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Quantum-classical hybrid algorithms are emerging as promising candidates for near-term practical
applications of quantum information processors in a wide variety of fields ranging from chemistry to
physics and materials science. We report on the experimental implementation of such an algorithm to solve
a quantum chemistry problem, using a digital quantum simulator based on trapped ions. Specifically, we
implement the variational quantum eigensolver algorithm to calculate the molecular ground-state energies
of two simple molecules and experimentally demonstrate and compare different encoding methods using
up to four qubits. Furthermore, we discuss the impact of measurement noise as well as mitigation strategies
and indicate the potential for adaptive implementations focused on reaching chemical accuracy, which may
serve as a cross-platform benchmark for multiqubit quantum simulators.
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I. INTRODUCTION

Quantum simulators [1–5] are widely recognized for
their promise to help solve challenging problems in a range
of fields, including physics, chemistry, and materials
science. First suggested by Feynman in the early
1980s [6], quantum simulators aim to harness controlled
quantum evolutions in order to simulate other quantum
systems. Later refined to a formalized notion of a universal
quantum computer [7], a quantum simulator’s main pur-
pose is to turn the exponential scaling of resources needed
to simulate quantum systems on classical computers into a
more favorable polynomial overhead on a quantum
machine. Experimentally pioneered at the turn of the
millennium by nuclear magnetic resonance [8], neutral

atom [9], and trapped-ion [10] systems, quantum simu-
lation has attracted much attention over the last decade and
might well hold the key to unlock significant advances in
our understanding of many-body physics [11].
In the analog approach to quantum simulation, the

interactions of a quantum system are engineered to closely
match the Hamiltonian of the system of interest. Starting
from a well-defined initial state, the simulator evolves
under a tailored Hamiltonian to a final state, and measure-
ments are taken that reveal the sought-after information
about the system of interest. Prominent examples are
experiments realizing Bose- or Fermi-Hubbard models
with ultracold atoms [12], or long-range spin models using
either up to 20 fully controlled [13–18] or over 100
entangled ions [19–21].
The digital approach to quantum simulation employs

computational gates to approximate the time evolution of
arbitrary local Hamiltonians. This can be done in a freely
programmable way [7] that is amenable to quantum error
correction [22,23]. With a versatility similar to classical
computers, digital quantum simulators offer the prospect to
shed light on properties of systems that are fundamentally
different from the simulator. Laser-cooled ensembles of
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trapped ions that simulate high-energy physics processes
are an example [24]. The first multiqubit demonstrations of
the technique on scalable platforms were implemented on
trapped ions [25] and a superconducting system [26].
To enable quantum simulations with a level of complex-

ity that is beyond the reach of classical computers, multiple
avenues are being pursued to scale up universal quantum
processors realized on platforms such as trapped ions or
superconducting qubits [27,28]. As experimental progress
paves the way towards the realization of larger-scale
devices, it is important to develop algorithms that make
efficient use of these continually improving quantum
resources. Quantum-classical hybrid algorithms have
recently emerged; they leverage the unique capabilities
of quantum devices by incorporating them in classical
numerical calculations.
In this article, we use a digital quantum simulator based

on trapped ions to experimentally investigate one such
algorithm, the variational quantum eigensolver [29–31] for
the calculation of molecular ground-state energies. We
begin with a review of the underlying methods of quantum
chemistry, as well as the overall algorithmic approach, and
briefly summarize previous experimental implementations.
We then introduce our experimental realization and present
results for two example molecules—molecular hydrogen
and lithium hydride. Finally, we discuss the results and
sources of error with respect to a threshold known as
chemical accuracy, and we provide suggestions for further
improvements of the algorithm.

II. SIMULATING QUANTUM CHEMISTRY

A. Approach and specific steps

While quantum computers have been shown to offer
exponential speedups for a variety of problems, a particu-
larly compelling application is the quantum computation of
molecular energies [32–34]. Efficient quantum simulations
of classically intractable instances of the associated elec-
tronic structure problem promise breakthroughs in our
understanding of basic chemistry and could revolutionize
research into new materials, pharmaceuticals, and industrial
catalysts. In the last few years, many efforts have sought to
develop new algorithms [35–41] and better implementation
strategies [42–49] for these simulations. Among the
explored approaches, the variational quantum eigensolver
(VQE) algorithm [29–31] has been shown experimentally
to be resilient to some systematic errors [50] from imperfect
control pulses, making it a promising candidate for quan-
tum simulations in the near term [51].
VQEs belong to the class of quantum-classical hybrid

algorithms where a classical subroutine is enhanced by the
computational power of a quantum simulator. Given its
potential for near-term use, the VQE approach is increas-
ingly receiving attention in both theoretical [31,40,51–59]

and experimental works [30,50,60–65], with a focus on
both quantum chemistry and fundamental physics and
materials science. We now discuss the simulation of
quantum chemistry in more detail.
The central problem of theoretical chemistry is to

compute the lowest-energy eigenvalue of the molecular
electronic structure Hamiltonian. The eigenstates of this
Hamiltonian determine almost all of the properties of
interest in a molecule or material, and as the energy gap
between the ground state and first excited state is often
much larger than 25.7 meV (kBT at room temperature), the
ground state is of particular interest. To arrive at the
standard form of this Hamiltonian used in quantum
computation, one begins from a collection of nuclear
charges Zi and a number of electrons in the system for
which the corresponding Hamiltonian is written as

H1 ¼ −
X
i

∇2
Ri

2Mi
−
X
i

∇2
ri

2
−
X
i;j

Zi

jRi − rjj

þ
X
i;j>i

ZiZj

jRi − Rjj
þ

X
i;j>i

1

jri − rjj
ð1Þ

in atomic units ðℏ ¼ 1Þ. Here, the positions, masses, and
charges of the nuclei are Ri, Mi, Zi, and the positions of
the electrons are ri. This form of the Hamiltonian and its
real-space discretization is often referred to as the first-
quantized formulation of quantum chemistry and generally
enforces the fermionic nature of the electron through an
antisymmetric wave function. Several approaches have
been developed for treating this form of the problem on
a quantum computer [35,66–70]; however, the focus of this
work is on the second-quantized formulation.
To reach the second quantized formulation, one typically

first approximates the nuclei as fixed classical point
charges under the Born-Oppenheimer approximation and
chooses a basis ϕi in which to represent the electronic wave
function. Often, one chooses a basis of N molecular
orbitals, constructed as a linear combination of atomic
orbitals (LCAO), which are computed using a mean-field
procedure known in chemistry as the Hartree-Fock (HF)
method [71]. The atomic orbital basis functions are derived
from variations of hydrogenlike atomic orbitals for differ-
ent values of Z. They are numerically optimized to match
desired physical properties across a range of systems
and to be compatible with systematic improvement [72].
Usually, the basis functions are expressed as sums of
Gaussian functions rather than the original Slater-type
orbitals to enhance the efficiency of integral evaluation.
This choice is convenient for small problems but not
mandatory, and much work has been done recently to
improve the Hamiltonian representation for electronic
structure problems [40,41].
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The second-quantized formulation of quantum chemistry
leads to the (electronic) Hamiltonian

H2 ¼
X
pq

hpqa
†
paq þ

1

2

X
pqrs

hpqrsa
†
pa

†
qaras; ð2Þ

in which the wave function’s antisymmetry is enforced
through the anticommutation relations of the fermion
creation and annihilation operators a†i and aj.
The goal now is to compute the energy of electrons

interacting in the fixed external potential of the atomic
nuclei. Encoding the electron’s spatial and spin coordinates
as σi ¼ ðri; siÞ, the two sets of scalar coefficients in Eq. (2)
can be calculated via

hpq ¼
Z

dσϕ�
pðσÞ

�∇2
r

2
−
X
i

Zi

jRi − rj
�
ϕ�
qðσÞ

hpqrs ¼
Z

dσ1dσ2
ϕ�
pðσ1Þϕ�

qðσ2Þϕsðσ1Þϕrðσ2Þ
jr1 − r2j

: ð3Þ

In order to implement the Hamiltonian on a qubit-based
quantum simulator, the specific fermionic Hamiltonians
need to be transformed to spin Hamiltonians. The most
common schemes for this transformation are the Jordan-
Wigner (JW) transformation [73,74] and the Bravyi-Kitaev
(BK) transformation [68,74–79]. Characteristically, the JW
transformation leads to N-local Hamiltonians, and the BK
transformation leads to logðNÞ-local Hamiltonians. In this
work, we explore both approaches to arrive at a spin
HamiltonianH, which can be implemented with qubits on a
quantum simulator.
VQE algorithms for quantum chemistry typically seek to

prepare the ground state of the target system for a particular
geometric configuration specified by R⃗i. The energy land-
scape created by this geometry for the electrons derives
from the integrals in Eqs. (3) above and will be captured by
scalar values cl throughout the remainder of the article.
The calculation then proceeds along the following four
steps, visually summarized in Fig. 1(b).
(1) A digital quantum simulator is initialized in a simple

state jφð0Þi, which represents a good classical
approximation to the ground state of Hamiltonian
H. When using a molecular orbital basis, this
initialization is particularly straightforward, as the
classical mean-field state (most often, a Hartree-
Fock solution [71]) is a product state.

