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In bilayer graphene, electrostatic confinement can be realized by a suitable design of top and back
gate electrodes. We measure electronic transport through a bilayer graphene quantum dot, which is
laterally confined by gapped regions and connected to the leads via p-n junctions. Single electron and
hole occupancy is realized and charge carriers n ¼ 1; 2;…50 can be filled successively into the
quantum system with charging energies exceeding 10 meV. For the lowest quantum states, we can
clearly observe valley and Zeeman splittings with a spin g-factor of gs ≈ 2. In the low-field limit, the
valley splitting depends linearly on the perpendicular magnetic field and is in qualitative agreement
with calculations.
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I. INTRODUCTION

Graphene has been recognized early on as a prime
candidate to host spin qubits [1]. With carbon being one
of the lightest elements in the periodic table, spin-orbit
interactions are expected to be weak. In addition, 99% of
natural carbon consists of nuclear spin-free 12C. Therefore,
the two main spin decoherence mechanisms for spin qubits,
namely, spin-orbit interactions and hyperfine coupling of
nuclear and electronic spins, should be strongly suppressed
in any carbon-based solid state system. So far, these
theoretical considerations have not come to fruition in
experiments.
Until now, graphene quantum dots (QDs) have been

mostly realized by top-down lithography and etching of
single layer graphene [2–6]. While many of the basic
quantum transport properties such as Coulomb blockade
[2,3], charge detection [7], and electronic phase coherence
[8,9] have been experimentally demonstrated, the under-
standing of the orbital and spin character of specific states
has remained elusive. In retrospect, we understand that the
Coulomb blockade in these devices arises mostly from
localized states at the sample edges, which remain rough on

the atomic scale because of the limitations of top-down
technology [6].
More than a decade ago, experiments showed that a

band gap can be opened in bilayer graphene by vertical
electric fields [10–12], and charge carrier confinement in
bilayer graphene has been studied in theory [13–15].
Several attempts to use split-gate electrodes to laterally
confine charge carriers in the absence of a magnetic field
have suffered from limited resistance values that can be
experimentally obtained upon pinch-off and did not reach
the last-electron regime [16–18]. Recently, we realized
quantum point contacts that display quantized conduct-
ance and show pinch-off resistances orders of magnitude
larger than the quantum of resistance h=e2 [19], a
necessary requirement to electrically isolate charge car-
riers from their environment. Here, the same fabrication
technique has been adapted using suitable gate geometries
to prepare QDs with an electronic quality that matches
what has been achieved in the traditional semiconductors
Si and GaAs [20,21].
In the first experiment, we demonstrate charging of a

bilayer graphene QD with a single and a few holes when
coupling the QD to n-type source and drain leads through
p-n tunnel barriers. Charging energies in excess of 10 meV
are observed. We reverse the gate voltages and investigate
single or few electron QDs connected to p-type leads,
demonstrating the ambipolar operation of these QDs on
the same graphene flake in close vicinity to each other.
Applying perpendicularmagnetic fields in the second experi-
ment, we extract the single particle level spectrum, showing
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shell filling and orbital degeneracy. The pronounced valley
splitting is in agreement with calculations, which predict that
the splitting depends on the dot size. In the third experiment,
we carefully align thegraphene sheet hosting theQD to an in-
plane magnetic field and find a Zeeman splitting with a
g-factor gs ¼ 2.08� 0.22, agreeing with the expected value
for carbon-based devices [22,23].
Our bilayer QDs display high-quality electronic proper-

ties comparable to standard semiconductor structures that
have been optimized for the last 30 years. While excellent
devices have also been reported for carbon nanotube QDs
[24–28], graphene offers the advantage of a planar tech-
nology [21] and the possible combination with other 2D
materials [29–31]. Our demonstration of excellent control
and reproducibility opens up a wide field of possibilities for
carbon-based quantum electronics.

