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Local operations assisted by classical communication (LOCC) constitute the free operations in
entanglement theory. Hence, the determination of LOCC transformations is crucial for the understanding
of entanglement. We characterize here almost all LOCC transformations among pure multipartite
multilevel states. Combined with the analogous results for qubit states shown by Gour et al. [J. Math.
Phys. (N.Y.) 58, 092204 (2017)], this gives a characterization of almost all local transformations among
multipartite pure states. We show that nontrivial LOCC transformations among generic, fully entangled,
pure states are almost never possible. Thus, almost all multipartite states are isolated. They can neither be
deterministically obtained from local-unitary-inequivalent (LU-inequivalent) states via local operations,
nor can they be deterministically transformed to pure, fully entangled LU-inequivalent states. In order to
derive this result, we prove a more general statement, namely, that, generically, a state possesses no
nontrivial local symmetry. We discuss further consequences of this result for the characterization of
optimal, probabilistic single-copy and probabilistic multicopy LOCC transformations and the characteri-
zation of LU-equivalence classes of multipartite pure states.
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I. INTRODUCTION

Entanglement lies at the heart of quantum theory and is
the essential resource for many striking applications of
quantum information science [1–6]. The entanglement
properties of multipartite states are, moreover, fundamental
to important concepts in condensed matter physics [7]. This
relevance of entanglement in various fields of science has
motivated great research efforts to gain a better under-
standing of these intriguing quantum correlations.
Local operations assisted by classical communication

(LOCC) play an essential role in the theoretical and
experimental investigation of quantum correlations.
Spatially separated parties who share some entangled state
can utilize it to accomplish a certain task, such as telepor-
tation. The parties are free to communicate classically with

each other and to perform any quantum operation on their
share of the system. To give an example, party 1 would
perform a generalized measurement on his/her system and
send the result to all other parties. Party 2 performs then,
depending on the measurement outcome of party 1, a
generalized measurement. The outcome is again sent to
all parties, in particular to party 3, who applies a quantum
operation, which depends on both previous outcomes, on
his/her share of the system, etc. Any protocol that can be
realized in such a way is a LOCC protocol. This physically
motivated scenario led to the definition of entanglement as a
resource that cannot be increased via LOCC. Stated differ-
ently, entanglement theory is a resource theory where the
free operations are LOCC. In particular, if jψi can be
transformed to jϕi via LOCC, then EðjψiÞ ≥ EðjϕiÞ for
any entanglement measure E. Therefore, studying all
possible LOCC transformations among pure states also
leads to a partial order of entanglement.
In the bipartite case, simple, necessary, and sufficient

conditions for LOCC transformations among pure states
were derived [8]. This is one of the main reasons why
bipartite (pure state) entanglement is so well understood, as
those conditions resulted in an elegant framework that
explains how bipartite entanglement can be characterized,
quantified, and manipulated [2]. In particular, the optimal
resource of entanglement, i.e., the maximally entangled
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state, could be identified. It is, up to normalization and local
unitary (LU) operations (which do not alter the entangle-
ment), the state

P
ijiii. This state can be transformed into

any other state in the Hilbert space via LOCC. Many
applications within quantum information theory, such as
teleportation, entanglement-based cryptography, or dense
coding, utilize this state as a resource.
In spite of considerable progress [2,9], an analogous

characterization of multipartite LOCC transformations
remains elusive. The reasons for that are manifold.
Firstly, the study of multipartite entangled states is difficult,
and often intractable, due to the exponential growth of the
dimension of the Hilbert spaces. Secondly, multipartite
LOCC is notoriously difficult to describe mathematically
[10]. Thirdly, there exist multipartite entangled states,
belonging to the same Hilbert space, that cannot even be
interconverted via stochastic LOCC (SLOCC) [11] and,
thus, there is no universal unit of multipartite entanglement.
Apart from LOCC transformations, other, more tractable

local operations were considered. LU operations, which, as
mentioned before, do not alter the entanglement, have been
investigated [12]. SLOCC transformations, which corre-
spond to a single branch of a LOCC protocol, have been
analyzed [11]. Both relations define an equivalence rela-
tion. That is, two states are said to be in the same SLOCC
class (LU class) if there exists a g ∈ G̃ (g ∈ K̃) that maps
one state to the other, respectively. Here, and in the
following, G̃ (K̃) denotes the set of local invertible (unitary)
operators. Clearly, two fully entangled states, i.e., states
whose single-subsystem reduced states have full rank, have
to be in the same SLOCC class in case there exists a LOCC
transformation mapping one into the other. That is, it must
be possible to locally transform one state into the other with
a nonvanishing probability in case the transformation can
be done deterministically. Apart from LU and SLOCC,
where a single local operator is considered, transformations
involving more operators have been investigated, such as
LOCC transformations using only finitely many rounds of
classical communication [13] or separable operations (SEP)
[14]. Considering only finitely many rounds of classical
communication in a LOCC protocol is practically moti-
vated and leads to a simple characterization of (generic)
states to which some other state can be transformed via
such a protocol. However, it has been shown that there
exist transformations that can only be accomplished with
LOCC if infinitely many rounds of communication
are employed [15]. SEP transformations are easier to deal
with mathematically than LOCC. However, they lack a
clear physical meaning, as they strictly contain LOCC
[10,16]. Any separable map ΛSEP can be written as

