
 

Numerical Construction of Multipartite Entanglement Witnesses

S. Gerke* and W. Vogel
Arbeitsgruppe Theoretische Quantenoptik, Institut für Physik, Universität Rostock,

D-18051 Rostock, Germany

J. Sperling
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

(Received 25 January 2018; revised manuscript received 28 June 2018; published 20 August 2018)

Entanglement in multipartite systems is a key resource for quantum information and communication
protocols, making its verification in complex systems a necessity. Because an exact calculation of arbitrary
entanglement probes is impossible, we derive and implement a numerical method to construct multipartite
witnesses to uncover entanglement in arbitrary systems. Our technique is based on a substantial
generalization of the power iteration—an essential tool for computing eigenvalues—and it is a solver
for the separability eigenvalue equations, enabling the general formulation of optimal entanglement
witnesses. Beyond our rigorous derivation and direct implementation of this method, we apply our
approach to several examples of complexly quantum-correlated states and benchmark its general
performance. Consequently, we provide a generally applicable numerical tool for the identification of
multipartite entanglement.
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I. INTRODUCTION

Quantum entanglement is one of the most fundamental
concepts in physics. It was introduced in the pioneering
works of Einstein et al. [1] and Schrödinger [2]. The pure
existence of this quantum phenomenon challenged previ-
ously established notions of correlations and paved the way
towards a new interpretation of the nature of physics.
Eventually, this led to new protocols used in quantum
computing and communication, which utilize the resources
of entangled quantum states [3]. Examples of such clas-
sically infeasible tasks are quantum teleportation [4] and
dense coding [5]. Other early protocols concern quantum
key distribution, known as BB84 [6] and E91 [7], and
significantly improve communication security. Therefore,
entanglement plays a key role in fundamental physics and
technology-oriented applications.
A primary concern in the research of entanglement is the

actual detection of this quantum correlation. Since a lot
of protocols for quantum technologies rely on the presence
of entanglement, the question of whether or not an

experimentally generated state is entangled has become a
highly relevant topic. However, determining entanglement
of general states—likewise its counterpart, separability—is
an NP-hard problem [8,9].
Another challenge specific to multipartite systems is the

possibility that classical and quantum correlations can be
differently distributed among the parties of an ensemble of
systems. This leads to complex structures of multipartite
entanglement; see, e.g., Refs. [10–12]. Most notably, there
are inequivalent forms of entanglement, which need to be
distinguished. These are already present in systems of only
three qubits, such as the prominent GHZ andW states [13].
Beyond that, current experiments become more and more
capable of producing large-scale entanglement [14–16].
However, while entanglement is vital for characterizing
such experiments, the tools to uncover highly quantum-
correlated systems are rather limited, and the general
verification remains an open problem.
Still, several criteria have been developed to successfully

determine entanglement in bipartite and multipartite
systems; see Refs. [17–19] for thorough lists of these
entanglement tests. A prominent example is the partial
transposition criterion [20], which has been generalized
to general positive, but not completely positive, maps [21].
Furthermore, such maps are equivalent to entanglement
witnesses [21–24]. A crucial point of usingwitness operators
is their nature of being observables, which can be directly
implemented in experiments. Another main advantage is that
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no full quantum state reconstruction is required to apply
suchwitnesses. Rather, a fewmeasurements of the observable
can be sufficient to experimentally uncover entanglement
[25–27].
Consequently, witnesses have become a widely applied

method for detecting entanglement. Their usefulness for
quantum technologies has been shown to be promising by
detecting entanglement of multipartite cluster states in
theory and experiments; see, e.g., Refs. [28,29]. Also,
witnesses are not limited to specific systems; for example,
they apply to trapped ions [30] as well as hybrid systems,
which correlate vastly different degrees of freedom [31]. In
addition, device-independent witnesses have been pro-
posed for a robust verification of entanglement [32]. For
instance, such device-independent witnesses can be con-
structed via so-called matrix-product extensions [33].
An entanglement witness has a non-negative expectation

value for separable states as it defines a hyperplane
bisecting the set of states—one part containing at least
all separable states and another part including exclusively
entangled ones. In order to maximize the detectable range
of entangled states, optimal witnesses have been introduced
[34–38]. A universally applicable approach is the method
of separability eigenvalue equations (SEEs), which enables
the construction of optimal witnesses in the bipartite and
multipartite scenarios [39,40]. The solution of the SEEs
renders it possible, in principle, to formulate all entangle-
ment witnesses. However, because of the general complex-
ity of the separability problem, exact solutions are only
known for specific scenarios. Still, this has already led to
deeper insights into the complex forms of experimentally
generated multipartite entanglement [41,42].
Once a witness-construction approach is realized, it can

be applied to different physical systems and reveal more
insight than the basic indication of entanglement. For
example, entanglement in systems of indistinguishable
particles can significantly differ from the case of distin-
guishable particles, but witnessing can be done in a similar
manner [43–45]. Furthermore, the quantification of entan-
glement can be based on witnesses as well [46–49]. This
also includes entanglement tests for the so-called Schmidt
number in the bipartite systems [50–52], as well as its
multipartite extension [12,53].
Since calculating witnesses is a hard problem and exact

solutions are rare, a numerical approach is favorable.
Numerical methods often use the convexity of the set of
separable states. Prime examples are approaches based on
semidefinite programming, used for the general, convex
optimization of linear problems [54]. The formulation of
witnesses has the structure of exactly that kind of problem.
Thus, semidefinite programming is a frequently applied
method for probing entanglement [55–60]. However, this
approach addresses a general class of optimization tasks
and is not specifically designed to address the properties of
entangled systems. Consequently, such a general approach

cannot present an optimal strategy to construct entangle-
ment witnesses for arbitrary systems. Moreover, numerical
standard approaches to solve the eigenvalue equations
(EE), such as the well-known power iteration (PI) [61],
do not apply to the construction of entanglement witnesses
via the nonlinear SEEs.
In this contribution, we devise a numerical approach to

construct multipartite entanglement witnesses by finding
the maximal separability eigenvalue. Based on the proper-
ties of the SEEs, the analytical background is derived
for our technique—termed the separability power iteration
(SPI). As a special case, our approach includes the PI,
which returns the maximal solution of EEs. We implement
the SPI algorithm numerically. This is used to demonstrate
that the directed design of our numerical approach is an
efficient method compared to standard techniques appli-
cable to arbitrary optimization problems. To outline pos-
sible applications, we use our algorithm, for example, to
verify entanglement of weakly correlated, i.e., bound-
entangled, states in the bipartite and multipartite scenarios.
Therefore, an accessible algorithm is provided, which
renders it possible to construct entanglement probes for
certifying multipartite quantum correlations.
We organize the paper as follows. Preliminary statements

are made in Sec. II. Here, we introduce the framework used
throughout the contribution and recollect information about
entanglement. In Sec. III, the SPI algorithm to find the
maximal separability eigenvalue of a positive operator is
introduced. Proofs for the working behavior and the
convergence of the algorithm are given. We analyze the
performance of our algorithm in Sec. IV. In Sec. V,
entanglement in a selection of bound-entangled states is
analyzed. In Sec. VI, we discuss the connection between
the SPI and experimental measurements as well as other
entanglement criteria and show the broad applicability of
our newly devised method to different problems. We
conclude in Sec. VII, where we also summarize our results.

II. PRELIMINARIES

In this section, we revisit multipartite entanglement and
its verification. In particular, we concentrate on the pre-
viously introduced method of SEEs and its relation to
standard EEs, which is essential for the following inves-
tigations. Eventually, we summarize these methods in the
context of the considered problem, which is solved by our
numerical approach, the SPI.

A. Multipartite entanglement

Say S is the set of all pure states that are separable in an
N-partite system. This means that the elements of S take a
tensor-product form,

ja1;…; aNi ¼ ⊗
j¼1;…;N

jaji; ð1Þ
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where jaji ∈ Hj is an arbitrary state in the jth subsystem
and hajjaji ¼ 1 for j ¼ 1;…; N. Furthermore, a mixed
state σ̂ is separable by definition [62] if it can be written as

σ̂ ¼
Z

dPða1;…; aNÞja1;…; aNiha1;…; aN j; ð2Þ

where P is a classical probability distribution over S.
Conversely, a state ρ̂ is defined to be entangled if it cannot
be expressed in this way.
The given form of separability is also called full

separability of an N-partite system. To consider instances
of partial entanglement, we can assume that each of the N
parties is itself a composition of Kj subsystems. This
allows us to study arbitrary forms of partial separability—
e.g.,N-separability—in a system which, in total, consists of
K1 þ � � � þ KN subsystems. It is also worth mentioning that
continuous-variable entanglement can always be detected
in finite-dimensional subspaces [63]. Hence, we can restrict
ourselves to Hilbert spaces with a finite dimensional-
ity, dj ¼ dimHj < ∞.