II. CHARACTERIZATION

We investigated the bilayer graphene device encapsu-
lated in hexagonal boron nitride [32–34] shown in Fig. 1.
The individual layers of the van der Waals heterostructure
were stacked and processed as in Ref. [19], protecting the
natural edges of the bilayer flake [white dashed lines in
Fig. 1(a)]. Opposite voltages applied to the split gates
(green in Fig. 1) and the graphite back gate [red solid
lines in Fig. 1(a)] lead to the formation of a band gap in
the bilayer regions underneath the split gates. For appro-
priate voltages applied to theses gates, the Fermi level is
tuned to be in the band gap (for details, see Ref. [19]),
rendering these regions insulating and defining approx-
imately 100-nm-wide channels between the source and
drain contacts (contacts shown in yellow in Fig. 1).
Finger gates [blue in Fig. 1, numbered 1 through 11 in
the x-direction; see Fig. 1(a)] crossing the channel on top
of the two split gate pairs (insulated from them by 25 nm

of Al2O3) are biased to control the charge carrier density
locally in the channel.
First, we investigate the conductance of the device,

biasing only the uniform top gate crossing the entire
width of the bilayer region [white asterisk in Fig. 1(a)].
By applying large opposite voltages to the graphite back
gate and this top gate, the strong displacement field opens
a band gap in the bilayer region underneath the top
gate. The two-terminal resistance measured between the
source and drain contacts reaches values on the order of
GΩ when tuning the Fermi level into the gap (see
Appendix B), demonstrating the high electronic quality
of our sample and the excellent insulating behavior of
the gapped region. Biasing either pair of split gates in
this regime of high displacement field, charge carriers are
laterally confined and forced to flow through the narrow
channel between the split gates. This is the regime in
which we form and operate our QDs.

III. RESULTS

A. Gate-defined quantum dots

In the first experiment at 1.7 K, we investigate charging a
QD with single holes. We measured nine QDs in total, all
showing qualitatively the same behavior. By recording
conductance maps as a function of finger gate and split
gate voltage, a particular QD can be tuned to an optimal
operation point (see Appendix B). Figure 2(a) shows the
conductance of the device as a function of the finger gate
voltage VFG. Charge carriers can only flow through the
narrow channel, because the regions underneath the split
gates are insulating. The positive back gate voltage VBG
induces a finite excess electron density in the channel. With
decreasing finger gate voltage VFG, the electron density is

FIG. 1. (a) False color scanning force micrograph of the device. (b) 3D sketch of part of the device showing the different layers of gates
and dielectrics. White dashed lines and solid red lines in (a) outline the bilayer flake and graphite back gate, respectively. Edge contacts
to the bilayer are colored in yellow, split gates are shown in green, and the finger gates are shown in blue. The top gate spanning the
entire width of the bilayer flake is marked with an asterisk.
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locally reduced until complete pinch-off is reached at the
charge neutrality point (CNP) at about −7.5 V.
For VFG < −7.5 V, the region underneath the finger gate

is tuned into the hole regime as shown schematically in
Fig. 2(b): We sketch at the top the n-type channel (red) with
the locally induced p-type region (blue). Below, we show
the dispersion relation near theK-point of the first Brillouin

zone in the three spatial regions and at the p-n junctions
between them (dashed). At the p-n junctions, the Fermi
level EF lies in the gap leading to a region with zero charge
carrier density. These regions provide natural tunnel bar-
riers separating the p-type dot from the n-type leads. By
lowering the finger gate voltage in this regime, the p-type
QD can be charged one by one with individual holes.

