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Multiplex networks have been intensively studied during the last few years as they offer a more realistic
representation of many interdependent and multilevel complex networked systems. However, even if most
real networks have some degree of directionality, the vast majority of the existent literature deals with
multiplex networks where all layers are undirected. Here, we study the dynamics of diffusion processes
acting on coupled multilayer networks where at least one layer consists of a directed graph; we call these
directed multiplex networks. We reveal a new and unexpected signature of diffusion dynamics on directed
multiplex networks, namely, that different from their undirected counterparts, they can exhibit a
nonmonotonic rate of convergence to steady state as a function of the degree of coupling, resulting in
a faster diffusion at an intermediate degree of coupling than when the two layers are fully coupled. We use
synthetic multiplex examples and real-world topologies to illustrate the characteristics of the underlying
dynamics that give rise to a regime in which an optimal coupling exists. We further provide analytical and
numerical evidence that this new phenomenon is solely a property of directed multiplex, where at least one
of the layers exhibits sufficient directionality quantified by a normalized metric of asymmetry in directional
path lengths. Given the ubiquity of both directed and multilayer networks in nature, our results have
important implications for studying the dynamics of multilevel complex systems.
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I. INTRODUCTION

Studying the structural and process-based dynamics of
complex systems operating in natural, biological, climatic,
and social environments using network-based theories
has been a popular area of research over the past decades,
often revealing dynamics and emergent behavior not
accessible otherwise [1–6]. Lately, the realization that
many systems consist of processes that operate on many
levels of connectivity and dynamics has spurred research
on the so-called multilayer networks, i.e., a class of
multidimensional networks which includes networks of
networks, interdependent networks, multiplex networks,

etc. [7,8]. Multiplex networks are coupled multilayer net-
works where each layer consists of the same set of nodes
but possibly different topologies and layers interact with
each other only via counterpart nodes in each layer [7–9].
Multiplex networks have been shown useful for the study
of diverse processes including social [10–12], transporta-
tion [13], and biochemical networks [14,15], among others.
Recent studies have shown that the coupling of the layers in
a multiplex network can result in emergent structural [16]
and dynamical behavior such as enhanced diffusion (super-
diffusion) [17], increased resilience to random failure [18],
and emergence of critical points in the dynamics of coupled
spreading processes [10,12]. These richer dynamics arise
as a direct consequence of the emergence of more paths
between everypair of nodes brought about by layer switching
via an interlayer link.
Most of the theory for multiplex networks has been

developed when all layers consist of undirected networks
[9]. However, more often than not, real social, biological,
and natural networks are structurally directed. Additionally,
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even if the underlying topology is not directed, the func-
tional and dynamical connectivity of undirected networks is
often directed due to gradients or the directionality in the
flow of mass or information. Examples include geophysical
processes on tributary river networks [19–22] and river
delta channel networks [23–28], ecohydrology [29,30],
food webs [31–33], gene regulation networks [31,34], and
social dynamics [35], to name a few.
In this paper, we study diffusion processes on multiplex

networks wherein the connectivity of at least one of the
layers forms a directed graph; we term them directed
multiplex networks. We document for the first time a
nonmonotonic increase in the rate of convergence to the
steady state as a function of the degree of coupling between
layers, which translates to the emergence of a prime regime
for intermediate values of coupling where transport proc-
esses are enhanced and diffusion is faster than when layers
are fully coupled. Within the prime regime, an optimal
coupling exists for which the convergence time to the
steady state of the diffusion process is minimal (fastest
transport). We demonstrate that this behavior is inherent
to directed multiplexes by providing a general analytical
proof of the monotonically increasing nature of the rate of
convergence of the diffusion process as a function of
interlayer coupling for the case of undirected multiplexes.
From a phenomenological point of view, the new phe-
nomenon unveiled can be traced back to the anisotropy
introduced by the directionality of the edges (of at least one
of the layers) and the emergence of directional paths at the
network scale, which is the main factor that induces much
richer dynamics than in the undirected counterpart. The
combination of two factors—(i) a drastically different
behavior of the expected system dynamics of directed vs
undirected multiplexes for a range of between-layer levels
of coupling and (ii) the fact that intermediate coupling
scenarios are most likely to dominate the interaction
between many intralayer processes (e.g., multiplatform
transportation systems)—make the results of this study
fundamental to understanding the emergent system
response in many natural and engineered systems where
directionality and multiprocess connectivity hold.
The rest of the paper is organized as follows. We first

describe diffusion processes in both undirected and directed
networks. For the former case, we first show analytically
that it is not possible to observe a regime in which the
diffusion is faster than when the layers of the multilayer
system are fully coupled. Next, we describe the new
phenomenology numerically for a few synthetic network
configurations. We prove analytically the existence of the
nonmonotonic behavior in the rate of convergence to steady
state and the existence of the prime regime. We show that
the emergence of the prime regime and the optimal
coupling requires sufficient network-scale directionality
in at least one of the layers of the directed multiplex, as
quantified by the proposed network directionality index

(NDI). Finally, we illustrate the validity and potential of our
results by analyzing two real-world topologies. We round
off the paper by discussing the phenomenological impli-
cations of our results and providing concluding remarks.

II. DIFFUSIONLIKE DYNAMICS ON NETWORKS

Let xðtÞ represent the N × 1 vector of concentration
associated with the N nodes of a network at time t
(throughout, vectors are thought of as column vectors).
The diffusion dynamics on an undirected single-layer
network (monoplex) can be described by

_xðtÞ ¼ −D · LxðtÞ; ð1Þ

where the vector _xðtÞ is the temporal derivative of xðtÞ, and
D is a scalar that represents the diffusion constant. The
L ¼ ½lij�Ni;j¼1 matrix is the Laplacian of the network, which
is defined as L ¼ S −W. Here, the N × N matrix W is the
weighted adjacency matrix, whose entries wij ¼ wji ∈ Rþ

represent the strength of the connectivity between nodes i
and j, and S is the N × N diagonal matrix with diagonal
entries sii ¼

P
N
j¼1 wij. For an unweighted network where

the entries of W are binary (wij ¼ 1 if there exists a link
between nodes i and j, and 0 otherwise), the matrix S is the
degree matrix and its diagonal entries sii correspond to the
number of links connected to node i, and the Laplacian is
known as the combinatorial Laplacian (see Ref. [36] and
references therein).
The negative Laplacian −L (or more generally, −DL,

when the diffusion constant D ≠ 1) can be interpreted as
the transition-rate matrix of a continuous-time Markov
chain (CTMC); its entries lij represent the rate at which the
transition from node i to node j takes place [36,37]. The
dynamics of the corresponding continuous-time random
walk (CTRW) is governed by

_pðtÞT ¼ −pðtÞTL; ð2Þ

where ðÞT denotes transposition, and pðtÞ is a vector
whose ith component is the probability that the CTRW
visits node i at time t. Note that for undirected networks, L
is symmetric, and, therefore, Eqs. (1) and (2) are equivalent
for D ¼ 1. Thus, the stationary distribution ½ _pðtÞT ¼ 0�
of the CTRW is identical to the stationary solution of
the diffusion process ps

T ¼ 1
N ð1; 1; 1;…; 1Þ, which is the

eigenvector of L that corresponds to the zero eigenvalue.
The characteristic timescale of convergence to that solution
is inversely proportional to the smallest nonzero eigenvalue
λ2 of L assuming that the graph is connected; i.e., there
exists a single component and, therefore, λ2 > 0 [38,39].
For directed networks, the weighted adjacency matrix

W is not symmetric; i.e., the strength wij of the directed
link starting at node i and ending at node jmay differ from
wji. Consequently, the Laplacian is not symmetric either.
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Two different Laplacians can be naturally defined by
extension of the undirected definition: (i) out-Laplacian
Lout ¼ Sout −W and (ii) in-Laplacian Lin ¼ Sin −W,
where entries of the diagonal out- and in-strength matrices
are defined as soutii ¼ P