(2) A quantum circuit implementing the unitary
operation Uðθ⃗0Þ is applied to jφð0Þi mapping the
initial state to a parametrized “ansatz” state
jφðθ⃗0Þi ¼ Uðθ⃗0Þjφð0Þi. The operation Uðθ⃗0Þ and
its parameter vector θ⃗0 are chosen based on known
structure in the target system, which is usually
obtained from classical approximation methods.

(3) One measures the expectation value of the energy
hHi ¼ hφðθ⃗0ÞjHjφðθ⃗0Þi of the prepared ansatz state.
This makes use of the form of the Hamiltonian
H ¼ P

lclHl, where Hl are tensor products of
Pauli matrices and cl the above-mentioned scalars
that were precalculated for a given internuclear
configuration R⃗i. Repeated rounds of state prepara-
tion and measurement of the individual terms hHli
allow one to provide an estimate for the expectation
value hHi ¼ P

lclhHli. In this context, this step is
often referred to as Hamiltonian averaging [30,31].

(4) One adjusts the parameters θ⃗ to minimize hHi. An
iterative classical “outer-loop” optimization (e.g.,
gradient descent) can be deployed for this purpose.
Assuming this procedure converges after m itera-
tions, the resulting state jφðθ⃗mÞi represents the
variational approximation to the molecular ground
state at the chosen configuration R⃗i.

It is worth noting that, when applied to classical
(diagonal) Hamiltonians, the above strategy is the basis
of the quantum approximate optimization algorithm [80].

Molecular basis set / Hartree-Fock solution 

Unitary coupled cluster

Molecular 
hamiltonian

Qubit 
hamiltonian

BK or JW

transformation

Classical computer

Classical preprocessing

VQE implementation

PES reconstruction

Quantum processor

iteration i=0,1,... Measurement of 
observables

Variational 
optimization

Parametrized
State preparation

1

4

2

3

(a)

(b)

(c)

for each

FIG. 1. Steps of a VQE-based quantum chemistry calculation.
A classical preprocessing stage (a) translates the chemical
problem to a classical description of a quantum circuit for unitary
operator Uðθ⃗Þ that can be directly implemented on a quantum
processor. (b) As outlined in the main text above, the four steps of
the iterative variational optimization are performed in a loop
combining quantum resources with a numerical search running
on a classical computer. Finally, in (c), the full potential energy
surface (PES) of the molecule in question, including both nuclear
and electronic contributions, is reconstructed from the data.
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In order to obtain the total molecular energy of the
potential energy surface, the mutual Coulomb energy of the
nuclei, separated out in the Born-Oppenheimer approxi-
mation of the classical preprocessing step before, has to be
added to the VQE result at every configuration R⃗i.
A good ansatz unitary Uðθ⃗Þ is typically chosen to

balance the strengths of available experimental resources
with insights about the structure of the fermionic system
under study. For instance, it has been argued that a
parameterized Trotter approximation [7,81] to the adiabatic
state preparation algorithm may serve as an effective
ansatz [40,41,51]. In this article, we parameterize our
variational ansatz based on insights from a cornerstone
method of modern electronic structure theory known as
coupled cluster [82]. While widely regarded as the “gold
standard” of accuracy for the classical study of strongly
correlated systems, a drawback of the coupled-cluster
ansatz is that the method is nonunitary, and there is no
way to ensure that solutions are properly normalized. This
can lead to significant errors when the ground state has
what is referred to as multireference character, i.e., when it
has significant support on more than one classical con-
figuration within the chosen basis. To address this pro-
blem, a unitary variant of the coupled-cluster method
was proposed in Ref. [83]. However, while theoretically
immune to some of the problems of the traditional method,
unitary coupled-cluster (UCC) calculations cannot be
performed efficiently on classical computers. Thus, the
classical study of UCC involves additional approximations,
which are also problematic in some cases [84]. However, as
first discussed in Ref. [30], one can perform finite-order
UCC calculations efficiently on a quantum computer
without any approximation [31,57].
UCC essentially suggests a series of fermionic operators

that one should evolve under in order to prepare the
electronic ground state. For instance, one can think of
the unitary coupled-cluster ansatz in a Trotter approxima-
tion as

UUCCðθ⃗Þ ¼ e
P

γ
θγðTγ−T

†
γ Þ ≈

Y
γ

eθγðTγ−T
†
γ Þ; ð4Þ

where ðTγ − T†
γÞ are anti-Hermitian fermionic excitation

operators. The approximation associated with using only a
single Trotter step for the exponential is generally accept-
able since the coupled-cluster amplitudes θγ are usually
quite small. As discussed in Ref. [57], one can scalably
deploy classical coupled-cluster calculations in order to
get a reasonable initial guess of the amplitudes θ0.
Furthermore, because of selection rules involving the
symmetry point groups of molecular orbitals and suitable
quantum numbers of the Hamiltonian, most of the coupled-
cluster amplitudes associated with operators that one might
naively anticipate need to be simulated are actually zero.
A vast majority of the other amplitudes are typically
extremely small [57], such that one may choose a threshold

value for the θ⃗0 provided by the classical coupled-cluster
method to further reduce the number of relevant
eθγðTγ−T

†
γ Þ terms.

B. Previous demonstrations

Experimental demonstrations of quantum chemistry
algorithms have been performed on architectures ranging
from quantum photonics [30,85,86], NV centers [61], ion
traps [62,87], and NMR platforms [88,89], to supercon-
ducting qubits [50,63,64]. The first realizations date back to
2010, when a photonic experiment [85] and a closely
related NMR experiment [88] simulated the hydrogen
molecule in the simplest basis, using a method that required
considerable classical precomputation. A similar experi-
ment computing the dissociation curve of the HeHþ cation
was performed using a nitrogen-vacancy-based system in
2015 [61], and the first VQE experiment investigated the
same molecule in a minimal basis in 2013 [30] using a
photonic implementation.
The first scalable quantum chemistry simulation was

carried out on a superconducting platform in 2016 [50].
Here, scalable means that the required classical precom-
putation resources increase in the sameway that they would
for an arbitrarily large problem. Reference [50] used a one-
parameter variational ansatz and performed VQE in post-
processing to calculate the ground-state energy of H2,
reaching chemical accuracy for the binding energy (devia-
tions ≤ 1.6 × 10−3 Hartree). The authors also implemented
the phase estimation algorithm for quantum chemistry [32],
which did not reach chemical accuracy due to the degra-
dation of gate fidelity in the absence of error correction on
their device. As both experiments were performed on the
same chip using gates of the same fidelity, these results
provide a first validation that the VQE approaches we focus
on can deliver superior results on current hardware.
The most advanced implementation of the VQE algo-

rithm in terms of molecular size and resource scaling
was published in Ref. [63], which simulated three
molecules—H2, LiH, and BeH2—on a superconducting
qubit platform. The authors also performed a theoretical
investigation of the resource requirements in terms of
circuit depth for each molecule and found a significantly
more favorable scaling for devices with all-to-all qubit
connectivity, validating the potential utility of ion-trap
hardware with its native all-to-all connectivity for these
types of simulations. Most recently, a superconducting
implementation of a modified VQE algorithm was also
used to determine excited states of the H2 molecule [64].
Ion-trap implementations of quantum simulation applied

to quantum chemistry have so far been limited to working
with a single qubit. Reference [62] used a single 171Ybþ ion
and mapped the Hamiltonian of the molecule to four of its
internal energy levels, which is not a scalable procedure
and provides no advantage over classical computation [90].
However, the other steps of the VQE algorithm were
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performed scalably, as they would be for a different state
mapping. Recently, the same system was used to explore
vibronic molecular spectra [87] employing the bosonic
motional degree of freedom of a single trapped ion.
VQE is not the only method that reduces the exper-

imental overhead of phase estimation. Recently, Bayesian
approaches to phase estimation have been proposed [91].
This method has been implemented in a photonic simu-
lation of a minimal basis H2 system—reaching chemical
accuracy [86], however, with scalability properties com-
parable to Ref. [85].