FIG. 2. (a) Conductance trace for p-type QD 1. (b) Schematic of the band structure at different positions along the current direction in
the channel. Black dashed lines schematically show the band alignment between the dot region and the leads. (c) Coulomb diamonds in
the hole regime for QD 1, with an asterisk indicating regularly spaced resonances parallel to the diamond boundaries. (d) Conductance
trace and (e) Coulomb diamonds for the n-type QD 2. Numbers in (a) and (c), as well as (d) and (e) indicate the occupation of the QDs
with holes or electrons, respectively.
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This is seen in Fig. 2(a) at VFG < −7.5 V, where sharp
conductance resonances appear (see also inset).
Finite DC bias spectroscopy of the QD tuned to this

regime yields the Coulomb diamonds shown in Fig. 2(c).
For VFG > −8 V, we do not see additional states contrib-
uting to transport through the QD, indicating a completely
depleted dot. Therefore, we label each diamond with the
occupation number of the QD [cf. inset of Fig. 2(a)].
The regularly spaced features running parallel to the
edge of the Coulomb diamonds [indicated by an asterisk
in Fig. 2(c)] appear for all measured QDs, are stable over a
temperature range from 50 mK to 1.7 K, and are currently
still under investigation.
To form an electron QD connected to p-type leads, we

reverse all applied gate voltages with respect to the overall
charge neutrality point. The conductance trace in Fig. 2(d)
mirrors the situation of the hole QD in Fig. 2(a). The n-type
QD can also be charged one by one with individual
electrons, proving the ambipolar operation of our bilayer
QDs. The corresponding Coulomb diamonds for the
electron dot [Fig. 2(e)] again mirror the situation of
Fig. 2(c). In the electron as well as in the hole regime,
charging energies on the order of 10 meV are observed. In

contrast to the p-type QD presented in Fig. 2(c), the n-type
QD exhibits additional features in the region of zero charge
carrier occupation of the QD. These features depend on the
precise setting of the split gate voltage VSG and correspond
to localized states in the leads close to the QD (see Fig. 6).
In total, eight different QDs were measured both in the
electron and hole regime, all showing qualitatively the
same results.

B. Level structure

In the second experiment at 1.7 K, we measure Coulomb
resonances of the electron QD 9 as a function of a
perpendicular magnetic field B⊥ [conductance map in
Fig. 3(a)]. The shifts of the resonances in VFG as a function
of B⊥ correspond to shifts of energy levels of the QD
evolving with B⊥. To extract the energy level spectrum of
our QD from the resonance spacings, we subtract the
charging energy [21,35,36] by shifting neighboring reso-
nances such that they touch in a single point and convert the
voltage to an energy axis (see Appendix A). The extracted
magnetic field dependence of the energy levels is shown
in Fig. 3(b), where the color scale indicates the peak

FIG. 3. (a) Conductance map in a perpendicular magnetic field for QD 9 in the electron regime. (b) Single particle energy level
dispersion for QD 9 with perpendicular magnetic field B⊥ extracted from Fig. 3(a). Blue and red solid lines are the result of theoretical
calculations of the lowest energy levels. (c) Addition (red), charging (blue), and single particle energy (green) as a function of the QD
occupation extracted from Fig. 3(a).
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conductance of each level, which is proportional to the
coupling of the corresponding state to the leads [36].
We see that the levels bunch in groups of four at zero

magnetic field, as expected from the twofold valley and
twofold spin degeneracy in bilayer graphene, similar to
carbon nanotubes [24,26]. Each shell of four states splits
into 2þ 2 as the magnetic field is increased, one pair
shifting up, and the other down in energy. The splitting
between these states is linear in the accessible magnetic
field range, and is 40 times stronger than the Zeeman
slitting for a free electron.
To compare the data with theory, we used the bilayer QD