ΛSEPð·Þ ¼
P

kMkð·ÞM†
k, where the Kraus operators Mk ¼

Mð1Þ
k ⊗ … ⊗ MðnÞ

k are local and fulfill the completeness
relation

P
kM

†
kMk ¼ 1. In Ref. [17], necessary and suffi-

cient conditions for the existence of a separable map

transforming one pure state into another were presented.
Clearly, any LOCC protocol as explained above corre-
sponds to a separable map. However, not any separable
map can be realized with local operations and classical
communication [16], and there exist even multipartite pure
state transformations that can be achieved via SEP, but not
via LOCC [18].
Thus, despite all these efforts and the challenges

involved in characterizing and studying LOCC, the
fundamental relevance of LOCC within entanglement
theory makes its investigation inevitable in order to reach
a deeper understanding of multipartite entanglement.
Already, the identification of the analog of the max-
imally entangled bipartite state, the maximally entangled
set (MES), requires the knowledge of possible LOCC
transformations. This set of states, which was charac-
terized for small system sizes [18–20], is the minimal set
of states from which any other fully entangled state
(within the same Hilbert space) can be obtained via
LOCC. The investigation of LOCC transformations, in
particular for arbitrary local dimensions, might also lead
to new applications in many fields of science, e.g., new
ways to use quantum networks, which now become an
experimental reality, or new theoretical tools in con-
densed matter physics.
Instead of investigating particular LOCC transforma-

tions, we follow a different approach, which is based on the
theory of Lie groups and algebraic geometry (see also
Ref. [21]). This new viewpoint allows us to overcome many
of the usual obstacles in multipartite entanglement theory
described above. It enables us to characterize, rather
unexpectedly, all LOCC (and SEP) transformations, i.e.,
all local transformations, among pure states of a full-
measure subset of any system of ðn > 3Þ d-level subsys-
tems and certain tripartite qudit systems. We show that
there exists no nontrivial LOCC transformation from or to
any of the states within this full-measure set. We call a local
transformation nontrivial if it cannot be achieved by
applying LUs (which can, of course, always be applied).
To be more precise, we show that a generic state jψi can
be deterministically transformed to a fully entangled
state jϕi via LOCC (and even SEP) if and only if (iff)
jϕi ¼ u1 ⊗ … ⊗ unjψi, where ui is unitary; that is, only if
jψi and jϕi are LU equivalent. As LU transformations are
trivial LOCC transformations, almost all pure multiqudit
states are isolated. That is, they can neither be determin-
istically obtained from other states via nontrivial LOCC nor
can they be deterministically transformed via nontrivial
LOCC to other fully entangled pure states. This also
holds if transformations via the larger class of SEP are
considered.
We derive this result by using the fact that the existence

of local symmetries of a state is essential for it to be
transformable via LOCC or SEP (see Refs. [17,21] and
Sec. II). The local symmetries of an n-partite state jψi are
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all local invertible operators g ¼ g1 ⊗ … ⊗ gn ∈ G̃ such
that gjψi ¼ jψi. The set of all local symmetries of jψi is
also referred to as its stabilizer. We prove that, for the
aforementioned Hilbert spaces, there exists a full-measure
set of states that possess no nontrivial symmetry. These
results are a generalization of those presented in Ref. [21].
Here, the following remark is in order. One might be
tempted to believe that the stabilizer of most states is trivial
whenever the number of complex variables Nv (describing
g) in the equation gjψi ¼ jψi is smaller than the number of
equations Ne (describing jψi). However, this counting
argument already fails in the case of four qubits, where
13 ¼ Nv < Ne ¼ 16, but only a zero-measure subset of
states has a trivial stabilizer and almost all states have
nontrivial symmetries [17,20,22]. Hence, a parameter
counting argument does not suffice to show that the set
of states with a trivial stabilizer is of full measure. In fact, a
rigorous proof of this fact is already very involved for the
qubit case. In Ref. [21], methods from algebraic geometry
and the theory of Lie groups were used to show that generic
ðn > 4Þ-qubit (d ¼ 2) states only have trivial symmetries.
However, a straightforward generalization beyond qubit
states was impossible, as in Ref. [21], special properties of
the qubit case were utilized, for instance, the existence of
polynomials of low degree that are invariant under the
action of the local special linear group, so-called SL-
invariant polynomials (SLIPs). Note that, because of these
special properties of qubit states, it was unclear whether,
indeed, a similar result holds for arbitrary dimensions. As
the statement is not true for less than five qubits, it could,
furthermore, have turned out that the number of parties for
which almost all states have a trivial stabilizer depends on
the local dimension, i.e., that n depends on d. We show
here, however, that this is not the case by employing new
tools from algebraic geometry. Clearly, the investigation of
higher local dimensions is central in quantum information
processing, where, for example, in quantum networks, the
parties have access to more than just a single qubit.
Moreover, in tensor network states, which are employed
for the investigation of condensed matter systems, the local
dimension is often larger than two.
A direct consequence of this result is that the maximally

entangled set (MES) [19] is of full measure in systems
of n > 3 qudits (and certain tripartite systems). The
intersection of states that are in the MES and are convert-
ible, i.e., that can be transformed into some other (LU-
inequivalent) state, is of measure zero. These states are the
most relevant ones regarding pure state transformations.
Prominent examples of these states are the Greenberger-
Horne-Zeilinger (GHZ) state [23] or more generally sta-
bilizer states [4]. Hence, the results presented here do not
only identify the full-measure set of states that are isolated,
but also indicate which states can be transformed.
As generic LOCC transformations are impossible, it is