N
j¼1 wij and sinjj ¼

P
N
i¼1 wij, respec-

tively. Both Laplacians (out and in) have 1 (column vector
with all entries equal to 1) as the eigenvector correspond-
ing to the zero eigenvalue, making it tempting to assume
that _xðtÞ ¼ −D · LoutxðtÞ as the equation governing the
diffusion process in directed networks. However, due to
the asymmetry of Lout, 1T is not in general a left
eigenvector of Lout for the zero eigenvalue, and, therefore,
continuity (conservation of mass) is not guaranteed in the
process ( ddt

P
xi ¼ d

dt 1
Tx ≠ 0). On the other hand, it is

meaningful to interpret −Lout as the transition-rate matrix
of a CTMC in a directed network, where the dynamics of
the random walk are described by

_pðtÞT ¼ −pðtÞTLout: ð3Þ

In this case, continuity of the process (conservation of
probabilities or mass) is assured since 1 is a right
eigenvector corresponding to the zero eigenvalue of
−Lout. Furthermore, if the directed network is strongly
connected (i.e., there exists a directed path between every
pair of nodes), a unique stationary distribution pT

s exists
(unique left eigenvector of the −Lout corresponding to
eigenvalue zero), which is a proper probability vector (the
Perron-Frobenius theorem guarantees that all the vector
entries are positive given that the network is strongly
connected),

pT
s Lout ¼ 0: ð4Þ

The spectrum of Lout is in general complex, and the
convergence towards the stationary distribution is expo-
nential (asymptotic) with rate Reðλ2Þ where λ2 is the
eigenvalue with the smallest nonzero real part [36,38].

III. UNDIRECTED MULTIPLEX

Gómez et al. [17] generalized the study of the character-
istic timescale of diffusive processes to (undirected) multi-
layer networks for different degrees of coupling across two
different layers. The three main assumptions in Ref. [17]
were (1) the same set of nodes, albeit with different
connectivity, forms the networks at each layer, (2) the
connectivity in each layer (intralayer connectivity) consists
of undirected networks forming a single-connected com-
ponent, and (3) the interlayer connectivity consists of
undirected links between counterpart nodes in the different
layers, i.e., multiplex. The authors showed that the char-
acteristic time of convergence of the diffusion process τ is
inversely proportional to the smallest nonzero eigenvalue
Λ2 of the Laplacian of the multiplex called supra-Laplacian

L (i.e., τ ∼ 1
Λ2
). Let L be the supra-Laplacian of a

two-layer multiplex, each layer consisting of a single-
component undirected network [17]. L can be written as

L ¼
�
L1 0

0 L2

�
þDX

�
I −I
−I I

�
; ð5Þ

where L1, L2 are the Laplacian matrices of the respective
layers, and DX is the interlayer diffusion coefficient, which
controls the degree of coupling between the layers. We are
interested in the spectrum of the supra-Laplacian, i.e., the
set of eigenvalues Λi of L, and more specifically, in its
second smallest eigenvalue Λ2, as this dictates the rate of
convergence to the steady-state dynamics. Here, we prove
the monotonic increase of Λ2 as a function of DX. To this
end, we use a transformation of L in a proper basis, which
also allows us to obtain the asymptotic behavior of Λ2 as
DX → 0 and asDX → ∞. These asymptotic behaviors were
previously derived in Gómez et al. [17], but we obtain them
again for the sake of completeness and to capitalize on the
fact that the procedure used here is applicable to both
directed and undirected multiplexes.
Let L̂ be the transformation of L in a new basis,

L̂ ¼ ULU−1

¼ 1ffiffiffi
2

p
�

1 1

−1 1

�
L
�
1 −1
1 1

�
1ffiffiffi
2

p

¼ 1

2

�
L1 þ L2 L2 − L1

L2 − L1 L1 þ L2

�
þ 2DX

�
0 0

0 I

�

¼
�
Lþ L−

L− Lþ þ 2DXI

�
; ð6Þ

where Lþ ¼ 1
2
ðL1 þ L2Þ and L− ¼ 1

2
ðL2 − L1Þ. Notice that

L and L̂ are similar matrices, and, therefore, they have the
same eigenvalues. The spectrum of L is obtained as the set
of solutions to the characteristic equation jL̂ − ΛIj ¼ 0.
Using the Schur complement [40], we can rewrite this
determinant as follows:

jL̂j ¼
����Lþ − ΛI L−

L− Lþ þ 2DXI − ΛI

����
¼ jLþ þ 2DXI − ΛIj
× jðLþ − ΛIÞ − L−ðLþ þ 2DXI − ΛIÞ−1L−j: ð7Þ

From Eq. (7), we can now deduce the asymptotic
behavior of the spectrum of L̂ and, more specifically, its
second smallest eigenvalue Λ2 asDX → 0 and asDX → ∞.
These two cases are explained below.

(i) Case DX → 0: When DX ¼ 0, the multiplex (as a
whole) has two components (assuming that the
networks in each layer are strongly connected),
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one per layer, and, therefore, Λ2 ¼ 0 is an eigen-
value of the supra-Laplacian with multiplicity 2.
Thus, from the decomposition of the determinant in
Eq. (7), we conclude that each factor has a root at
Λ ¼ 0 with multiplicity 1 (note that Lþ has a single
null eigenvector 1 and since L̂ must have two, the
second necessarily comes from the second factor).
For any value of DX > 0, Λ ¼ 0 has multiplicity 1
because now the two layers are connected to
each other. From Eq. (7), the smallest eigenvalue of
jðLþ þ 2DXI − ΛIÞj now grows linearly being equal
to 2DX. The zero eigenvalue coming from the second
factor jðLþ−ΛIÞ−L−ðLþþ2DXI−ΛIÞ−1L−j re-
mains zero independent of the value of DX, since
there must be always a zero eigenvalue for L̂, and this
cannot be supplied by the first factor. Therefore,
by continuity, we can conclude that for small DX,
Λ2 ¼ 2DX is the smallest nonzero eigenvalue of L̂.

(ii) Case DX → ∞: Examining for this case the two
factors of the decomposition in Eq. (7), we note
that for DX → ∞, in the second factor, the term
L−ðLþ þ 2DXI − ΛIÞ−1L− is negligible vs
ðLþ − ΛIÞ, so effectively the second factor reduces
to ðLþ − ΛIÞ. Thus, the spectrum in this case splits
into two groups: (1) the roots of jðLþ − ΛIÞj, which
are the eigenvalues of Lþ (Laplacian of the super-
position of the graphs in each layer scaled by a factor
0.5), and (2) the roots of jLþ þ 2DXI − ΛIj, which
are the eigenvalues of Lþ shifted by 2DX. Thus, the
eigenvalues in the second group are just a shifted
version of the first group of eigenvalues tending to
infinity linearly when DX → ∞.

RegardingΛ2, the above arguments show thatΛ2 ¼ 2DX
for small values of DX, while it tends to the smallest
nonzero eigenvalue of Lþ asymptotically as DX → ∞.
These results are equivalent to those reported and proven by
Ref. [17]. Here, moreover, we proceed to prove that for
undirected multiplex (i.e., all its edges are undirected),
the second smallest eigenvalue increases monotonically
with DX. The smallest nonzero eigenvalue Λ2 of the supra-
Laplacian can be expressed as follows:

Λ2 ¼ min
v⊥1

vTL̂v
vTv

; ð8Þ

where the v that satisfies Eq. (8) is the eigenvector that
corresponds to the Λ2 eigenvalue.
To show that Λ2 is a monotonic increasing function of

DX, let us take two values DX and D0
X, such that DX < D0

X,
then

�
Lþ L−

L− Lþ þ 2DXI

�
≤
�
Lþ L−

L− Lþ þ 2D0
XI

�
; ð9Þ

in the sense that the difference of the right-hand side minus
the left-hand side matrices is a non-negative definite matrix.
Thus, for any v,

vT
�
Lþ L−

L− Lþ þ 2DXI

�
v ≤ vT

�
Lþ L−

L− Lþ þ 2D0
XI

�
v;

ð10Þ

and, therefore, the minima of the respective choices of v
are ordered in the same way, proving that Λ2 increases
when DX increases. Note, however, that different concepts
of optimality have been used in undirected multiplex
within different contexts, e.g., optimal level of intercon-
nectivity [41] or optimal couplings due to penalizing cost
functions [42,43].

