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Topologically protected waves in classical media provide unique opportunities for one-way wave transport
and immunity to defects. Contrary to acoustics and electromagnetics, their observation in elastic solids has so
far been elusive because of the presence of multiple modes and their tendency to hybridize at interfaces. Here,
we report on the experimental investigation of topologically protected helical edge modes in elastic plates
patterned with an array of triangular holes, along with circular holes that produce an accidental degeneracy of
two Dirac cones. Such a degeneracy is subsequently lifted by careful breaking of the symmetry along the
thickness direction,which emulates the spin orbital coupling in the quantum spinHall effect. The joining of two
plates that are mirror-symmetric copies of each other about the plate midthickness introduces a nontrivial
interface that supports helical edgewaves. The experimental observation of these topologically protectedwave
modes in elastic continuous plates opens avenues for the practical realization of structural components with
topologically nontrivial waveguiding properties and their application to elastic waveguiding and confinement.
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I. INTRODUCTION

Topological protection provides a significant potential
to achieve one-way, defect immune, and scattering free
wave propagation [1]. Originally investigated in quantum
systems, these concepts have been extended to several
classical areas of physics, including acoustic [2–5], electro-
magnetic [6–8], elastic [9] and optomechanical [10] media.
In mechanical systems, there are two broad ways to

achieve topological protection [11]. The first one involves
active devices that break time-reversal symmetry and thus
mimic the quantum Hall effect [12]. Several theoretical
studies and experimental demonstrations have employed
microtubules [13], rotationally biased components in
ordered structures [14–19], as well as active liquids flowing
in square and Lieb lattices [20]. A second approach seeks
to establish analogues with the quantum spin Hall effect
(QSHE) [21] through solely passive components. Key to

this analogy is the nucleation of a double Dirac cone and
the coupling of two degenerate modes corresponding to
distinct irreducible representations of the reciprocal lattice
symmetry group characterized by a Dirac dispersion [22].
In this context, elastic plates emerge as excellent

candidates due to the presence of an infinite number of
modes with distinct polarizations and coupled deformation
mechanisms. While this is attractive in terms of the quest
for topological phases, the high modal density of the wave
spectrum in plates [23] makes the opening of an isolated
band gap challenging due to the tendency of the various
modes to couple and convert at boundaries and interfaces.
Indeed, in contrast to the sole presence of a longitudinal
wave mode in acoustic media [2], and of transverse modes
in electromagnetic media [8,24], a bulk elastic solid
supports one longitudinal and two transverse wave modes.
Plates are generally defined as solids where one of the
dimensions (thickness) is much smaller than the other two.
In plates, elastic wave propagation nominally occurs via an
infinite number of Lamb modes that are associated with
symmetric and antisymmetric deformation profiles across
the thickness. These modes are characterized by coupled
in-plane and transverse displacements, and they easily
hybridize in the presence of interfaces or geometry
changes. Geometry and material modifications, in general,
affect the dispersion behavior and the associated band

*Corresponding author.
marco.miniaci@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 8, 031074 (2018)

2160-3308=18=8(3)=031074(9) 031074-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.8.031074&domain=pdf&date_stamp=2018-09-18
https://doi.org/10.1103/PhysRevX.8.031074
https://doi.org/10.1103/PhysRevX.8.031074
https://doi.org/10.1103/PhysRevX.8.031074
https://doi.org/10.1103/PhysRevX.8.031074
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


structure of plates. For example, breaking translation
symmetry by introducing periodic holes or inclusions
may open band gaps, which, however, may not be complete
and may therefore affect only some of the modes. The
opening of topologically nontrivial band gaps also requires
the structure to maintain certain symmetries (see Sec. II).
This further complicates the task of inducing and observing
topologically protected wave motion in continuous elastic
plates, which so far has been limited to theoretical and
numerical studies. The first of such studies is the work of
Mousavi et al. [22], where a deep subwavelength patterning
in a dual-scale phononic slab is considered. The resulting
configuration is of significant complexity and challenging
to physically implement. More recently, several studies
have exploited valley degrees of freedom to create spin-
polarized band gaps and quantum valley Hall effect (QVHE)
analogues. This is conveniently achieved by breaking spatial
inversion symmetry at the unit cell level, which is an
approach that has been successfully applied for flexural
waves in plates [25,26] as well as in mechanical lattices with
resonators [27].
Inspired by the work in Ref. [22], here we report on a