crucial to determine the optimal probabilistic protocol to

achieve these transformations. Given the result presented
here, the simple expression for the corresponding optimal
success probability presented in Ref. [21] also holds for a
generic state with arbitrary local dimensions. Moreover,
we show that the fact that almost no state possesses a
nontrivial local symmetry can be used to derive simple
conditions for two SLOCC-equivalent states to be LU
equivalent. We also show that our result leads to new
insights into scenarios in which LOCC transformations of
more than one copy of a state are considered. In
particular, a lower bound on the probability, with which
n copies of a state jψi can be transformed into m copies
of a state jϕi, can be derived. Remarkably, this bound
holds for any pair of states jψi, jϕi, i.e., even those that
are not generic, and arbitrary numbers of copies, n, m.
Furthermore, it leads to a new lower bound on the
optimal rate to convert asymptotically many copies of jψi
into copies of jϕi via LOCC.
The rest of this paper is organized as follows. In Sec. II,

we present the main result of the paper and emphasize the
physical consequences thereof. In particular, we first state
that there exists a full-measure set of states (of almost all
Hilbert spaces with constant local dimension), with the
property that the local stabilizer of any state in this set is
trivial (Theorem 1). We then recap why local symmetries
play such an important role in state transformations and
that Theorem 1 implies that, generically, there is no state
transformation possible via LOCC. After that, we present
further consequences of Theorem 1 for the characteriza-
tion of optimal probabilistic LOCC transformations, of
LU-equivalence classes, and for the determination of
probabilistic multicopy LOCC transformations, as men-
tioned above.
In Sec. III, we present the mathematical methods used

to prove that almost all multiqudit states have a trivial
stabilizer. In Sec. III A, we introduce our notation and
briefly recap the results presented in Ref. [21], where qubit
systems were considered. In Sec. III B, we develop these
methods further and employ new tools from the theory of
Lie groups and algebraic geometry to show that, whenever
there exists a so-called critical state whose set of unitary
local symmetries is trivial, then the stabilizer of a generic
multipartite state is trivial (Theorem 12). In Sec. III C, we
present examples of n-qudit systems for all local dimen-
sions (d > 2) and any number of subsystems (n > 3) of
states that have these properties. In particular, we prove
there that the stabilizer of these states is trivial. Combined
with Theorem 12 mentioned above, this shows that the
stabilizer of a generic state, i.e., of a full-measure subset of
states, of n > 4 qubits and n > 3 qudits, is trivial. This
result also holds for three qudits with local dimension
d ¼ 4, 5, 6. In Sec. IV, we illustrate and discuss the picture
of multipartite pure state transformations that emerges if we
combine this work with previous findings on bipartite [8],
3-qutrit [18], and qubit systems [19,21]. In Sec. V, we
present our conclusions.
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II. MAIN RESULTS AND IMPLICATIONS

Let us state here the main results of this paper and
elaborate on its consequences in the context of entangle-
ment theory.
We consider pure states belonging to the Hilbert space

Hn;d≡ ⊗n Cd, i.e., the Hilbert space of n qudits. Whenever
we do not need to be specific about the local dimensions,
we simply write Hn instead of Hn;d. As before, G̃ denotes
the set of local invertible operators on Hn. Our main result
concerns the group of local symmetries of a multipartite
state jψi, also referred to as its stabilizer in G̃, which is
defined as

G̃ψ ≡ fg ∈ G̃jgjψi ¼ jψig ⊂ G̃: ð1Þ

We prove that, for almost all multiqudit Hilbert spaces
Hn;d, there exists a full-measured set of states whose
stabilizer is trivial. Recall that a subset of Hn is said to
be of full measure if its complement in Hn is of lower
dimension. Stated differently, almost all states are in the
full-measured set and its complement is a zero-measure set.
The main result presented here is given by the following

theorem.
Theorem 1. For any number of subsystems n > 3 and

any local dimension d > 2, there exists a set of states whose
stabilizer in G̃ is trivial. This set is open, dense and of full
measure in Hn;d. Such a set of states also exists for n ¼ 3

and d ¼ 4, 5, 6.
Note that it will be clear from the proof of the theorem

why the case n ¼ 3 has to be treated differently (see
Sec. III). However, it is likely that the statement of the
theorem also holds for n ¼ 3 and d > 6. Theorem 1 shows
that almost all multiqudit states jψi have only the trivial
local symmetry, i.e., G̃ψ ¼ f1g. This result has deep
implications for entanglement theory. In order to explain
them, we briefly review the connection between the local
symmetries of multipartite states and their transformation
properties under LOCC and SEP.
As mentioned in the Introduction, we say that jψi can be

transformed via SEP into jϕi if there exists a separable map
ΛSEPð·Þ ¼

P
kMkð·ÞM†

k such that ΛSEPðjψihψ jÞ ¼ jϕihϕj,
where the Kraus operators Mk ¼ Mð1Þ

k ⊗ … ⊗ MðnÞ
k are

local and fulfill the completeness relation
P

kM
†
kMk ¼ 1.