IV. DIRECTED MULTIPLEX: EMERGENCE
OF OPTIMAL COUPLING

Next, we show that the heterogeneity introduced by the
edge directionality of any of the layers of the multiplex
networks modifies substantially the behavior of diffusion
processes operating on them. In this case, at an intermediate
degree of interlayer coupling, the multiplex may exhibit a
faster diffusion (faster convergence to the steady state) than
when the two layers are fully coupled (fully coupled would
have been expected by extrapolation of the undirected case
[17] to have the fastest rates). We refer to this region of
coupling as the prime regime and show that within it there
is an optimal coupling for which the multiplex achieves the
fastest diffusion. To this end, we study the characteristic
timescale of convergence to the steady state of a CTRW
acting on different directed multiplex networks consisting
of (without loss of generality) two layers, wherein the
intralayer connectivity is represented by unweighted graphs
(i.e., we use the combinatorial Laplacian). The supra-
Laplacian is defined similarly to the undirected scenario as

Lout ¼
�
D1Lout

1 þDXI −DXI

−DXI D2Lout
2 þDXI

�
: ð11Þ

Notice that D1, D2, and DX can be interpreted for a CTRW
as scalars that control the relative speed of a walker in each
layer and between layers, respectively.
In what follows, we demonstrate the existence of the

prime regime via (i) numerical and (ii) analytical explora-
tion of simple directed multiplex providing evidence of
the nonmonotonicity of Λ2 (in contrast to the monotonicity
in the undirected case) and the existence of at least one
maximum of Λ2 (optimal coupling) for intermediate values
of interlayer coupling DX. For more general networks,
(iii) we show that the emergence of the prime regime
and the magnitude of the maximum attainable rate of
convergence to the steady state for the diffusion process

ALEJANDRO TEJEDOR et al. PHYS. REV. X 8, 031071 (2018)

031071-4



necessitates that one of the layers has a sufficient network-
scale directionality as quantified by the NDI.

A. Numerical evidence of the existence
of the prime regime

We examine three prototype multiplex networks (Fig. 1,
top panels), which are chosen to exemplify different
types of heterogeneities that can appear when directed
networks are considered: (a) Multiplex 1 consists of a
directed network (layer 1) and its undirected counterpart
(layer 2); this example serves to illustrate the effect of
directionality in only one of the layers. (b) Multiplex 2
is composed of the same directed network in the two
layers; this example serves to show the effect of different
diffusion coefficients (D1 vs D2) at the different layers.
(c) Multiplex 3 where layer 1 contains the reverse directed
network (opposite directionality of all the links) of the
network present in layer 2; this example serves to illustrate
the effect of directionality when the topology and rates of
transition are the same. Note that for all three multiplexes,
the interlayer links are undirected.
Figure 1 (bottom panels) presents the smallest nonzero

eigenvalue (in terms of its real part) ReðΛ2Þ of the Lout as a
proxy of the timescale of convergence to the steady state τ
(recall that τ ∼ 1

ReðΛ2Þ) when the coupling between layers

(via DX) is varied for each of the multiplexes shown. The
specific values ofD1 andD2 used to produce the results are
annotated in the figure. The results from further exploration
of these parameters are shown in Appendix A, and a

comparison between the dynamics on the directed multi-
plex with respect to their undirected counterparts is shown
in Appendix B. Before discussing the specifics of each
panel in Fig. 1, the existence of four distinct regimes stands
out. (1) Linear, where the layers are effectively decoupled
and DX is the limiting factor. In this case, ReðΛ2Þ increases
linearly as 2DX. (2) Sublinear, wherein DX is larger than
the smallest nonzero eigenvalue (in terms of the real part) of
the slowest layer [Reðλslow2 Þ, where the superscript slow
refers to the slowest layer]. In this scenario, the slowest
layer becomes the limiting factor (with respect to the rate of
convergence of the multiplex to achieve the steady state),
and, therefore, an increase in DX translates into a sublinear
rate of increase for ReðΛ2Þ. (3) Prime, corresponding to the
range ofDX for which ReðΛ2Þ exceeds the value of ReðΛ2Þ
for DX → ∞. Within the prime regime, we can define the
optimal coupling as the value of DX for which ReðΛ2Þ
achieves the absolute maximum. The optimal coupling
occurs for values of DX in the vicinity of the smallest
nonzero eigenvalue (in terms of the real part) of the fastest
layer [Reðλfast2 Þ, where the superscript fast refers to the
fastest layer]. In this case, the speed of the transport within
the fastest layer competes with the transport across layers,
achieving a configuration where both layers contribute
significantly to the total transport but conserving a relative
degree of independence in their internal dynamics (i.e., not
fully synchronized or decoupled). Notice that the math-
ematical nature of the maximum reached at the optimal
coupling can vary from smooth to nonanalytical depending

(b) (c)(a)

FIG. 1. The top panels depict the three synthetic multiplex networks with two coupled layers discussed in the text: (a) corresponds to
Multiplex 1, (b) to the Multiplex 2 configuration, and (c) to the Multiplex 3 architecture. Bottom panels show the behavior of the
smallest (in terms of its real part) nonzero eigenvalue ReðΛ2Þ of the supra-Laplacian Lout as a function of interlayer coupling DX .
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on the topology of the multiplex (see Appendix C).
(4) Asymptotic, wherein DX ≫ Reðλslow2 Þ, Reðλfast2 Þ. The
two layers are completely coupled, and the counterpart
nodes in the different layers are fully synchronized,
behaving as a single node.
Not all four regimes are present for every multiplex

configuration. In fact, the linear and the asymptotic regimes
(it could be even argued for the sublinear regime as well)
were observed and defined for undirected multiplex in
Ref. [17]. However, the prime regime is a characteristic
that solely applies to multiplex networks that have a directed
network in at least one layer (see Appendix E for further
evidence and proof in Sec. III, which shows that for an
undirected multiplex, Λ2 is always a monotonically increas-
ing function of DX). The difference in the dynamics of the
directed and undirected multiplexes emerges from the fact
that the directionality of the links in directed layers allows
faster exploration of the nodes in the same layer (e.g., when a
random walker leaves through a link, there might not be a
way back through the same route). Note that this asymmetry
in the path directionality is, in general, not advantageous
with respect to achieving stationary states for diffusionlike
processes. However, directed networks, when integrated in a
multiplex, can be catalysts of diffusionlike processes when a
right balance between their coupling with other layers (high
enough to have access, through different layers, to shortcuts
that overcome the asymmetry of the paths) and the degree of
independent dynamics they preserve (take advantage of their
faster exploratory capability within the layer) exists. Notice
that a complete coupling of the layers in a multiplex can be
interpreted as a monoplex resulting in the superposition of
the connectivity of the different layers. This effect would
result in the removal of the constraint on path asymmetries
and, therefore, potential suboptimal times of convergence to
steady state.
The diffusion in directed multiplex networks shows a

richer phenomenology as compared to the undirected
scenario, especially regarding the prime regime and the
optimal coupling. For Multiplex 1, a prime regime is
observed as a result of accessing different topological
paths when the directed network is coupled to its undirected
counterpart. In the case of theMultiplex 2, the networks are
identical in the different layers, and, therefore, no new
topological paths are created when the layers are combined
in the multiplex. However, different values of the coef-
ficients D1 and D2 can create distinct dynamic paths (i.e.,
same topology but different rates of transport) giving rise
to different gradients among counterpart nodes in the
separate layers, resulting in the emergence of a prime
regime. For this multiplex, a transition from the linear to
sublinear regime is also apparent when values ofDX exceed
Reðλslow2 Þ ¼ 0.5.
The case ofMultiplex 3 is particularly interesting. In this