B. Entanglement witnesses

Based on the convexity of the set of separable states
[cf. Eq. (2)], so-called entanglement witnesses Ŵ have been
introduced [21–23]. They fulfill the property that for all
separable states σ̂, the inequality trðσ̂ ŴÞ ≥ 0 holds true.
Consequently, entanglement is detected if this inequality is
violated, trðρ̂ ŴÞ < 0. In particular, it has been shown that
witness operators can be written in the form [24,39]

Ŵ ¼ gmax1̂ − L̂; ð3Þ

where gmax is the maximal expectation value of L̂ for
separable states.
Therefore, the following approach is equivalent to the

method of witnessing [39,40]: For any entangled state ρ̂,
there is a Hermitian operator L̂ such that the entanglement
of ρ̂ is certified by the criterion

trðL̂ ρ̂Þ > gmax: ð4Þ

The other way around, a state σ̂ is separable if for all L̂ the
inequality trðL̂ σ̂Þ ≤ gmax holds true. Moreover, it has been
shown that it is sufficient to consider (normalized) positive-
definite operators only; see, e.g., Ref. [39]. We refer to
operators satisfying

L̂ ¼ L̂† > 0 ð5Þ

as positive operators in this work. To determine the bound
gmax, applied in the entanglement criterion (4), we intro-
duce the SEEs [39,40] (see also Appendix E).

C. Separability eigenvalue equations

There are two equivalent forms of the SEEs [40]. For this
work, the more important representation of the SEE reads

L̂ja1;…; aNi ¼ gja1;…; aNi þ jχi: ð6Þ

Here, the vector jχi is N orthogonal to ja1;…; aNi Namely,
we have ha1;…; aj−1; x; ajþ1;…; aN jχi ¼ 0 for all j ¼
1;…; N and for all jxi ∈ Hj. The normalized vector
ja1;…; aNi is the separability eigenvector. The real value
g is the separability eigenvalue, which can also be written as
the expectation value of L̂ with respect to the separability
eigenvector,

g ¼ ha1;…; aN jL̂ja1;…; aNi: ð7Þ

The disturbance to a standard EE, created by the
N-orthogonal vector jχi, couples the individual subsystems
represented by the states jaji. Thereby, it creates a highly
nonlinear equation, which, in general, cannot be solved
straightforwardly. Furthermore, we can relate the separabil-
ity eigenvalues to our necessary and sufficient entanglement
criterion given in inequality (4). Namely, we have [40]

gmax ¼ maxfg∶g solves Eq: ð6Þg: ð8Þ

Let us stress that the maximal separability eigenvalue is
the solution to an optimization problem that maximizes the
function ha1;…; aN jL̂ja1;…; aNi for normalized, pure,
and separable states. Moreover, using relation (7), the
value of gmax is determined through the corresponding
separability eigenvector. Finding this vector ja1;…; aNi is
the goal of our algorithm to be introduced. Furthermore, the
SEE in Eq. (6) takes the form of a perturbed EE. In fact, for
a single party (N ¼ 1), the vector jξi necessarily vanishes,
which means that Eq. (6) corresponds to the EE. This
relation between the SEE and the EE is relevant for our
algorithm.
Furthermore, let us also recall properties of the SEEs,

which are of particular importance for this work. First, the
separability eigenvectors of the operator μL̂þ ν1̂, for real
numbers ν and μ ≠ 0, are identical to those of the operator
L̂ [40]. This allows us to restrict ourselves to positive
operators, as mentioned above.
The second property to be discussed here addresses the

relations between the operators

L̂ ¼ jξihξj and L̂0 ¼ trNðL̂Þ; ð9Þ

where jξi ≠ 0 is an arbitrary vector in the N-partite system
and trN denotes the partial trace over the Nth subsystem.
This also implies that L̂0 is positive semidefinite and
acting on an (N − 1)-partite system. The theorem of
cascaded structures [40] states that the nonzero separability
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eigenvalues of L̂ and L̂0 are identical, which also implies
that

gmax ¼ g0max: ð10Þ
Moreover, the separability eigenvectors of L̂ and L̂0 read
ja1;…; aNi and ja1;…; aN−1i, respectively, where the Nth
component obeys

jaNikha1;…; aN−1; ·jξi: ð11Þ
This means that jaNi is parallel to a vector that is obtained
from jξi by projecting its first N − 1 components onto hajj.
We emphasize that the optimization of the expectation
value of the operator L̂ over ja1;…; aNi ∈ S, i.e.,
jhξja1;…; aNij2 → max, corresponds to a maximization
using L̂0, which is defined in one subsystem less than used
for L̂. Also recall that the operator L̂0 is, in general, not a
rank-1 operator anymore, and the cascaded structure is
applicable only to rank-1 operators.

D. Preliminary discussion

In Fig. 1, we outline the previously discussed entangle-
ment detection method using three different operators,
labeled as L̂, L̂0, and L̂00. The tangent hyperplanes separate
the set of separable states from states that are verified to be
entangled. The touching points of the tangent represent the
separability eigenvectors to the maximal separability eigen-
value. In general, the more operators are used, the better
the hyperplanes can approximate the bounds of the set of
separable states and the more entangled states can be

identified. Note that one can construct a dense set of
operators for such an approximation with arbitrarily high
precision; see, e.g., Ref. [39].
Both the construction of multipartite entanglement wit-

nesses and the approximation of the set of separable states
depend on the solution of the SEEs. Specifically, we need
to find the maximal separability eigenvalue, which is
determined through its corresponding separability eigen-
vector. However, the SEEs present a sophisticated math-
ematical problem, which has at least the complexity of the
standard eigenvalue problem [64]. In fact, independently of
our specific approach, the separability problem has been
shown to be an NP-hard problem [8,9].
Furthermore, the SEE in Eq. (6) shares a number

of properties with the EE, L̂jzi ¼ gjzi. For the latter EE,
there exists an algorithm to compute the eigenvector to
the maximal eigenvalue of any positive operator L̂, the
PI [61]. In this algorithm, a vector jzi is mapped onto a
new normalized vector, jz0i ¼ L̂jzi=hzjL̂2jzi1=2. An s-step
iteration, jzi; jz0i; jz00i;…; jzðsÞi, yields a vector that
approaches, for s → ∞, an eigenvector to the maximal
eigenvalue of L̂ for any initial vector that is not already
an eigenvector to L̂.
In the following, we aim to generalize the PI to be

applicable to the SEE. For this reason, we introduce an
algorithm for a numerical implementation, which yields the
desired solution of the SEEs—a separability eigenvector
to the maximal separability eigenvalue. The resulting SPI
algorithm is applicable to all positive operators L̂ and
enables the construction of witnesses to probe multipartite
entanglement.

III. THE SPI ALGORITHM

In this section, we present the SPI algorithm—step by
step. The flowchart of this algorithm to construct entan-
glement criteria is shown in Fig. 2. Our approach yields the
separability eigenvector ja1;…; aNi to the desired, maxi-
mal separability eigenvalue for a positive operator L̂
[Eq. (7)]. Before we study the individual, essential parts
of the SPI in a rigorous mathematical framework, let us first
get a general overview of how our algorithm operates by
applying it to an example.

A. Proof of concept

For demonstrating the function of our algorithm, we
consider the bipartite (N ¼ 2) and positive operator

L̂ ¼ 21̂ − V̂; ð12Þ

where V̂ is the swap operator, V̂ja1; a2i ¼ ja2; a1i. The
expectation value ha1;a2jL̂ja1;a2i¼ 2− jha1ja2ij2 directly
implies that the maximal separability eigenvalue is
gmax ¼ 2, and it is attained for ja1i⊥ja2i [39]. This exact
result serves as our reference to assess the success of our

FIG. 1. Visualization of three entanglement criteria. Entangle-
ment is verified in the shaded half-spaces trðL̂ ρ̂Þ > gmax (bottom,
yellow area), trðL̂0ρ̂Þ > g0max (right, cyan area), and trðL̂00ρ̂Þ >
g00max (left, magenta area), where the values gmax, g0max, and g00max

are the maximal separability eigenvalues of the operators L̂, L̂0,
and L̂00 respectively. The boundaries define hyperplanes tangent
to the set of separable states (gray area). The bullet points
correspond to the separability eigenvector to the maximal
separability eigenvalue for each operator.
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algorithm for this example. Moreover, since the maximal
standard eigenvalue is three, it follows from gmax < 3 that
this operator can be used to detect entanglement [52]. In
fact, the swap operator is related to the prominent partial
transposition criterion to verify entanglement [20,21,39].
Our algorithm in Fig. 2 is initialized at point ① with the

operator (12) and the number of subsystems being N ¼ 2.
At ②, let us begin with states ja1; a2i, which are neither
parallel nor orthogonal, to exclude the trivial cases.
Namely, we have 0 < jγj2 < 1, where

