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Landau’s description of the excitations in a macroscopic system in terms of quasiparticles stands out as
one of the highlights in quantum physics. It provides an accurate description of otherwise prohibitively
complex many-body systems and has led to the development of several key technologies. In this paper, we
investigate theoretically the Landau effective interaction between quasiparticles, so-called Bose polarons,
formed by impurity particles immersed in a Bose-Einstein condensate (BEC). In the limit of weak
interactions between the impurities and the BEC, we derive rigorous results for the effective interaction.
They show that it can be strong even for a weak impurity-boson interaction, if the transferred momentum-
energy between the quasiparticles is resonant with a sound mode in the BEC. We then develop a
diagrammatic scheme to calculate the effective interaction for arbitrary coupling strengths, which recovers
the correct weak-coupling results. Using this scheme, we show that the Landau effective interaction, in
general, is significantly stronger than that between quasiparticles in a Fermi gas, mainly because a BEC is
more compressible than a Fermi gas. The interaction is particularly large near the unitarity limit of the
impurity-boson scattering or when the quasiparticle momentum is close to the threshold for momentum
relaxation in the BEC. Finally, we show how the Landau effective interaction leads to a sizable shift of the
quasiparticle energy with an increasing impurity concentration, which should be detectable with present-
day experimental techniques.
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I. INTRODUCTION

Landau’s quasiparticle theory represents a powerful
framework for making accurate predictions about quantum
many-body systems [1,2]. The quasiparticle concept dra-
matically reduces the complexity of the problem, and it is
exploited across many areas of physics. The quasiparticle
framework has led to technological breakthroughs such as
semiconductor devices and superconductors, and it is
central for the development of future quantum technolo-
gies. The effective interaction between quasiparticles plays
a key role in Landau’s theory, where it determines both
thermodynamic and dynamical properties. Interactions
between quasiparticles are observed in liquid-helium mix-
tures [3], and they are the origin of important effects such as
conventional and high-Tc superconductivity, where the
interaction is mediated by lattice vibrations and spin
fluctuations, respectively [4,5]. Likewise, the fundamental

interaction is caused by the exchange of gauge bosons in
particle physics [6].
The experimental realization of highly population-

imbalanced atomic gases, where the minority (impurity)
atoms form quasiparticles, has significantly advanced our
understanding of this fundamental topic. In particular, since
the interaction between the impurity atoms and the majority
atoms can be tuned using Feshbach resonances [7], one can
study quasiparticle physics systematically and in regimes
never realized before. Impurity atoms were first realized
experimentally in degenerate Fermi gases, where they form
quasiparticles called Fermi polarons [8–11]. We now have a
good understanding of the Fermi polaron, even for strong
interactions between the impurity and the Fermi gas [12–19].
Recently, two experiments observed long-lived quasiparticles
formed by impurity atoms in a Bose-Einstein condensate
[20,21], following an earlier experiment on impurities in a
one-dimensional (1D) Bose gas [22]. These quasiparticles,
called Bose polarons, have been analyzed theoretically using
a wide range of techniques [23–35].
Most of the theoretical and experimental studies in

atomic gases focus on the properties of a single polaron,
and much less is known about the interaction between
polarons. In light of its key importance, a natural question is
then whether the great flexibility of atomic-gas experiments
can be used to obtain new insights into Landau’s effective
interaction, like it did concerning the properties of a single
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polaron. Studies of the Landau effective interaction have
been limited to vanishing momenta using perturbation
theory [36], and using variational and diagrammatic tech-
niques for Fermi polarons [11,14,37], or to the case of two
fixed impurities in real space using perturbation theory and
variational techniques [38–40].
In this paper, we systematically investigate the Landau

effective interaction between Bose polarons, both as a
function of momenta and as a function of the boson-
impurity interaction strength. We derive rigorous results
for a weak interaction using perturbation theory. It is
shown that, even in this limit, the interaction between
two polarons can be strong when the momentum-energy
exchange is resonant with a sound mode in the Bose-
Einstein condensate (BEC). Our perturbative calculation is
then generalized to arbitrary interaction strengths using a
diagrammatic resummation scheme. We show that the
Landau effective interaction, in general, is much stronger
than that between Fermi polarons. The interaction is
particularly strong when the boson-impurity interaction
is close to the unitarity limit or when the momentum of one
of the polarons approaches the onset of momentum
relaxation caused by scattering bosons out of the BEC.
The strong effective interaction is then demonstrated to give
rise to a substantial shift in the polaron energy as a function
of the impurity concentration. We conclude by discussing
how such effects can be observed experimentally.

II. BOSE POLARONS

We consider mobile impurities of massm, either bosonic
or fermionic, immersed in a gas of bosons of mass mB. The
Hamiltonian of the system is

H ¼
X
k

ϵBkb
†
kb̂k þ gB

2V

X
k;k0q

b†kþqb
†
k0−qbk0bk

þ
X
k

ξkc
†
kck þ g

V

X
k;k0q

b†kþqc
†
k0−qck0bk; ð1Þ

where b†k and c†k create a boson and an impurity, respec-
tively, with momentum k, and V is the volume. Here, ϵBk ¼
k2=2mB is the kinetic energy of the bosons, and ξk ¼
k2=2m − μ is the kinetic energy of the impurity atoms
relative to their chemical potential μ. The boson-boson and
boson-fermion interactions are taken to be short range with
strengths gB and g, and we assume that there is no direct
interaction between the impurities. This assumption is due
to the Pauli principle for fermionic impurities, whereas any
direct interaction between bosonic impurities can easily be
included at the mean-field level.
Below the critical temperature Tc, the bosons form a