case, an optimal coupling is observed for DX ∼ 0.8 result-
ing from access to different topological paths when the

directed network is coupled to its reverse. This configura-
tion serves as a word of caution, since in many instances,
undirected networks are assumed if transitions in both
directions of a link (i → j and j → i) are possible.
However, if the process is such that it operates with a
certain degree of independence in each direction, the
properties of the dynamics of such a system can substan-
tially differ from those of a fully undirected network. In
fact, we show how the multiplex formed by the two reverse
networks can function faster than each of the layers and
also faster than the equivalent undirected network (λ2 ¼ 1).
Finally, we show that there exist two regimes of coupling

wherein a superdiffusionlike behavior (i.e., the rate of
convergence of the multiplex to steady state is faster than
in the fastest of its individual layers) can be observed.
(1) Asymptotic is equivalent to the one described for the
undirected multiplex [17], where the multiplex (at the
asymptotic high-coupling regime) can be approximated
by the superposition network, where the availability of
paths between nodes is increased, enhancing the efficiency
of diffusive processes. (2) Prime, where for an intermediate
degree of coupling, the speed of the processes is higher than
when the two layers are fully coupled (e.g., the asymptotic
scenario). The emergence of the Prime regime can be
intuitively interpreted by acknowledging that intermediate
values of coupling permit maintaining a degree of inde-
pendence of the intralayer dynamics and, therefore, enhanc-
ing the fastest node exploration due to the directionality of
the links while also permitting interlayer shortcuts that
overcome the intralayer asymmetry of the paths. Note that
directed multiplex networks can exhibit superdiffusion
within the prime regime, even in scenarios where the
asymptotic regime is not superdiffusive [e.g., Figs. 1(a)
and 1(b) bottom panels and Fig. 3 (bottom panel)].

B. Analytical evidence of the existence
of the prime regime

As we show numerically in the previous section, for the
directed multiplex (i.e., at least one of the layers consists
of a directed network), the behavior of Λ2 is not necessarily
a monotonic function of DX. The fact that directed
multiplex networks include directionality implies that the
matrices required for their representation are not symmetric
(complex spectrum), which makes it challenging to find
analytically the conditions for the existence of a prime
regime as a result of the nonmonotonic behavior of Λ2.
Furthermore, from our analysis (see Appendix A), we show
that even keeping the topologies of the different layers
constant, different combinations of the diffusion coeffi-
cients ½D1; D2� can result in transitions from monotonic to
nonmonotonic behavior of Λ2. Here, we show the analyti-
cal solution for the evolution of Λ2 as a function of DX for
the case of a two-layer multiplex with layers consisting of
exactly the same topology but different diffusion coeffi-
cients corresponding to each layer (e.g., multiplex 2).
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Let us assume without loss of generality thatD1 ¼ 1 and
D2 ¼ α (and, therefore, L1 ¼ L and L2 ¼ αL), then the
supra-Laplacian of the multiplex can be written as follows:

L̂ ¼ 1

2

� ð1þ αÞL ðα − 1ÞL
ðα − 1ÞL ð1þ αÞLþ 4DXI

�
: ð12Þ

Let us denote A ¼ 1
2
ð1þ αÞL and B ¼ 1

2
ðα − 1ÞL. Since

both A and B are scaled versions of L, they commute, and
they are simultaneously diagonalizable.
To compute an analytical expression for the second

smallest eigenvalue, we use the Schur complement and the
fact that A and B commute to conclude that

0 ¼ jL̂ − ΛIj ¼
����A − ΛI B

B Aþ 2DXI − ΛI

����
¼ jðA − ΛIÞj × jðAþ 2DXI − ΛIÞ − BðA − ΛIÞ−1Bj
¼ jðA − ΛIÞðAþ 2DXI − ΛIÞ − B2j: ð13Þ

Since A, B, and L are all simultaneously diagonalizable,
Eq. (13) reduces to simple scalar polynomial expressions.
Specifically, the smallest nonzero eigenvalue Λ2 satisfies

�
1

2
ðαþ 1Þλ2 − Λ2

��
1

2
ðαþ 1Þλ2 þ 2DX − Λ2

�

−
�
1

2
ðα − 1Þλ2

�
2

¼ 0;

Λ2
2 − ½ðαþ 1Þλ2 þ 2DX�Λ2 þ ðαþ 1Þλ2DX þ αλ22 ¼ 0;

Λ2 ¼
1

2

h
ðαþ 1Þλ2 þ 2DX −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − 1Þ2λ22 þ 4D2

X

q i
; ð14Þ

where λ2 is the second smallest eigenvalue of L.
Recall that the rate of convergence of the multiplex to the

stationary state is controlled by the real part of Λ2. Thus, to
prove that ReðΛ2Þ is not a monotonic function of DX, we
need to show that ReðdΛ2

dDX
Þ becomes zero for at least one

value ofDX ∈ Rþ. Given that u ¼ Reðλ2Þ and v ¼ Imðλ2Þ,
we can write the derivative of Λ2 with respect to DX as
follows:

dΛ2

dDX
¼ 1 −

2DXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − 1Þ2λ22 þ 4D2

X

p ; ð15Þ

Re

�
dΛ2

dDX

�

¼ 1 −
2DX cos

h
1
2
tan−1 2uvðα−1Þ2

ðα−1Þ2ðu2−v2Þþ4D2
X

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðα − 1Þ2ðu2 − v2Þ þ 4D2

X�2 þ 4u2v2ðα − 1Þ44
p :

ð16Þ

Note that for λ2 ∈ R, as is the case in undirected multiplex,

ðdΛ2

dDX
Þ > 0 ∀ DX > 0. Therefore, Λ2 is an increasing

monotonic function of DX as expected (and proven in
general in the previous section).
For values of λ2 ∈ C, i.e., v > 0, we analyze Eq. (16) for

two different cases: u > v and v > u.
(i) Case u > v: In this case, all the terms of the radicand

are strictly positive (given that α ≠ 1), and, there-
fore, the denominator is always greater than 2DX.
Thus, the ReðdΛ2

dDX
Þ > 0 ∀ DX, which implies that

ReðΛ2Þ is a monotonically increasing function
of DX.

(ii) Case v > u: We examine the asymptotic behaviors
of ReðdΛ2

dDX
Þ as DX → 0 and as DX → ∞,

lim
DX→0

Re

�
dΛ2

dDX

�����
v>u

¼ 1; ð17Þ

lim
DX→∞

Re

�
dΛ2

dDX

�����
v>u

¼ 0−: ð18Þ

Equation (18) shows that for DX large enough, the
expression ReðdΛ2

dDX
Þ is negative. Thus, for cases

where v > u, a change in the sign of the derivative
occurs, which implies by continuity that ReðdΛ2

dDX
Þ ¼

0 at least for one value of DX ∈ Rþ and, therefore,
that ReðΛ2Þ is not a monotonic function of DX.