γ ¼ ha1ja2i: ð13Þ

Say that in step③, we do not have convergence yet; i.e., we
follow the branch labeled “false” and compute the vector
in step ④,

jΨi ¼ L̂ja1; a2i ¼ 2ja1; a2i − ja2; a1i: ð14Þ

Since N ≠ 1 (step ⑤), we proceed to ⑥ and compute the
operator,

L̂0 ¼ tr2jΨihΨj
¼ 4ja1iha1j−2γja1iha2j−2γ�ja2iha1jþ ja2iha2j; ð15Þ

FIG. 2. Flowchart of the SPI algorithm. Branches in the algorithm, either “while” loops or “if” conditions, are represented by magenta
diamonds. Yellow rectangles represent assignments and function calls. Entry and exit points of the algorithm are shown as cyan ellipses.
Box ① refers to the input, which includes an operator and the number N of parties. A vector is generated in ② to serve as our starting
vector. If the convergence criterion③, studied in Sec. III B 4, is not met, we generate anotherN-partite vector in④. ForN ¼ 1 in⑤, the
algorithm corresponds to the power iteration (PI), which finds the standard eigenvector to the maximal eigenvalue (dashed box). For
N > 1, our extension consists of three essential parts (gray areas), which are the forward iteration ⑥ and the backward iteration ⑧, as
well as a recursion calling the SPI for N − 1 parties in ⑦. Eventually, when ③ is satisfied, the desired separability eigenvector is the
output of our SPI algorithm and is returned in ⑫.
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which is a single-subsystem operator. This step is referred
to as forward iteration in Fig. 2. The idea behind this step
is a result of the theorem of cascaded structures, which
finds the maximal separable projection onto the state jΨi;
see Sec. II C. This also allows us to apply the SPI to L̂0 þ 1̂.
As L̂0 is positive semidefinite by construction, the addition
of 1̂ assures the positivity of L̂0 þ 1̂ without modifying the
separability eigenvectors.
Calling the SPI with N ↦ N − 1 ¼ 1 in ⑦ and thereby

going back to step ① and going through steps ②–⑤, we
follow the branch for which N ¼ 1 is true. This gives an
iteration of steps ⑩, ⑪, ③, ④, and ⑤, indicated through
the dashed box in Fig. 2, which describes the PI. The PI
is employed for solving the standard EE numerically by
returning the eigenvector to the maximal eigenvalue of a
positive operator with an arbitrarily high precision. So we
can assume that the convergence ③ is true after some
iterations of the PI. For the given operator L̂0 þ 1̂ (thus, also
for L̂0), the eigenvector to the maximal eigenvalue reads

ja01i ¼
1

ν

�
4jγjja1i þ ½Γ − 3� γ

�

jγj ja2i
�
; ð16Þ

using γ [cf. Eq. (13)], the abbreviation

Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8jγj2

q
; ð17Þ

and the normalization ν ¼ ½2ΓðΓ − 3þ 4jγj2Þ�1=2.
Thus, the PI basically returns the vector ja01i in step ⑫,

which is used to continue with the case N ¼ 2, where we
exit step⑦ to perform the backward iteration step⑧. This
gives a vector in the second subsystem. For convenience,
this vector is renamed (step ⑨) and normalized (step ⑩);
see Fig. 2. Again, the backward iteration is a result of the
theorem of cascaded structures, which relates the sepa-
rability eigenvectors of L̂0 for N − 1 subsystems with those
of the initial operator L̂ for N, cf. Sec. II C. This yields the
state of the second subsystem,

ja02i ¼
1

ν

�
4jγjja2i þ ½Γ − 3� γjγj ja1i

�
: ð18Þ

Thus, we obtain a new separable state ja01; a02i in ⑪, where
the tensor-product state is formed.
What did we achieve with the construction of this new

state? To answer this question, let us recall that the desired
separability eigenvector of the operator under study has
perpendicular components for the subsystems. Thus, in
analogy to Eq. (13), we may compute the scalar product of
the states of the subsystems, which yields γ0 ¼ γ=Γ and

jγ0j2 ¼ jha01ja02ij2 ¼
jγj2

9 − 8jγj2 < jγj2 ¼ jha1ja2ij2: ð19Þ

This means the states ja01i and ja02i are closer to orthogonal
than the initial states ja1i and ja2i. Equivalently, we
can say that the expectation value of L̂ increases,
ha01; a02jL̂ja01; a02i ¼ 2− jγ0j2 > ha1; a2jL̂ja1; a2i ¼ 2− jγj2.
Now, we can perform the next cycle, which results in
jγj2 > jγ0j2 > jγ00j2. In fact, performing s steps of the SPI,

we get vectors jaðsÞ1 ; aðsÞ2 i, for which

jhaðsÞ1 jaðsÞ2 ij2 < jγj2
ð9 − 8jγj2Þs ⟶

s→∞
0 ð20Þ

holds. Therefore, we get a convergent sequence of sepa-
rability eigenvectors, which, in the limit of infinite iter-
ations, yields the desired exact maximal separability

eigenvalue, haðsÞ1 ;aðsÞ2 jL̂jaðsÞ1 ;aðsÞ2 i→2−0¼gmax for s → ∞.
In conclusion of this example resulting in an entangle-

ment test based on the swap operator [cf. Eqs. (12) and (4)],
our SPI is constructed to deliver the separability eigenvec-
tor to the maximal separability eigenvalue. Applying
properties of the theorem of the cascaded structure of
SEEs, we identify the following essential steps: forward
and backward iteration. The forward iteration allows the
reduction of the number of subsystems by one in each
recursion depth until the recursion depth reaches a maxi-
mum when the operator is a single-partite operator. Then,
the SEE reduces to the EE, and the PI is used to get the
eigenvector to the maximal eigenvalue. The eigenvector is
further used in the next step, the backward iteration, to
obtain the remaining subsystem components of the sepa-
rable product vector. After completing multiple instances of
such a cycle, we obtain an arbitrarily precise approximation
to our sought-after separability eigenvector.
Now, we may consider the general case beyond the

specific example, which was used to demonstrate the
general operation of our generally applicable algorithm
in Fig. 2. This gives the mathematically rigorous formu-
lation of the SPI for arbitrary positive operators L̂ and
arbitrary numbers N of subsystems, which necessarily
requires a rather technical treatment because of the com-
plexity of the underlying separability problem. After this,
we perform a benchmarking of our algorithm and apply it
to various examples, which provides a more intuitive
assessment of our method.

B. Analytic framework

Based on the theorem on cascaded structures for the
SEEs, the SPI iterates over the number of parties from N to
one. For N ¼ 1, the SPI and PI are identical, resembling the
underlying fact that the SEE and EE are the same in this
case too. Beyond the PI, the SPI algorithm includes two
main steps, denoted as forward and backward iteration.
Clearly, the major goal of our maximization algorithm
for a positive operator L̂ is to get a new separable state
ja01;…; a0Ni from the preceding state ja1;…; aNi, which
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increases the expectation value, ha01;…; a0N jL̂ja01;…; a0Ni >
ha1;…; aN jL̂ja1;…; aNi. Here, let us discuss the details;
the proofs of some of the required theorems are provided in
the corresponding appendixes.

1. Initial considerations

Let us make some more general observations, which
we then apply to the separability problem under study.
A positive operator L̂ induces a scalar product,

hxjyiL̂ ¼ hxjL̂jyi; ð21Þ

for arbitrary jxi and jyi. Therefore, the Cauchy-Schwarz
inequality holds true, jhxjyiL̂j2 ≤ hxjxiL̂hyjyiL̂, where the
equality is equivalent to jxikjyi. Also, we have hxjxiL̂ > 0

for all jxi ≠ 0. To apply these features, we have to restrict
ourselves to positive operators L̂. Note that in our following
proofs, we rely on the properties of the scalar product;
for example, a positive-semidefinite operator L̂ would be
insufficient [65].
Say T is a closed and bounded subset of a finite-

dimensional Hilbert space. For a jzi ∈ T , one can define
an iterated state as

jz0i ¼ argmax
jyi∈T

jhyjziL̂j; ð22Þ

where we use the function “argmax,” which returns the
argument for which the maximum is reached. In other
words, jz0i ¼ argmaxjti∈T jhtjziL̂j if jz0i ∈ T satisfies the
relation jhz0jziL̂j ¼ maxjti∈T jhtjziL̂j. Since jzi is also an
element of the set T over which we maximize, we can
conclude that hzjziL̂ ≤ jhz0jziL̂j. Applying the Cauchy-
Schwarz inequality, we get

hzjzi2
L̂
≤ jhz0jziL̂j2 ≤ hz0jz0iL̂hzjziL̂ ≤ hz0jz0iL̂jhz0jziL̂j: ð23Þ

Considering the second and fourth terms, as well as the first
and third terms, we find the increasing sequence