procedure that identifies QSHE analogues for elastic plates
of reduced complexity. The approach exploits the sensi-
tivity to macroscopic modifications within the unit cell
introduced by through or blind holes, which break the
through-the-thickness symmetry and induce a spin-orbit-
like effect. The resulting plate configuration is easy to
fabricate, and as such, it enables the experimental charac-
terization of a mechanical QSHE analogue in the form of a
continuous elastic medium, as opposed to the discrete
configuration documented in Ref. [28].
The paper is organized as follows: Section II discusses

the approach for achieving a topological band gap that
supports localized and isolated interface modes, while
Sec. III presents the experimental observation of scattering
free wave propagation along sharp corners. Finally, Sec. IV
summarizes the main findings of the paper and describes
future investigations as well as potential applications of the
proposed approach to the identification of QSHE continu-
ous mechanical analogues.

II. QSHE ANALOGY THROUGH DISPERSION
ENGINEERING

The first step in the process is to consider the patterned
plate (PP) with an array of triangular holes as shown in
Figs. 1(a) and 1(b). While the plate geometrically resem-
bles the twisted Kagome lattice described in Ref. [29], it is
a continuous medium where no lumped elements such as
point masses and springs can be identified, as in prior
studies on Kagome lattices.
The dynamic response of the plate is governed by the

elastic equilibrium equation ρü ¼ ðλþ μÞ∇ð∇ · uÞ þ
μ∇2u ¼ 0, where ρ is the density of the material, u denotes
the displacement vector field, and λ and μ are the Lamé

constants. The discretized form of this equation is
employed within the COMSOL finite element (FE) environ-
ment to compute the dispersion diagrams through the
application of Bloch-Floquet theory. To this end, we
impose Bloch-periodic conditions on a unit cell along
the lattice vectors a1 and a2 [Fig. 1(a)]. The resulting
eigenvalue problem ðK − ω2MÞu ¼ 0 is solved by varying
the wave vector k along the boundary of the irreducible
Brillouin zone ½Γ;M;K�, with Γ≡ ð0; 0Þ,M ≡ ð0; 2π= ffiffiffi

3
p Þ,

and K ≡ ð2π=3; 2π= ffiffiffi

3
p Þ, which yields the dispersion

diagram (band structure) for the bulk. The employed mesh
considers four-node tetrahedral elements and is sufficiently
refined to provide accurate eigensolutions up to the
frequency of interest [30]. Details of geometry, material
properties, and the employed FE mesh are provided in
Ref. [31].
The plate’s band structure exhibits two distinct

Dirac points [denoted as D1 and D2 in Fig. 2(a)].
Circular through-the-thickness holes (TH) arranged as in
Figs. 1(a) and 1(b) produce an isolated double Dirac point
[32], denoted as 2D in Fig. 2(c). Blind holes (BH) through
part of the plate thickness break the σh symmetry [28,33]
while preserving the original C3v symmetry of the PP, and
they promote the coupling between the modes spanning the
Dirac points, thereby emulating the spin orbital interaction
in the QSHE [1,21]. In contrast to valley modes where the
two sets of modes are associated with two distinct valleys
(K, K0), here we pursue two distinct sets of modes at each
of the high-symmetry points according to the configuration
investigated in Ref. [22].
The dispersion curves in Figs. 2(a), 2(c), and 2(e) are

color-coded based on a polarization coefficient p that
quantifies the mode polarization according to the expres-
sion presented in Ref. [31] and originally introduced in
Ref. [34]. The polarization factor color bar varies gradually
from 0 (blue: predominantly in-plane) to 1 (red: predomi-
nantly out-of-plane).
For the PP configuration, both Dirac points reported in