The transformation is possible via LOCC if there is a ΛSEP
that achieves the transformation and that can be imple-
mented locally. It is clear that a fully entangled state jψi can
only be transformed into another fully entangled state jϕi if
these states are SLOCC equivalent, i.e., jϕi ¼ hjψi for
some h ∈ G̃. In Ref. [17], it was shown that a
fully entangled state jψi can be transformed via SEP to
jϕi ¼ hjψi iff there exists a m ∈ N and a set of proba-
bilities fpkgmk¼1 (pk ≥ 0,

P
m
k¼1 pk ¼ 1) and fSkgmk¼1 ⊂ G̃ψ ,

such that

X
k

pkS
†
kHSk ¼ r1: ð2Þ

Here, H ¼ h†h≡ ⊗ Hi is a local operator and
r ¼ ½ðjjjϕik2Þ=ðjjjψik2Þ�. This criterion for the existence
of a SEP transformation can be understood as follows. Let
Mk denote the local operator that maps jψi to jϕi ¼ hjψi,
i.e.,Mkjψi ¼ ckhjψi for some ck ≠ 0. Hence, h−1Mk must
be proportional to a local symmetry of jψi. Using then the
completeness relation

P
kM

†
kMk ¼ 1 leads to the necessary

and sufficient conditions in Eq. (2) for the existence of a
separable map transforming one fully entangled state into
the other [17].
As LOCC is contained in SEP, it is evident from this

result that the local symmetries of a state play also a major
role in the study of LOCC transformations. However, in
order to characterize LOCC transformations among fully
entangled states using Eq. (2), one has to determine their
local symmetries, find all solutions of Eq. (2), and check if
the corresponding separable measurement can be imple-
mented locally. For particular pairs of states, such a
procedure is feasible, even though it might be very tedious.
However, to find all possible LOCC transformations seems
infeasible. Our main result (see Theorem 1) allows us to
accomplish all the steps described above for almost all
multipartite qudit states and thereby provides a characteri-
zation of deterministic SEP and LOCC transformations for
almost all qudit states. This is one of the reasons why
Theorem 1 has such deep implications in entanglement
theory, as we explain below.
In Ref. [21], some of us proved a similar result as stated in

Theorem 1 for qubit states. There, so-called SL-invariant
polynomials (SLIPs) [24] were used to identify a full-
measure subset of all ðn > 4Þ-qubit states that have a trivial
stabilizer. As the special characteristics of the qubit case, for
instance, the existence of SLIPs of low degree, cannot be
utilized for higher dimensions, this proof does not hold
beyond qubit states. Precisely due to these peculiarities of
qubit states, it was unclear whether, indeed, a similar result
holds for arbitrary local dimensions.Moreover, as the analog
of Theorem 1 is not true for less than five qubits, it could
have turned out that the number of parties for which almost
all states have a trivial stabilizer depends on the local
dimension, i.e., that n depends on d. Theorem 1 shows that
this is not the case. In order to tackle the case of arbitrary
local dimensions, we employ in this work new tools from
the theory of Lie groups and geometric invariant theory
without explicitly usingSLIPs (see Sec. III).We also show in
Sec. III that the new results encompass the qubit case.
Let us now discuss the consequences of Theorem 1 in the

context of entanglement theory.

A. Nontrivial deterministic local transformations
are almost never possible

In Ref. [21], it was shown that states with a trivial
stabilizer are isolated. That is, a state with a trivial stabilizer
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can neither be obtained from LU-inequivalent states via
LOCC nor can it be transformed to LU-inequivalent, fully
entangled states via LOCC. The same holds for trans-
formations via SEP. Indeed, for such a state, the only
solution to Eq. (2) is H ¼ 1, which means that jψi is LU
equivalent to jϕi. It was then shown in Ref. [21] that this
holds for almost all states of n > 4 qubits. Theorem 1
ensures that the same holds true for almost all multiqudit
states, which is stated in the following theorem.
Theorem 2. Let Hn;d be one of the multipartite qudit

Hilbert spaces in Theorem 1 and let jψi ∈ Hn;d be a fully
entangled n-partite state with a trivial stabilizer, i.e.,
G̃ψ ¼ f1g. Then, jψi can be deterministically obtained
from or transformed to a fully entangled jϕi via LOCC
or SEP iff jψi and jϕi are related by local unitary operations;
that is, iff there exists a u ∈ K̃ such that jψi ¼ ujϕi.
Recall that K̃ denotes the group of local unitary

operators. On the one hand, this result shows that, rather
unexpectedly, a characterization of LOCC transformations
of almost all multiqudit states is possible. On the other
hand, it proves that these transformations are generically
extremely restricted and nontrivial transformations are
generically impossible. That is, the parties who share a
generic state cannot transform it via LOCC deterministi-
cally into any other (LU-inequivalent) state. This result
might also be the reason why there has been so little
progress on multipartite state (or entanglement) transfor-
mations via local operations.

As the MES is defined as the minimal set of states that
can be transformed into any other fully entangled state in
the Hilbert space [19], Theorem 2 implies that the MES of
ðn > 3Þ-qudits is of full measure. Note that this is in strong
contrast to the bipartite case, where a single state, namely,
the maximally entangled state jΦþi ¼ P

ijiii, can be
transformed into any other state in the Hilbert space with
LOCC. In Sec. IV, we discuss in detail the picture of
multipartite pure state transformations that emerges if we
combine our findings with previous results on the subject
(see also Fig. 1).
Theorem 2 also has implications for the construction of

entanglement measures. Recall that an entanglement mea-
sure for pure states is a function E ∶ Hn → R≥0 such that
EðψÞ ≥ EðϕÞ holds whenever the transformation from jψi
to jϕi can be performed deterministically via LOCC. Since
generic multiqudit states cannot be reached via nontrivial
deterministic LOCC, one only has to verify if E is invariant
under LU transformations and nonincreasing under LOCC
transformations to and within the zero-measure subset of
states with nontrivial stabilizer, e.g., to states that are not
fully entangled.