hzjziL̂ ≤ jhz0jziL̂j ≤ hz0jz0iL̂: ð24Þ

From the definition of jz0i and the properties of the Cauchy-
Schwarz inequality, we can also conclude that the equality
holds true if and only if jz0ikjzi.
Therefore, we can state that the iteration jzi, jz0i, jz00i,

etc. produces a sequence of increasing expectation values,
hzjL̂jzi ≤ hz0jL̂jz0i ≤ hz00jL̂jz00i ≤ � � �. However, the elusive
arg max function (22) has to be computed for this purpose.
In fact, this can be done for separable states, T ¼ S.
We may use the abbreviation jΨi ¼ L̂ja1;…; aNi. To

maximize the projections of this state onto separable ones,
we can apply the theorem of the cascaded structure. This
means that the maximal projection of this state onto

separable states is obtained by ja01;…; a0Ni for the maximal
separability eigenvalue of jΨihΨj. In Sec. II C and in the
flowchart of the SPI in Fig. 2, we describe how this is
achieved: We reduce the number of parties N and solve
the SEE for L̂0 ¼ trN jΨihΨj (forward iteration, ⑥) to get
ja01;…; a0N−1i (step⑦), which then determines the remain-
ing component ja0Ni from ha01;…; a0N−1; ·jΨi (backward
iteration, ⑧).
In summary, the cascaded structure describes how to

compute the desired arg max function for separable states.
This describes the underlying principle of the SPI, which
allows us to compute the bounds gmax for the necessary and
sufficient entanglement criteria (4).

2. The SPI

To apply the general relations above, let us begin with the
forward iteration step. By the following Theorem 1, it is
guaranteed that finding the separability eigenvector corre-
sponds to determining the maximal separability eigenvalue
for the (N − 1)-partite case. More specifically, it enables us
to reduce the number of subsystems for the SEE by one.
Theorem 1 (Forward iteration). Let ja1;…; aNi be the

separability eigenvector corresponding to the maximal
separability eigenvalue of a positive N-partite operator
L̂. Furthermore, let jΨi ¼ L̂ja1;…; aNi. For the (N − 1)-
partite operator L̂0 ¼ trNðjΨihΨjÞ, the equality

ha1;…; aN jL̂ja1;…; aNi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ha1;…; aN−1jL̂0ja1;…; aN−1i

q
ð25Þ

holds true. See Appendix A for the proof.
This theorem is a direct consequence of the SEE in

Eq. (6) and its properties. In the SPI algorithm, the theorem
is applied in the forward iteration step ⑥. To find the full
N-partite separability eigenvector, a reverse step has to be
taken. Theorem 2 states how the N subsystem separability
eigenvector can be generated from the N − 1 subsystem
separability eigenvector.
Theorem 2 (Backward iteration). Consider the same

definitions used in Theorem 1. If the (N − 1)-partite sepa-
rability eigenvector ja1;…;aN−1i maximizes Eq. (25), then
the separability eigenvector ja1;…; aN−1i ⊗ jaNi maxi-
mizes ha1;…; aN jL̂ja1;…; aNi if the condition

νjaNi ¼ ha1;…; aN−1; ·jΨi ð26Þ

holds true for ν ∈ Cnf0g.
The proof of this theorem directly follows from the

cascaded structure, cf. Eq. (11). It relates the separability
eigenvector for N parties to those of a lower number of
parties, N − 1. Thereby, if a solution to the (N − 1)-partite
SEEs for L̂0 is known, we directly find the Nth component
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of the full solution ja1;…; aNi. In the flowchart in Fig. 2,
we see the application in the backward iteration step ⑧.
The combination of Theorems 1 and 2 is fundamental for

the SPI to work. In fact, one might visualize the working
principle of the algorithm as a nested cascading structure.
The forward iteration is recursively applied until we reach
the case N ¼ 1. In that case, the standard PI is performed.
After that, the backward iteration finalizes the individual
recursion layers of the SPI until we obtain the newN-partite
separable vector. Then, we can start a new cycle of forward
iterations, the PI, and backward iterations until the con-
vergence is reached. The algorithm will terminate success-
fully and return the complete separability eigenvector
corresponding to the maximal separability eigenvalue
gmax for detecting entanglement in terms of inequality (4).
To verify the statement that the algorithm converges to the

maximal separability eigenvalue, a few observations have to
be shown first. Let us take a closer look at the sequence of
product vectors created by the SPI. In every step, we find an
element of all product states, ja01;…; a0Ni ∈ S, which
projects maximally onto the action of operator L̂ onto the
previously generated product state ja1;…; aNi. This iter-
ation is done until we reach convergence. This generates a
monotonously growing sequence of expectationvalues of L̂,
which is stated in the following theorem.
Theorem 3 (Monotony). Let ja1;…; aNi ∈ S and

ja01;…; a0Ni ∈ S such that

ja01;…; a0Ni ¼ argmax
jb1;…;bNi∈S

hb1;…; bN jL̂ja1;…; aNi: ð27Þ

Then, the inequality

ha1;…; aN jL̂ja1;…; aNi
≤ ha01;…; a0N jL̂ja1;…; aNi
≤ ha01;…; a0N jL̂ja01;…; a0Ni ð28Þ

holds true. Furthermore, equality in Eq. (28) holds true iff
ja01;…; a0Ni ¼ ja1;…; aNi. See Appendix B for the proof.
This theorem is a special case of the general consid-

erations made in Sec. III B 1. In addition, the global phase
of the separable state ja01;…; a0Ni can be chosen freely,
which we conveniently select such that we have positive
projections onto jΨi, i.e., ha01;…; a0N jL̂ja1;…; aNi ¼
jha01;…; a0N jL̂ja1;…; aNij. Let us stress that the arg max
function, i.e., finding the maximal projection onto
jΨi ¼ L̂ja1;…; aNi, is obtained from the cascaded struc-
ture; see also Theorems 1 and 2.
Because of Theorem 3, the SPI produces a sequence of

increasing expectation values of L̂. This observation is an
important aspect for the proof of convergence of the SPI,
which is shown in two parts. Both theorems rely on the
sequence ðgðsÞÞs of expectation values generated by the SPI
in each step s, where

gðsÞ ¼ haðsÞ1 ;…; aðsÞN jL̂jaðsÞ1 ;…; aðsÞN i: ð29Þ

Here, in analogy to the example in Sec. III A, the vector

jaðsÞ1 ;…; aðsÞN i is the approximation to the separability
eigenvector for the maximal separability eigenvalue after
s iterations of the SPI. First, we consider the local
convergence of the algorithm.
Theorem 4 (Local convergence). For any starting vec-

tor, the sequence ðgðsÞÞs of expectation values generated by
the SPI converges; i.e., the limit

lim
s→∞

gðsÞ ¼ ḡ ð30Þ

exists and is bounded as 0 ≤ ḡ ≤ gmax. See Appendix C for
the proof.
For an arbitrary starting vector, a sequence of expectation

values of L̂ for separable states is generated. The generated
sequence converges independent of the choice of starting
vector. Combining the statements from Theorems 3 and 4,
we conclude that there is a monotone growth of expectation
values towards a maximum. This maximum does not
necessarily need to be the maximal separability eigenvalue
gmax as shown in Theorem 4. We therefore require an
additional observation to prove global convergence of the
SPI, which is stated in Theorem 5.
Theorem 5 (Global convergence). Let Σ be a set of

separable starting vectors and ðgðsÞΦ Þs be sequences of
expectation values generated by the SPI for a starting vector
jΦi ∈ Σ. Furthermore, say fḡΦ ∈ R∶jΦi ∈ Σ and ḡΦ ¼
lims→∞g

ðsÞ
Φ g defines the set of optimal expectation values

(limits of the converged sequences) for each starting vector.
The maximal separability eigenvalue for the operator L̂ is
gmax ¼ maxΦ∈ΣfḡΦg, which is the maximum of the limit to
the series of expectation values for each starting vector.
See Appendix D for the proof.
The set Σ of different starting vectors jΦi that we

consider is covered in Sec. III B 3. Even in the worst-case
scenario, it is far smaller than the set S of all separable
states.