Fig. 2(a) correspond to essential degeneracies arising from
the plate having D3h symmetry. An examination of the
mode shapes [Fig. 2(b)] reveals that the D1 and D2 modes
span the subspaces associated, respectively, with the E0
and E00 irreducible representations [35,36] of the reciprocal
lattice group of wave vector D3h at the K point.
Furthermore, the mode shapes reveal that D1 and D2 are
characterized by dissimilar polarizations. This implies that
geometric modifications preserving D3h symmetry, such as
circular holes through the plate thickness [TH in Fig. 1(b)],
preserve the Dirac points but change their frequency values.
This allows us to selectively shift the curves until the
nucleation of a fourfold degeneracy with two overlaid Dirac
cones [point 2D in Fig. 2(c)] is obtained. Here, the double
Dirac cone is achieved as an accidental degeneracy [37,38]
by introducing through holes of radius r ¼ 0.085a, where a
denotes the magnitude of the lattice vectors [see Fig. 1(a)].
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Breaking the degeneracy at K and coupling the D1 and
D2 modes opens a topological band gap [Fig. 2(e)]. Indeed,
in contrast to through holes, which preserve the σh
symmetry without the occurrence of mode coupling
[Fig. 2(d)], blind holes [BH geometry in Fig. 1(b)] couple
the predominantly in-plane (D1) and out-of-plane (D2)
modes, activating mode hybridization [Fig. 2(f)]. Thus,
breaking the σh symmetry of the plate lifts the degeneracy
of both the D1 (E0) and D2 (E00) modes. We find that
the depth of the BHs plays a key role in both (i) the
relative width of the topologically protected band gap and

(ii) the shape of the dispersion branches of the edge modes.
Figure 3 shows a parametric study on the height h of the
BHs. Specifically, the dispersion diagrams for h=H ¼ 0.98,
0.92, and 0.58, where h is the hole depth and H is the plate
thickness, are given.
The analysis of Fig. 3 suggests that decreasing the height

of the BH causes the relative width of the topologically
protected band gap to initially increase and then to
decrease. Specifically, Fig. 3(a) reports the diagram for
h=H ¼ 0.98, i.e., when a very small perturbation with
respect to the TH configuration is introduced and an

FIG. 1. Patterned plate with a topologically protected interface supporting helical edge modes and the experimental configurations.
(a) In-plane view of the patterned plate and schematic representation of the unit cell. The inset shows the Γ,K,K0, andM high-symmetry
points of the first irreducible Brillouin zone along which the dispersion curves presented in Figs. 2(a), 2(c), and 2(e) are calculated.
(b) Perspective and cross-sectional view of the unit cells used to selectively control dispersion branches: patterned plate (PP), plate with
additional circular holes drilled through the thickness (TH) and with blind holes (BH). (c) Photograph of the specimen with a Z-shaped
interface (orange dashed line) separating two domains with blind holes drilled on the opposite (top or bottom) surfaces of the plate. The
inset shows the arrangement of the reversed unit cells on the full specimen (20 × 33 unit cells) highlighted by the red (domain 1) and
green (domain 2) arrows. The top and bottom parts of the right panel show a zoom of the domain wall and the cross sections of the
domain-1 and domain-2 unit cells with the reversed holes, respectively. (d) Summary of the experimental scans conducted on the plate
for the investigation of its topological waveguiding characteristics. Elastic waves are excited by means of a piezoelectric transducer
bonded at the location marked by the circular black dot. The picture illustrates SLDV 1D scans following theZ-shaped interface (orange
circular dots) and transverse to the domain wall (yellow square dots), as well as 2D scans on 13 × 12 unit cell (blue) and 2 × 2 unit cell
(magenta) areas. The letter d indicates the curvilinear coordinate running along the interface.
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FIG. 2. Selective dispersion curve manipulation for the double Dirac cone nucleation and breaking of the σh mirror symmetry for the
opening of a topologically nontrivial band gap. (a) Band structures for the PP exhibiting two separate Dirac points D1 and D2 at the K
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applies to Figs. 2(c) and 2(e)]. (b) Wave modes D1 and D2 at the K point for the PP configuration characterized by dissimilar
polarizations. The colors denote the normalized displacement [the same metric applies to Figs. 2(d) and 2(f)]. (c) Band structures for the
plate with additional TH showing the double degenerate Dirac point 2D. (d) Wave modes D1 and D2 at the K point for the TH
configuration, which preserves the σh symmetry without the occurrence of mode coupling. (e) Band structures for the plate with BH
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extremely thin portion of the plate is left pristine (0.1 mm).
In this case, the band gap has a relative width of 6.1%, and
the branches of the edge modes connecting the bulk regions
(highlighted by the blue rectangles in Fig. 3) exhibit a linear
dispersive behavior in almost the entire frequency range of
the bulk band gap. Also, for this depth of the blind holes,
the interface modes span the entire band gap, in contrast to
trivial defect modes, which typically span only part of the
band gap. The corresponding two eigenvectors (modes) are,
respectively, characterized by clockwise and anticlockwise
polarizations, which is illustrated by the phase fields of
the mode shapes (see Sec. III). Decreasing the hole depth
widens the band gap, for instance, up to 9.3% in the case of
h=H ¼ 0.92 [Fig. 3(b)]. The branches of the edge modes
connecting the bulk regions still exhibit a mainly linear
dispersive behavior in almost all the frequency range of the
bulk band gap, although some portions have a nonlinear
dispersive behavior emerging from the bulk band gap. As
the depth of the BH decreases further [Fig. 3(c)], the band
gap shrinks. This observation allows us to conclude that the
band-gap opening and coupling of modes emulating spin-
orbit interaction are mainly valid for small perturbations
in hole depth. As the perturbation becomes larger, we
approach the PP dispersion diagrams, where the two sets of
bands separate and are no longer coupled.
In the following investigations, we consider a hole depth