III. EXPERIMENTAL IMPLEMENTATION

The trapped ion system used to implement our digital
quantum simulation consists of a linear Paul trap in which a
variable number of 40Caþ ions are electrically confined for
many days at a time. Each ion stores a quantum bit that is
encoded in a pair of Zeeman states chosen from their 4S1=2
electronic ground and 3D5=2 metastable states. In the
following, these electronic states will be labeled as qubit
states j1i and j0i, respectively.
The qubits are manipulated via a set of global, tightly

focused, addressed laser beams. Single-qubit gate opera-
tions are implemented via a three-pulse sequence that
combines two global qubit rotations with an intermediate
addressed laser pulse manipulating only the targeted
qubit [92]. Multiqubit entangling operations are realized
through laser-driven interactions that are mediated by the
collective motional modes of the ions within their common
trapping potential.
After mapping the UCC excitation operators in Eq. (4) to

tensor products of Pauli operators, we implement each
operator using appropriate quantum circuits, specifically
illustrated for each case below. The circuits’ general
structure combines two multiqubit entangling gates, each
realizing the unitary UMSðϕÞ ¼ expð−iϕ=2Pi<jσ

i
xσ

j
xÞ,

with a single-qubit operation that encodes a single element
of the parameter vector θ⃗ in Fig. 1 and a particular θγ in
Eq. (4), respectively. The subscript MS stands for Mølmer
and Sørensen, the originators [93,94] of this type of
entangling gate, and ϕ ¼ π=2 for the creation of an
entangled state, when starting in any state of the computa-
tional basis z. As a unit, this circuit building block [95,96]
can effectively realize arbitrary many-body interactions as
required by the Pauli operators Hl resulting from the
transformed UCC operators.
The estimation of the expectation values of individual

Pauli operators hHli is carried out through a projective
measurement in the logical z basis. This measurement is
implemented using laser-induced, state-dependent fluores-
cence, which we detect on a CCD camera, allowing for
simultaneous read-out of all qubits (cf. Appendix A). To
determine hHliwith terms in bases other than z, we employ
suitable global and single-qubit operations to rotate these

into the z basis prior to the projective measurement. We
now discuss the individual steps and results for the two
example molecules investigated experimentally.

IV. MOLECULAR HYDROGEN

The simplest possible neutral molecule is formed by two
hydrogen atoms. We aim to calculate the potential energy
surface of its ground state as a function of the internuclear
distance R. This will be done in two ways: (1) by scanning
the entire parameter space associated with the UCC
operator of the spin-transformed molecular Hamiltonian
H and (2) by running the VQE algorithm for different
values of R separately, leading to only a sparse sampling of
this parameter space. Because of its simplicity, H2 has
become a standard example for experimental implementa-
tions of quantum chemistry algorithms.

A. Encoding the problem

A common molecular basis set [Fig. 1, step (a)] is that
of Slater-type orbitals (STO), represented by linear com-
binations of, e.g., three Gaussian functions (STO-3G). In
this minimal basis set, each hydrogen atom contributes a 1s
atomic orbital. Molecular orbitals are then formed by
adding the corresponding two atomic wave functions.
In-phase addition results in a lower-energy σ1s bonding
orbital with increased electron density between the nuclei
and out-of-phase addition in a σ�1s antibonding orbital
associated with a depletion in electron density between
them [Fig. 2(a)].
Using this minimal basis set, a classical Hartree-Fock

calculation allows us to precompute the relevant molecular
orbitals for each geometric configuration specified by the
respective internuclear separation R. This numerical step
determines the scalars clðRÞ by solving the integrals in
Eq. (3) capturing the spatial and spin coordinates. It also
yields a product state solution for the molecular wave
function, which is used as an initial guess jφð0Þi in Fig. 1,
step (b). Following a series of theoretical considerations
detailed in Appendix B, we determine the only relevant
unitary coupled-cluster operator for single and double
excitations (UCCSD), which can be expressed as

UUCCSDðθÞ ¼ eθða
†
2
a†
3
a1a0−a

†
0
a†
1
a3a2Þ: ð5Þ

Here, θ is the parameter we aim to optimize; the indices
correspond to the minimal set of orbitals and a (a†) to
fermionic annihilation (creation) operators. Using the
Jordan-Wigner transformation, the fermionic operators of
Eq. (5) can be mapped to Pauli operators acting on four
qubits as

UJW
UCCSDðθÞ ¼ e−iθσ

x
3
σx
2
σx
1
σy
0 ;

with the initial Hartree-Fock state jφð0ÞJWi¼ j0011i. Alter-
natively, after employing the Bravyi-Kitaev transformation,

QUANTUM CHEMISTRY CALCULATIONS ON A TRAPPED- … PHYS. REV. X 8, 031022 (2018)

031022-5



one can make use of the fact that after the mapping, only
qubits 0 and 2 are affected by operators other than σz and I ,
allowing the number of required qubits to be reduced to
2 [50]. The resulting unitary

UBK
UCCSDðθÞ ¼ e−iθσ

x
2
σy
0

acts on the Hartree-Fock ansatz state jφð0ÞBKi ¼ j01i.
Each transformed UCC operator is implemented using

the corresponding circuit shown in Fig. 2(b). They only
differ in the number of required qubits and the projective
measurements prescribed by the Pauli operators Hl in the
respectively transformed Hamiltonians. Each circuit con-
tains two single-shot entangling gates “MS” that make use
of the all-to-all connectivity of our device, making it
particularly resource-efficient for the larger register size
of the four-qubit implementation. Following steps outlined
in Appendix B, the effective Hamiltonian under the BK
transformation becomes

HBK ¼ c0I þ c1σ
z
0 þ c2σ

z
1 þ c3σ

z
0σ

z
1 þ c4σx0σ

x
1 þ c5σ

y
0σ

y
1;

ð6Þ

where the coefficients cl were all derived in this classical
preprocessing step and c0 captures the spatially fixed
nuclei’s Coulomb potential. It correspondingly mandates
three projective measurement settings to obtain the asso-
ciated set of expectation values HBK

l ¼ fZ0; Z1;
X0X1; Y0Y1; Z0Z1g. In the JW-transformed case, we obtain
14 expectation values HJW

l ¼fZ0;Z1;Z2;Z3;Z1Z0;Z2Z0;
Z2Z1;Z3Z0;Z3Z1;Z3Z2;Y3Y2X1X0;Y3X2X1Y0;X3Y2Y1X0;
X3X2Y1Y0g from five different projective measurements.

B. Results

With only a single parameter θ in both circuits, it is
possible to efficiently scan the complete parameter space.
Figure 2(c) compares experimental results of such a
parameter scan for the two-qubit case under the BK
transformation with theoretical predictions from a noise-
free simulation of the circuit. In this way, measurements of
a limited number of values for θ can be extrapolated to
estimate the entire parameter range via Gaussian process
regression [50] or by fitting sinusoidal functions to either
the expectation values or the resulting energy landscape, as
was done here. Once the expectation values hHlðθÞi are
known over the entire parameter space spanned by θ, one
can calculate the molecular energies over the given range of
internuclear distances R, yielding

hHðR; θÞi ¼ c0ðRÞ þ
X
l

clðRÞhHlðθÞi: ð7Þ

A ground-state potential energy curve is then obtained
by performing the energy minimization procedure in
postprocessing, effectively generating an experimental
reference for the average performance of our simulator.
The resulting energies are usually expressed in units of
Hartree in chemistry, where 1Ha¼ℏ2=mea0≈27.2 eV,
with Planck’s constant ℏ, the mass of an electron me,
and the Bohr radius a0.
Under the influence of the MS gate, both the Hartree-

Fock reference states j01i and j0011i are transformed
through a decoherence-free subspace [97–99] that is pro-
tected against correlated dephasing—a leading source of
error in trapped ion qubit implementations. To experimen-
tally investigate the impact of this decoherence channel on