BEC with condensate density n0ðTÞ. The total density of
the bosons is nB, and the density n of the impurities is taken
to be so small that the bosons are unaffected. The BEC is
accurately described by Bogoliubov theory, since we

assume that the bosons are weakly interacting with a gas
parameter n1=3B aB ≪ 1, where aB > 0 is the boson-boson
scattering length. The normal and anomalous BEC Green’s
functions for the bosons are, respectively,

G11ðk; zÞ ¼
u2k

z − Ek
−

v2k
zþ Ek

;

G12ðk; zÞ ¼
ukvk
zþ Ek

−
ukvk
z − Ek

; ð2Þ

whereEk ¼ ½ϵBkðϵBk þ 2μBÞ�1=2 is the Bogoliubov spectrum,
μB ¼ n0ðTÞT B is the chemical potential of the bosons, and
u2k=v

2
k ¼ ½ðϵBk þ μBÞ=Ek � 1�=2 are the usual coherence

factors. We define T B ¼ 4πaB=mB.
The impurities interact with the BEC, forming quasipar-

ticles denoted Bose polarons or simply polarons when there
is no ambiguity. To avoid confusion, we remind the reader
that Bose polarons refer to mobile impurities in a Bose gas.
The impurities themselves can be either bosonic or fermionic
as will indeed be discussed in detail below. A polaron
with momentum p is described by the Green’s function
Gðp;zÞ−1¼G0ðp;zÞ−1−Σðp;zÞ, where G0ðp;zÞ−1¼
z−ξp is the noninteracting Green’s function and Σðp; zÞ is
the self-energy. The polaron energy εp is found by solving

εp ¼ ξp þ ReΣðp; εpÞ; ð3Þ
wherewe assume that the imaginary part of the self-energy is
small and the residue Zp ¼ ½1 − ∂Σðp; zÞ=∂z�−1jz¼εp

of the
quasiparticle is close to unity so that the polaron is well
defined. In the following, we for simplicity focus on the
case of an attractive interaction between the impurity and the
BEC corresponding to a negative boson-impurity scattering
length a < 0. We calculate the self-energy Σðp; zÞ using the
finite-temperature field theory.

III. LANDAU EFFECTIVE INTERACTION

Even though there is nodirect interactionbetween the impu-
rities, two polarons interact via their effects on the surrounding
BEC or, equivalently, due to the exchange of Bogoliubov
sound modes. Landau’s effective interaction between two
polarons with momenta p1 and p2 is defined as [3]

fðp1;p2Þ ¼ Zp1

δεp1

δnp2

¼ Zp1

δReΣðp1; εp1
Þ

δnp2

; ð4Þ

where np is the quasiparticle distribution function and we use
Eq. (3) in the second equality.

A. Weak coupling

We first consider the weakly interacting regime
knjaj ≪ 1, where kn ¼ ð6π2nBÞ1=3 is the momentum scale
set by the BEC. This regime allows us to derive analytical
results valid to leading order in kna and n1=3B aB, which, in
addition to providing important insights, also serve as a
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valuable guide for how to construct a strong coupling
theory for the effective interaction.
To first order in the scattering length a, the polaron

energy shift is T vnB, which is independent of the
impurity concentration. It therefore does not contribute
to the effective interaction. Here T v ¼ 2πa=mr is the
boson-impurity zero-energy scattering matrix with mr ¼
mBm=ðmB þmÞ the reduced mass.
The second-order contribution to the self-energy

Σ2ðp; zÞ has been analyzed in detail for a single impurity
at both zero and nonzero temperatures [28,41]. Here, we
generalize this contribution to a finite impurity concen-
tration n. In Fig. 1, we plot the second-order diagrams for
the self-energy as an exchange (Fock) diagram with an
induced interaction. This diagram illustrates that, while the
induced interaction is inherently attractive in the static case,
the sign of the corresponding Landau effective interaction
obtained from Eq. (4) depends on the statistics of the
impurity particles: It is attractive for bosonic impurities and
repulsive for fermionic impurities in the case of a small
energy transfer [36,42]. Note that the contribution to the
self-energy that is independent of the impurity concen-
tration, of course, does not depend on the statistics of the
impurity particles, since it gives the energy shift of a single
polaron [43]. To second order in a, it is enough to evaluate
the self-energy at the unperturbed quasiparticle energy, i.e.,
setting εp ¼ ξk in Eq. (4) [28], and to take the residue to be
unity. We obtain

fðp1;p2Þ ¼ �T 2
vχðp1 − p2; ξp1

− ξp2
Þ; ð5Þ

with χðp; zÞ ¼ n0p2=½mBðz2 − E2
pÞ� the density-density

correlation function of the BEC at a zero temperature.
Here and in the following, the upper (lower) sign refers to
bosonic (fermionic) impurities. This effective interaction is
independent of the impurity concentration, and the mass
ratiom=mB enters only through the factor T 2

v ∝ m−2
r . Thus,

the smaller the reduced mass, the stronger the effective
interaction. Equation (5) recovers the well-known limit

lim
p1;p2→0

fðp1;p2Þ ¼∓ T 2
v

T B
¼∓

� ∂μ
∂nB

�
2

n2Bκ; ð6Þ

where κ ¼ n−2B ∂nB=∂μB is the compressibility of the BEC
at a zero temperature. In the second equality, we use μ ¼
T BnB to the lowest order so that the Landau interaction for
vanishing momenta can be written in terms of thermody-
namic derivatives [14,36,42,44].
In Eq. (5), we do not include the last two “bubble”