B. A characterization of optimal probabilistic local
transformations for almost all multiqudit states

Given the fact that it is not possible to transform generic
multiqudit states via local transformations into any other
state, it is crucial to determine the optimal probability to
achieve these conversions. Note that, if both the initial and
final states are fully entangled, this probability is only
nonzero if they are elements of the same stochastic LOCC
(SLOCC) class [11]. In Ref. [21], some of us found an
explicit formula for this probability for qubit states.
Because of Theorem 1, this formula indeed holds for
arbitrary local dimensions.
Theorem 3. Let Hn;d be one of the multipartite qudit

Hilbert spaces in Theorem 1, let jψi ∈ Hn;d be a normal-
ized, fully entangled, n-partite state with a trivial stabilizer,
i.e., G̃ψ ¼ f1g, and let jϕi ¼ hjψi be a normalized state in
the SLOCC class of jψi. Then the maximum probability to
convert jψi to jϕi via LOCC or SEP is given by

pmaxðjψi → jϕiÞ ¼ 1

λmaxðh†hÞ
; ð3Þ

where λmaxðXÞ denotes the maximal eigenvalue of X.
Because of Theorem 1, this theorem gives a simple

expression for the optimal probability pmaxðjψi → jϕiÞ to
locally transform a generic ðn > 3Þ-qudit state jψi into
another fully entangled state jϕi. These results also hold for
tripartite d-level systems with d ¼ 4, 5, 6. It should be
noted here that the optimal success probability was only
known for very restricted transformations prior to these
results (see, e.g., Refs. [17,25] and references therein).
Theorem 2 and Theorem 3 now provide a characterization

FIG. 1. Summary of results on the symmetries of n-partite
systems with local dimension d. The picture is divided into
different regions (A to G) that were treated separately in the
literature. The colors give information on the stabilizer of states in
the corresponding system: blue (all states have a noncompact
stabilizer, regions A [8] and B [19,25]), green (generic states have
a finite, nontrivial stabilizer, regions C [18] and F [19]); red
[generic states have a trivial stabilizer, regions D (see Theorem 1)
and G [21] ]; grey (generic states have a finite stabilizer [17,26],
unknown if it is trivial, region E). The implications of these and
other results in entanglement theory are summarized in the
main text.
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of deterministic and optimal probabilistic local transforma-
tions for almost all multiqudit states.
Note that the optimal success probability given in Eq. (3)

is optimal for transformations via LOCC and via SEP.
This shows that, despite the fact that there are pure state
transformations that can be achieved via SEP but not via
LOCC [18], the two classes of operations are equally
powerful for transformations among generic ðn > 3Þ-qudit
states. The reason for this is that the optimal SEP protocol is
a so-called one-successful-branch protocol (OSBP), which
can always be implemented via LOCC in one round of
classical communication. As suggested by the name, a
OSBP is a simple protocol for which only one measurement
branch leads to the final state, while all other branches lead
to states that are no longer fully entangled (see Ref. [21]).
This optimal protocol to transform jψi into jϕi ¼ hjψi via
LOCC, where h ¼ h1 ⊗ … ⊗ hn ∈ G̃, is implemented as
follows. The first party applies a local generalized meas-
urement that contains an element proportional to h1.
Similarly, party 2 applies a local generalized measurement
that contains an element proportional to h2, etc. The
successful branch is the one where all parties managed
to apply the operator hi. Because of the fact that the local
measurements have to obey the completeness relation, one
can show that the maximal success probability is given as in
Theorem 3. Note that this protocol can, of course, also be
performed if the corresponding state has nontrivial sym-
metries. That is, the success probability given in Eq. (3) is
always a lower bound on the success probability.
Because of Theorem 2, the optimal success probability

can only be one if the states are LU equivalent. Let us
verify that this is indeed the case. Given the premises of
Theorem 3, we make the following observation.
Observation 4. The optimal success probability as

given in Theorem 3 is equal to 1 iff H ≡ h†h ¼ 1.
This can be easily seen as follows. As jψi and jϕi¼hjψi

are both normalized, we have that

λmaxðHÞ ¼ maxχ
hχjHjχi
hχjχi ≥

hψ jHjψi
hψ jψi ¼ 1: ð4Þ

Because of Eq. (3), the success probability is 1 iff the
maximal eigenvalue of H is 1. We hence obtain that jψi is
an eigenstate of H, i.e., Hjψi ¼ λmaxðHÞjψi. However, as
H is in G̃ and as jψi does not have any nontrivial local
symmetry, it must hold that H ¼ 1.