model presented in Ref. [14] and adapted it to our system.
The allowed energy levels depend on the valley index
(labeled by τ ¼ �1 in the theory corresponding to the K
and K’ valley), the angular momentum number m, the
interlayer asymmetry V, the confinement potential U, and
the radius R of the QD. The levels have to be calculated
numerically by matching four-component spinor states at
the QD boundary. From the displacement field applied in
the experiment, the interlayer asymmetry was estimated to
be V ¼ 60 meV [37]. Since electrons are confined electro-
statically, the confinement potential U should be on the
order of the interlayer asymmetry V and we fixU ¼ V. The
remaining parameter R determines both the orbital energy
level difference at B⊥ ¼ 0 and the valley splitting as
function of B⊥. To reproduce the observed orbital energy
level difference on the order of 5 meV, we obtain
R ¼ 20 nm, which agrees well with the lithographic design
of the device. The calculated energy levels (spin-degenerate
in the theory) are shown in blue and red in Fig. 3(b) for the
K and K’ states, respectively. To improve the theoretical
model, it should be adapted to the nonradial symmetry
of the dot and the nonhomogeneous confinement laterally
and in the transport direction (see Appendix C). The
experimentally observed valley splitting varies by 20%
between different QDs, which could be a result of the
microscopic differences in the size of the individual QDs
caused in fabrication.
Figure 3(c) shows the experimental spacing of neighbor-

ing states as a function of occupation number. The single
particle level spacing at zero field and the charging energy
are shown in green and blue, respectively. The charging
energy decreases with an increasing number of electrons
occupying the QD, because the effective electronic dot
becomes larger [21,36]. The addition energy, the sum of the
two former, is directly proportional to the spacing of
Coulomb resonances in finger gate voltage at zero field.
We observe a clear fourfold level bunching [Figs. 3(b)
and 3(c)], originating from the twofold spin and valley
degeneracy of bilayer graphene [13–15], which can already
be seen in Figs. 2(d) and 2(e). Until now, this intrinsic
property specific to graphene QDs has not been observed
experimentally. The same level bunching was also observed
for the hole QDs at 35 mK (see Appendix B).

C. g-factor

In the third experiment at 80 mK, we align the device
parallel to the magnetic field in a revolving sample holder.
The energy levels in Fig. 4(a) as a function of the parallel
magnetic field are extracted in the same way as for
Fig. 3(b), but vertically shifted by 1 meV for clarity.
Blue lines are guides to the eye for purely Zeeman split
energy levels with a spin g-factor of gs ¼ 2. Repeating the
measurement of Fig. 4(a) for different rotation angles ϕ
enables us to extract the spin Zeeman and orbital contri-
bution to the splitting of energy levels as a function of the
angle. The orbital contribution adds to the Zeeman splitting
and is proportional to the perpendicular component of the
magnetic field. With respect to horizontal lines in Fig. 4(a),
the splitting is enhanced for levels K’↓ and K↑ and is
reduced for levels K↓ and K’↑. Averaging over these pairs
of levels leads to the data shown in Fig. 4(b), where solid
lines represent fits to the data.
In theory, the red and blue points should touch at gs ¼ 2

for perfect alignment of the sample parallel to the magnetic

FIG. 4. (a) Lowest single particle energy levels of QD 2 in the
electron regime as a function of parallel magnetic field. Energy
levels are shifted by 1 meV for clarity. (b) Sum of the spin Zeeman
(gs) and orbital (gm) contribution to the energy level splitting as a
function of the sample tilt angleϕwith respect to themagnetic field.
Blue (red) points are averaged over levels K’↓ and K↑ (levels K↓
and K’↑), and solid lines represent fits to the data.
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field, and the slope of the fits should correspond to the
slopes of the lowest four levels in Fig. 3(b). The extracted
orbital splitting for ϕ ¼ 90° is 35 (blue) to 40 (red) times
stronger than the Zeeman effect for a free electron, matching
the experimental data from Fig. 3(b). The extracted spin
g-factor of gs ¼ 2.08� 0.22 also agrees well with the
predicted value for carbon-based devices [22,23].
With the experiments in parallel and perpendicular

magnetic fields, we can show that the observed fourfold
level bunching originates from the twofold spin degeneracy
(split in Bk) and the twofold valley degeneracy (split in B⊥)
of bilayer graphene.
Follow-up manuscripts reporting on double- and multi-

QD systems in bilayer graphene have, meanwhile, appeared
in the literature [38,39].