diagrams in Fig. 1. These diagrams are suppressed by a
factor of ðn0a3BÞ1=2 for T ≪ Tc [28,41] and, therefore, give a
small contribution to the effective interaction except for very
low momenta, where they give an unphysical divergence for
limp1;p2→0fðp1;p2Þ for T > 0. This divergence comes from
an infrared pole in the distribution function of the thermally
excited bosons nBk ¼ 1=½expðEk=TÞ − 1� as k → 0. The
interaction with thermally excited bosons is related to the
complicated and largely unresolved problem of a systematic
theory for a BEC at a finite temperature [45,46], which is
beyond the scope of the present paper. As we consider low
temperatures here, we neglect these bubble diagrams.
From a general point of view, we expect the induced

interaction to decrease with an increasing temperature. The
reason is that the Bose gas becomes less compressible as
particles are excited out of the BEC [47]. This effect will,
however, be small for temperatures much smaller than the
critical temperature of the BEC, as considered in this paper.
We plot in Fig. 2 the zero center-of-mass momentum

(COM) Landau effective interaction fðp;−pÞ given by
Eq. (5), for a zero temperature, vanishing impurity concen-
tration, unitmass ratiom=mB ¼ 1, and knaB ¼ 0.2. There are
no retardation effects for a zero COM, and Eq. (5) gives the
well-known Yukawa interaction. In real space, it is given by

fðrÞ ¼ −
T 2

vn0mB

π

e−
ffiffi
2

p
r=ξ

r
; ð7Þ

FIG. 1. Second-order self-energy for the Bose polaron as an
exchange diagram, where the double wavy line is the second-
order induced interaction mediated by the BEC. Solid red lines
correspond to the bare Green’s function for the impurities, solid
black lines are the normal and anomalous Bogoliubov Green’s
functions for the bosons, dashed lines correspond to condensate
particles, and wavy lines represent the zero-energy boson-
impurity vacuum scattering matrix T v.
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FIG. 2. The Landau effective interaction fðp;−pÞ for a zero
COM, vanishing impurity concentration, zero temperature, unit
mass ratiom=mB ¼ 1, and knaB ¼ 0.2. We show the perturbative
result (solid red curve), 1=kna ¼ −5.0 (dashed blue curve),
1=kna ¼ −1.0 (dot-dashed green curve), and 1=kna ¼ −0.5
(short-dashed black curve).
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where r is the distance between the impurities and ξ ¼
ð8πaBnBÞ−1=2 is the BEC coherence length. In Fig. 2 and
Eq. (7), we take the impurity to be bosonic, since this is natural
for a unit mass ratio m=mB ¼ 1. The fermionic case can be
obtainedbya simple signchange. Interestingly,wenote that the
weak-coupling result (7) is not obtained in a variational
calculationof the interactionbetween two fixed impurities [40].
We plot in Figs. 3–5 the Landau effective interaction

fð0;pÞ calculated from Eq. (5), which gives the interaction
between a zero-momentum polaron and a polaron with
momentum p in the weak-coupling limit. As above, we take
knaB ¼ 0.2, T ¼ 0, and a vanishing impurity concentration
n. Figures 3–5 correspond to the mass ratios m=mB ¼ 1,
m=mB ¼ 40=7, and m=mB ¼ 40=87, which describe the
situation for the experiments byAarhus [20], Innsbruck [48],
and JILA [21], respectively. For unit mass ratio m=mB ¼ 1,
we have from Eq. (5) fð0;pÞ ¼ −T 2

v=T B (bosonic impu-
rity), which is simply a constant independent of momentum.
For m=mB ¼ 40=87 and m=mB ¼ 40=7, on the other hand,
there is a strong momentum dependence of fð0;pÞ. The
interaction is repulsive for small momenta in both cases since
we take the impurities to be fermionic to model the experi-
ments in Refs. [21,48]. In the case of heavy impurities with
m=mB ¼ 40=7 shown in Fig. 4, the repulsive interaction
decreases monotonically with the momentum. The Landau
effective interaction fð0;pÞ exhibits an interesting behavior
in the case of light impuritieswithm=mB ¼ 40=87, as shown
in Fig. 5. It increases strongly with momentum p until
p2=2m ¼ Ep. Here, it diverges even though the boson-
impurity interaction is weak. The reason is that the trans-
ferred momentum-energy ðp; p2=2mÞ is resonant with a
Bogoliubov sound mode in the BEC so that the density-
density response of the BEC diverges. For a larger momen-
tum where p2=2m > Ep, the energy exchange between the
polarons is above the Bogoliubov spectrum, which means
that the density-density response function of the BEC

changes sign. The effective interaction between the polarons
is consequently attractive even though the impurities are
fermionic.
Note that this resonance effect happens only for light

impurities with m < mB, where it is possible to have
p2=2m ¼ Ep. In reality, the divergence of the effective
interaction when p2=2m ¼ Ep is softened to a resonance
structure for a finite impurity concentration, since the sound
modes of the BEC are damped due to the scattering on the
impurities. These scattering processes are not included in
Bogoliubov theory. For the small impurity concentrations
considered in this paper, the damping effects will, however,
be negligible, and the broadening of the pole will be
correspondingly narrow.

