional Topological Dirac Semimetal, Na3Bi, Sci-
ence 343, 864 (2014).

[98] I. Balog, D. Carpentier, and A. A. Fedorenko, Disorder-
Driven Quantum Transition in Relativistic Semimetals:
Functional Renormalization via the Porous Medium
Equation, arXiv:1710.07932.

[99] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi,
Electronic Transport in Two-Dimensional Graphene, Rev.
Mod. Phys. 83, 407 (2011).

[100] B. I. Halperin and M. Lax, Impurity-Band Tails in the
High-Density Limit. I. Minimum Counting Methods, Phys.
Rev. 148, 722 (1966).

[101] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern
Semimetal and the Quantized Anomalous Hall Effect in
HgCr2Se4, Phys. Rev. Lett. 107, 186806 (2011).

[102] C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig,
Multi-Weyl Topological Semimetals Stabilized by Point
Group Symmetry, Phys. Rev. Lett. 108, 266802 (2012).

[103] B.-J. Yang and N. Nagaosa, Classification of Stable
Three-Dimensional Dirac Semimetals with Nontrivial
Topology, Nat. Commun. 5, 4898 (2014).

[104] D. Carpentier, A. A. Fedorenko, and E. Orignac, Effect of
Disorder on 2D Topological Merging Transition from a
Dirac Semi-Metal to a Normal Insulator, Eur. Phys. Lett.
102, 67010 (2013).

[105] B. Sbierski, M. Trescher, E. J. Bergholtz, and P. W.
Brouwer, Disordered Double Weyl Node: Comparison
of Transport and Density of States Calculations, Phys.
Rev. B 95, 115104 (2017).

[106] B. Roy and V. Juričić, Optical Conductivity of an
Interacting Weyl Liquid in the Collisionless Regime, Phys.
Rev. B 96, 155117 (2017); Collisionless Transport Close to
a Fermionic Quantum Critical Point in Dirac Materials,
arXiv:1801.03495 [Phys. Rev. Lett. (to be published)].

ROY, SLAGER, and JURIČIĆ PHYS. REV. X 8, 031076 (2018)

031076-40

https://doi.org/10.1103/PhysRevB.79.085116
https://doi.org/10.1103/PhysRevB.79.085116
https://doi.org/10.1103/PhysRevX.6.011029
https://doi.org/10.1103/PhysRevX.6.011029
https://doi.org/10.1103/PhysRevB.95.235101
https://doi.org/10.1103/PhysRevB.95.235101
https://doi.org/10.1007/BF01315248
https://doi.org/10.1103/RevModPhys.66.261
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1016/S0370-1573(97)00050-1
https://doi.org/10.1103/PhysRevB.85.085122
https://doi.org/10.1103/PhysRevB.74.153103
https://doi.org/10.1103/PhysRevLett.113.027603
https://doi.org/10.1103/PhysRevLett.113.027603
https://doi.org/10.1126/science.1245085
https://doi.org/10.1126/science.1245085
http://arXiv.org/abs/1710.07932
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1103/PhysRev.148.722
https://doi.org/10.1103/PhysRev.148.722
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.108.266802
https://doi.org/10.1038/ncomms5898
https://doi.org/10.1209/0295-5075/102/67010
https://doi.org/10.1209/0295-5075/102/67010
https://doi.org/10.1103/PhysRevB.95.115104
https://doi.org/10.1103/PhysRevB.95.115104
https://doi.org/10.1103/PhysRevB.96.155117
https://doi.org/10.1103/PhysRevB.96.155117
http://arXiv.org/abs/1801.03495