C. Conditions for the existence of the prime regime

The three directed multiplexes illustrated in Fig. 1 are
instrumental to unveil the prime regime and how the
emergence of this regime relies on the faster exploration
of nodes prompted by the directed layers of those multi-
plexes. However, the rather simple topologies (e.g., six
nodes per layer) of those three multiplexes and the acknowl-
edged fact that not all directed multiplexes can exhibit the
prime regime call for the identification of the relevant
topological attributes of directed multiplexes underpinning
the potential emergence of the prime regime.
Here we argue that the existence of a directed layer is not

a sufficient condition for the potential faster exploration of
the constitutive nodes of the multiplex, since the direction-
ality of the links does not necessarily imply the emergence
of directionality at the network scale. To quantify the
directionality at the network scale of a monoplex, we
propose the network directionality index (NDI) as a metric,

NDI ¼ hjΔdijji
hdiji

; ð19Þ

where hdiji ¼ 1
NðN−1Þ

P
i;j dij is the average path length

between all pairs of nodes (note that given the directionality
of the graph, for each pair of nodes i and j, two distances
dij and dji are defined), and hjΔdijji is the average path
asymmetry, and it is computed as follows:
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hjΔdijji ¼
1

NðN − 1Þ=2
X
j>i

jdij − djij: ð20Þ

Thus, for an undirected network, NDI ¼ 0 since
hjΔdijji ¼ 0, and for a directed circle (closed chain) network
wherein all the links are oriented in the same direction
(i.e., clockwise or anticlockwise), as the number of nodes
N increases NDI tends to 1 (see Appendix E for proof).
We hypothesize that only a directed multiplex with a

directed layer characterized by a sufficiently high value of
NDI can exhibit the prime regime. To explore the validity
of this hypothesis, we examine a two-layer multiplex
wherein one layer consists of a fully connected network
(undirected), and the other layer consists of a directed layer,
whose connectivity is modified to progressively decrease
the NDI [see Fig. 2(a)]. To systematically explore the
existence of the prime regime as a function of the NDI, we
introduce the prime regime index

P ¼ max½ReðΛ2Þ� − Re½Λ2ðDX → ∞Þ�
Re½Λ2ðDX → ∞Þ� : ð21Þ

For P > 0, the prime regime exists, and the magnitude
of P quantifies the degree to which the maximum rate
of transport exceeds that obtained at full coupling.
In Fig. 2(b), we provide evidence supporting our hypoth-
esis that a sufficient network-scale directionality is needed
in one of the layers for the multiplex to exhibit the prime
regime. Note that P as a function of the NDI does
not exhibit only a threshold behavior, i.e., P ¼ 0 for
NDI < 0.3, but also P exhibits an increasing trend for

(a)

(b)

FIG. 2. (a) The panel depicts (from top left to bottom right) eight
networks with the same number of nodes (N ¼ 100) and decreas-
ing value of the NDI as shown on top of each network (details on
the construction of these networks are given in Appendix F).
(b) The panel shows the prime regime index (P) as a function of the
NDI indicating that in this scenario the prime regime (P > 0)
emerges only for topologies characterized with NDI⪆0.3.

l
l

l

l

FIG. 3. The Mekong Delta multiplex [44]. The top panel shows
the extracted channel network of the Mekong Delta at 50-m
resolution. The bottom panel shows the behavior of the smallest
(in terms of its real part) nonzero eigenvalue ReðΛ2Þ of the supra-
Laplacian Lout corresponding to the Mekong Delta multiplex as a
function of DX. For intermediate coupling rates, DX ∼ 1, maxi-
mum ReðΛ2Þ is observed.
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values of NDI > 0.3 making more prominent the effects of
optimal coupling as the directionality at the network scale
increases. Finally, we remark that the actual threshold value
of the NDI, beyond which the prime regime emerges,
depends on the topology (e.g., directionality, complemen-
tariness, etc.) of the layers in the multiplex. In this sense, it
would be interesting to explore these dependencies in the
future, for instance, also investigating whether it is possible
to have a prime regime when the NDI of each layer is below
its respective threshold but that characterizing the whole
multiplex is enough to induce this regime.

D. Real-world network examples

In this section, we illustrate with two types of real-world
network topologies the potential application of the results
reported in this paper:

(i) Delta channel networks: Delta channel networks are
directional graphs which have been recently studied
using graph theory to understand how topology and
transport dynamics might relate to the geomorphic
properties of the system, such as sediment cohesive-
ness [25,26], how upstream changes might affect
downstream propagation of fluxes [24], and how
deltas self-organize to maximize the diversity in
the flux delivery to the shoreline [28]. Deltas are
extremely low-relief landforms with overall slopes
of the order of 10−5, where transport processes can
have an important diffusive component. Examples of
such transport processes are (i) nutrient transport

(including nitrogen where the timescale of transport
is of interest since it can limit the denitrification
rates), (ii) sediment transport (critical for land
formation and delta self-maintenance), and (iii) con-
taminant dispersion (with apparent environmental
impacts). Thus, here we utilize the multiplex frame-
work to analyze how advective (directional) versus
diffusive (nondirectional) transport on the channel
network affects the overall transport timescales.
We utilize the channel network of the third largest
delta on Earth, the Mekong Delta [see Fig. 3 (top)
and Appendix G for network description and more
information on the Mekong Delta]. We represent the
advective transport by the directed (downstream)
channel network (layer 1) and the diffusive transport
by its undirected counterpart (layer 2). The interlayer
coupling represents the rate of change from one
transport regime to the other. Depending on the
diffusion coefficients of the two layers (here chosen
as D1 ¼ 10.0 and D2 ¼ 1.0) and the interlayer
degree of coupling, the coupled advective-diffusive
transport on the multiplex can exhibit transport
timescales slower or faster than either of the indi-
vidual layers. As shown in Fig. 3 (bottom panel),
we observe the prime regime for intermediate
values of coupling and an optimal coupling for
DX ∼ 1, i.e., fastest transport timescale. According
to our previous results, we explain the existence
of the prime regime based on the presence of a

(a) (b)

l
l

l

ll
l

FIG. 4. Author-citation multiplex. (a) The top panel shows the author-citation network extracted from articles published in PRL (upper
layer) and PRC (lower layer). No prime regime is observed for any combination of the parameters [DPRL, DPRC, DX]. The bottom panel
shows the behavior of ReðΛ2Þ as a function ofDX for ½DPRL; DPRC� ¼ ½1; 20� as an example. (b) The top panel shows the author-citation
network extracted from articles published in PRL (upper layer) and a synthetic citation network created with the same number of nodes
and same out-degree distribution with the one obtained from PRC but with a higher value of the NDI (lower layer). The sufficient
network-scale directionality that characterizes the bottom layer is able to induce the prime regime as shown in the bottom panel.
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sufficient network-scale directionality in the directed
layer as measured by the network directionality
index, which in this case is computed to be
NDI ¼ 0.47. Although an illustrative example, it
serves to demonstrate that in highly directional
systems, overlying processes that lack directionality
can explore pathways of transport that result in
enhancing the overall system transport timescales
with significant practical consequences.

(ii) Author-citation networks: We utilize two author-
citation networks extracted, respectively, from
publications in Physical Review Letters (PRL) and
Physical Review C (PRC) [see Fig. 4(a) and Appen-
dix H for network description]. We construct a
multiplex network wherein one layer consists of a
citation network extracted from PRL, and the second
layer is the equivalent network obtained by extracting
the citation among the same authors using PRC
publications. We carry out a systematic exploration
of the parameter space ½DPRL; DPRC; DX� and find no
combination of those parameters that give rise to the
prime regime.These results arewithin the expectations
obtained from the relative low values of the NDI in
both layers (NDIPRL ¼ 0.24 and NDIPRC ¼ 0.18).
However, if a network (layer) is engineered to have
a higher value of the NDI, our results suggest that it
would be possible to induce a prime regime for such a
multiplex. To demonstrate this, we create a synthetic
citation network to substitute the PRC layer, keeping
certain statistics such as the out-degree distribution
equal to those observed in PRC.As shown in Fig. 4(b),
when we analyze the newmultiplex, the prime regime
emerges for intermediate values of coupling. The
implications of the results suggest that by engineering
layers with high directionality at the network scale, we
can speed up the process of diffusion of information
for intermediate values of coupling—a system state
that is more realistic than full coupling.