B. Strong coupling

A very powerful feature of atomic gases is that one can
tune the interaction strength kna over orders of magnitude
using Feshbach resonances, and we therefore now consider

2. order
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FIG. 3. The Landau effective interaction fð0;pÞ for unit mass
ratio m=mB ¼ 1, vanishing impurity concentration, zero temper-
ature, knaB ¼ 0.2, and various impurity-boson scattering lengths.
The second-order perturbative results are also plotted.
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FIG. 4. The Landau effective interaction fð0;pÞ for m=mB ¼
40=7, vanishing impurity concentration, T ¼ 0, knaB ¼ 0.2, and
various impurity-boson scattering lengths. The second-order
perturbative results are also plotted.
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FIG. 5. The Landau effective interaction fð0;pÞ for m=mB ¼
40=87, vanishing impurity concentration, T ¼ 0, knaB ¼ 0.2,
and various impurity-boson scattering lengths. The second-order
perturbative results are also plotted.
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the Landau effective interaction for an arbitrary impurity-
boson interaction strength. Here, one has to resort to
approximations when calculating the self-energy, since
there is no small parameter. The results obtained above
for weak coupling serve as an important guide to construct
a consistent theory.
In Fig. 6, we show the diagrams included in our self-

energy calculation, and Fig. 7 shows the corresponding
diagrams they generate for the Landau effective interaction.
These diagrams are obtained by taking the derivative
δΣ=δnp according to Eq. (4), which corresponds to remov-
ing an impurity line in the self-energy diagrams. Diagrams
(a) and (b) in Fig. 6 represent the usual ladder approxi-
mation, which has been extensively used to describe atomic
gases. In particular, it has recently been applied to describe
the properties of a single Bose polaron [27]. The ladder
approximation is, however, not sufficient to describe the
Landau interaction between Bose polarons. This issue can
be seen already in the weak-coupling limit, where the
ladder approximation recovers only the first diagram in
Fig. 1, which gives a qualitatively wrong result for the
Landau effective interaction. Analogously, the ladder dia-
gram in Fig. 6(a) generates only the first diagram in Fig. 7

for strong coupling. While this term does recover the
microscopic impurity-boson scattering in the ladder
approximation, it fails to properly describe the propagation
of density oscillations in the BEC. We therefore include
diagrams (c)–(e) in Fig. 6 for the self-energy, which
generate the last four diagrams in Fig. 7. These diagrams
ensure that we describe the density oscillations in the BEC
correctly and that we recover the correct weak-coupling
result.
Similar diagrammatic schemes going beyond the ladder

approximation were recently developed to analyze Bose-
Fermi mixtures [49] and finite-temperature effects for a
single polaron [50]. The diagrammatic scheme presented
here is, however, the first to include diagrams (d) and
(e) containing anomalous propagators, which is crucial for
obtaining the correct induced interaction in the perturbative
limit as well as for avoiding unphysical divergencies for
strong interactions. The inadequacy of the ladder approxi-
mation for obtaining the correct induced interaction should
be contrasted to the case of Fermi polarons, where it is
sufficient to recover the correct weak-coupling result [14].
Two remarks are in order here. First, we do not include

diagram (b) in Fig. 6, which generates the last diagram in
Fig. 7 for the interaction. The reason is the same as for
omitting the bubble diagrams in Fig. 1 for weak coupling.
We exclude this diagram because it gives a small contri-
bution to the self-energy and to the effective interaction for
T ≪ Tc except for vanishing momenta, where it results in
an unphysical divergence for the effective interaction.
Second, the operation δΣ=δnp generates additional con-
tributions to the effective interaction, which are shown in
Fig. 11 in the Appendix. These terms come from the
dependence of the boson-impurity scattering matrix T ,
given below in (9), on the impurity concentration n. In
general, their contribution to the effective interaction is
small, and we do not include them in the following.
The expression for the self-energy corresponding to

diagrams (a) and (c)–(e) in Fig. 6 is

ΣðpÞ ¼ n0T ðpÞ − n0
X
k

G11ðkÞT 2ðkþ pÞGðkþ pÞ

− 2n0T ðpÞ
X
k

G12ðkÞT ðkþ pÞGðkþ pÞ; ð8Þ

where we define the four-momentum p ¼ ðp; zÞ andPk is
shorthand for T

P
iωn

R
d3k=ð2πÞ3 with ωn ¼ 2nT as the

Bose Matsubara frequency. The boson-impurity scattering
matrix is

T ðpÞ ¼ T ν

1 − T νΠ11ðpÞ
; ð9Þ

with Π11ðpÞ ¼ −
P

kG11ðkÞGðkþ pÞ the in-medium pair
propagator. In the Appendix, we provide a detailed

FIG. 6. (Top panel) Diagrams for the self-energy for a general
boson-impurity interaction strength. (Bottom panel) Ladder
approximation for the boson-impurity scattering matrix T ðpÞ.

FIG. 7. Diagrams for the induced interaction obtained from the
self-energy diagrams in Fig. 6. We omit the last diagram in the
calculations.
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expression for the self-energy after the Matsubara sum has
been performed.
The induced interaction corresponding to the first four

diagrams in Fig. 7 is

fðp1;p2Þ ¼ �n0Zp1
Zp2

½T 2ðp1ÞG11ðp1 − p2Þ
þ T 2ðp2ÞG11ðp2 − p1Þ
þ 2T ðp1ÞT ðp2ÞG12ðp2 − p1Þ�; ð10Þ

where pi ¼ ðpi; εpi
Þ is the on-shell polaron momentum-

energy. In deriving Eq. (10), we use the fact that the
diagrams for fðp1;p2Þ have to be evaluated with the
external outgoing momenta p1 and p2 swapped compared
to the ingoing momenta as indicated in Fig. 7, since the
Landau interaction is caused by exchange processes.
The factor of Zp2