3. Starting vectors

An important aspect for the implementation of the
algorithm is the choice of a starting vector, cf. Theorem 5.
Because a proper choice can significantly decrease the
runtime of the algorithm, let us provide more details on this
aspect.
Assume we start with a separability eigenvector corre-

sponding to any—except for the largest—separability
eigenvalue. Then, the algorithm converges immediately,
and the resulting separability eigenvalue will not be
maximal. It is worth mentioning that such a behavior is
already well known for the PI. It is straightforward to check
whether an initial vector is a (separability) eigenvector.
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Similar results might happen for starting vectors that are too
close to any (separability) eigenvector.
To circumvent such problems, the SPI can be run

multiple times with different starting vectors, chosen
as an operator basis. Namely, the set fja1;k;…; aN;ki
ha1;k;…; aN;kjgk of starting vectors spans all operators of
the underlying Hilbert space. This allows us to cover all
parts of the operator space and, of course, also resolves the
related problem for the PI.
This choice is valid as the set of separability eigenvectors

can be used to find a decomposition of any state, similarly
to the spectral decomposition found by regular eigenvec-
tors. In fact, any positive-semidefinite operator can be
decomposed in terms of projectors of separability eigen-
vectors; see Refs. [66,67] for proofs of the bipartite and
multipartite cases, respectively. Specifically, the decom-
position of at least one vector of the operator basis needs to
contain the sought-after separability eigenvector. This
warrants the choice of using the operator basis as starting
vectors.
Another efficient ad hoc ansatz that we used for the

implementation of the SPI is described as follows: First, a
preliminary run of the SPI is done to find a product vector
projecting maximally onto the vector L̂jvi, where jvi is the
eigenvector to the maximal standard eigenvalue of L̂. This
choice is inspired by the fact that the wanted vector
ja1;…; aNi maximizes the expectation value of L̂ with
respect to product vectors. The eigenvector jvi maximizes
the expectation value of L̂ without the restriction to
separable states. Second, the product vector that lies
maximally parallel to jvi serves as our starting vector.
Finding such a maximal projection is in fact exactly what
we get when running the SPI for a positive operator
1̂þ jvihvj. Finally, the resulting product vector serves as
the initial vector for the SPI algorithm applied to L̂.
Our numerical results and comparison with other meth-

ods confirm the assumption that the constructed starting
vector is sufficient, as the described procedure returns the
same values. Still, a rigorous proof of this observation
requires further investigations. Until then, the choice of an
operator basis of starting vectors is preferable in the
general case.

4. Convergence criterion

The flowchart in Fig. 2 requires a check for convergence
in step ③. Theorems 4 and 5 guarantee, in theory, the
convergence of the SPI. In a practical implementation of the
algorithm, however, the computer needs to know when
convergence is reached in a numerical sense.
We apply a convergence criterion that is based on the

SEE. In the sth cycle of the algorithm, we obtain the vector

jχðsÞi ¼ ðL̂ − gðsÞ1̂ÞjaðsÞ1 ;…; aðsÞN i; see Eq. (6). By defini-

tion (see Sec. II), jaðsÞ1 ;…; aðsÞN i is a separability eigenvector
if and only if jχðsÞi is N orthogonal. Likewise, convergence

is reached if and only if jχðsÞi is N orthogonal. Theorem 4
guarantees that we approach this scenario—meaning that

lims→∞haðsÞ1 ;…; aðsÞj−1; x; a
ðsÞ
jþ1;…; aðsÞN jχðsÞi ¼ 0 for all x ∈

Hj and j ¼ 1;…; N.
In fact, this N-orthogonality requirement can be used to

quantify the closeness to the solution. For this purpose,
we can evaluate if the following inequality is satisfied:

maxj¼1;…;Nmaxx∈Bj
jhaðsÞ1 ;…;aðsÞj−1;x;a

ðsÞ
jþ1;…;aðsÞN jχðsÞij<ϵ,

for a sufficiently small ϵ and all x ∈ Bj, where Bj is a basis
of Hj. The machine precision of the representation of
numbers on a computer bounds the value of ϵ. When the
inequality is satisfied, the possible numerical convergence

is achieved, and the current iteration jaðsÞ1 ;…; aðsÞN i is the
desired approximation to the separability eigenvector.

IV. BENCHMARK

Wenowwant to find out how the SPI performs as opposed
to other methods that allow the construction of arbitrary
entanglement witnesses. A simple brute-force approach to
obtain the entanglement criterion (4) for L̂ is to find all
separable pure states and calculate the expectation value
of L̂. Then, gmax is the maximum of these values.
As the search space for these vectors is over a continuum,

one could use a generally applicable global optimization
algorithm, such as genetic algorithms [68]. This presents a
state-of-the-art method to solve optimization problems. It is
rather fast and inspired by evolutionary processes in
biology. Thus, we implemented such a genetic algorithm
to evaluate the performance of the SPI. A genetic algorithm
requires a fitness function to be minimized, which will be
fðvÞ ¼ −hvjL̂jvi, the negative of the expectation value of
L̂. An intermediate step ensures that the argument vector
jvi is indeed a product vector. During the runtime, the
genetic algorithm will minimize fðvÞ and converge towards
a vector jv0i with fðv0Þ ¼ minvfðvÞ. The resulting min-
imization will give the maximal separability eigenvalue
gmax ¼ −fðv0Þ, or at least a close approximation.
To show the advantages of the proposed algorithm, SPI,

as opposed to this simple maximization strategy, we
compare the two approaches for the following, different
scenarios: We consider a bipartite system (N ¼ 2) and vary
the dimensions, d1 ¼ d2 ¼ d; we fix the dimensions (here,
d1 ¼ � � � ¼ dN ¼ 2) and increase the number of parties N.
As discussed previously, we choose the convergence
criterion in Sec. III B 4. The starting vector is chosen as
the maximal separable projection on the (standard) eigen-
vector corresponding to the maximal eigenvalue of L̂.
To exclude any bias, the chosen operators are randomly

generated by first defining a random operator M̂ acting
on the D-dimensional space, where D ¼ d1 ·… · dN .
Then, we construct a positive and normalized operator L̂
for which we want to find the maximal separability
eigenvalue as
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L̂ ¼ 1

trð1̂þ M̂M̂†Þ ð1̂þ M̂M̂†Þ: ð31Þ

The SPI and brute-force approaches have been tested for
100 randomly selected operators. To make the runtimes
comparable, the same set of random operators was used for
both approaches.
Figure 3 shows the average runtime for the SPI compared

to the brute-force approach. These results come from
running both algorithms on a desktop computer. The
runtime of the SPI is, on average, at least 2 orders of
magnitude lower for the considered sample size of 100
randomly generated test operators. In bipartite systems
(Fig. 3, top panel), we see a smaller scaling behavior of the
SPI, whereas the scaling is about the same for an increasing
number of qubits (bottom plot). Moreover, focusing on the

numbers of subsystems (Fig. 3, bottom panel), we see
that the SPI finds the maximal separability eigenvalue for a
state acting on a 13-fold Hilbert space (dimensionality
D ¼ 213 ¼ 8192) in roughly the same time as the other
approach manages to find it in the ninefold case (dimen-
sionality D ¼ 29 ¼ 512). It is also worth mentioning that
all curves of the presented study in Fig. 3 can be roughly
approximated by exponential functions of the overall
dimensionality [D ¼ d2 (top) and D ¼ 2N (bottom)],
representing the expected exponentially increasing runtime
of the separability problem. The dip (in favor of the SPI) at
N ¼ 9 in the bottom plot cannot be explained at this point
and requires further investigations.
Our benchmark indicates the superior potential of the

SPI algorithm to numerically construct entanglement tests.
Specifically, it outperforms the competing approach for
high-dimensional scenarios, which includes the dimension-
ality of the individual parties as well as the number of
parties itself. This enables a comparably efficient tool for
the identification of entanglement in complex physical
systems. Keep in mind that the runtimes shown in Fig. 3 are
from running the SPI on a desktop computer; computation
clusters might improve the performance even further by a
large margin.
Beyond the genetic algorithm, there exist more special-

ized algorithms, treating Eq. (7) as a maximization of a
multivariate polynomial. Such approaches are also NP-hard
problems, meaning they can not be solved in polynomial
time by a non-deterministic Turing machine, and only
lower bounds of the global maximum can be found in
polynomial time [69]. We apply one state-of-the-art reali-
zation of such an algorithm to find the maximum of a
polynomial [70], using semidefinite programming, instead
of the problem of finding the maximal separability eigen-
value of an operator. Semidefinite programming is a
frequently applied technique used for entanglement tests,
cf., e.g., Refs. [54–60]. Already in a 3 × 3 case, the
algorithm in Ref. [70] failed to be conclusive and, in fact,
returned a lower value than our SPI. For use as an optimal
witness, the true maximal separability eigenvalue is crucial;
thus, the result of the competing algorithm could lead to a
false indication of entanglement. In all other tested cases in
which the algorithmwas conclusive, our SPI was superior in
terms of speed and accuracy.