corresponding to h=H ¼ 0.9, which converts the fourfold
degeneracy into an approximately 10%-width nontrivial
band gap. In addition, the absence of other modes at nearby

frequencies guarantees that these hybridized modes remain
isolated. Joining two lattices with unit cells related by a σh
transformation produces an interface that supports topo-
logically protected helical modes. The existence of such
modes is a consequence of the bulk boundary correspon-
dence principle [1], as the hybridized bulk modes on either
side are distinct and related by a σh transformation. In
contrast, at the free boundary, these localized modes
hybridize, become defect modes, and do not span the bulk
band gap [22].

III. EXPERIMENTAL OBSERVATION OF
HELICAL EDGE MODES

To confirm the emergence of topologically protected
helical edge modes, we fabricate a plate of 20 × 33 unit
cells with a Z-shaped interface [dotted orange line in
Figs. 1(c) and 1(d)] that separates two domains with
reversed blind holes. This path is chosen to illustrate the
absence of backscattering in the presence of sharp corners
within an interface aligned with the lattice vectors. The
numerically predicted dispersion band structure [white
curves in Figs. 4(a) and 4(b)], calculated for a 10 × 1 strip
periodic in the a1 direction, confirms that the system
exhibits a pair of helical edge modes, respectively denoted
as M− and Mþ, where the superscripts − and þ indicate
the direction of propagation (leftward or rightward) with
respect to the excitation point [black dot in Fig. 1(d)]. We
remark here that the edge modes do not merge into the bulk
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FIG. 3. Effect of the depth of the blind holes on the dispersion diagrams. (a)–(c) The dispersion diagrams for 10 × 1 strips periodic in
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spectrum, in contrast to a quantum spin Hall insulator [21]
or its exact mechanical analogue [28]. Indeed, as discussed
above, the chosen plate design is a true analogue only in the
limit of infinitesimal perturbation of the double Dirac cone.
However, the chosen design is a good compromise between
having a sufficiently wide band gap for the experimental
measurements and a small enough perturbation so that the
mode spans the full band gap. As demonstrated in the
sequence of band diagrams with decreasing blind hole
depth in Fig. 3, the edge modes deviate further from the
idealized behavior of spanning the full band-gap frequency
range. There is a small set of frequencies in the band gap
(near the bulk bands), which the edge modes do not span;
we consider, based on the results found, that it has a
negligible impact on topological protection [Fig. 3(b)].
The existence of the topologically protected modes M−