in Eq. (10) comes from the residue of
the quasiparticle poles of the Green’s functions inside the
diagrams.
In Fig. 2, we plot fðp;−pÞ for 1=kna¼−5, 1=kna¼−1,

and 1=kna ¼ −0.5, and all other parameters are as in the
perturbative limit discussed in Sec. III A. We assume that
the quasiparticle residues are independent of the momen-
tum, i.e., Zp ≃ Z0, so that they cancel out when normalizing
by fð0; 0Þ. The Landau interaction is close to the second-
order Yukawa result for 1=kna ¼ −5. This result confirms
that our diagrammatic resummation scheme illustrated in
Figs. 6 and 7 recovers the correct weak-coupling limit.
On the other hand, we see from Fig. 2 that the Landau
interaction is quite different from the Yukawa form for
the stronger coupling strengths 1=kna ¼ −1 and 1=kna ¼
−0.5. In particular, it develops a minimum around p ≃mc
corresponding to the maximum attraction, where c ¼
ð4πn0aBÞ1=2=mB is the speed of sound in the BEC. This
momentum gives the threshold for momentum relaxation at
a zero temperature: For momenta p > mc, the polaron
momentum can decrease by scattering bosons out of the
condensate. These processes give rise to an imaginary part
of the pair propagator Π11ðpÞ in the scattering matrix
Eq. (9) for p > mc, whereas Π11ðpÞ is purely real for
p < mc. At the threshold p ¼ mc, the absolute value of
Π11ðpÞ is minimum. This value leads to a large boson-
impurity scattering amplitude and, therefore, a maximum
magnitude of the effective interaction.
We remark that the physical origin of this maximum is

distinct from the origin of the pole discussed in Sec. III A in
connection with Fig. 5. It is purely a strong-coupling effect
coming from the momentum dependence of the impurity-
boson scattering matrix, whereas the pole structure is
present even for weak coupling where the scattering matrix
is a constant, since it is caused by the transferred energy-
momentum being resonant with a Bogoliubov mode.
We see from Fig. 2 that the interaction fðp;−pÞ

decreases again for p > mc and it even changes sign for
large momenta for 1=kna ¼ −0.5. This change is caused by

a large imaginary part of the pair propagator Π11ðpÞ in the
scattering matrix. Physically, it reflects fast momentum
relaxation of a polaron with a large momentum, which,
however, also means that its lifetime is short, making the
validity of Landau’s quasiparticle description questionable.
We plot in Fig. 3 the effective interaction fð0;pÞ for

1=kna ¼ −5.0, 1=kna ¼ −1, and 1=kna ¼ −0.5, and all
other parameters are as in the perturbative limit. Again,
our diagrammatic scheme is close to the perturbative
result fð0;pÞ ¼ −T 2

v=T B for the weak-coupling strength
1=kna ¼ −5. The slight momentum dependence for
1=kna ¼ −5.0 reflects the weak momentum dependence
of the scattering matrix Eq. (9), which is neglected in
the perturbative calculation. Again, the Landau effective
interaction is very different from the perturbative result
for the stronger coupling strengths 1=kna ¼ −1 and
1=kna ¼ −0.5. We see that it depends strongly on the
momentum and that there is a minimum, i.e., maximum
attraction, for p ≃mc. The reason is the same as for
fðp;−pÞ discussed above: The scattering is resonant when
the polaron momentum is at the threshold for momentum
relaxation. For p≳mc, the strength of the interaction
decreases again with the momentum and even changes
sign for strong coupling. Again, this change is, however, a
sign that high-momentum polarons are strongly damped
due to momentum relaxation so that they are not well-
defined quasiparticles.
Figures 4 and 5 show fð0;pÞ for the mass ratios

m=mB ¼ 40=7 and m=mB ¼ 40=87 corresponding to fer-
mionic impurities with all other parameters the same as in
the perturbative limit. We see that the effects of strong
interactions are less dramatic for these mass ratios. Strong
correlations change the quantitative value of the effective
Landau interaction, but the qualitative behavior is the same
as in the perturbative limit. In particular, the effective
interaction still diverges for light impurities when the
transferred momentum-energy is resonant with a
Bogoliubov sound mode at p2=2m ¼ Ep.
For all mass ratios, fð0;pÞ and fðp;−pÞ tend to zero for

jpj ≫ 1=a, since the scattering becomes suppressed for
high momenta.
To illustrate how the strength of the Landau interaction

depends on the boson-impurity coupling strength, we plot
in Fig. 8 fð0; 0Þ=Z2

0 as a function of 1=kna for T ¼ 0,
n → 0, m=mB ¼ 40=7, and three different boson-boson
interaction strengths: knaB ¼ 0.1, knaB ¼ 0.15, and
knaB ¼ 0.2. From Eq. (10), it follows that

fð0;0Þ
Z2
0

¼�T 2ð0;εp¼0Þχð0;0Þ¼∓T 2ð0;εp¼0Þ
T B

; ð11Þ

where the expression χð0; 0Þ should be understood as the
limit limp→0χðp; 0Þ of the density-density correlation
function. Equation (6) clearly reduces to Eq. (6) in the
weak-coupling perturbative regime. From Fig. 8, we see
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that fð0; 0Þ increases monotonically with knjaj as expected.
For weak coupling, we have fð0; 0Þ ∝ a2, whereas it
saturates to a maximum value for knjaj → ∞, which
depends on both the mass ratio and aB. This value is much
larger than the corresponding effective interaction between
Fermi polarons with vanishing momenta in the unitarity
limit. Indeed, Monte Carlo, variational, and ladder calcu-
lations yield 5.0≲mkFfð0; 0Þ ≲ 7.1 for Fermi polarons in
the unitarity limit [11,14,37], which is much smaller than
what is shown in Fig. 8. We note that fð0; 0Þ remains large
even when the factor Z2