IV. CONCLUSION

The presented experimental results and the qualitative
agreement with theoretical calculations prove the quality and
understanding of our bilayer QDs. The electrostatic confine-
ment of single charge carriers in a planar technology is an
important step toward the promising implementation of spin
and valley qubits in graphene-based devices. With the p-n
junctions serving as natural tunnel barriers, QDs can be
coupled in the future to create a series ofQDswith alternating
polarity. We expect that the implementation of high-
frequency read-out will enable the determination of spin
and valley coherence in graphene quantum dots and open up
new horizons for spin and valley qubit research.
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APPENDIX A: MATERIALS AND METHODS

1. Fabrication

The device was fabricated as described in Ref. [19].
The van der Waals heterostructure was built up using the

pick-up technique described in Ref. [33]. The stacked
heterostructure was then deposited on a phosphorus-doped
Si chip with a dielectric layer of 285 nm SiO2. From the
bottom to the top [see Fig. 1(b)], the stack contains a thin
graphite flake (graphite back gate), the approximately
27-nm-thick bottom boron nitride flake, the approximately
20-μm-long and 1-μm-wide bilayer flake, and the approx-
imately 24-nm-thick top boron nitride flake. After encap-
sulating the bilayer graphene in boron nitride [32], the
bilayer flake is protected from the following processing
steps. We work with the natural shape of the exfoliated
bilayer flake to protect its natural edges. In a first
processing step, side contacts [33] were patterned using
electron-beam lithography (EBL) and etched by reactive-
ion etching (40 sccm of CHF3, 4 sccm of O2, 132 W RF
power, 306 V DC bias), followed by evaporation of 10 nm
chromium and 60 nm gold. The two top gate layers [green
and blue gates in Fig. 1(a)] are both produced in two
consecutive EBL steps. The inner gate structure on top of
the bilayer flake is written in a separate EBL step to achieve
high resolution with a thin EBL resist. The thinner resist
allows only for evaporating 5 nm chromium and 25 nm
gold. In a second step with thicker EBL resist, the outer
gate structure connecting to the bond pads is written and
10 nm chromium and 60 nm gold are evaporated. For the
first top gate layer, an additional gentle reactive-ion etching
step (80 sccm of Ar, 5 sccm of O2, 70 W RF power, 222 V
DC bias) is performed to ensure that the gates are sticking
on the boron nitride surface. To separate the two top gate
layers, we grow an approximately 25-nm-thick layer of
Al2O3 by atomic layer deposition at 150 °C (with precursor
gases of trimethylaluminum and water).
The device was cooled down four times in different

setups: a dipstick 4He system at 4.2 K, a variable temper-
ature insert reaching 1.7 K, a dry dilution refrigerator
reaching 35 mK, and a wet dilution refrigerator with a
rotatable sample holder reaching 80 mK.

2. Extracting energy levels

Figure 3(a) shows Coulomb resonances as a function of
B⊥. The finger gate axis can be converted into an energy
axis, using the Coulomb diamond measurement and deter-
mining the lever arm α of the finger gate [36]. To add an
additional electron to the QD, the electron has to pay
charging energy (due to Coulomb interaction) in addition to
the single particle energy level difference. Thus, when two
single particle levels of the QD are degenerate in energy, the
additional electron only pays charging energy, which is
assumed to be independent of the magnetic field. In turn,
this means that the minimal distance of Coulomb reso-
nances in αVFG corresponds exactly to the charging energy.
Subtracting the charging energy means shifting neighbor-
ing resonances in αVFG such that they touch at one point.
The result is shown in Fig. 3(b), yielding the single particle
energy level spectrum of the QD. Figure 3(c) shows the
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subtracted charging energy (blue curve), which decreases
as expected with increasing electron occupation number
[21]. The single particle energy (green curve) shows clear
peaks whenever the occupation number is an integer
multiple of 4. Therefore, also, the addition energy (red
curve) shows maxima at the same position, which is why
the fourfold level bunching can already be observed in the
Coulomb resonances of the conductance traces (see Fig. 6).