V. EXAMPLES

As a proof of principle, let us apply our algorithm to
detect entanglement of states of special relevance.
Specifically, we study the two-qutrit Horodecki state
[71] and the four-qubit Smolin state [72]. Both states have
been classified as bound-entangled states. In the case of the
Horodecki state, this arises from the dimensions of the
state, which is acting on a 3 × 3-dimensional Hilbert space.
The Smolin state acts on a 2 × 2 × 2 × 2-dimensional
Hilbert space, and the bound-entangled nature arises from

FIG. 3. Benchmark results comparing the SPI (magenta line) to
a brute-force approach, which is a genetic algorithm (cyan line).
Top panel: The results for the runtime comparison between both
approaches are shown when scaling the dimensions of each
subsystem for a bipartite state, N ¼ 2 and d1 ¼ d2 ¼ d. Bottom
panel: The corresponding results are shown when scaling the
number N of parties, which are qubit systems (d1¼���¼dN ¼2).
It can be seen that the SPI performs better than the competing
approach by several orders of magnitude.
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the fact that the state is separable with respect to all
bipartitions consisting of two subsystems each, yet still
entangled in all other partitions. By applying the SPI
algorithm, we aim at confirming the weak entanglement
properties of those bound-entangled states for which the
well-known partial transposition test [20,73] fails to be
conclusive.
The first example, the Horodecki state, is defined as [71]

ρ̂α ¼
1

7
ð2jΨihΨj þ ασ̂þ þ ð5 − αÞσ̂−Þ; ð32Þ

where σ̂þ ¼ ðj0;1ih0;1jþ j1;2ih1;2jþ j2;0ih2;0jÞ=3 and
σ̂− ¼ ðj1; 0ih1; 0j þ j2; 1ih2; 1j þ j0; 2ih0; 2jÞ=3 are sepa-
rable and jΨi¼ ðj0;0iþ j1;1iþ j2;2iÞ= ffiffiffi

3
p

is the entangled
contribution. The parameter can be chosen as 0 ≤ α ≤ 5;
otherwise, the density operator ρ̂α does not represent a
physical state. The Horodecki state was shown to be
entangled for α > 3 and α < 2 [71].
For our entanglement analysis based on the criterion (4),

a positive-definite, Hermitian operator L̂ is required. For
simplicity, the test operator will be chosen as L̂β ¼ ρ̂β. We
calculate the maximal separability eigenvalues gβ for every
L̂β, where 0 ≤ β ≤ 5. In this entanglement test, a state is
verified to be entangled if

gβ − trðρ̂αL̂βÞ < 0; ð33Þ

which corresponds to the criterion based on the entangle-
ment witness Ŵβ ¼ gβ1̂ − L̂β.
The results are shown in Fig. 4. The entanglement

criterion (33) is satisfied in the magenta colored areas.
The blank area corresponds to parameters 2 ≤ α ≤ 3 for
which no entanglement could be detected, which agrees with
the prediction in Ref. [71]. In all other cases (cyan area),
there exists at least one other value β0 for which L̂β0 verifies
entanglement. Thus, we correctly and straightforwardly

certify entanglement of all Horodecki states, which are
positive under partial transposition, using our SPI approach.
Beyond the bipartite case, let us apply our method to the

multipartite scenario for which the partial transposition
criterion does not apply in principle. For this reason, we
study the four-partite Smolin state [72],

Ŝ ¼ 1

16
ð1̂þ σ̂⊗4

x þ σ̂⊗4
y þ σ̂⊗4

z Þ; ð34Þ

where σ̂x, σ̂y, and σ̂z denote the Pauli spin matrices. We
restrict ourselves to a test operator of the simple form
L̂ ¼ Ŝ.
In the multipartite case, we can analyze different forms

of entanglement, such as bipartitions, tripartitions, and
four-partitions for the state under study. In total, we have 14
partitions. However, because of the symmetry, cf. Eq. (34),
we can restrict ourselves to the bipartitions f1g∶f2; 3; 4g
and f1; 2g∶f3; 4g, the tripartition f1g∶f2g∶f3; 4g, and the
four-partition f1g∶f2g∶f3g∶f4g.
The SPI algorithm was run for all partitions. The results

are listed in Table I. For applying entanglement criterion
Eq. (4), we additionally compute trðL̂ ŜÞ ¼ 1=4. Thus, in
agreement with the results in Ref. [72], entanglement could
be verified for all partitions, except for the bipartition,
which consists of two subsystems each, i.e., f1; 2g∶f3; 4g.

In this section, we demonstrated the direct application of
our SPI algorithm to construct entanglement probes, for
example, to identify bound instances of entanglement. We
deliberately chose such weakly entangled states, which
have been characterized previously to challenge our
method and compare our numerical results with sophisti-
cated exact analysis. In particular, entanglement was
verified in bipartite qudit and multipartite qubit states.
The entanglement of the states under study is a challenge
for other directly applicable methods as the partial trans-
position criterion gives inconclusive results.

VI. DISCUSSION

We introduced, implemented, and applied a method to
numerically construct entanglement tests. In this section, let
us discuss how this technique can be used in experiments,
how it improves other entanglement probes, and how it can
be generalized to detect other forms of entanglement.

TABLE I. Separability eigenvalues of the operator L̂ ¼ Ŝ
[Eq. (34)]. The maximal separability eigenvalues gmax are listed
for the corresponding partitions.

Partition gmax

f1; 2g∶f3; 4g 0.250
f1g∶f2; 3; 4g 0.125
f1g∶f2g∶f3; 4g 0.125
f1g∶f2g∶f3g∶f4g 0.125

FIG. 4. Results of the entanglement test for the bound-
entangled, two-qutrit Horodecki state. No state ρ̂α with 2 ≤
α ≤ 3 (blank area) has been detected as entangled. In the magenta
areas, the criterion Eq. (33) certifies entanglement for the given
combination of α and β, which does not hold true for the
cyan areas.
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Finally, we discuss future research directions that become
accessible with our approach and address the interdiscipli-
nary importance of the introduced technique by relating it
to a current problem in pure mathematics.

A. Experimental implementation

Amajor benefit of our approach is the direct applicability
in experiments. Suppose that the set of observables
fM̂k∶k ¼ 1;…; mg describes a measurement scheme. In
other words, the data yield the expectation values
hM̂ki ¼ trðM̂kρ̂Þ. An example for such operators relates
to a displaced photon-number correlation [74]. In general, a
family of positive operators L̂ can be constructed from the
considered measurements,

L̂ ¼ ν1̂þ
Xm
k¼1

μkM̂k; ð35Þ

by choosing real-valued coefficients μk and adjusting ν to
ensure positivity of L̂.
The entanglement criterion (4) can be applied. On the

one hand, the experimental expectation value is given by
hL̂i ¼ νþP

m
k¼1 μkhM̂ki. On the other hand, we get the

maximal expectation value for separable states, gmax,
from the application of our SPI to the family of operators
L̂ under study. Note that a variation over the coefficients
μk also enables an optimal entanglement verification
based on the set of measured observables, similarly to
the technique applied to Gaussian measurements in
Refs. [41,42].

B. Relations to other entanglement criteria

As mentioned earlier, our entanglement criteria are
identical to witnesses [Eq. (3)]. Furthermore, based on
the Choi-Jamiołkowski isomorphism [75,76], entangle-
ment witnesses enable the formulation of positive, but
not completely positive, maps to probe entanglement
[21,22]. Thus, our numerical method can be used to
construct previously unknown families of such maps.
For instance, the test operators that verified the entangle-
ment of the bound-entangled states (Sec. V) necessarily
lead to maps that go beyond the partial transposition since
the partial transposition cannot detect the entanglement of
states considered in those examples.
In addition, in Ref. [33], an elegant approach was

formulated that enables the construction of device-
independent entanglement witnesses from device-dependent
ones. This technique is based on a matrix-product extension
that assigns to each subsystem an auxiliary Hilbert space but
requires the previous knowledge of a witness. Such desired
initial witnesses can be provided by our algorithm and
combined with the method from Ref. [33] to construct
device-independent entanglement witnesses.

C. Outlook

Beyond the witnessing of multipartite entanglement, the
SEE approach has been generalized. Thus, let us briefly
discuss some future generalizations of our numerical
method for the aim of exploring entanglement in a broader
context.
The detection of K-entanglement, and thus of genuine

entanglement, is possible by finding the maximum of all
maximal separability eigenvalues for an operator with
respect to partitions of the length K [42]. It is therefore
a straightforward extension to the SPI to find the
optimal witness for K-entanglement with the introduced
algorithm—the algorithm is run multiple times for differ-
ent partitions, and the maximum of the results is the
required separability eigenvalue.
Furthermore, somephysical problems require solutions of

a generalized EE, L̂jΦi ¼ λP̂jΦi, where the right-hand side
includes a contribution that is different from the identity,
P̂ ≠ 1̂. Interestingly, the same holds true for the SEE.
One example is the verification of entanglement in

systems of indistinguishable particles, which is based on
a generalized SEE and where P̂ represents the (anti)
symmetrization operator for bosons (fermions) [45].
Another example is the quantification of multipartite
entanglement via generalized Schmidt-number witnesses
[12]. There, P̂ takes the form of a spinor projection (details
can be found in the supplement to Ref. [12]). A third
example is the detection of multipartite entanglement in
systems for which the number of subsystems is not fixed.
For instance, the underlying generalized SEE applies to the
construction of multiparticle-entanglement witnesses for
fluctuating particle numbers [77].
Thus, a generalization of the SPI to account for such