V. CONCLUSIONS

In conclusion, we reveal the existence of a prime regime
in which directed multiplex networks may exhibit a faster
system-wide diffusion for intermediate values of coupling
than in the asymptotic limit when the different layers are
fully coupled. Within that regime, there is an optimal value
of coupling at which the diffusion is the fastest; i.e., the
timescale of convergence to steady state is minimal.
Furthermore, the rates of diffusion in multiplex configu-
rations where the prime regime is exhibited can be such that
a new superdiffusion regime emerges, where the multiplex
diffusivity as a whole is faster than that of the fastest of its
layers for intermediate values of coupling. We argue that it
is precisely the directionality of paths at the network scale
that sets an anisotropic layout for the process, and com-
bined with a balance of (1) significant connectivity across

layers (making accessible paths in other layers) and (2) a
degree of independence in the intralayer dynamics can
catalyze the overall system transport dynamics. Using
synthetic and real-world multiplex networks, we show
how a sufficient degree of network-scale directionality in
the directed layer appears to be a necessary condition for
the emergence of the prime regime. We prove analytically
that undirected multiplexes do not exhibit a prime regime
for intermediate couplings, and their rate of convergence to
steady state is a monotonically increasing function of the
interlayer coupling. Thus, the extrapolation of the expect-
ation from previous results on dynamics on undirected
multiplex networks, wherein diffusion processes achieve
the fastest rate of convergence to steady state when the
different layers are fully coupled, generally leads to a
wrong assessment of system dynamics. Our results open up
new paths of research addressing questions such as whether
natural complex systems self-organize to configurations
where the optimal coupling is accessible to their dynamics.
We also believe that extending this study to other real
settings might have important implications. For instance,
many social or technosocial networks (like online social
networks) have many directed relationships, i.e., following-
follower relations are not always reciprocal or symmetric,
which make them good candidates to observe the phe-
nomenology described here. Alternatively, our results
could also inspire the design of directed multilayer net-
works in which directionality is exploited so as to make
these systems operate in a regime in which the optimal
coupling is reachable for the dynamics.
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APPENDIX A: EFFECT OF THE INTRALAYER
DIFFUSION COEFFICIENT

We explore the characteristic rate of convergence to
the stationary state solution of a continuous-time Markov
chain on multiplexes 1, 2, and 3 (see Figs. 5, 6, and 7,
respectively) for different pairs ðD1; D2Þ as a function of
the interlayer coupling DX. We show that depending on the
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relative values of the intralayer diffusion coefficients
ðD1; D2Þ for a given topology, we can observe the optimal
coupling regime [e.g., Figs. 5(a), 6(c), and 7(d)] or not [e.g.,
Figs. 5(d) and 6(a)], and even more interesting for some
triplets ðD1; D2; DXÞ, wherein DX lies within the optimal
coupling regime, the multiplex as a whole achieves super-
diffusion [e.g., Figs. 5(b) and 7(a)]; i.e., the rate of
convergence to the steady-state solution is faster than the
rate corresponding to the fastest of the layers.

(i) Multiplex 1.—From Fig. 5, we highlight the follow-
ing important observations: (i) We first observe that
for pairs ofD1 and D2 where the rate of convergence
is larger for the directed layer [Reðλ12Þ, superscript 1
refers to layer 1, blue line] than for the undirected
network [Reðλ22Þ, superscript 2 refers to layer 2, red
line], an optimal coupling emerges where the maxi-
mum Reðλ2Þ for the multiplex network (black line) is
achieved exhibiting higher values than those observed
for the asymptotic limit (green line) [see Figs. 5(a)
and 5(b)]. (ii) In Fig. 5(b) ðD1 ¼ 2.5; D2 ¼ 1.0Þ, the
rates of convergence in the individual layers Reðλ12Þ
and Reðλ22Þ are very similar, and, therefore, each
individual layer has similar transport properties. This
multiplex configuration when working at optimal
coupling is characterized by much faster rates of

convergence to the stationary solution than the rates
of the individual layers, exhibiting a superdiffusive
behavior (even though no superdiffusive behavior is
observed in the asymptotic limit). (iii) Figure 5(c)
ðD1 ¼ D2 ¼ 1Þ illustrates a scenario in which
although the directed network is slightly slower than
the undirected network Reðλ12Þ ⪅ Reðλ22Þ for inter-
mediate values of coupling, ReðΛ2Þ can exceed the
asymptotic values forDX → ∞. (iv) Finally, Fig. 5(d)
shows a scenario where the undirected layer is
substantially faster than the directed layer [Reðλ22Þ >
Reðλ12Þ]. This multiplex network, although directed,
when subject to a diffusion process, presents dynam-
ics dominated by its undirected (faster) layer. Con-
sequently, the trends observed in Fig. 5(d), especially
the lack of an optimal coupling regime, are compa-
rable to those reported for undirected multiplex
networks (e.g., Ref. [17]).

(ii) Multiplex 2.—From Fig. 6, we highlight the follow-
ing important observations: (i) We first report in
Fig. 6(a) the trivial case ðD1 ¼ D2 ¼ 1Þ for which
both the topologies and the diffusivity are identical
in both layers. The multiplex network, as expected,
converges asymptotically with a rate identical to
its individual layers. (ii) Figures 6(b)–6(d) show a

 (a)

 (b)

 (c)

 (d)

l

lI l

l

FIG. 5. Characteristic rate of convergence to stationary state
solution of a continuous-time Markov chain on multiplex 1 for
different pairs ðD1; D2Þ. The value of the smallest (in terms of its
real part) nonzero eigenvalue (Λ2) of the supra-Laplacian is
displayed as a function of interlayer coupling DX.

(a)

  (b)

(c)

(d)

lI

l

l

l l

FIG. 6. Characteristic rate of convergence to stationary state
solution of a continuous-time Markov chain in multiplex 2 for
different pairs ðD1; D2Þ. The value of the smallest (in terms of its
real part) nonzero eigenvalue ðΛ2Þ of the supra-Laplacian is
displayed as a function of interlayer coupling DX.
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similar emerging behavior: When the diffusivity of
the two layers differs, an optimal coupling exists
where the rate of convergence is the fastest. There
are two main phenomena that when combined give
rise to the emergence of this optimum transport
regime: (1) The different diffusivity coefficients in
the different layers form distinct dynamical paths
(meaning, the same topological paths but with
different celerity) that enhance the mixing. (2) For
intermediate values of coupling, the two layers
contribute substantially to the total transport (the
random walker spends time in both layers) but
keeping a certain degree of independence in their
dynamics, in contrast with high-coupling scenarios
(where the transport across counterpart nodes in
different layers is fastest acting as a constraint in the
dynamics of all the layers, since similar gradients of
concentration will appear among different nodes
within each of the layers). Note that in this case, we
do not present results for values of D1 exceeding D2

for obvious symmetry in the dynamics of the
multiplex since the two layers are identical.

(iii) Multiplex 3.—From Fig. 7, we highlight the follow-
ing important observations: (i) The exploration
of different values of the intralayer diffusivities
[Figs. 7(a)–7(d)] show the existence of an optimal
coupling for intermediate values of DX where the
rate of convergence of the multiplex network is the
fastest. There are two main phenomena that when
combined give rise to the emergence of this opti-
mum transport regime: (1) The different direction-
ality of the paths in the different layers enhances the
mixing. This phenomenon requires a high enough
value of coupling to make the alternative paths in
different layers accessible (i.e., the probability of
transition between layers has to be significant).
(2) For intermediate values of coupling, the two
layers contribute substantially to the total transport
(the random walker spends time in both layers) but
keeping a certain degree of independence in their
dynamics, in contrast with high-coupling scenarios
(where the transport across counterpart nodes in
different layers is fastest acting as a constraint in the
dynamics of all the layers since similar gradients of
concentration will appear among different nodes
within each of the layers). (ii) Precisely when the
rate of convergence of the individual layers is similar
[Reðλ12Þ ≈ Reðλ22Þ], the rate of convergence in the
multiplex is more enhanced with respect to the rates
of the individual layers. In these scenarios, the
overall system presents superdiffusionlike behavior
for the optimal coupling regime [e.g., Figs. 7(a) and
7(b)]; i.e., the rates of convergence that characterize
the multiplex are even faster than both of the
individual layers. Note that in this case, we do

not present results for values ofD1 exceedingD2 for
obvious symmetry in the dynamics of the multiplex
since the two layers are topologically identical (one
layer is the reverse of the other).