π

Bravyi-Kitaev encoding

Jordan-Wigner encoding
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FIG. 2. (a) Molecular orbitals (MOs) of the hydrogen molecule, built from the 1s atomic orbitals (AOs) of the individual atoms. The
electronic energy is calculated for nuclei separated by a distance R. (b) Quantum circuits implementing theUUCCSD operator with respect
to a HF ansatz state for two different mappings from fermions to spins. (c) Expectation values obtained in the experiment under the two-
qubit Bravyi-Kitaev encoding as a function of unitary circuit parameter θ. Solid lines correspond to theoretical predictions, while dashed
lines are fits to the experimental data (dots) obtained with 100 repetitions per point. Error bars from quantum projection noise are
omitted for clarity but taken into account in the fitting routine.
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the results, we also implement a simulation that operates
outside of the protected subspace. This is achieved by
performing a basis rotation at the level of the Hamiltonian,
which results in sign changes of the clðRÞ coefficients and
a different initial state. In the Bravyi-Kitaev case, this
corresponds to simply changing the ansatz function to
jφBKð0Þi ¼ j11i while still maintaining the same UCCSD
operator and circuit implementation. More details on the
construction of this particular decoherence-free subspace
(DFS) on our architecture can be found in Ref. [100].
In total, we implement four cases in our demonstration,

whose results are depicted in Figs. 3(a) and 3(b). They
include a DFS-protected and an unprotected implementa-
tion of the Bravyi-Kitaev mapping with a two-qubit MS
gate fidelity of 99(3)%, as well as a Jordan-Wigner
implementation using a four-qubit MS gate with either
97(4)% or 93(3)% fidelity. In each case, the MS gate
entanglement fidelity was estimated from population aver-
ages and the parity contrast relating to the coherence of the
respective Bell or GHZ state generated from j11i or j1111i
at the conclusion of the operation [101–103].
We observe that the absolute energy values calculated

from the parameter scans and illustrated in Fig. 3(a) are
shifted to larger values both under increased correlated
dephasing error and reduced gate fidelities. In particular,
we observe that a two-qubit ansatz state that is not pro-
tected against correlated dephasing yields results similar
to those of a DFS-protected four-qubit ansatz state. The
latter is significantly more sensitive to correlated dephasing
due to the larger number of qubits involved, highlighting
the benefit of employing decoherence-free subspaces in
algorithmic implementations. As measurements in chem-
istry generally refer to energy differences as opposed to

absolute values, it is common to translate the potential
energy curves to their nominal reference value at large
separation R as illustrated in Fig. 3(b). This depiction more
clearly reveals the respective upshift in energy with respect
to the calculated binding energy (or well depth) and the
simultaneously occurring shift in the position of the energy
minimum towards larger internuclear distances.
We proceed to implement the VQE algorithm in full

at five different internuclear separations R, yielding the
results shown in Fig. 3(c). For each configuration R, we
start at a random initial value of θ0, prepare jφBKðθ0Þi,
measure the expectation values hHlðθ0Þi corresponding
to the terms in the Hamiltonian, and pass the measure-
ment results to a Nelder-Mead simplex algorithm running
on a classical computer. Here, the energy is calculated
according to Eq. (7) before a new value for θ is
suggested for the next iteration. In parallel, we execute
a noise-free simulation of the circuit at each iteration in
order to monitor the convergence towards the theoreti-
cally expected energy.
Generally, the algorithm converges in simulation and

experiment. Residual energy fluctuations seen in the
experimental results [cf. Fig. 9(a)] are related to measure-
ment errors and noisy gate operations. The first source of
error stems from quantum projection noise (QPN) [104]
that scales proportionally to

ffiffiffiffiffiffiffi
1=r

p
for r repetitions of the

circuit (here, r ≤ 1000 for the VQE points). The second
source of error is related to the experimental environment
and manifests itself, e.g., in laser intensity fluctuations
and transient electrical noise coupling to the motion of the
ions. Both introduce a loss of fidelity in digital quantum
simulations, as shown in our earlier work [25], and can be
mitigated through technical improvements.
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FIG. 3. (a) Potential energy curves of the molecular hydrogen ground state. The black line corresponds to the theoretical value
calculated in the chosen minimal basis. All other lines are derived from weighted sinusoidal fits to the energy surfaces formed from the
experimentally obtained expectation values. The data sets vary the number of qubits, the Hartree-Fock input states, encodings, and gate
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As a result, we did not fix the number of VQE iterations
to a specific value but instead implemented a sinusoidal
fit to the 1D parameter space of energies explored through-
out all iterations [cf. Fig. 9(b)], with each point weighted
according to the QPN contributions from its constituent
expectation value measurements. Figure 3(c) shows each
run’s result superimposed on the previously discussed
parameter scan. Error bars for the VQE points are derived
from the above fitting procedure. In some cases, e.g., R ¼
0.6 shown in the inset of Fig. 3(c), the simplex algorithm
appears to get stuck, which likely is the result of a
premature reduction in the step width of θ caused by the
noise sources discussed above. We return to this effect in
the next section.

V. LITHIUM HYDRIDE

We now increase the complexity by turning to a hetero-
nuclear molecule with four electrons, aiming to simulate
the ground-state energy of lithium hydride (LiH). This
requires the introduction of additional variational param-
eters and thereby increases the circuit depth. LiH is also a
natural small-molecule example, and it was previously
simulated using four superconducting qubits in Ref. [63].
We implement its simulation using three ion qubits.

A. Encoding the problem

We again begin with the classical preprocessing step,
choosing a minimal basis set of Slater-type orbitals
represented by linear combinations of six Gaussian func-
tions (STO-6G). A Hartree-Fock calculation then leads us
to determine an energy-ordered molecular orbital basis into
which the molecules’ four electrons are filled sequentially

as illustrated in [Fig. 4(a)]. The corresponding complete
UCC ansatz, truncated to single and double excitations
(UCCSD), yields 32 single and 168 double excitation
operators. Under a Bravyi-Kitaev transformation, a direct
implementation of this ansatz would require 12 qubits.
Using the same approximation that was employed in the
four-qubit implementation of Ref. [63], we reduce the
number of required qubits by identifying an active space of
two electrons in three spatial orbitals, making an arbitrary
choice in the degenerate subspace. Such active spaces
average out (freeze) the core electrons that are not thought
to be involved strongly in the correlations responsible for
bonding [105].
Lastly, we take an additional step in order to identify the

dominant contributions to the active space at an efficient
level of classical theory known as configuration interaction
singles and doubles (CISD). In this case, two singlet
excitations are found to dominate, and their corresponding
unitary coupled-cluster formulation is approximated as

UUCCSD ¼ eαða
†
5
a†
4
a3a2−a

†
2
a†
3
a4a5Þ · eβða

†
7
a†
6
a3a2−a

†
2
a†
3
a6a7Þ;

where α, β are two components of the vector θ⃗ that cor-
respond to the parameters of the variational optimization.
After mapping the above fermionic representation to

Pauli operators using the BK transformation, only three
qubits are acted on nontrivially, i.e., in a way that changes
state populations. This is related to the previously observed
fact that BK computational basis states naturally reflect
certain spin symmetries, in some cases allowing for a
more compact representation than the corresponding
Jordan-Wigner mapping [50,68]. The problem may hence
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be reduced to its action on these three qubits and simulated
by selecting appropriate subterms, acting on the initial
state jφð0Þi ¼ j111i. The final operator we implement has
the form

UBK
UCCSDðα; βÞ ¼ e−iασ

x
2
σy
4 · e−iβσ

x
2
σy
6 : ð8Þ

Further details of this derivation can be found in
Appendix C 1. The quantum circuit corresponding to
Eq. (8), which acts on subsets of the qubit register, is
shown in Fig. 4(b). We choose to implement it in the
experiment using the circuit shown in Fig. 4(c), which is
based on a refocusing technique [95]. Here, an addressed
π-phase shift between two half-entangling MS gates
effectively decouples the addressed qubit from the two
remaining qubits: These become entangled, while the
phase-shifted qubit does not obtain any correlations with
the rest of the register. Other implementation strategies
range from algorithmic solutions such as spectroscopic
decoupling [92] or sequence recompilation [106] to hard-
ware solutions based on Raman gates [107].