generalized SEEs, including P̂, will further enhance the
range of applications. It is worth mentioning that the
desired generalization is well known for the PI, which is
likely to be applicable to the SPI in a similar manner.
Furthermore, the standard EE applied to the density

operator leads to the spectral decomposition of the state.
Similarly, the SEE can be used to expand the density
operator in terms of separability eigenvectors and a quasi-
probability distribution [66,67]. The latter one includes
negativities iff the state is entangled; see Ref. [78] for an
application to uncover bound entanglement. However, this
approach requires the computation of all separability eigen-
vectors. Therefore, similar to the subspace iteration for the
PI, a generalization of the SPI to include all solutions,
beyond the one that corresponds to the maximal separability
eigenvalue, could lead to a broader applicability of entan-
glement quasiprobabilities.
As a final example let us consider the dynamics of

quantum systems, which is described by the Schrödinger
equation. To distinguish the entanglement-generating evo-
lution from the separable dynamics, we recently introduced
the separability Schrödinger equations [79], which relate to
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the SEE in the static case. Again, the SPI can be the starting
point for the numerical implementation of this approach.
Thus, generalizations of the SPI have the potential to

uncover multipartite entanglement in a much broader sense.
Beyond the already-available construction of positive, but
not completely positive, maps and device-independent
entanglement witnesses, our numerical approach builds
the foundation for the future studies of entanglement.

D. Relations to mathematical problems

Thequestion of positive polynomials is an interesting and,
in the most general case, unsolved mathematical problem,
which has been studied for a long time [80] and finds many
applications [81]. As already indicated in Sec. IV, any
entanglement witness can be characterized by the non-
negativity of a multivariate polynomial [69]. All entangle-
ment witnesses can be generated through the solution of
the SEE. Therefore, the solution of the SEE enables the
construction and characterization of positive multivariate
polynomials; see also Appendix E. Consequently, the
proposed SPI is an alternative approach to numerically
solving the positivity problem of polynomials.
Another family of important problems in pure mathemat-

ics that could benefit from the SPI are partial differential
equations, which are also closely related to many problems
in physics. For instance, the applicability of the method of
separation of variables corresponds to the question of
whether or not solutions are factorizable, i.e., a tensor
product. Since a separable eigenfunction is also a separabil-
ity eigenfunction [39], i.e., eigenvector in the function space,
the SPI can be applied to find factorizable solutions of the
partial differential equation.
Moreover, nonlinear partial differential equations

address questions such as finding the ground state to a
nonlinear energy functional. If this functional is polyno-
mial, a problem related to the previously mentioned
characterization of multivariate polynomials can be for-
mulated. Namely, the numerical approximation to the
ground state can be obtained by the multipartite SPI as
the maximum of the negative nonlinear energy functional,
resulting in the minimal energy.

VII. CONCLUSION

In this paper, we introduce an algorithm, the SPI, to
numerically construct arbitrary multipartite entanglement
witnesses. This algorithm enables us to find the maximal
separability eigenvalues,which directly results inmeasurable
entanglement tests. Beyond the formulation of our method,
we also provide the mathematical background for the SPI,
which yields the maximal solution of the nonlinear sepa-
rability eigenvalue problem addressing the complex entan-
glement problem in quantum physics. Furthermore, our
framework is supplemented by performing a benchmark
of our approach, applying it to uncover hard-to-detect forms

of entanglement, and relating it to othermethods in the theory
of quantumentanglement and their experimental application.
Our algorithm shows two crucial steps—namely, for-

ward and backward iteration—following directly from the
cascaded structure of the separability eigenvalue equations.
The forward iteration reduces the number of parties until
we have a single-party problem, which is then used in the
backward iteration to solve the multipartite problem. This
property also allows us to prove the convergence of the SPI
to reliably produce entanglement tests based on arbitrary
observables. Interestingly, our algorithm includes the well-
known power iteration, which is able to calculate the
maximal (standard) eigenvalue, as a special case.
We show the efficiency of our approach in comparison

with another method, which is mainly based on a genetic
algorithm. The genetic algorithm presents a state-of-the-art
approach to solve arbitrary optimization problems. The SPI
is faster by 2 orders of magnitude, which is partly because
of its directed design to specifically address the entangle-
ment problem. For example, we analyze the runtime as a
function of the dimension of a bipartite quantum system. In
addition, we numerically solve the separability eigenvalue
equations in a feasible time for operators up to a 13-party
qubit Hilbert space, corresponding to 8192 dimensions.
Furthermore, we apply the SPI to bound-entangled states

whose entanglement detection is a cumbersome problem.
For instance, the frequently applied partial transposition
criterion fails to uncover the entanglement of the considered
examples. Applying the SPI, we straightforwardly verify
this weak form of entanglement, proving the advantage of
ourmethod.Moreover, we demonstratewith these examples
that our algorithm renders it possible to uncover entangle-
ment of all forms of partial entanglement in multipartite
systems. It is also worth mentioning that entanglement of
continuous-variable systems can be detected in finite sub-
spaces, allowing us to apply our algorithm to these kinds of
states as well.
We outline the versatile nature of our method and its

impact on future research by relating it to other open
problems in quantum entanglement and beyond. For in-
stance, the construction of entanglement witnesses, which
is achieved by our SPI, is the basis for the formulation
of positive, but not completely positive, maps for entangle-
ment detection and the construction of device-independent
entanglement witnesses. Furthermore, we describe the
construction of entanglement criteria based on measured
quantities and outline several generalizations, which are—at
their core—related to our method.
Thus, we devise a relatively simple, yet versatile

approach to numerically construct entanglement tests in
multipartite systems. The direct implementation of our
method enables us to certify complex forms of quantum
correlations based on measurable criteria. In addition, we
derive the required mathematical background of our algo-
rithm to ensure its operation and benchmark its perfor-
mance. To the best of our knowledge, there exists no
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alternative method of entanglement verification that is
applicable to complex systems that our method can
manage. To summarize, we provide a full numerical
framework for the detection of multipartite entanglement
for theoretical studies and, more importantly, for applica-
tion in current and future experiments using entanglement
in quantum information and communication protocols.
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APPENDIX A: PROOF OF THEOREM 1

Theorem 1 (Forward iteration). Let ja1;…; aNi be the
separability eigenvector corresponding to the maximal
separability eigenvalue of a positive N-partite operator
L̂. Furthermore, let jΨi ¼ L̂ja1;…; aNi. For the (N − 1)-
partite operator L̂0 ¼ trNðjΨihΨjÞ, the equality

ha1;…; aN jL̂ja1;…; aNi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ha1;…; aN−1jL̂0ja1;…; aN−1i

q
ðA1Þ

holds true.
Proof.—As a shorthand notation, let jvNi ¼ ja1;…; aNi.

Using the cascaded structure (CS) and the abbreviation
L̂0 ¼ trN jΨihΨj, the statement is derived as follows:

max
jvNi∈S

hvN jL̂jvNi ¼ max
jvNi;jv0Ni∈S

hv0N jL̂jvNi|{z}
≕ jΨðvNÞi

¼ max
jvNi∈S

max
jv0Ni∈S

hv0N jΨðvNÞi

¼ max
jvNi∈S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max
jv0Ni∈S

½hv0N jΨðvNÞi�2
r

¼ max
jvNi∈S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max
jv0Ni∈S

hv0N jΨðvNÞihΨðvNÞjv0Ni
r

¼CS max
jvNi∈S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

jv0N−1i∈S
hv0N−1jL̂0ðvÞjv0N−1i

r
;

where we chose global phases such that scalar products
correspond to non-negative numbers. □

APPENDIX B: PROOF OF THEOREM 3

Theorem 3 (Monotony). Let ja1;…; aNi ∈ S and
ja01;…; a0Ni ∈ S such that

ja01;…; a0Ni ¼ argmax
jb1;…;bNi∈S

hb1;…; bN jL̂ja1;…; aNi: ðB1Þ

Then, the inequality

ha1;…; aN jL̂ja1;…; aNi
≤ ha01;…; a0N jL̂ja1;…; aNi
≤ ha01;…; a0N jL̂ja01;…; a0Ni ðB2Þ

holds true. Furthermore, the equality in Eq. (B2) holds true
iff ja01;…; a0Ni ¼ ja1;…; aNi.
Proof.—The inequality

ha1;…; aN jL̂ja1;…; aNi ≤ ha01;…; a0N jL̂ja1;…; aNi

directly follows from the definition of ja01;…; a0Ni. The
second inequality

ha01;…; a0N jL̂ja1;…; aNi ≤ ha01;…; a0N jL̂ja01;…; a0Ni

can be proved using the Cauchy-Schwarz inequality (CSI).
As a shorthand, let us define jvNi ¼ ja1;…; aNi and
jv0Ni ¼ ja01;…; a0Ni and consider the L̂-induced scalar
product hvjivL̂ ¼ hvjL̂jvi:

hvN jvNi2L̂ ≤ hv0N jvNi2L̂ ≤
CSIhvN jvNiL̂hv0N jv0NiL̂

⇔ hvN jvNiL̂ ≤ hv0N jv0NiL̂
⇒ hv0N jvNi2L̂ ≤ hv0N jv0NiL̂hv0N jv0NiL̂
⇒ hv0N jvNiL̂ ≤ hv0N jv0NiL̂:

Here, the second row follows from reduction by hvN jvNiL̂;
the third row can be found by substituting the inequality in
row two into the right side of the inequality in row one.
Note that the equality holds if and only if jvNikjv0Ni. □

APPENDIX C: PROOF OF THEOREM 4

Theorem 4 (Local convergence). For any starting vec-
tor, the sequence ðgðsÞÞs of expectation values generated by
the SPI converges; i.e., the limit

lim
s→∞

gðsÞ ¼ ḡ ðC1Þ

exists and is bounded as 0 ≤ ḡ ≤ gmax.