andMþ is verified experimentally by measuring the out-of-
plane velocity component of the plate surface through
a scanning laser Doppler vibrometer (SLDV). A one-
dimensional (1D) line measurement scan is first conducted
along the orange dotted line shown in Fig. 1(d). The
measurements record the velocity of points along the line
corresponding to the excitation applied by the piezoelectric
transducer at the location marked by the solid black circle

in Fig. 1(d). The results are presented in the form of a
space-time plot, shown in Fig. 4(c), where the spatial
coordinate d runs along the orange dotted line within the
interface. In Fig. 4(c), the black rectangle denotes the
excitation location, while white rectangles correspond to
holes in the plate where no measurements were taken. Also,
two dashed black vertical lines mark the location of the
corners along the interface. The plot illustrates the propa-
gation of the M− and Mþ modes that emanate from the
excitation location and propagate past the sharp corners
with no visible reflections, thus demonstrating the absence
of backscattering at the sharp corners. Next, these results
are represented in the frequency-wave number domain by
performing a temporal and spatial Fourier transform
(2D-FT). The magnitude of the resulting 2D-FT is super-
imposed as a colored surface (with colors varying from
blue to red for increasing magnitude values) to the
theoretical dispersion predictions for the finite strip in
Figs. 4(a) and 4(b). This representation, which maps
the wave response and effectively separates the modes in
the frequency-wave number domain, further confirms the
existence of the pair of edge modes inside the bulk band
gap and shows an excellent match with their numerical
prediction.
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FIG. 4. Observation of the topologically protected helical edge modes. (a,b) Measured dispersion curves for the left- and right-
propagating edge modes (denoted as M− and Mþ, respectively), compared to the numerically predicted band structure (white lines).
(c) Spatio-temporal representation of the plate response recorded during the 1D SLDV scan along the Z-shaped interface. The
total length of the scanned line is 430 mm and includes the bottom-straight, oblique, and top-straight segments [orange circular dots in
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Fig. 1(d). The SLDV sensitivity is set to 20 mm=s=V for all the measurements presented.
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Next, the polarization characteristics of the M− and Mþ
modes are investigated through a local scan conducted over
the 2 × 2 unit cell areas shown in violet in Fig. 1(d).
Snapshots of the recorded wave-field velocity distributions
for the two modes at representative time instants are
presented in Fig. 4(d). Videos provided in Ref. [31] are
instructive in describing the different motion patterns of
the modes. Specifically, the two modes are characterized,
respectively, by a clockwise and an anticlockwise vorticity
of the velocity field with respect to the interface, which can
clearly be appreciated from the analysis of the videos of
Ref. [31]. Here, such vorticity is highlighted by black
arrows drawn on the basis of the phase of the measured
wave field. This vortex behavior may be viewed as a
pseudospin analogous to the A-B sublattice or the top-
bottom layer pseudospin in graphene systems [39].
The interface bound propagation and the absence of

significant backscattering at a sharp bend (120°) are
illustrated by the SLDV wave-field measurements over
the region labeled as “2D large scan” in Fig. 1(d).

Figure 5(a) shows the measured out-of-plane velocity dis-
tribution resulting from a sine burst excitation applied at the
location of the black dot. The frequency content of the input
signal (51 sine cycles modulated by a Hanning window of
central frequency 107 kHz) is chosen so that the excitation
bandwidth falls entirely inside the bulk band gap, in an
attempt to prevent bulk mode excitation. Snapshots of the
recorded wave field—at instants before, during, and after
the edge mode has entered the turn—show how a change in
the interface direction does not affect the propagating nature
of the wave and does not lead to backscattering, which
would be expected in the case of a trivial interface. In
addition, weak penetration inside the bulk region is
observed. Keeping the excitation frequency content inten-
tionally centered inside the bulk band gap minimizes the
excitation of bulk modes and allows us to quantitatively
estimate the decay of the field amplitude away from the
interface, which is evaluated here by conducting an addi-
tional 1D measurement scan along a line transverse to the
domain wall [denoted by the yellow square dots in Fig. 1(d)].
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The acquired signals are postprocessed by computing the
Fourier transform in time (1D-FT) at each acquisition point.
The magnitude of the resulting 1D-FT as a function of
frequency and position along the scan line, normalized here
with respect to the lattice constant a, is shown in Fig. 5(b),
while Fig. 5(c) shows the amplitude variation as a function
of transverse location at the specific frequency of 107 kHz.
Both figures help us to visualize the rapid spatial decay of
the wave away from the interface. Figure 5(d) compares the
amplitudes of 1D-FTs averaged along 1D scan lines of
the same length placed before and after the upper sharp bend
of the waveguide. The constant spectral content before and
after the turn observed in this comparison clearly illustrates
the absence of backscattering or mode conversion after the
120° turn. The change in direction of the wave propagation
(before and after the corner) is not accompanied by
significant energy losses, thus providing evidence that no
mode conversion or backscattering occurs at the turn.