0 is included, since the quasiparticle
residue for the Bose polaron residue remains significant for
all scattering lengths shown here [24,27,50].
The reasons for the larger value of fð0; 0Þ for the Bose

polaron as compared to the Fermi polaron are twofold.
First, a weakly interacting BEC is much more compressible
than the Fermi gas so that it mediates density fluctuations
more efficiently. This efficiency is reflected in the explicit
1=aB dependence in Eq. (11) coming from the fact that the
more weakly interacting the BEC, the more compressible it
is. We also see this efficiency in Fig. 8, which shows that
the effective interaction increases with decreasing knaB.
Second, both the impurity and the bosons have vanishing
momenta in the scattering processes, giving rise to the
effective interaction fð0; 0Þ, since the bosons are scattered
out of the condensate. This change gives rise to the
T 2ð0; εp¼0Þ dependence in Eq. (11), which significantly
increases the effective interaction, since the scattering
amplitude, in general, is larger for lower momenta. In
contrast, the impurity-fermion scattering leading to the
Landau interaction between Fermi polarons is averaged
over all momenta inside the Fermi sea.
Note, however, that fð0; 0Þ is not easy to detect directly.

As we analyze in the next section, observables such as the
total energy or the polaron energy involve momentum
averages of fðp1;p2Þ, which mask a large value of fð0; 0Þ.
Also, a large value of the effective interaction means that

higher-order processes not included in this calculation,
such as the repeated exchange of phonons in a ladder series,
are important. Such higher order might suppress the
magnitude of fð0; 0Þ, but it will likely remain large.

IV. DENSITY DEPENDENCE OF SELF-ENERGY

The Landau effective interaction fðp1;p2Þ is difficult to
measure directly. For conventional Fermi liquids, momen-
tum averages of fðp1;p2Þ over the Fermi surface can be
extracted from thermodynamic quantities as well as from
the collective mode spectrum [3]. For atomic gases, it has
been proposed to use a mixed dimensional Bose-Fermi
system to detect the induced interaction mediated by a BEC
[51]. We now discuss how Landau’s effective interaction
can be probed by measuring the dependence of the polaron
energy on the impurity concentration.
It follows from Eq. (4) that a small change δnk in the

polaron distribution function gives rise to the change

δεp ¼
Z

d3k
ð2πÞ3 fðp;kÞδnk ð12Þ

in the polaron energy. Thus, the dependence of εp on the
impurity density n is a direct consequence of the effective
interaction. We write the change of a zero-momentum
polaron energy from its value at zero impurity density as

ΔεðxÞ ¼ εðxÞ − εð0Þ: ð13Þ

Here x ¼ n=nB is the impurity concentration, and εðxÞ
denotes the polaron energy at concentration x. We suppress
the momentum label in Eq. (13) and in the following, since
we consider a zero-momentum polaron from now on.
In the perturbative regime, the induced interaction given

by Eq. (5) does not depend on the impurity concentration.
The change in the p ¼ 0 polaron energy due to a nonzero
impurity concentration is then simply

ΔεðxÞ ¼ �T 2
v

Z
d3k
ð2πÞ3 nkχðk; ξk þ μÞ: ð14Þ

Equation (14) can be derived either directly from the
second-order self-energy or from Eqs. (5) and (12). For
a stronger impurity-boson interaction, the Landau effective
interaction does depend on the impurity concentration, and
Eq. (14) no longer holds.
For equal masses with m ¼ mB, Eq. (14) can easily be

evaluated, yielding ΔεðxÞ ¼∓ nT 2
v=T B. This result is a

simple consequence of fð0;pÞ ¼∓ T 2
v=T B being constant

in the perturbative limit for a unit mass ratio. The
perturbative energy shift Eq. (14) can also be calculated
analytically for any mass ratio m=mB for fermionic
impurities at T ¼ 0. Using nk ¼ ΘðkF − kÞ, where
kF=kn ¼ x1=3 is the impurity Fermi momentum, we obtain
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FIG. 8. The Landau effective interaction fð0; 0Þ as a function of
1=kna for a vanishing impurity concentration, zero temperature,
mass ratio m=mB ¼ 40=7, and various boson-boson interaction
strengths.
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ΔεðxÞ
En

¼ ðknaÞ2
8

3π2
ð1þ αÞ2

ðα2 − 1Þ3=2
�
kF
kn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 1

p

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α2mBc2

En

s
arctan

�
kF
kn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En

2mBc2
α2 − 1

α2

s ��

≃ ðknaÞ2
1

3π

ð1þ αÞ2
α2

x
knaB

¼ n
T 2

v

T B

1

En
; ð15Þ

where α ¼ m=mB is the mass ratio,
ffiffiffiffiffiffi
−1

p ¼ i, and the last
line holds for x ≪ 1. Equation (15) diverges logarithmi-
cally for a light impurity with α < 1, when the Fermi
energy of the impurities is resonant with the Bogoliubov
spectrum, i.e., when ϵF ¼ EkF . This divergence reflects that
the transferred momentum-energy between a polaron at the
Fermi surface and the zero-momentum polaron is resonant
with a sound mode in the BEC.
This divergence will be softened to a resonance in a real