Proof.—The state jvNi ≔ jaðsÞ1 ;…; aðsÞN i is separable for
any s, where s indexes the iteration steps of the SPI.

Further, let jv0Ni ≔ jaðsþ1Þ
1 ;…; aðsþ1Þ

N i be the next approxi-
mation to the separability eigenvector corresponding to an
optimal separability eigenvalue. By design, hv0N jL̂jvNi →
max holds such that Theorem 3 applies. Thus, the sequence
ðgðsÞÞs is monotonous. Furthermore, as L̂ is a bounded
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operator, the sequence is also bounded. By definition of a
convergent series, ðgðsÞÞs converges to, at least, a local
maximum. □

APPENDIX D: PROOF OF THEOREM 5

Theorem 5 (Global convergence). Let Σ be a set of

separable starting vectors and ðgðsÞΦ Þs be sequences of
expectation values generated by the SPI for a starting

vector jΦi ∈ Σ. Further, say fḡΦ ∈ R∶jΦi ∈ Σ and ḡΦ ¼
lims→∞g

ðsÞ
Φ g defines the set of optimal expectation values

(limits of the converged sequences) for each starting vector.
The maximal separability eigenvalue for the operator L̂ is
gmax ¼ maxΦ∈ΣfḡΦg, which is the maximum of the limit to
the series of expectation values for each starting vector.
Proof.—The global convergence of the SPI is shown via

proof by induction over the number of subsystems N. The
expression L̂ðiÞ denotes an operator acting on a composition
of i Hilbert spaces. Further, we use jvii ¼ ja1;…; aii
and ḡi ¼ lims1;…;si→∞haðs1Þ1 ;…; aðsiÞi jL̂ðiÞjaðs1Þ1 ;…; aðsiÞi i as
the optimal expectation value of the ith subsystem over
separable states, with si counting the iterations of the SPI in
the ith subsystem.
Basis of induction.—For N ¼ 1, the SPI is the PI for

which the convergence is well known [61]. The optimal
expectation value for the one-subsystem operator L̂ð1Þ can
be found as

ḡ1 ¼ lim
s1→∞

haðs1Þ1 jL̂ð1Þjaðs1Þ1 i; ðD1Þ

where jaðs1Þ1 i¼L̂ð1Þjaðs1−1Þ1 i=kL̂ð1Þjaðs1−1Þ1 ik and kjψik ¼
hψ jψi1=2.
Induction hypothesis.—The induction hypothesis reads

ḡN ¼ lim
sN→∞

haðsNÞN jL̂ðNÞ
a1;…;aN−1 jaðsNÞN i; ðD2Þ

where jaðsNÞN i ¼ L̂ðNÞ
a1;…;aN−1 jaðsNÞN i=kL̂ðNÞ

a1;…;aN−1 jaðsNÞN ik.
Induction step.—Under the assumption of convergence

inN − 1 subsystems [replacingN byN − 1 in the induction
hypothesis, Eq. (D2)], we show convergence of the SPI in
the Nth subsystem,

ḡN ¼ max
a1;…;aN

ha1;…; aN jL̂ðNÞja1;…; aNi

¼ max
a1;…;aN−1

max
aN

ha1;…; aN jL̂ðNÞja1;…; aNi: ðD3Þ

In the SPI algorithm, we then define

jΨi ¼ L̂ðNÞja1;…; aNi ðD4Þ

and calculate

jbNi ¼
ha1;…; aN−1; ·jΨi

jjha1;…; aN−1; ·jΨijj
: ðD5Þ

Using these definitions in the calculation of ḡN , we get

ḡN ¼ max
a1;…;aN−1

max
aN

ha1;…; aN jL̂ðNÞja1;…; aNi

¼ max
a1;…;aN−1

max
γN;aN

hγN jL̂ðNÞ
a1;…;aN−1 jaNi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

a1;…;aN−1
max
γN;aN

jha1;…; aN−1; γN jΨij2
r

;

where the second line follows from Theorem 3. By
construction—following the induction step—convergence
has been reached for the subsystems up to and including
N − 1, which leaves a maximization for jaNi and jγNi,

ḡN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max
γN;aN

ha1;…; aN−1; γN jΨihΨja1;…; aN−1; γNi
q

:

The solution to this maximization problem is found via the
cascaded structure and is equal to jbNi [see Eq. (D5)],

ḡN ¼ ha1;…; aN−1; bN jL̂ðNÞja1;…; aN−1; bNi:

We use the induction hypothesis, Eq. (D2), to solve the
problem of finding the states ja1i;…; jaN−1i. Then, we
need to maximize L̂ðNÞ

a1;…;aN−1 . Since this is an operator in one
subsystem, the PI can be applied to maximize the expect-
ation value. This is shown in the induction hypothesis. As
the PI is guaranteed to converge, Eq. (D2) will indeed
return a separable vector, which optimizes the expectation
value of L̂ðNÞ. Thus, for a single starting vector, the SPI
finds a separability eigenvector, which might correspond to
the maximal separability eigenvalue.
Convergence towards the separability eigenvector cor-

responding to the globally maximal separability eigenvalue
is guaranteed by the choice of starting vectors. The operator
basis is chosen as a set of starting vectors after every
forward iteration. The PI converges towards the dominant
eigenvalue of a matrix for a given starting vector, if the
decomposition of the starting vector into the eigenbasis of
the matrix has a nonzero contribution of the eigenvector
corresponding to the maximal eigenvalue. As the operator
basis spans the considered operator space, the separability
eigenvector will have a nonzero contribution to the decom-
position of at least one of the starting vectors. □

APPENDIX E: BRIEF DERIVATION
OF THE SEEs

For a self-consistent reading of the present contribution,
we review the derivation of the multipartite separability
eigenvalue equations (see Ref. [40]). Here, the derivation is
based on an equivalent approach (see Ref. [45]), which
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relies on the Rayleigh quotient and is also the main idea
behind the PI.
The (multipartite) Rayleigh quotient reads

RL̂ða1;…; aNÞ ≔
ha1;…; aN jL̂ja1;…; aNi
ha1;…; aN ja1;…; aNi

; ðE1Þ

which is the expectation value of operator L̂ for a possibly
unnormalized vector ja1;…; aNi. To relate R to multivari-
ate polynomials, we can think of jaji in terms of wave
functions being Taylor expanded in terms of polynomials of
the order dj − 1. Thus, we can conclude that the desired
task of maximizing the Rayleigh quotient is equal to both
maximizing a multivariate polynomial and finding the
maximal expectation value of L̂ with respect to separable
states, i.e., finding its maximal separability eigenvalue.
The optimal values of the Rayleigh quotient in Eq. (E1)

are found for

0 ¼ ∂RL̂ða1;…; aNÞ
∂hajj

¼ L̂a1;…;aj−1;ajþ1;…;aN jaji
ha1;…; aN ja1;…; aNi

− g
jaji

hajjaji
ðE2Þ

for j ¼ 1;…; N, where we use the notation g ¼
RL̂ða1;…; aNÞ and the so-called reduced operator
L̂a1;…;aj−1;ajþ1;…;aN ¼ ha1;…; aj−1; ·; ajþ1;…; aN jL̂ja1;…;
aj−1; ·; ajþ1;…; aNi, acting solely on the jth subsystem
(cf. Refs. [40,45]).
As the Rayleigh quotient is invariant under the norm of

the vector, we may assume hajjaji ¼ 1. Consequently, the
optimization of the Rayleigh quotient [cf. Eq. (E2)] yields
the SEE in the first form as

L̂a1;…;aj−1;ajþ1;…;aN jaji ¼ gjaji ðE3Þ

for j ¼ 1;…; N. The SPI does not evaluate this first form;
rather, it solves Eq. (6), the second form of the SEE, which
has been shown to be equivalent to Eq. (E3) (a compre-
hensive proof can be found in the Supplement Material
to Ref. [40]).
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