IV. CONCLUSIONS

The results presented in this work provide the exper-
imental demonstration of the generation of a topological
interface, which is robust to backscattering and has the
ability to guide waves around sharp corners. The proposed
design and the investigations presented herein, both
numerical and experimental, provide insights into the
behavior of topologically protected helical edge modes
in continuous elastic systems. The results suggest a simple
process, which may be exploited to explore new avenues
[40] for topologically protected wave motion in fields
where vibrations play a crucial role, such as civil engineer-
ing and the aerospace industry, or where the transmission
of information through elastic waves may be an attractive
option.

ACKNOWLEDGMENTS

M.M. has received funding from the European
Union’s Horizon 2020 research and innovation program
under the Marie Skłodowska-Curie Grant Agreement
No. 754364. M.M. is also grateful to Dr. M. Mazzotti
and Dr. V. Pagneux for insightful discussions. R. K. P. and
M. R. acknowledge the support of the EFRI Grant
No. 1741685 from the National Science Foundation.

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological
Insulators, Rev. Mod. Phys. 82, 3045 (2010).

[2] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B.
Zhang, Topological Acoustics, Phys. Rev. Lett. 114, 114301
(2015).

[3] C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu, X.-P.
Liu, and Y.-F. Chen, Acoustic Topological Insulator and
Robust One-Way Sound Transport, Nat. Phys. 12, 1124
(2016).

[4] J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu,
Observation of Topological Valley Transport of Sound in
Sonic Crystals, Nat. Phys. 13, 369 (2017).

[5] R. Fleury, A. B. Khanikaev, and A. Alu, Floquet Topo-
logical Insulators for Sound, Nat. Commun. 7, 11744
(2016).

[6] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian,
A. H. MacDonald, and G. Shvets, Photonic Topological
Insulators, Nat. Mater. 12, 233 (2013).

[7] X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A. Z. Genack,
and A. B. Khanikaev, Robust Reconfigurable Electromag-
netic Pathways within a Photonic Topological Insulator,
Nat. Mater. 15, 542 (2016).

[8] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological
Photonics, Nat. Photonics 8, 821 (2014).

[9] S. D. Huber, Topological Mechanics, Nat. Phys. 12, 621
(2016).

[10] V. Peano, C. Brendel, M. Schmidt, and F. Marquardt,
Topological Phases of Sound and Light, Phys. Rev. X 5,
031011 (2015).

[11] R. Süsstrunk and S. D. Huber, Classification of Topological
Phonons in Linear Mechanical Metamaterials, Proc. Natl.
Acad. Sci. U.S.A. 113, E4767 (2016).

[12] F. D. M. Haldane, Model for a Quantum Hall Effect without
Landau Levels: Condensed-Matter Realization of the
“Parity Anomaly”, Phys. Rev. Lett. 61, 2015 (1988).

[13] E. Prodan and C. Prodan, Topological Phonon Modes and
Their Role in Dynamic Instability of Microtubules, Phys.
Rev. Lett. 103, 248101 (2009).

[14] R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and
A. Alù, Sound Isolation and Giant Linear Nonreciprocity
in a Compact Acoustic Circulator, Science 343, 516
(2014).

[15] A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù,
Topologically Robust Sound Propagation in an Angular-
Momentum-Biased Graphene-like Resonator Lattice, Nat.
Commun. 6, 8260 (2015).