APPENDIX B: SUPPORTING DATA

1. Dirac points

In order to demonstrate the high electronic quality of our
sample, Fig. 5(a) shows a resistance map as a function of
graphite back gate voltage VBG and top gate voltage VTG
applied to a uniform top gate crossing the entire bilayer
region [gate marked by a white asterisk in Fig. 1(a)]. All
other gates (split and finger gates) are grounded for this
measurement.
The overall Dirac point [white triangle in Fig. 5(a)] is

reached when VBG ¼ −0.34 V and VTG ¼ −0.62 V. The
horizontal line of high resistance at VBG ¼ −0.34 V [white
diamond in Fig. 5(a)] corresponds to the Dirac point of the
bilayer regions above the graphite back gate [red solid line
in Fig. 1(a)], not being covered by any top gates [green
gates in Fig. 1(a)]. The second horizontal line of high
resistance [white square in Fig. 5(a)] corresponds to the
Dirac peak underneath the two pairs of split gates kept at
VSG ¼ 0. To induce the same density in these regions
compared to the regions not covered by any gates on top,
the split gates would have to be set to VSG ¼ −0.62 V.
With the slope of the diagonal resistance peak, we can
calculate the offset in VBG that would compensate for the
offset in VSG. We find ΔVBG ¼ 0.95 V, which agrees with
the distance of the two horizontal resistance peaks in VBG.
To recapitulate, the high resistance along the two horizontal
lines corresponds to the Dirac points in the regions above
the graphite back gate covered and not covered by
grounded split gates.

2. Pinch-off resistance

The high resistance along the D-axis in Fig. 5(a)
corresponds to the Dirac peak underneath the biased top
gate [white asterisk in Fig. 1(a)], spanning the whole width
of the bilayer flake. Along this line, away from the overall
Dirac point [white triangle in Fig. 5(a)], the displacement
field in the bilayer increases, leading to the opening of a
band gap in the region below the top gate [10]. At high
displacement field [red circle in Fig. 5(a)], resistances in the
GΩ regime can be reached [see Fig. 5(b)]. This is the
regime in which we operate our QDs.
The measurement shown in Fig. 5(a) was performed with

a constant source-drain bias excitation of 500 μV. We
measure the current with a precision of 10 pA using an IV
converter. This means that we can only measure resistances

up to 50 MΩ. The extracted resistance values as a function
of VBG at VTG ¼ −4.5 V are plotted as a solid line in
Fig. 5(b). When the Fermi energy lies within the gap
opened by the strong displacement field, the resistance
reaches higher values and the measured current approaches
zero. Therefore, we record additional IV characteristics of
the device in this regime. The extracted resistance values
are plotted as solid circles in Fig. 5(b), reaching resistances
in the GΩ regime.

3. Tuning into the QD regime

The Coulomb resonances (white star in Fig. 6) of QD1 in
the hole regime can be clearly identified in the logarithmic
conductance map as a function of channel and split gate
voltage. The middle region of low conductance corresponds
to charge neutrality underneath the split gates such that
transport outside of the channel is strongly suppressed. At
more negative (positive) split gate voltage, p-type (n-type)

FIG. 5. (a) Logarithmic two-terminal resistance of the device as
a function of the graphite back gate voltage VBG and the top gate
voltage VTG [asterisk in Fig. 1(a)]. (b) Two-terminal resistance as
a function of the graphite back gate voltage at fixed top gate
voltage VTG ¼ −4.5 V. The solid line was measured in a constant
source-drain bias setup, while the circles correspond to resistance
values extracted from IV characteristics recorded at the given gate
voltage setting.
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conductance underneath the split gates leads to increased
conductance parallel to the channel. In addition to the
Coulomb resonances, localized states close to the QD can
be identified (white circle in Fig. 6). However, they do not
influence the QD at the operation point indicated by the
dashed line [cut along the dashed line corresponds to
Fig. 2(a)].
The cross capacitance of the QD and the split gates leads

to the finite slope of the Coulomb resonances in Fig. 6.
Additionally, increasing the voltage VSG applied to all split
gates squeezes the hole wave function of the QD, leading to
an increase in confinement energy and, thus, Coulomb
resonance spacing.