B. Results

We first perform a parameter scan to establish a baseline
for the performance of our system before implementing the
VQE algorithm for select points. Moving sequentially over
a section of the two-dimensional parameter space bound by
α ¼ ½1.5; 6�, β ¼ ½2; 5� in a gridlike pattern, we perform
three rounds of projective measurements at each setting

to determine expectation values for each term in the
BK-transformed Hamiltonian: hHli ¼ fZ0; Z1; Z2; Z1Z0;
Z2Z0; Z2Z1; X1X0; Y1Y0; X2X0; Y2Y0; X2X1; Y2Y1g (see
Fig. 12 for data). The results are combined via Eq. (7)
in order to calculate the energy landscape for each
internuclear separation R. An example for R ¼ 1.6 Å is
shown in Fig. 5(a), with the experimentally measured
parameter space superimposed on a theoretical calculation
of the full range.
In order to reconstruct the full potential energy curve of

the electronic ground state from these data, we investigate
two approaches: (1) a two-dimensional quadratic fit to the
energy minimum and (2) a Gaussian process regression
(GPR) fit. The fit minima from all energy surfaces of the
different internuclear separations R finally yield the poten-
tial energy curves in Fig. 5(b), which we again use as an
experiment-based reference.
We now implement an iterative VQE procedure similar

to the one described in the case of H2 above but with an
important modification. Numerical simulations, detailed in
Appendix C 3, and experiments reveal that the previously
observed convergence failure of the bare Nelder-Mead
search algorithm in the presence of noise has a significant
impact on the accuracy of the energies obtained in each
VQE run. To combat this effect, we switch the optimization
to a hybrid algorithm [108] that also incorporates an
element of simulated annealing by introducing random
perturbations, sampled from a distributionD, that are added
to the cost function in Eq. (7). In this way, the VQE
algorithm is forced to continuously sample the
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surroundings of the minimum as shown in Fig. 5(a) without
converging any further. The larger number of samples
effectively allows for a more precise estimation of the
minimum’s location through a fit to the data. We heuris-
tically choose D to be on the order of the energy error
caused by quantum projection noise such that the pertur-
bations only become dominant in the vicinity of the
minimum. For example, at R ¼ 1.6 Å, the energy error
from quantum projection noise after 500 repetitions of
the experiment is between 0.01 Ha ≤ ΔhHi ≤ 0.04 Ha,
depending on the specific parameter set fα; βg. Hence,
we chose to sample from the uniform distribution
D ¼ ½0.01; 0.08� Ha, with mean D̄ ¼ 0.045 Ha, compa-
rable to the range above. Once the fluctuations of the
energy values in the VQE execution are on the order of
the mean perturbation strength D̄, we proceed for another
10–20 iterations before stopping the outer VQE loop. We
then evaluate the data using (1) a two-dimensional quad-
ratic fit to a subset of the VQE iterations (4 standard
deviations from the median; illustrated in Fig. 14) or (2) a
Gaussian process regression fit. Both sets of results are
shown in Fig. 5(b) in comparison with the ideal theoretical
result for our basis set. While resulting in a smooth
potential energy surface, the GPR-based fit appears to
systematically underestimate the binding energy, which
highlights the impact the chosen data evaluation method
has on the final step of a VQE algorithm.

VI. DISCUSSION

To put the results presented above into perspective, it is
useful to establish a benchmark against which they can be
compared. For quantum chemistry calculations, the widely
used concept of “chemical accuracy” constitutes such a
point of reference.
Chemists are often particularly interested in free-energy

landscapes, which provide mechanistic insight into chemi-
cal events of significant practical importance such as drug
binding, catalysis, and material properties. Free energies
are obtained from partition functions that can be sampled
using Monte Carlo or molecular dynamics simulations,
which assume the ability to compute solutions to the
electronic structure problem. The resulting energy land-
scapes must be extremely accurate, as chemical rates are
exponentially sensitive to changes in free energy and thus
changes in potential energies. This sensitivity can be seen
from the Erying equation [109] for chemical rates, which is
proportional to e−βΔG

‡
=β, where ΔG‡ is the difference in

free energy between reactants and the transition state, and β
is the inverse temperature in atomic units. At room temper-
ature and atmospheric pressure, an energy error in ΔG‡ of
43.3 × 10−3 eV (1.6 × 10−3 Hartree) translates to a chemi-
cal rate that is wrong by a factor of 10 [82].
With respect to this threshold, it follows that the expect-

ation values of most operators hHli in the chemical
Hamiltonian need to be determined at a similar level of

precision. In practical terms, this translates to a minimum
number of measurement repetitions required to overcome
the intrinsic quantum projection noise in the estimation of
each Pauli string Hl. Figure 6 illustrates this requirement
for the case of the H2 molecule, assuming no other sources
of noise and knowledge of the final value of each
constituent expectation value at every point.
The graph shows that one would need to repeat each of

the measurements at least 14 000 times in order to reduce
the intrinsic measurement noise below chemical accuracy.
Given that every repetition incurs the overhead of state
initialization, state preparation, and measurement, the
number of repetitions has a strong impact on runtime.
For example, on our trapped ion system, the time needed
for one repetition is on the order of 20 ms, requiring about
4.6 minutes of averaging to ensure a measurement limit at
chemical accuracy in each VQE iteration. In the current
setup, this limitation stems from both state initialization
through laser cooling and the duration of quantum gate
operations. However, ways to overcome these constraints
on our architecture have been demonstrated in a variety of
experiments already [110–112], promising order-of-mag-
nitude advances in speed and thereby much shorter
runtimes. In addition to technical improvements on the
hardware side, an adaptive measurement strategy might
also alleviate the resource needs with respect to the required
number of averages. This could entail varying the number
of repetitions throughout the VQE iterations based on the
observed energy changes in each step, gradually increasing
the measurement precision as the algorithm converges
towards the energy minimum.
In the proof-of-principle experiments above, we have

focused on probing the effects of system noise from both a
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limited number of measurements and decoherence effects
rather than achieving chemical accuracy. The parameter
scans for H2 (LiH) were taken by averaging only 100 (500)
repetitions of the corresponding circuit, which, for the case
of LiH, already corresponded to an extensive runtime due
to the two-dimensional nature of the parameter space. As a
consequence, there is a large uncertainty associated with
the energy error of the extracted potential energy curves.
The effect of errors resulting from decoherence, seen in
Fig. 3(a), was modeled for the case of molecular hydrogen
using the Bravyi-Kitaev transformation with the help of the
quantum chemistry package OpenFermion [113]. The
result is shown in Fig. 7, and it largely matches the upshift
in energy observed in the experiment.
The VQE method appears to be robust to calibration

errors in some of the gates as evidenced by the shift in the
parameter value θ in Fig. 2(c), also seen in Ref. [50].
However, similar to standard quantum tomography, the
method still relies on accurate determination of the meas-
urement operators hHli, which in turn are bound to local
gate operations that rotate the desired basis for each qubit
into the measurement basis. Errors at this point in the circuit
will be folded into the results and cannot directly be
recovered from. Possible ways around this issue might
be found both on the quantum and classical sides. Quantum
control techniques tailored to experimental errors allow for
the suppression of certain types of gate errors [114]. An
algorithmic modification might be the addition of a second
variational optimization loop parameterizing the premea-
surement rotations, which is entered once the nominal VQE
outer loop has converged to a desired level. In this way, the
measurement basis can be corrected for offsets in the same

way as the calibration errors inside the quantum circuit.
Lastly, the quantum circuit might be extended to include
ancilla qubits, which allow for error detection based on
stabilizers that indicate whether the computational sub-
space was still maintained at circuit completion [115]. In
this way, postselection might be used to raise the effective
fidelity of non-error-corrected quantum devices to a level
that makes them useful for quantum chemistry calculations
in the near future.

VII. CONCLUSION

In summary, we have performed the first multi-ion
quantum simulation of quantum chemistry. In our simu-
lation of molecular hydrogen, we have employed both the
Bravyi-Kitaev and the Jordan-Wigner transformation in the
mapping from fermions to qubits and varied the respective
Hartree-Fock reference state to reveal the impact of
decoherence. Unstable behavior of a classical Nelder-
Mead optimization routine was circumvented in our sim-
ulation of lithium hydride by amending the variational
optimization with simulated annealing and subsequently
employing a quadratic fit to estimate the location of the
minimum in the two-dimensional energy landscape. When
scaling up to larger parameter spaces, this step of the
classical data evaluation routine will likely become an even
more important issue.
Despite a significant increase in experiment runtime, it

was still possible to sequentially scan the two-dimensional
parameter space of LiH. However, the addition of more
excitation operators for more accurate energy determina-
tions and the scaling up to more complex molecules reveals
the true power of the VQE approach: sparse and adaptive
sampling of a potentially very high-dimensional energy
landscape. While the number of different measurements
needed to estimate the energy of an arbitrary molecule can
be large, recent work shows how using a structure funda-
mental to the fermionic nature of particles can reduce this
number by an order of magnitude or more for minimal
additional complexity [59].
To deliver on the promise of near-term usefulness,