APPENDIX B: DIRECTED VS
UNDIRECTED MULTIPLEXES

We compare the characteristic time of convergence
of a diffusionlike process acting on the different multi-
plexes with their undirected counterparts (Figs. 8, 9, and 10
for multiplexes 1, 2, and 3, respectively) as a function of the
interlayer couplingDX. The optimal coupling regime, i.e., a
range of intermediate values of DX for which the rate of
convergence to the stationary state is faster than when the
two layers are fully coupled, is observed only for the
directed version of the multiplex.

(i) Multiplex 1.—Multiplex 1 (Fig. 8 left panels) con-
sists of a directed network (layer 1, top) and its
undirected counterpart (layer 2, bottom). This ex-
ample serves to illustrate the effect of directionality
in only one of the layers. We compare the character-
istic time of convergence of a diffusionlike process
acting on this multiplex with its undirected counter-
part (undirected multiplex 1). Figure 8 (right panels)
shows the value of the smallest (in terms of its real

(a)

(b)

(c)

(d)

l l
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l

l

FIG. 7. Characteristic rate of convergence to stationary state
solution of a continuous-time Markov chain in multiplex 3 for
different pairs ðD1; D2Þ. The value of the smallest (in terms of its
real part) nonzero eigenvalue ðΛ2Þ of the supra-Laplacian is
displayed as a function of interlayer coupling DX.
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part) nonzero eigenvalue (Λ2) of the supra-Laplacian
as a function of interlayer coupling DX for both
the directed (top) and undirected (bottom) multiplex
and for the same pair of diffusion coefficients
ðD1; D2Þ ¼ ð2.5; 1.0Þ. We highlight the existence
of an optimal coupling that is exhibited only by the
directed multiplex (DX ≈ 1.2), wherein the rate of
convergence to the steady state is the fastest (even
faster than for high values of coupling [asymptotic
limit, green line]).

(ii) Multiplex 2.—Multiplex 2 (Fig. 9, left panels) is
composed of the same directed network (top) in the
two layers. This example is to illustrate the effect of
different rates (D1 vs D2) at the different layers. We
compare the characteristic time of convergence of a
diffusionlike process acting on this multiplex with
its undirected counterpart (undirected multiplex 2,
bottom). Figure 9 (right panels) shows the value of
the smallest (in terms of its real part) nonzero
eigenvalue ðΛ2Þ of the supra-Laplacian as a function
of interlayer coupling DX for both the directed (top)
and undirected (bottom) multiplex and for the same
pair of diffusion coefficients ðD1; D2Þ ¼ ð1.0; 5.0Þ.
We highlight the existence of an optimal coupling
that is exhibited only by the directed multiplex
ðDX ≈ 2.4Þ wherein the rate of convergence to the
steady state is the fastest (even faster than for high
values of coupling [asymptotic limit, green line]).

(iii) Multiplex 3.—Multiplex 3 (Fig. 10, left panels) is
where the network present in layer 1 is the reverse
(opposite directionality of all the edges) of the net-
work in layer 2 (top). This example serves to illustrate
the effect of directionality when the topology and

rates of transition are the same. We compare the
characteristic time of convergence of a diffusion-
like process acting on this multiplex with its
undirected counterpart (undirected multiplex 3,
bottom). Figure 10 (right panels) shows the value
of the smallest (in terms of its real part) nonzero
eigenvalue ðΛ2Þ of the Laplacian as a function of
interlayer coupling DX for both the directed (top)

D
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U

l
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l
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FIG. 8. Characteristic rate of convergence to stationary state
solution of a continuous-time Markov chain on multiplex 1 and
its undirected counterpart.

l l lI l

ll
l

FIG. 9. Characteristic rate of convergence to stationary state
solution of a continuous-time Markov chain on multiplex 2 and
its undirected counterpart.
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FIG. 10. Characteristic rate of convergence to stationary state
solution of a continuous-time Markov chain on multiplex 3 and
its undirected counterpart.
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and undirected (bottom) multiplex and for the
same pair of diffusion coefficients ðD1; D2Þ ¼
ð1.0; 1.0Þ. We highlight the existence of an optimal
coupling that is exhibited only by the directed
multiplex ðDX ≈ 0.8Þ wherein the rate of conver-
gence to the steady state is the fastest (even faster
than for high values of coupling [asymptotic limit,
green line]). Furthermore, in this example, the
rate of convergence observed in the direct multi-
plex at the optimal coupling regime is even faster
than the fastest rate computed for its undirected
counterpart.

APPENDIX C: MATHEMATICAL NATURE OF
THE OPTIMAL COUPLING MAXIMUM

We present evidence of the diverse mathematical nature
of the maximum observed for the optimal coupling. This
can range from a smooth analytical maxima in the case of
multiplex 2 to nonanalytical for the cases of multiplexes 1
and 3 (see Fig. 11).

APPENDIX D: EDGE ASYMMETRY

We further illustrate the mechanism that gives rise to
the prime regime by systematically exploring the existence
of this regime as a function of the degree of directionality
of the multiplex. The directionality of both layers is
modulated by introducing a reverse edge by each existing
edge with strength controlled by the edge directionality
symmetry index (EDS) (see Fig. 12, left panels). Note
that for EDS ¼ 0, both layers are completely directed
(maximum asymmetry; i.e., if node i is connected to node
j, node j is not connected to node i), and for EDS ¼ 1,
both layers are undirected (all the edges are undirected,
and, therefore, the supra-adjacency matrix of the multiplex
is symmetric). For different values of the EDS, we compute

the prime regime index, P ¼ max½ReðΛ2Þ�−Re½Λ2ðDX→∞Þ�
Re½Λ2ðDX→∞Þ� ,

which is zero if the prime regime does not emerge for

l l

l

l l

l

FIG. 11. Mathematical nature of the optimal coupling maxima.

l l

l l

FIG. 12. The prime regime index P is explored for the three
multiplexes as a function of the directionality of their layers,
which is controlled by the EDS [P ¼ 0 (red line) indicates that
the prime regime is not exhibited]. The complementariness of the
topologies of the constitutive layers of the multiplex is an
important constraint setting the threshold in the EDS for which
the prime regime is observed.
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any value of DX, and P > 0 otherwise. Figure 12 (right
panels) shows that the existence of the prime regime
requires different degrees of directionality (i.e., values of
the EDS) depending on the topology of the networks in
each layer, and more specifically, depending on the
complementariness of these topologies. Thus, more com-
plementary topologies (e.g., multiplex 3) can achieve the
fastest rates of convergence for higher values of the EDS.
These results also serve to show that the prime regime is not
a characteristic of all directed multiplexes, but its existence
requires a minimum degree of directionality, whose value
depends on the complementariness of the topologies
between layers.

APPENDIX E: NETWORK
DIRECTIONALITY INDEX

Consider a directed strongly connected graph with N
nodes, and let

D ¼ ½dij�Ni;j¼1

denote its distance matrix. That is, dij equals the number of
links of the shortest path from node i to node j. It can be
easily computed via

dij ¼ minfkj½Ak�ij ≠ 0g;

where A is the adjacency matrix of the graph since, as is
well known [6], the ði; jÞ entry of Ak, which is a non-
negative integer, is precisely the number of paths of length
k that connect node i to node j.
We define the NDI as the ratio of the average absolute

difference over the average distance between nodes, i.e.,

NDI ¼ hjΔdijji
hdiji

¼
1

NðN−1Þ=2
P

j>ijdij − djij
1

NðN−1Þ
P

i;jdij
: ðE1Þ

Equivalently,

NDI ¼
P

j>ijdij − djijP
j>i

dijþdji
2

: ðE2Þ

This index quantifies the asymmetry in the path connec-
tivity between nodes; it clearly vanishes precisely when
dij − dji ¼ 0 for all pairs ði; jÞ.
We now prove that for a directed circle (closed chain)

network consisting of N nodes and N directed links, all
oriented in the same direction (clockwise or anticlockwise),
the NDI tends to 1 when the number of nodes N tends to
infinity.
Note that for any strongly connected directed

network, dij ≠ 0 for any pair of nodes k ¼ ði; jÞ. Define
Mk ¼ maxðdij; djiÞ and mk ¼ minðdij; djiÞ and note that