4. Level bunching

As mentioned in the main text of the manuscript, the hole
QDs also showed a fourfold level bunching in the cool-
down to 35 mK. The corresponding conductance curve as a
function of the finger gate voltage for QD 8 in the hole
regime is shown in Fig. 7(a). Numbers indicate the
occupation of the QD with holes, and we observe an
increased addition energy whenever the occupation
number is an integer multiple of 4 (with the exception
of 16). This agrees with shell filling of our QDs [36] and
the fourfold degeneracy of bilayer graphene.
Figure 7(b) shows the same measurement for QD 4 in the

electron regime, mirroring the result of Fig. 7(a). Overall, 8
of our 11 QDs show qualitatively the same behavior, both
in the electron and in the hole regime. All QDs show a
sequence of groups of 4 levels, sometimes with groups of 8
or 12 showing up, depending on the specific QD.

APPENDIX C: THEORETICAL
CONSIDERATIONS

For comparison of the measured data with theory, we
adopted the solution for the energy levels of a bilayer QD in
a perpendicular magnetic field [14]. The allowed energy
levels depend on the valley number τ (þ1 for K and −1 for
K’), the total angular momentumm, the interlayer potential
asymmetry V (potential difference between upper and
lower layer), the boundary potential U, and the radius R
of the circular dot. The resulting energy levels are deter-
mined numerically.

1. Ground state

The result of fitting the ground state is shown in
Fig. 3(b). The fit was performed with fixed U ¼
V ¼ 60 meV, calculated from the voltages applied in the
experiment. We find R ¼ 20 nm, where the ground state
has the total angular momentum number m ¼ þ1. We
observe that the parameters U and R have the strongest
influence on the orbital energy level spacing (approxi-
mately 5–10 meV in the experiment) and their magnetic
field dependence for small magnetic fields (B⊥ ∼ 0–2.5 T).

FIG. 6. Logarithmic two-terminal conductance as a function of
the split gate voltage VSG and the finger gate voltage VFG for QD
1 measured at VBG ¼ 5.55 V. The cut along the dashed line
corresponds to Fig. 2(a).

FIG. 7. Conductance traces for (a) QD 4 in the hole regime and
(b) QD 8 in the electron regime measured at 35 mK and 1.7 K,
respectively. Numbers indicate the occupation number of the
respective QD.
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2. Linear magnetic field regime

Since the experimental results in Fig. 3(b) show an
essentially linear magnetic-field dependence of the energy
levels in the covered field range, we use a perturbative
approach starting from the zero-field lowest energy states.
We analyze the linear correction to the energy of the states
in lowest-order perturbation theory in B⊥ and obtain an
estimate for the orbital g-factor gorb. Based on the theo-
retical approach in Ref. [14], we write the eigenstates as

Ψðρ;ϕÞ ¼ eimϕ

ffiffiffi

ρ
p

0

B

B

B

@

1 0 0 0

0 e−iϕ 0 0

0 0 1 0

0 0 0 eþiϕ

1

C

C

C

A

ψmðρÞ; ðC1Þ

where ψmðρÞ is the radial part of the Dirac spinor depend-
ing on m and the radius ρ ¼ r=R. We then use the solution
of the ground state to calculate the correction to the energy
level due to the magnetic field in first-order perturbation as