C. A simple method to decide LU equivalence
of generic multiqudit states

Since local unitary transformations are the only trivial
LOCC transformations of pure states, i.e., the only trans-
formations that do not change the entanglement of a state
[27], it is important to know when two states are LU
equivalent. That is, given two states jψi, jϕi, one would
like to know whether there exists a local unitary u ∈ K̃ such

that jψi ¼ ujϕi. In general, this is a highly nontrivial
problem (see, e.g., Ref. [12]). However, we show now that
the results in this article also allow us to solve the LU-
equivalence problem for generic multiqudit states, as stated
in the following theorem.
Theorem 5. Let jψi, jϕi ∈ Hn be both states in the

SLOCC class of a state jψ si, with a trivial stabilizer, i.e.,
G̃ψ s

¼ f1g. That is, jψi ¼ gjψ si and jϕi ¼ hjψ si. Then,
jψi is LU equivalent to jϕi iff G ¼ H.
Proof.—As before, we use the notation G ¼ g†g and

H ¼ h†h. First, note that G ¼ H holds iff g ¼ uh for some
local unitary u ∈ K̃. Hence, jψi ¼ gjψ si ¼ uhjψ si ¼ ujϕi
and, therefore, the states are LU equivalent. The other
direction of the proof can be seen as follows. If jψi ¼
gjψ si ¼ uhjψ si, then g−1uh ¼ 1must hold, as jψ si does not
possess any nontrivial local symmetry. Thus, we have that
G ¼ H. ▪
This strong implication follows only from the fact that

jψ si has a trivial stabilizer, which implies that the standard
form gjψ si with which a state in the SLOCC class of jψ si
can be represented is unique. That is, the only g0 such
that gjψ si ¼ g0jψ si is g ¼ g0, as otherwise, ðg0Þ−1g would
be a nontrivial local symmetry of the state jψ si. Because
of Theorem 1, Theorem 5 applies to almost all multiqudit
states.
Let us now generalize this result to the situation where it

is known that the two states are in the same SLOCC class,
but the local invertible operator transforming one into the
other (for the states above the operator hg−1) is unknown.
To this end, we introduce now the notion of critical states.
A state is called critical if all of its single-subsystem
reduced states are proportional to the completely mixed
state [17]. Prominent examples of critical states are Bell
states, GHZ states [23], cluster states [3], graph states [28],
code states [1], and absolutely maximally entangled states
[29]. The set of all critical states in Hn;d, denoted by
CritðHn;dÞ, plays an important role in entanglement theory
as the union of all SLOCC classes of critical states is of full
measure in Hn;d [17]. For more details and properties of
critical states, we refer the reader to Sec. III.
Let us note that the standard form jψi ¼ gjψsi of a

generic state corresponds to the normal form introduced in
Ref. [30]. The numerical algorithm presented in Ref. [30]
can be used to find the normal form of a generic state, i.e., a
local invertible g ∈ G̃ and a critical state jψ si such that
jψi ¼ gjψ si. Because of the Kempf-Ness theorem [31] (see
also Appendix A), there exists, up to local unitaries, only
one critical state in a SLOCC class. Hence, computing the
normal form for two states in the same SLOCC class leads
to jψi ¼ gjψ si and jϕi ¼ hjψ 0

si, where jψ 0
si ¼ ujψ si, with

u a local unitary. The question we address next is when
these two states are LU equivalent. The necessary and
sufficient condition is given by the following lemma.
Lemma 6. Let jψi, jϕi ∈ Hn be both states in the

SLOCC class of a critical state jψ si, with a trivial stabilizer.
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Let further jψi ¼ gjψ si and jϕi ¼ hjψ 0
si be the normal

forms of the states derived with the algorithm presented in
Ref. [30]. Then, jψi is LU equivalent to jϕi iff the local
unitary u that transforms jψ 0

si into jψ si, i.e., jψ si ¼ ujψ 0
si

(which must exist and is unique) fulfills G ¼ u†Hu.
Because of Theorem 1, this theorem again applies to

almost all multiqudit states. It provides an easy way to
solve the a priori, highly nontrivial problem of deciding the
LU equivalence of two generic states that are SLOCC
equivalent.
Proof.—If: Let G ¼ u†Hu. Then there exists a unitary v

such that g ¼ vhu. As all operators u, h, and g are local
and invertible, v is a local unitary operator. Hence,
jψi ¼ gjψsi ¼ vhujψ si ¼ vhjψ 0

si ¼ vjϕi. Only if: If there
exists a local unitary, v transforming jϕi into jψi, we have
jψi ¼ gjψ si ¼ vjϕi ¼ vhjψ 0

si ¼ vhujψ si. The last equal-
ity follows from the uniqueness of the critical states in a
SLOCC orbit. As jψ si does not possess any nontrivial local
symmetry, it must hold that g ¼ vhu. Therefore, we have
G ¼ u†Hu. ▪

D. Multicopy transformations and asymptotic
conversion rates

Let us briefly discuss which consequences the results
presented here have in the case where transformations of
many copies of a state are considered. First of all, note that
the fact that jψi has only trivial local symmetries does not
imply that the same holds for multiple copies of this state.
In fact, any k copies of a state jψi, i.e., jψi⊗k, do have local
symmetries, namely, a local permutation operator (SWAP)
applied to all parties. Hence, multicopy states belong to the
zero-measure subset of multiqudit states with nontrivial
local symmetries. These nontrivial symmetries could give
rise to nontrivial local transformations [see Eq. (2)]. Indeed,
it has recently been shown in Ref. [32] that there are cases
where two copies of a state can be transformed to states that
cannot be reached from other states in the case of a single
copy. Hence, the MES can be made smaller even if only
two copies of the state are considered.
However, since we know the optimal probability to

locally transform a single copy of a generic state jψi into
a fully entangled state jϕi, it is straightforward to obtain a
lower bound on the optimal probability to transform k
copies of jψi into m ≤ k copies of a fully entangled state
jϕi ¼ hjψi via LOCC, namely,

pmaxðjψi⊗k → jϕi⊗mÞ

≥
Xk
j¼m

�
k
j

�
pmaxðjψi → jϕiÞj½1 − pmaxðjψi → jϕiÞ�k−j:

ð5Þ
Although this bound follows trivially from our results on
single-copy transformations, it can provide new insights
into the multicopy case. This is exemplified if one

considers the asymptotic limit of k → ∞, where one is
interested in the optimal rate Rðjψi → jϕiÞ at which
asymptotically many copies of a state jψi can be trans-
formed into copies of a state jϕi, which is defined as

Rðjψi → jϕiÞ ¼ sup
n
rj lim

k→∞
ð inf
ΛLOCC

kΛLOCCðjψihψ j⊗kÞ

− jϕihϕj⊗brkck1Þ ¼ 0
o
: ð6Þ

Here, the infimum is taken over all LOCC maps, and
kXk1 ¼ Trð

ffiffiffiffiffiffiffiffiffi
X†X

p
Þ denotes the trace norm of X. It was

recently shown in Ref. [33] that, for tripartite states jψi,
jϕi, it holds that

Rðjψi→ jϕiÞ ≥min

(
Sðρð1Þψ Þ

Sðρð2Þϕ Þ þ Sðρð3Þϕ Þ
;
Sðρð2Þψ Þ
Sðρð2Þϕ Þ

;
Sðρð3Þψ Þ
Sðρð3Þϕ Þ

)
;

ð7Þ

where ρðiÞψ ¼ Trl≠iðjψihψ jÞ (and similar for jϕi) and SðρÞ ¼
−Tr½ρ logðρÞ� is the Von Neumann entropy. Note that this
bound can obviously be improved by taking the maximum
over all bipartitions of the tripartite states. Little is known on
lower bounds on Rðjψi → jϕiÞ for states of more than three
parties. However, because of Eq. (5) and the law of large
numbers (see, e.g., Ref. [1] and references therein), we
obtain the following theorem.
Theorem 7. Let jψi, jϕi ∈ Hn be two multipartite

entangled states and let pmaxðjψi → jϕiÞ denote the optimal
success probability to transform jψi into jϕi via LOCC.
Then, the asymptotic LOCC conversion rate from jψi to jϕi
fulfills

Rðjψi → jϕiÞ ≥ pmaxðjψi → jϕiÞ: ð8Þ

For a normalized generic multiqudit state jψi (i.e., with a
trivial stabilizer) and a normalized state jϕi ¼ hjψi, we can
insert the expression of Eq. (3) for pmaxðjψi → jϕiÞ into
Eq. (8), and we obtain the following bound,

Rðjψi → jϕiÞ ≥ 1

λmaxðHÞ : ð9Þ

Note that, even in the tripartite case (e.g., for three four-
level systems), one can easily construct examples where
the bound in Eq. (9) is better than the bound in Eq. (7)
(even if optimized over all bipartitions), while there are also
tripartite states for which the opposite holds.

III. MATHEMATICAL CONCEPTS AND
PROOF OF THE MAIN RESULT

In this section, we present the proof of our main result,
Theorem 1. In fact, we prove Theorem 1 by deriving results
that are stronger than actually required. However, we
believe that these tools are also useful in other contexts
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and should, therefore, be presented in the main text of this
article. We first introduce in Sec. III A our notation and the
main mathematical tools that we use. Furthermore, we
summarize some of the results that were presented in
Ref. [21]. In Sec. III B, we first give a concise outline of the
proof of Theorem 1. We then continue with a presentation
of the detailed proof. In Sec. III C, we give examples of
states with a trivial stabilizer, which are required to
complete the proof.

A. Notations and preliminaries

Throughout the remainder of this paper, we use the
following notation. We consider the following four differ-
ent groups, all acting on Hn:

G≡ SLðd;CÞ ⊗ … ⊗ SLðd;CÞ ⊂ SLðHnÞ
K ≡ SUðdÞ ⊗ … ⊗ SUðdÞ ⊂ SUðHnÞ
G̃≡GLðd;CÞ ⊗ … ⊗ GLðd;CÞ ⊂ GLðHnÞ
K̃ ≡UðdÞ ⊗ … ⊗ UðdÞ ⊂ UðHnÞ:

Note that G̃ ¼ C×G, where C× ¼ Cnf0g and that
K̃ ¼ G̃ ∩ UðnÞ. That is, K̃ ¼ fzuju ∈ K; jzj ¼ 1g.
Given a subgroup H ⊂ GLðHnÞ, the stabilizer subgroup

of a state jψi ∈ Hn with respect to this group is defined as

Hψ ≡ fh ∈ Hjhjψi ¼ jψig ⊂ H:

If we refer to the stabilizer of a state jψi without explicitly
mentioning the corresponding group, we mean G̃ψ .
Moreover, the orbit of a state jψi under the action of H
is defined as

Hjψi≡ fhjψijh ∈ Hg:

Note that the orbit contains states that are not necessarily
normalized, and any orbit Hjψi is an embedded submani-
fold of Hn. Hence, any orbit Hjψi has a dimension, which
we denote by dimðHjψiÞ.
In Sec. II, we briefly mentioned the set of critical states,