[16] P. Wang, L. Lu, and K. Bertoldi, Topological Phononic
Crystals with One-Way Elastic Edge Waves, Phys. Rev.
Lett. 115, 104302 (2015).

[17] N. Swinteck, S. Matsuo, K. Runge, J. Vasseur, P. Lucas,
and P. A. Deymier, Bulk Elastic Waves with Unidirectional
Backscattering-Immune Topological States in a Time-
Dependent Superlattice, J. Appl. Phys. 118, 063103 (2015).

[18] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner,
and W. T. Irvine, Topological Mechanics of Gyroscopic
Metamaterials, Proc. Natl. Acad. Sci. U.S.A. 112, 14495
(2015).

[19] G. Salerno, T. Ozawa, H. M. Price, and I. Carusotto, Floquet
Topological System Based on Frequency-Modulated
Classical Coupled Harmonic Oscillators, Phys. Rev. B
93, 085105 (2016).

[20] A. Souslov, B. C. van Zuiden, D. Bartolo, and V. Vitelli,
Topological Sound in Active-Liquid Metamaterials, Nat.
Phys. 13, 1091 (2017).

[21] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in
Graphene, Phys. Rev. Lett. 95, 226801 (2005).

[22] S. H. Mousavi, A. B. Khanikaev, and Z. Wang, Topologi-
cally Protected Elastic Waves in Phononic Metamaterials,
Nat. Commun. 6, 8682 (2015).

MINIACI, PAL, MORVAN, and RUZZENE PHYS. REV. X 8, 031074 (2018)

031074-8

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1038/nphys3867
https://doi.org/10.1038/nphys3867
https://doi.org/10.1038/nphys3999
https://doi.org/10.1038/ncomms11744
https://doi.org/10.1038/ncomms11744
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat4573
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphys3801
https://doi.org/10.1038/nphys3801
https://doi.org/10.1103/PhysRevX.5.031011
https://doi.org/10.1103/PhysRevX.5.031011
https://doi.org/10.1073/pnas.1605462113
https://doi.org/10.1073/pnas.1605462113
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.103.248101
https://doi.org/10.1103/PhysRevLett.103.248101
https://doi.org/10.1126/science.1246957
https://doi.org/10.1126/science.1246957
https://doi.org/10.1038/ncomms9260
https://doi.org/10.1038/ncomms9260
https://doi.org/10.1103/PhysRevLett.115.104302
https://doi.org/10.1103/PhysRevLett.115.104302
https://doi.org/10.1063/1.4928619
https://doi.org/10.1073/pnas.1507413112
https://doi.org/10.1073/pnas.1507413112
https://doi.org/10.1103/PhysRevB.93.085105
https://doi.org/10.1103/PhysRevB.93.085105
https://doi.org/10.1038/nphys4193
https://doi.org/10.1038/nphys4193
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1038/ncomms9682


[23] K. F. Graff, Wave Motion in Elastic Solids (Dover Publi-
cations, New York, 1991).

[24] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L.
Lu, M. Rechtsman, D. Schuster, J. Simon, O. Zilberberg,
and I. Carusotto, Topological Photonics, arXiv:1802.04173.

[25] R. K. Pal and M. Ruzzene, Edge Waves in Plates with
Resonators: An Elastic Analogue of the Quantum Valley
Hall Effect, New J. Phys. 19, 025001 (2017).

[26] J. Vila, R. K. Pal, and M. Ruzzene, Observation of Topo-
logical Valley Modes in an Elastic Hexagonal Lattice, Phys.
Rev. B 96, 134307 (2017).

[27] H. Zhu, T.-W. Liu, and F. Semperlotti, Design and Exper-
imental Observation of Valley-Hall Edge States in
Diatomic-Graphene-like Elastic Waveguides, Phys. Rev.
B 97, 174301 (2018).

[28] R. Süsstrunk and S. D. Huber, Observation of Phononic
Helical Edge States in a Mechanical Topological Insulator,
Science 349, 47 (2015).

[29] T. C. Lubensky, C. L. Kane, X. Mao, A. Souslov, and K.
Sun, Phonons and Elasticity in Critically Coordinated
Lattices, Rep. Prog. Phys. 78, 073901 (2015).