EB ¼ τ
R
lF

�

�

�

�

R

∞
0 dρρψmðρÞ†γ5ψmðρÞ
R

∞
0 dρψmðρÞ†ψmðρÞ

�

�

�

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

μBB⊥

¼ gorbμBB⊥; ðC2Þ

where we introduced the Fermi length lF ¼ ℏ=ðvFmeÞ,
which has, considering vF ¼ 106 m=s, the value

lF ¼ 1.16 Å. The 4 × 4 matrix γ5 can be expressed by
the Pauli matrices as

γ5 ¼
�

σ2 0

0 −σ2

�

: ðC3Þ

Note that the transformation ðm; τÞ → ð−m;−τÞ simply
leads to a change of sign in EB.
Let us elaborate briefly on this approximation of EB. The

perturbative result only applies in the field range where
the correction to the zero-field energy is smaller than the
energy level spacing at B⊥ ¼ 0. Through the spinor ψmðρÞ,
gorb depends on both m and U. However, the matrix
element M in Eq. (C2) varies only between 0.05 and
0.35, as can be seen in Table I, such that the strongest
effect on gorb actually originates from the ratio R=lF. The
difference between the exact and the perturbative result is
small in the low-field limit.

3. Noncircular dots

We briefly want to discuss the effect of a modified
boundary potential U, for which we have so far taken a
hard wall potential, Uðx; yÞ ¼ 0 for r ≤ R and U for r > R
(r2 ¼ x2 þ y2). We study the effect of a more general
potential, which may be noncircular and layer dependent.
This modification is responsible for two effects. The

layer dependence of the potential lifts the degeneracy at
B⊥ ¼ 0. In addition, the noncircular structure yields an
energy shift, which again can be calculated by means of
perturbation theory to lowest order,

EU ¼
R

dxdyΨðx; yÞ†Uðx; yÞΨðx; yÞ
R

dxdyΨðx; yÞ†Ψðx; yÞ : ðC4Þ

In order to examine the effect of B⊥ on this shift, we
consider the shape of the radial wave function, jΨðρÞj2 ¼
ψmðρÞ†ψmðρÞ (including both valleys, τ ¼ �1), plotted in
Fig. 8 for fields B⊥ ¼ 0, 2.5 T. In the legend, the states are

TABLE I. Matrix element M introduced in Eq. (C2), calculated
for the first four lowest energy levels of the bilayer quantum dot
model presented in Ref. [14], considering U ¼ V ¼ 60 meV and
R ¼ 20 nm.

m 1 0 2 −1

M 0.17 0.18 0.33 0.06

FIG. 8. jΨðrÞj2 for the four lowest energy levels in both valleys considering R ¼ 20 nm and U ¼ V ¼ 60 meV.

SPIN AND VALLEY STATES IN GATE-DEFINED … PHYS. REV. X 8, 031023 (2018)

031023-9



ordered according to their energy, with m ¼ 1 being the
ground state. It becomes obvious that the magnetic field
only slightly influences jΨðρÞj2 for all displayed m.
Therefore, it is clear that the energy shift due to the
modified boundary potential leads to an essentially field-
independent shift of the energy, i.e., gorb remains practically
unchanged, if the mean radius R is kept constant.
To demonstrate this effect, we useUðx;yÞ¼UL½ðx2=R2Þþ

χLðy2=R2Þ� for x2 þ χLy2 ≤ R2 and Uðx; yÞ ¼ U for
x2 þ χLy2 ≥ R2, where L ¼ 1, 2 is a layer index and χL a
generally layer-dependent anisotropy parameter. In Fig. 9,
we compare the result of the standard hardwall potential (red
dashed) with the layer-dependent potential above (black
solid) using the parameters U1 ¼ U2 ¼ 6 meV, χ1 ¼ 0.9,
and χ2 ¼ 0.95, while keeping U ¼ 60 meV.
The small potential difference between the two layers

leads to a splitting of the degeneracy of the pair ðm; τÞ and
ð−m;−τÞ at B⊥ ¼ 0, which might be one of the reasons
for the observed splitting of energy levels at B⊥ ¼ 0 in the
experiment.
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