Mk þmk ¼ N in a circle network. Let us also denote the

total number of pairs of nodes by P ¼ NðN−1Þ
2

. From
Eq. (E2), we deduce that

NDI ¼ 2
P

P
k¼1ðMk −mkÞP

P
k¼1ðMk þmkÞ

: ðE3Þ

We first show that for a directed circle network the average
distance between nodes [denominator in Eq. (E3)] is equal
to N=2. Indeed,

hdiji ¼
1

2P

XP
k¼1

Mk þmk ¼
1

2P

XP
k¼1

N ¼ N
2
: ðE4Þ

Next, we examine the average absolute difference hjΔdijji
[numerator in Eq. (E3)] separately in two cases depending
on whether the number of nodes N is an odd or even
number: Case N odd: For a circle network,

XP
k

Mk ¼ N
XN−1

2

i

�
N − 1

2
þ i

�

¼ NðN − 1Þ2
4

þ N
8
ðN − 1ÞðN þ 1Þ; ðE5Þ

XP
k

mk ¼ N
XN−1

2

i

i ¼ N
8
ðN − 1ÞðN þ 1Þ; ðE6Þ

and therefore,

hjΔdijji ¼
1

P

XP
k¼1

Mk −mk ¼
N − 1

2
: ðE7Þ

Case N even: In this case, for a circle network,

XP
k

Mk ¼
�
N
2

�
2

þ N
XN2−1
i

�
N
2
þ i

�

¼ N2

4
þ 3

8
N2ðN − 2Þ; ðE8Þ

XP
k

mk ¼
�
N
2

�
2

þ N
XN2−1
i

i ¼ N2

4
þ N2

8
ðN − 2Þ; ðE9Þ

and therefore,

hjΔdijji ¼
1

P

XP
k¼1

Mk −mk ¼
NðN − 2Þ
2ðN − 1Þ : ðE10Þ

In view of the above arguments, we conclude that when
N → ∞, NDI → 1.
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It is interesting to note that a number of basic questions
about graphs are surprisingly challenging. For instance,
conditions on the entries of D ¼ ½dij�, in addition to the
obvious triangular inequality dij þ djk ≥ dik that needs to
hold for all triplets ði; j; kÞ, to ensure that D is a distance
matrix of some directed graph is, to the best of the authors’
knowledge, not known. It appears that the conjecture that
NDI < 1 is equally challenging. The fact that a circular
directed network, which displays extreme asymmetry, has
a NDI tending to 1 as N → ∞, gives credence to this
conjecture.

APPENDIX F: RANDOM NETWORKS WITH
VARIABLE DIRECTIONALITY AT THE

NETWORK SCALE

Here we detail a model to generate strongly connected
directed networks with variable directionality at the net-
work scale used to develop the examples presented in
Fig. 2. Three model parameters N, k, and r need to be
specified: N being the number of nodes in the graph, k the
out-degree assumed constant for all nodes (but it can be
generalized to follow a distribution), and r the reachability
parameter. Networks are generated according to the follow-
ing rules:

(i) All nodes are first arranged in a directed circle
pattern corresponding to entries of the adjacency
matrix being aði; iþ 1Þ ¼ 1 for i ¼ 1; 2;…; N − 1,
aðN; 1Þ ¼ 1, and aðj; kÞ ¼ 0 for all other pairs of
indices.

(ii) Next, each node i is linked to another k − 1 nodes
chosen at random by sampling without replacement
from the indexing set of nodes fiþ 1;…; iþ rg. If
iþ r > N and the chosen index iþ k to establish
connection exceeds N as well, i.e., iþ k > N, it is
replaced by N − ðiþ kÞ to satisfy the circular
boundary condition.

The value of r determines the maximum distance
between nodes (in terms of links in the original circle
network) at which links can be established according to
rule (ii); large values of r have the effect of equalizing
and then reversing directionality at the network scale.
The model is used to generate the examples in Fig. 2(a)
in the main text with parameters N ¼ 100, k ¼ 6, and
increasing values of r: r ¼ 1 (NDI ¼ 0.99, circle network),
r ¼ 10 (NDI ¼ 0.88), r ¼ 15 (NDI ¼ 0.77), r ¼ 20
(NDI¼0.67), r¼25 (NDI¼0.54), r ¼ 30 (NDI ¼ 0.44),
r ¼ 50 (NDI ¼ 0.29), and r ¼ 100 (NDI ¼ 0.28).
In the description of the model and in the examples

provided in Fig. 2(a), k is considered uniformly distributed
for simplicity. The synthetic citation network in Fig. 4(b)
(main text) is also constructed using the same model, but k
is chosen to follow the empirical out-degree distribution
of the citation network of Physical Review C described in
Appendix H. Note that in order to generalize the out-degree

distribution, a secondary rule needs to be added in the case
where certain node degrees ki exceed the value of r. In the
synthetic citation network, to faithfully follow the chosen
out-degree distribution, nodes with ki > r are allowed to
establish links that reach nodes beyond the distance r.
Specifically, such nodes link to all the subsequent nodes in
the range ½iþ 1; iþ k − 1�.

APPENDIX G: MEKONG DELTA

The Mekong Delta is located in Southern Vietnam
(10.1°, 150.6°) and receives input from the Mekong
River with an average water discharge of 14 770 m3 s−1
and sediment discharge of 1.60 × 107 tons yr−1. The main
forcing of the delta is river and wave [45]. The Mekong
Delta considered as the third largest delta with an area of
93 781 km2 and population of 17 million [46] is one of the
world’s main food baskets [47].
Delta channel network: We represent the delta channel

network as a graph, where the edges represent channels,
and nodes correspond to the locations where one channel
splits into new channels (bifurcation) or two or more
channels merge into a single channel (confluence) (see
Fig. 3, top panel). All the channels that connect the apex
(inlet) of the delta to the shoreline, with widths equal or
larger than 50 m, are considered in this network. The
network consists of 253 nodes and 374 links.
Mekong Delta multiplex: We define a two-layer multi-

plex based on the channel network of the Mekong Delta.
Layer 1 consists of the directed channel network, where the
direction of the edges corresponds to the main direction of
water flow, and layer 2 consists of the undirected counter-
part of the network in layer 1. Note that the outlet nodes
(nodes located at the shoreline that drain water directly to
the ocean) of the delta have been reconnected to the apex
(inlet) by adding additional edges to guarantee that the
directed layer contains a strongly connected network.
Similar rewiring has been used in Ref. [24], arguing
conservation of mass to compute the steady-state distribu-
tion of fluxes in delta channel networks.

APPENDIX H: AUTHOR-CITATION NETWORKS

We produce two directed networks of citations among
authors using publications between the years 1980 and
1989 in PRL and PRC, respectively. More specifically, each
of the two networks is constructed as follows: (i) The nodes
correspond to the authors who published articles during
the specified period in the considered journal. (ii) A link
connects author A to author B if a publication of author A in
the considered journal was cited by author B (flow of
information from author A to author B) in an article of the
same journal and during the specified period.
Author-citation multiplex: We aim to construct a directed

multiplex network, where one layer corresponds to the
author-citation network in PRL, and the other layer
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corresponds to the author-citation network obtained from
PRC publications. Given the constraints required to build
the directed multiplex (i.e., a multiplex requires the same
set of nodes in both layers, and in order to have nontrivial
steady-state distributions of the diffusion process in both
layers, we subsample the initial networks to obtain layers
consisting of networks, which have a single strongly
connected component) the number of nodes (authors) is
N ¼ 1368 in each layer, with 33 449 links in the network
extracted from PRL and 60 726 links in the layer corre-
sponding to the PRC network.
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