further work is needed on both the quantum and classical
aspects of the VQE algorithm. The mitigation of errors in
low-depth quantum circuits has increasingly come into
focus [55,59,64,116–118], and the use of dynamic error
suppression techniques at the physical gate level promises
improved fidelities of the practically implemented
operations. A recent numerical study [119] specifically
investigates the impact of errors in the simulation of the
ground-state energy of H2 and LiH and illustrates the
expected impact on reaching chemical accuracy.
Furthermore, there are a number of recent proposals in

the literature that appear to significantly reduce the resour-
ces required to scale up these simulations. For instance, in
Ref. [40], the authors introduced a new class of basis
functions for the simulation of electronic structure.
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They quadratically reduce the number of terms in the
Hamiltonian from OðN4Þ to OðN2Þ, which also reduces
naive bounds on the number of measurements from OðN8Þ
to OðN4Þ [51]. This speeds up data collection by making
the number of circuit repetitions substantially more prac-
tical. The number of measurements required can also be
improved further using recent techniques for enforcing n-
representability conditions (known constraints on the
geometry of fermionic states) from Ref. [59].
The most significant challenge in realizing variational

algorithms in the near term is the required circuit depth. A
naive application of the unitary coupled cluster approach
requires a number of gates that scale as OðN4Þ, assuming
arbitrary connectivity between qubits. This strongly suggests
that more scalable variational circuits will be needed if we
are to approach classically intractable calculations without
error correction. One alternative to a unitary coupled cluster
is to use an unstructured variational circuit, as demonstrated
recently in Ref. [63]. Recent work in Ref. [120], however,
has shown that such strategies become exponentially expen-
sive as a consequence of the concentration of measure in
random quantum circuits. Nevertheless, there has been
significant recent progress in realizing low-depth structured
variational ansatze; e.g., in Ref. [41], the authors introduce
variational circuits based on Trotterized adiabatic state
preparation, which can be implemented with linear gate
depth even on a device with extremely limited (e.g., next-
neighbor) qubit connectivity. In Ref. [121], a similar ansatz
is introduced, also with linear gate depth, which is equivalent
to the fermionic swap network from Ref. [41] with a
different variational parameter initialization.
It is far from a forgone conclusion that we will one

day solve classically intractable problems in quantum
chemistry without error correction. Yet, by using these
ever-improving algorithms combined with error-mitigation
strategies and simpler Hamiltonian representations, it is
certainly the case that we should be able to push forward
and obtain reasonably accurate quantum simulations of
molecules with tens of spin orbitals (qubits) in the near
future. In comparison to other quantum simulations with
less stringent requirements, the notion of chemical accuracy
in this context provides a clear benchmark to determine the
point at which computational support by quantum pro-
cessors transitions into a useful regime. In this way, metrics
like the deviation in well depth or the worst-case deviation
along the entire potential energy surface, captured by the
so-called nonparallel error, might in fact provide a con-
venient way to measure multiqubit performance in different
architectures, which will help assess technological
progress.
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APPENDIX A: QUBIT IMPLEMENTATION

The qubits used for this experiment are encoded in
Zeeman sublevels of a metastable D and an S ground state
of 40Caþ ions confined in a macroscopic linear Paul trap
described in detail in Ref. [122] and shown in Fig. 8(a). In
particular, we associate

j0i ¼ j↑i ¼ j3d 2D5=2ðm ¼ þ3=2Þi and

j1i ¼ j↓i ¼ j4s 2S1=2ðm ¼ þ1=2Þi:

Both electronic levels are connected via an optical quadru-
pole transition at 729 nm, which is used to drive the qubits
via an ultrastable laser with about 1 Hz linewidth. The same
laser mediated multiqubit interactions via the joint motional
modes of the ions in their trapping potential. An auxiliary
transition at 397 nm between 4s 2S1=2 and 4p 2P1=2 is used
for laser cooling, state preparation via optical pumping, and
state detection.
Each experimental repetition consists of laser cooling,

ground-state initialization (sideband cooling to the
motional ground state of the ion string center-of-mass
mode and optical pumping to the electronic state j1i),
execution of the desired gate sequence, and finally parallel
state detection for each qubit via an electron multiplying
CCD camera [Fig. 8(b)]. Every sequence is repeated at least
100 times to calculate an expectation value from the
observed probabilities.

CORNELIUS HEMPEL et al. PHYS. REV. X 8, 031022 (2018)

031022-12



APPENDIX B: MOLECULAR HAMILTONIAN
FOR H2 AND UCCSD OPERATORS

1. BK transformation

The molecular Hamiltonian for H2 in the STO-3G
minimal basis can be mapped from its fermionic form in
Eq. (2) to qubits, yielding

HBK ¼ f0I þ f1σ
z
0 þ f2σ

z
1 þ f3σ

z
2 þ f4σ

z
1σ

z
0 þ f5σ

z
2σ

z
0

þ f6σ
z
3σ

z
1 þ f7σx2σ

z
1σ

x
0 þ f8σ

y
2σ

z
1σ

y
0 þ f9σ

z
2σ

z
1σ

z
0

þ f10σ
z
3σ

z
2σ

z
0 þ f11σ

z
3σ

z
2σ

z
1 þ f12σ

z
3σ

x
2σ

z
1σ

x
0

þ f13σ
z
3σ

y
2σ

z
1σ

y
0 þ f14σ

z
3σ

z
2σ

z
1σ

z
0; ðB1Þ

where the coefficients fi depend on the internuclear
separation (R) between the hydrogen atoms and are derived
from the integrals in Eqs. (3).
The reference state for the calculation corresponds to the

Hartree-Fock solution jφHFi ¼ j0001i. We observe that the
terms in the Hamiltonian only act with the identity I and σz

operations on qubits 1 and 3. This fact allows us to rewrite
our reference state as jφHFi ¼ j0i1j0i3 ⊗ j0i2j1i0. As

qubits 1 and 3 will not experience population changes
under the Hamiltonian, we can reduce Eq. (B1) to an
effective Hamiltonian acting on two qubits, with reference
state jφHFi ¼ j01i:

HBK ¼ c0I þ c1σ
z
0 þ c2σ

z
1 þ c3σ

z
0σ

z
1 þ c4σx0σ

x
1 þ c5σ

y
0σ

y
1:

Here, we have relabeled qubits 0 and 2 as 0 and 1. The
coefficients ci are now given by

c0 ¼ f0 þ f2 þ f6; c3 ¼ f5 þ f9 þ f10 þ f14;

c1 ¼ f1 þ f4; c4 ¼ f7 þ f12;

c2 ¼ f3 þ f11; c5 ¼ f8 þ f13:

This reduction of the problem for the hydrogen molecule
was first noted in Ref. [50], developed into a general
method in Ref. [68], and used in superconducting imple-
mentations of several problems in Ref. [63].

2. JW transformation

The molecular Hamiltonian under the Jordan-Wigner
transformation gets mapped to

HJW ¼ c0I þ c1ðσz0 þ σz1Þ þ c2ðσz2 þ σz3Þ þ c3σ
z
3σ

z
2

× c4σ
z
1σ

z
0 þ c5ðσz2σz0 þ σz3σ

z
1Þ þ c6ðσz2σz1 þ σz3σ

z
0Þ

þ c7ðσx3σy2σy1σz0 þ σy3σ
x
2σ

x
1σ

y
0Þ

− c7ðσx3σx2σy1σy0 þ σy3σ
y
2σ

x
1σ

x
0Þ;

with coefficients ci again derived from the integrals
in Eqs. (3).
Under the Jordan-Wigner transformation, all the qubits

are used to store occupation numbers, while in the Bravyi-
Kitaev transformation, even qubits store occupations and
odd qubits keep track of the parity of all the qubits with
smaller indices. Hence, four qubits are needed to encode
the ansatz state jφHFi ¼ j0011i.