experiment for two reasons. First, any finite temperature
smoothes out the Fermi surface. Second, the Bogoliubov
modes are damped due to scattering on the impurities for a
finite impurity concentration, which broadens the pole of the
Landau interaction into a resonance as discussed above.
However, for low temperatures and impurity concentrations,
these effects are small and the energy shift remains large and
nonmonotonic as a function of the impurity concentration.
In Fig. 9, we plot ΔεðxÞ as a function of impurity

concentration x for unit mass ratiom=mB ¼ 1, knaB ¼ 0.2,
and different boson-impurity scattering lengths. We take
the temperature T ¼ 0.4Tc so that the bosonic impurities
remain uncondensed for the range of concentrations shown.
Figure 9 shows that the polaron energy decreases with
an increasing impurity concentration. This decrease is
caused by a mainly attractive Landau effective interaction
between the bosonic polarons; see Fig. 3. We see that the
concentration dependence of the energy increases with the

boson-impurity scattering length a, even when it is mea-
sured in units of the polaron energy at zero impurity
concentration εð0Þ—a unit which, of course, also increases
with a. In the weak-coupling limit, this increase is easily
understood from the fact that the polaron mean-field
energy T vnB scales linearly with a, whereas ΔεðxÞ ¼
−nT 2

v=T B ∝ a2. This perturbative result is recovered for
1=kna ¼ −10 as can be seen in Fig. 9. When the impurity-
boson interaction is strong, the decrease in the energy is
significant. For 1=kna ¼ −1, the decrease is around 50%
compared to the polaron energy at a zero concentration
already at x ≃ 0.075.
As an example of fermionic impurities, we plot in Fig. 10

the dependence of a zero-momentum polaron energy on the
impurity concentration for the mass ratiom=mB ¼ 40=7. In
contrast to the case of bosonic impurities discussed above,
the energy now increases with x, since the Landau effective
interaction is predominantly repulsive between fermionic
impurities (see Fig. 4). For a weak interaction with
1=kna ¼ −10, the energy shift is well described by the
perturbative result Eq. (15). For a stronger interaction, the
concentration dependence of the energy of the fermionic
impurities is significant. It is, however, suppressed com-
pared to the case of bosonic impurities as can be seen by
comparing Fig. 10 with Fig. 9. One reason is that Fermi
blocking of the impurities decreases the effects of the
Landau effective interaction.

V. DISCUSSION

Bose polarons have been observed both in the case of
bosonic impurities [20] and for fermionic impurities [21].
These experiments focus on the detection of the single
quasiparticle properties, namely, the energy and the damp-
ing of the polaron. Preliminary data concerning the con-
centration dependence of the polaron energy were,
however, reported in the Aarhus experiment, which is
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FIG. 9. The concentration dependence of the zero-momentum
polaron energy Eq. (13) for m=mB ¼ 1, T ¼ 0.4Tc, knaB ¼ 0.2,
and various impurity-boson scattering lengths. We also show
the perturbative result ΔεðxÞ ¼ −nT 2

v=T B (red squares) for
1=kna ¼ −10.
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FIG. 10. The dependenceΔεðxÞ of the zero-momentum polaron
energy on the impurity concentration x for mass ratio m=mB ¼
40=7, T ¼ 0, knaB ¼ 0.2, and various impurity-boson scattering
lengths. We also show the perturbative result Eq. (15) for
1=kna ¼ −10 (red squares).
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precisely the experimental method for detecting the Landau
effective interaction we analyze here. The experiments
work with impurity concentrations up to around 10%,
which should give rise to observable shifts away from the
single impurity limit as can be seen from Figs. 9 and 10.
This shift should be contrasted with the case for Fermi
polarons, where the Landau effective interaction has
remained undetected so far in spite of concerted exper-
imental efforts [11]. The reason for this difference is, of
course, that the Landau interaction is much larger for Bose
polarons than for Fermi polarons, as we discuss above. We
note that, for an accurate measurement of the interaction,
one must have good control of the temperature and
impurity concentration. The effects of the trap inhomoge-
neity should, moreover, be reduced or even eliminated. We
also note that current experimental breakthroughs with
ultracold gases offer new exciting mixtures where both
heavy and light impurities can be examined [48,52–55].
Since the effective interaction is mediated by sound

modes in the BEC, the corresponding timescale for the
effects of polaron-polaron interactions is set by the average
distance between the polarons divided by the speed of
sound in the BEC. In order to observe the Landau effective
interaction between polarons, this timescale must be shorter
than the lifetime of the polarons due to, for instance, three-
body decay.
An important question concerns the accuracy of our

theory in the challenging strongly interacting regime
knjaj ≳ 1, where there is no small parameter. We have
very recently benchmarked our theory against Monte Carlo
calculations by calculating the binding energy of so-called
bipolarons, which are dimer states of two polarons bound
together by the induced interaction. It turns out that the
binding energy calculated using the induced interaction
obtained with the theory presented here agrees well with
Monte Carlo results [56]. This agreement shows that our
theory is, in fact, reliable, even for a strong impurity-boson
interaction. We speculate that a reason for this accuracy,
which is a priori not obvious, is that it systematically
combines two theories which each have proven to be
accurate. The boson-impurity scattering is described using
the ladder approximation, which has turned out to be
surprisingly accurate for cold atomic gases in the strongly
interacting regime—in particular, for the polaron problem
[9,11–19,21,27]. Moreover, the fact that the exchange of
density oscillations is the main mechanism leading to an
effective interaction in many-body systems has been
applied successfully in a wide range of physical settings
with strong interactions, including liquid-helium and con-
densed-matter systems. We describe the density oscillations
in the weakly interacting BEC using Bogoliubov theory,
which is known to be accurate.
Finally, we note that, in addition to the dependence of

the polaron energy on the impurity concentration, the
induced interaction has many other interesting effects.