[30] M. Miniaci, A. Marzani, N. Testoni, and L. De Marchi,
Complete Band Gaps in a Polyvinyl Chloride (PVC)
Phononic Plate with Cross-like Holes: Numerical Design
and Experimental Verification, Ultrasonics 56, 251 (2015).

[31] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.8.031074 for details
about the tested specimen, the experimental setup and the
data processing, the numerical procedures and the explan-
ation to the movie files.

[32] J. Lu, C. Qiu, S. Xu, Y. Ye, M. Ke, and Z. Liu, Dirac Cones
in Two-Dimensional Artificial Crystals for Classical Waves,
Phys. Rev. B 89, 134302 (2014).

[33] R. K. Pal, M. Schaeffer, and M. Ruzzene, Helical Edge
States and Topological Phase Transitions in Phononic
Systems Using Bi-layered Lattices, J. Appl. Phys. 119,
084305 (2016).

[34] M. Miniaci, A. Gliozzi, B. Morvan, A. Krushynska, F.
Bosia, M. Scalerandi, and N. Pugno, Proof of Concept for
an Ultrasensitive Technique to Detect and Localize Sources
of Elastic Nonlinearity Using Phononic Crystals, Phys. Rev.
Lett. 118, 214301 (2017).

[35] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group
Theory: Application to the Physics of Condensed Matter
(Springer Science & Business Media, New York, 2007).

[36] K. Sakoda, Double Dirac Cones in Triangular-Lattice
Metamaterials, Opt. Express 20, 9925 (2012).

[37] X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. Chan,
Dirac Cones Induced by Accidental Degeneracy in
Photonic Crystals and Zero-Refractive-Index Materials,
Nat. Mater. 10, 582 (2011).

[38] Z.-G. Chen, X. Ni, Y. Wu, C. He, X.-C. Sun, L.-Y. Zheng,
M.-H. Lu, and Y.-F. Chen, Accidental Degeneracy of Double
Dirac Cones in a Phononic Crystal, Sci. Rep. 4, 4613 (2014).

[39] D. Xiao, W. Yao, and Q. Niu, Valley-Contrasting Physics in
Graphene: Magnetic Moment and Topological Transport,
Phys. Rev. Lett. 99, 236809 (2007).

[40] G. Ma and P. Sheng, Acoustic Metamaterials: From Local
Resonances to Broad Horizons, Sci. Adv. 2, e1501595
(2016).

EXPERIMENTAL OBSERVATION OF TOPOLOGICALLY … PHYS. REV. X 8, 031074 (2018)

031074-9

http://arXiv.org/abs/1802.04173
https://doi.org/10.1088/1367-2630/aa56a2
https://doi.org/10.1103/PhysRevB.96.134307
https://doi.org/10.1103/PhysRevB.96.134307
https://doi.org/10.1103/PhysRevB.97.174301
https://doi.org/10.1103/PhysRevB.97.174301
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1088/0034-4885/78/7/073901
https://doi.org/10.1016/j.ultras.2014.07.016
http://link.aps.org/supplemental/10.1103/PhysRevX.8.031074
http://link.aps.org/supplemental/10.1103/PhysRevX.8.031074
http://link.aps.org/supplemental/10.1103/PhysRevX.8.031074
http://link.aps.org/supplemental/10.1103/PhysRevX.8.031074
http://link.aps.org/supplemental/10.1103/PhysRevX.8.031074
http://link.aps.org/supplemental/10.1103/PhysRevX.8.031074
http://link.aps.org/supplemental/10.1103/PhysRevX.8.031074
https://doi.org/10.1103/PhysRevB.89.134302
https://doi.org/10.1063/1.4942357
https://doi.org/10.1063/1.4942357
https://doi.org/10.1103/PhysRevLett.118.214301
https://doi.org/10.1103/PhysRevLett.118.214301
https://doi.org/10.1364/OE.20.009925
https://doi.org/10.1038/nmat3030
https://doi.org/10.1038/srep04613
https://doi.org/10.1103/PhysRevLett.99.236809
https://doi.org/10.1126/sciadv.1501595
https://doi.org/10.1126/sciadv.1501595