3. Application of unitary coupled cluster to H2

For H2 in the minimal basis, the second quantized
formulation of the unitary coupled-cluster operator for
single and double excitations corresponds to

U ¼ exp½θ2301ða†2a†3a1a0 − a†0a
†
1a3a2Þ�;

where θ2301 is the coupled-cluster amplitude that is variation-
ally optimized. Note that in this case, the single-excitation
operators are effectively incorporated in the basis we are
using (i.e., the single excitations rotate the basis and do not
need to be applied explicitly in the circuit). Using the BK
mapping, this operator is expressed as follows:

(a)

(b)

FIG. 8. Qubit implementation using trapped ions. (a) Linear
Paul trap with ion-electrode distance of 565 μm capable of
stably storing linear arrays up to 70 ion qubits (up to 20 fully
controlled). The trap is housed in an ultrahigh vacuum environ-
ment, connected to dc and ac voltage sources that provide the
confining electric fields and is specifically designed to provide
laser beam access for the manipulation of the individual ions.
(b) Simplified level scheme of 40Caþ. A single-photon transition
at 729 nm is used to manipulate the qubit encoded in two Zeeman
states of the S and D manifolds. Upon illumination from a laser
at 397 nm, the qubits are projected into either the j1i state,
yielding ion fluorescence, or the j0i state, with no observable ion
fluorescence.
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Uðθ2301Þ ¼ exp

�
i
θ2301
8

½−σx2σy0 þ σy2σ
x
0 − σx2σ

z
1σ

y
0 þ σy2σ

z
1σ

x
0

−σz3σx2σ
y
0 þ σz3σ

y
2σ

x
0 − σz3σ

x
2σ

z
1σ

y
0 þ σz3σ

y
2σ

z
1σ

x
0�
�
:

As the terms in Uðθ2301Þ only act with the identity and σz

on qubits 1 and 3, the operator can be reduced to

Uðθ2301Þ ¼ exp

�
i
θ2301
2

½−σx1σy0 þ σy1σ
x
0�
�

¼ exp

�
−i

θ2301
2

σx1σ
y
0

�
exp

�
i
θ2301
2

σy1σ
x
0

�
;

where we have relabeled qubit 2 as 1 and used the fact that
the two operators commute. Finally, we observe that the
two exponentials in Uðθ2301Þ perform the same operation
when applied to the reference state j01i, explicitly

exp

�
i
θ2301
2

σy1σ
x
0

�
j01i

¼
�
cos

�
θ2301
2

�
I þ i sin

�
θ2301
2

�
σy1σ

x
0

�
j01i

¼
�
cos

�
θ2301
2

�
I þ i sin

�
θ2301
2

�
σx1σ

y
0σ

z
1σ

z
0

�
j01i

¼
�
cos

�
θ2301
2

�
I − i sin

�
θ2301
2

�
σx1σ

y
0

�
j01i

¼ exp
�
−i

θ2301
2

σx1σ
y
0

�
j01i:

This allows us to define the ansatz via the Uðθ2301Þ
operator simply as

Uðθ2301Þ ¼ exp ð−iθ2301σx1σy0Þ: ðB2Þ

Note that this form is only valid when the operator acts on
the reference state j01i.

4. Implementation of unitary coupled-cluster
operator using MS gates

In order to implement the UCC operator (B2) above
using Mølmer-Sørensen gates, we employ a technique first
demonstrated in Müller et al. [95], formulas (10)–(12). If
we consider arbitrary tensor products of qubit Pauli
operators A and B with ½A; B� ≠ 0, we have

exp ð−iαAÞ exp ðiθBÞ exp ðiαAÞ ¼ exp ðiθB0Þ;

with B0 ¼ exp ð−iαAÞB exp ðiαAÞ, and using the fact that
Pauli operators are self-inverse, we get

B0 ¼ ðI cos α − iA sin αÞBðI cos αþ iA sin αÞ.

Further, using the fact that A and B do not commute and
therefore must anticommute, we obtain

B0 ¼ B cos 2α −
i
2
½A; B� sin 2α;

and specifically for α ¼ π=4 and the case above,

expð−iθσ1yσjxÞ

¼ sin

�
iθ
i½σ1xσjx; σ1z �

2

�

¼ exp

�
−i

π

4
σ1xσ

j
x

�
exp ð−iθσ1zÞ exp

�
i
π

4
σ1xσ

j
x

�

¼ exp

�
i
π

4
σ1xσ

j
x

�
exp ð−iðθ þ πÞσ1zÞ exp

�
i
π

4
σ1xσ

j
x

�
:

5. Data for molecular hydrogen

Figure 9(a) shows an example of an online VQE run for
R ¼ 0.5 Å, using the basic Nelder-Mead optimization
routine. The experimental data closely follow the theoreti-
cal simulation and appear to converge after 15 iterations. In
order to maintain the same analysis that was used to
accommodate cases in which the optimization routine
got stuck, the corresponding energy minimum is extracted
by fitting a sinusoidal function to the parameter space
explored by all iterations [see Fig. 9(b)]. The vertical
displacement between simulation and experiment fits are
likely due to noise. The horizontal displacement is likely
due to calibration drifts, leading to a different α value
having the smallest energy.

6. Decoherence simulation

To understand the effect of various decoherence chan-
nels, we performed a simulation of the entire circuit of the
two-qubit H2 experiment using the open source framework
OpenFermion [113].
We assume that throughout the execution of the entire

state preparation circuit, the qubits experience dephasing,
e.g., due to magnetic field fluctuations induced by the
environment. We model the dephasing via an i.i.d. channel
of the form

ϵðρÞ ¼ ϵi1 ∘ ϵi2ðρÞ;
where

ϵiðρÞ ¼ ð1 − pdÞρþ pdσ
z
iρσ

z
i

is a Kraus map and pd is the probability for a single phase
flip. In our simulations, we applied the dephasing channel
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to all the qubits after the application of each gate in
the circuit of Fig. 2(a), with probability pd ¼ 1.0−
expð−Tg=T2Þ, where Tg is the physical time of the gate
and T2 is the dephasing time. We employed T2 ¼ 40 ms, as
determined from Ramsey experiments on a single ion. In
addition to dephasing, we model the effect of errors in the
MS gates using a two-qubit depolarizing channel. Here, we
consider all single- and two-qubit errors with the same
probability. For a two-qubit MS gate, the noise is described
by the quantum operation

ϵMSðρÞ ¼ ð1 − pMSÞρþ
pMS

15

X
i∈Λa

X
α∈Λα

σαi ρσ
α
i

þ pMS

15

X
j1;j2∈Λa

X
α;β∈Λα

σαj1σ
β
j2
ρσαj1σ

β
j2
;

where pMS is the probability of a MS depolarizing error,
andΛa andΛα correspond to the set of indices for the active
ions and Pauli matrices, respectively. For the two-qubit MS

gate, there are 15 possible Pauli errors (six single-qubit
and nine two-qubit), resulting in the prefactor 1=15. The
probability pMS is related to the fidelity of the gate as
F ¼ 1 − 14

15
pMS [123]. The experimental fidelity estimated

for the two-qubit MS gate is 0.99. In the simulation, the
two-qubit depolarizing channel is applied with probability
pMS after the MS gate.
Figures 7 and 10 display the results of the simulation for

H2 under the BK mapping. Our simulation appears to
account for the observed experimental errors along a
significant portion of the energy curve. We observe an
uneven upshift of the energy values that effectively reduces
the estimated well depth, respectively, binding energy. While
our simulations are close in magnitude to the observed
results, we note that other factors such as faulty measurement
operators (related to basis rotations and detection fidelity)
could also contribute to the discrepancies.

APPENDIX C: LITHIUM HYDRIDE MOLECULE

1. Derivation of the Hamiltonian

We obtained the molecular integrals in Eqs. (3) for LiH at
different internuclear separations using an STO-6G basis
set. For this particular application, we used the integrals in
the natural orbital basis (NMO). NMOs are obtained by
diagonalizing the exact one-electron reduced density
matrix (1-RDM) of the system and are ordered by natural
orbital occupation numbers (NOONs). It has been
shown that NMOs with small NOONs or NOONs close
to full occupancy have a negligible effect in the electron