As mentioned above, it can lead to the formation of dimer
states of polarons—the so-called bipolarons [56,57]. The
presence of bipolarons is a many-body effect, as they are
bound by the induced interaction analyzed in this paper.
Bipolarons therefore become unbound with a vanishing
BEC density. They are distinct from Efimov states, which
are an effect of three-body physics and therefore also stable
in a vacuum [24,40]. On the other hand, bipolarons can be
stable in the perturbative regime where no Efimov states
occur. Another interesting effect is that, since the induced
interaction is inherently attractive, it can give rise to pairing
between fermionic impurities, leading to the formation of
unconventional superfluid states [58–63].

VI. CONCLUSIONS

We investigate the Landau effective interaction between
Bose polarons for arbitrary coupling strengths and
momenta. Using perturbation theory, we derive analytical
results in the limit when the boson-impurity interaction is
weak. We show that for light impurities the interaction can
be strong even in the weak-coupling regime, when the
transferred momentum and energy between the polarons is
resonant with a sound mode in the BEC. To investigate the
Landau interaction for arbitrary boson-impurity interaction
strength, we develop a diagrammatic scheme that recovers
the correct weak-coupling limit. We show that the inter-
action is large when the boson-impurity scattering is close
to the unitarity limit or when the momentum of the polaron
approaches the threshold for momentum relaxation in the
BEC. The Landau interaction between Bose polarons is, in
general, much stronger than between Fermi polarons due
to the large compressibility of the BEC, and we show how
this leads to a substantial shift in the polaron energy as a
function of the impurity concentration. We conclude that
this shift should be observable using present-day exper-
imental technology.
Our results show how the great flexibility of cold atomic

gases can be used to explore Landau’s theory of quasi-
particles systematically and in regimes never realized
before. Extending the use of this theory is important, given
that it forms a powerful platform for our description of
many-body systems across a wide range of energy scales.
Our theoretical scheme, which combines two theories each
known to be accurate, turns out to be reliable even in the
strongly interacting regime. It relies on the microscopic
interaction being short range, which is indeed the case in
many physical settings where screening effects are signifi-
cant. Our scheme could therefore be useful for systems
other than atomic gases.
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APPENDIX: SELF-ENERGY
AND INDUCED INTERACTION

The pair propagator Π11ðpÞ reads as follows:

Π11ðpÞ ¼
Z

d3k
ð2πÞ3

�
u2kð1þ nBk � nkþpÞ

z − Ek − ξkþp

þ v2kðnBk ∓ nkþpÞ
zþ Ek − ξkþp

þ 2mr

k2

�
;

where nBk ¼ 1=½expðEk=TÞ − 1� denotes the bosonic dis-
tribution function of the reservoir for T < Tc and the last
term of Π11ðpÞ regularizes the pair propagator [27].

Performing the Matsubara sums yields

Σ11ðpÞ ¼ −
1

β

X
iων

Z
d3k
ð2πÞ3G11ðk; iωνÞn0T 2ðkþ p; iων þ zÞGðkþ p; iων þ zÞ

¼ n0

Z
d3k
ð2πÞ3 ½Gðkþ p; zþ EkÞu2knBkT 2ðkþ p; zþ EkÞ þGðkþ p; z − EkÞv2kð1þ nBkÞT 2ðkþ p; z − EkÞ�

� n0

Z
d3k
ð2πÞ3 nkþpRe½T 2ðkþ p; ξkþpÞ�G11ðk; ξkþp − zÞ

∓ n0

Z
d3k
ð2πÞ3

Z
dϵ
2π

nϵIm½2T 2ðkþ p; ϵÞ�Gðkþ p; ϵÞG11ðk; ϵ − zÞ ðA1Þ

for the second term in (8) and

Σ12ðpÞ¼−
2

β

X
iων

Z
d3k
ð2πÞ3n0T ðpÞG12ðkÞT ðkþpÞGðkþpÞ

¼−2n0T ðpÞ
Z

d3k
ð2πÞ3ukvk½Gðkþp;zþEkÞnBkT ðkþp;zþEkÞþGðkþp;z−EkÞð1þnBkÞT ðkþp;z−EkÞ�

�2n0T ðpÞ
Z

d3k
ð2πÞ3nkþpRe½T ðkþp;ξkþpÞ�G12ðk;ξkþp− zÞ

∓ 2n0T ðpÞ
Z

d3k
ð2πÞ3

Z
dϵ
2π

nϵIm½2T ðkþp;ϵÞ�Gðkþp;ϵÞG12ðk;ϵ− zÞ ðA2Þ

for the third term in (8). We define nk ¼ ðexp βξk ∓ 1Þ−1 and nϵ ¼ ðexp βϵ ∓ 1Þ−1, where the upper (lower) sign as usual
is for bosonic (fermionic) impurities.
The diagrams for the effective interaction coming from the dependence of the T matrices in Fig. 6 on the impurity

concentration are shown in Fig. 11. They can be obtained by removing an impurity line inside one of the T matrices, which
produces diagrams for the interaction with three T matrices. We do not include the diagrams in Fig. 11 when calculating the
effective interaction, since they do not represent a consistent inclusion of all diagrams with three T matrices.

FIG. 11. Diagrams obtained from the dependence of the T
matrices in Fig. 6 on the impurity density. We do not show the
equivalent diagrams, where two T matrices are on top and
one below.
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