FIG. 10. Simulation of decoherence channels in H2 under the
BK mapping. The plot compares the simulated energy curves for
different values of the fidelity of the MS gate and the exper-
imental results. The reference curve corresponds to the exact
diagonalization of the Hamiltonian. The decoherence channels
include one-qubit dephasing acting on all the qubits during the
state preparation and two-qubit depolarizing errors in the
MS gate.
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FIG. 9. Online VQE runs for R ¼ 0.5 Å. (a) Energy vs.
iteration number (target ¼ blue line, simulated result ¼ black,
experimental result ¼ red) Inset: Rotation angle α vs. iteration
number. Error bars are derived from quantum projection noise.
(b) Energy vs. rotation angle α with sinusoidal fitting
(simulation ¼ black, experiment ¼ red).
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correlation and therefore can be discarded [124].
Consequently, approximate NMOs and NOONs, obtained
from perturbation theory or truncated configuration inter-
action (CI) calculations, are usually employed to reduce the
computational cost of more involved correlated calcula-
tions and for the selection of active spaces [125].
After the BK transformation, the Hamiltonian for LiH

comprises 193 terms with amplitudes larger than 10−10

Hartree. AVQE simulation using the UCC ansatz truncated
to single and double excitations requires 12 qubits and
involves 32 single excitation operators and 168 double
excitation operators (without imposing spin constraints).
To reduce the number of excitation operators in the
calculation, we employed the NOONs derived from a
configuration interaction calculation with single and double
excitations (CISD) in order to select an appropriate active
space. Figure 11 shows the NOONs for the six molecular
orbitals of LiH, calculated using CISD for four different
internuclear separations. Based on the variations in the
NOONs, we establish orbitals 1 to 4 as an appropriate
active space.
A reasonable choice of excitation operators in the

selected active space would be the singlet double excita-
tions from orbital 1 to orbitals 2, 3, and 4, respectively.
Based on the NOONs, we expect the amplitude of the
excitation operator from orbital 1 to orbital 2 to be largest.
Similarly, we expect excitation operators from orbital 1 to
orbitals 3 and 4 to have the same or similar amplitudes.
Because of the constraints in circuit depth, we consider
only excitations from orbital 1 to orbitals 2 and 3, explicitly
the operators a†5a

†
4a3a2 − a†2a

†
3a4a5 and a†7a

†
6a3a2 −

a†2a
†
3a6a7, where a†i ðaiÞ denote the fermionic creation

(annihilation) operator in the ith spin orbital. In our
notation, spin orbitals with odd (even) indices correspond
to spin-up (spin-down) electrons, with indices starting at 0.
Using the BK mapping, these operators can be expressed as

a†5a
†
4a3a2 − a†2a

†
3a4a5

≡ i
8
ðσX2 σY4 þ σZ1σ

X
2 σ

Z
3σ

Y
4 − σY2σ

X
4 − σZ1σ

Y
2σ

Z
3σ

X
4 − σY2σ

X
4 σ

Z
5

− σZ1σ
Y
2σ

Z
3σ

X
4 σ

Z
5 þ σX2 σ

Y
4σ

Z
5 þ σZ1σ

X
2 σ

Z
3σ

Y
4σ

Z
5 Þ

and

a†7a
†
6a3a2 − a†2a

†
3a6a7

≡ i
8
ðσX2 σY6 þ σZ1σ

X
2 σ

Z
3σ

Y
6 − σY2σ

X
6 − σZ1σ

Y
2σ

Z
3σ

X
6

− σY2σ
Z
3σ

Z
5σ

X
6 σ

Z
7 − σZ1σ

Y
2σ

Z
5σ

X
6 σ

Z
7

þ σX2 σ
Z
3σ

Z
5σ

Y
6σ

Z
7 þ σZ1σ

X
2 σ

Z
5σ

Y
6σ

Z
7 Þ:

The initial state of the simulation, corresponding to the
Hartree-Fock wave function, is the state j000000000101i,
which simplifies to j000001i in the active space required
for the selected excitation operators. A full simulation of
LiH with the two double excitation operators listed above
would require at most 32 MS gates for a single Trotter step
if all the subterms were going to be implemented. To make
the simulation affordable in the current device, we approxi-
mated each of the operators using only the first subterm,
corresponding to σX2 σ

Y
4 and σX2 σ

Y
6 , respectively. The abso-

lute error in the total energy introduced by this approxi-
mation is smaller than chemical accuracy within the basis
set used, when compared to the FCI reference solution. The
two selected subterms can be implemented using MS gates
and single-qubit rotations as follows:

exp½−iασX2 σY4 �≡Uf2;4g
MS

�
π

2
; 0

�
Rzðα; 2ÞUf2;4g

MS

�
−
π

2
; 0

�
;

exp½−iβσX2 σY6 �≡Uf2;6g
MS

�
π

2
; 0

�
Rzðβ; 2ÞUf2;6g

MS

�
−
π

2
; 0

�
;

where Rz represents a rotation around the z axis and US
MS is

a MS gate acting on the set of qubits S. As the entangling
operations involve only qubits 2, 4, and 6, we can
efficiently construct an effective Hamiltonian involving
only operations on these qubits. The corresponding three-
qubit Hamiltonian has the form

H ¼ c0I þ c1Z0 þ c2Z1 þ c3Z2 þ c4Z1Z0 þ c5Z2Z0

þ c6Z2Z1 þ c7X1X0 þ c8Y1Y0 þ c9X2X0

þ c10Y2Y0 þ c11X2X1 þ c12Y2Y1: ðC1Þ

The applied pulse sequence to realize the Hamiltonian in
Eq. (C1) is shown in Fig. 4(b) acting on initial state j111i.

2. Parameter scans for LiH

The 2D LiH energy landscape hHðRÞiα;β, as shown in
the inset of Fig. 5(a), is obtained in the following way:
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FIG. 11. Natural orbital occupation numbers at four different
internuclear separations for LiH, calculated at the CISD level.

CORNELIUS HEMPEL et al. PHYS. REV. X 8, 031022 (2018)

031022-16



We apply the pulse sequence, shown in Fig. 4(c), to the
initial state jφð0Þi ¼ j111i. The MS gate fidelity for three
ions reaches 97(3)%, and the experiment is performed with
100 repetitions. The energy depends on two parameters α,
β, both corresponding to a σz rotation angle, applied on one
of three ions. These angles are scanned in the range of
α ∈ ½1.5; 6�, β ∈ ½2; 5�, with resolutions of 0.1 and 0.15,
respectively. The measured expectation values are shown in
Fig. 12. The 2D energy landscapes hHðRÞiα;β, as shown in
Fig. 5(a), are finally calculated by combining the measured
expectation values according to Eq. (C1) and adding the
contribution from the Coulomb interaction of the nuclei
hHnucðRÞi [Eq. (7)].
The final molecular energy curve hHðRÞi for LiH, as

shown in Fig. 5(b), is derived by fitting two-dimensional
functions on the 2D energy landscapes and extracting the
minimum value.

3. VQE runs for LiH

In our first implementation of the VQE, we employed the
Nelder-Mead optimization routine in the same way as for
molecular hydrogen. In the experimental results shown in
Fig. 13(a), it appears that the optimization algorithm
becomes trapped in a local minimum, preventing it from
converging any further.
To investigate this phenomenon, we simulate the experi-

ment, including quantum projection noise, and run a full
VQE simulation 10 times at a fixed separation R using the
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FIG. 13. (a) VQE run for LiH under the basic Nelder-Mead
direct search algorithm, for nuclear separation R ¼ 1.6 Å. The
graph shows energy hHðRÞiα;β vs iteration number. Stars re-
present experimental data, with error bars derived from quantum
projection noise. Circles represent a theoretical simulation of the
experiment. The red line indicates the theoretical FCI value; the
blue line shows the average over the last experimental iterations,
between the black line and the last point. (b) Last 20 steps of 10
independent simulations of the VQE experiment with quantum
projection noise, using the basic Nelder-Mead direct search
algorithm at R ¼ 1.6 Å. The black dot indicates the optimum
parameter combination for the global minimum location, pre-
dicted by FCI theory. The colored clusters of symbols represent
different repetitions of the same simulation that all started at the
same initial values of α and β.
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same values for the initial guess of parameters α and β.
The simulation results are shown in Fig. 13(b). For better
visibility, we plot only the last 20 points for each run, after
which the algorithm converges to a “stable” position. The
black dot represents the optimal combination of parame-
ters, predicted by the theory. One finds that each of the 10
simulated runs is trapped in a different local minimum,
leading to a deviation from the ideal energy values. We
conclude that the basic Nelder-Mead algorithm is not
suitable for this optimization problem. We therefore
instead employ a hybrid of the Nelder-Mead direct search
algorithm and simulated annealing theory [108] to obtain a
better estimate of the energy hHðRÞiα;β in the noisy
environment. We now fit a quadratic function to the 2D
landscape and extract the minimum value as hHðRÞi.
Figure 14 shows an example of fitting the 2D quadratic
function Eðα; βÞ ¼ mþ ðcα − aÞ2 þ ðdβ − bÞ2, with the
minimum energy valuem, to a subset of the VQE iterations,
taken to include those within 4 standard deviations from
the median. We perform VQE runs for two different
internuclear separations R ¼ 1.6, R ¼ 2.75, with three
ion MS gate fidelities of 98(5)%. The results are shown
in Fig. 5(b), together with the parameter scan discussed in
the previous section.
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