CritðHnÞ, in Hn, which contains all states whose single-
subsystem reduced states are proportional to the completely
mixed state. Denoting by LieðGÞ the Lie algebra of G, this
set can also be expressed as

CritðHnÞ≡fjϕi∈HnjhϕjXjϕi¼ 0;∀X∈LieðGÞg: ð10Þ

Criteria for when a system with Hilbert space Hn contains
critical states were found in Refs. [34,35]. If CritðHnÞ is not
empty, the union of all orbits (in G) containing a critical
state, i.e., G · CritðHnÞ, is open, dense, and of full measure
in Hn [17,26]. Moreover, the stabilizer of any critical state
is a symmetric subgroup of GLðHnÞ, i.e., it is Zariski-
closed (Z-closed) (see, e.g., Ref. [26] for the definition of

the Zariski topology) and invariant under the adjoint [21].
The latter means that, if g ∈ G̃ψ , for jψi ∈ CritðHnÞ,
then g† ∈ G̃ψ .
Let us now briefly recall how some of us proved in

Ref. [21] that there exists an open and full-measure set of
states in the Hilbert space corresponding to n-qubit states
with n ≥ 5, which contains only states with a trivial
stabilizer in G̃. In order to do so, we define the following
subset of critical states,

C≡ fjψi ∈ CritðHnÞj dimðGjψiÞ ¼ dimðGÞg: ð11Þ

That is, C consists of all critical states whose orbits (under
G) have maximal dimension (i.e., the dimension of G).
Because of the identity Gjψi ≅ G=Gψ, it follows that
jψi ∈ C iff jψi is critical and Gψ is a finite group [or,
equivalently, dimðGψÞ ¼ 0]. Using algebraic geometry and
the theory of Lie groups, some of us showed in Ref. [21] the
following important properties of this subset.
Lemma 8. [21] The set C defined in Eq. (11) has the

following properties:
(i) Gψ ¼ Kψ for all jψi ∈ C.
(ii) The set GC≡ fgjψijg ∈ G; jψi ∈ Cg is open with a

complement of lower dimension in Hn.
(iii) C is a connected smooth submanifold of Hn, and K

acts differentiably on C.
The principal orbit type theorem [36] (see also

Appendix A) was then central to the proof that the set
of states whose stabilizer in G is trivial is open and of full
measure. Defining the set

C0 ¼ fjψi ∈ CjGψ ¼ f1gg; ð12Þ
we proved that, if C0 is not empty, then C0 is open, dense,
and of full measure in C [21]. Moreover, in this case, the set
GC0 ¼ fgjψijjψi ∈ C0; g ∈ Gg is open, dense, and of full
measure in GC. Clearly, any state jϕi in GC0 has a trivial
stabilizer in G. Using now that GC is open and of full
measure in Hn (see property 2 in Lemma 8), we also have
that GC0, which contains only states with Gψ ¼ f1g, is
open and of full measure in Hn. As can be seen from the
proofs in Ref. [21], this result holds for arbitrary multi-
partite quantum systems (as long as it can be shown that C0

is not empty). In particular, we have [37]
Lemma 9. If there exists a state jψi ∈ C0, then the set

fjϕi ∈ HnjGϕ ≠ f1gg ð13Þ

is of measure zero in Hn.
For n ≥ 5, we presented, in Ref. [21], an n-qubit state

jψi, which is contained in C0. Hence, for n ≥ 5, a generic
n-qubit state has only a trivial stabilizer (in G). In order to
define the set A containing states with a trivial stabilizer in
G̃ (not only G), which is also open, and with the comple-
ment of the lower dimension in Hn, we used, for the qubit
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case, homogeneous SL-invariant polynomials (SLIPs) [24].
With these SLIPs, we were able to identify a full-measure
subsetA ⊂ GC0 with the desired property that, for any state
jϕi ∈ A, G̃ϕ ¼ f1g.
As mentioned before, Lemma 9 holds for arbitrary qudit

systems. Note further that criteria for when the stabilizer in
G of a generic state is trivial were found in Ref. [35].
However, in order to obtain the strong implications in
entanglement theory (see Secs. II and IV), it is required to
prove that the stabilizer in G̃ (and not only in G) is trivial.
Hence, the last step of the proof, as outlined above, is
essential here. However, it is precisely this step that cannot
be easily generalized to arbitrary local dimensions. Hence,
we employ new proof methods in the subsequent section to
prove directly the existence of a setA, which contains only
states whose stabilizer in G̃ is trivial, and which is open and
of full measure in Hn.

B. Genericity of states with trivial stabilizer

Using Lemma 8, we prove now one of the main results of
this paper. We have already presented Theorem 1 and its
profound implications in entanglement theory in Sec. II.
We show in the following that, in order to prove Theorem 1
for given values of n and d, it will eventually be enough to
find only one critical state jψi ∈ Hn;d with a trivial unitary
stabilizer, i.e., with K̃ψ ¼ f1g.
Let us first give an outline of the proof of Theorem 1.
First, we consider the set of critical states, CritðHnÞ [see

also Eq. (10)]. We show that, if a critical state has only
finitely many local unitary symmetries, then there exists no
further local (nonunitary) symmetry of this state (see
Lemma 11). We then use this together with the results
from Ref. [21] and tools from geometric invariant theory to
prove the following statement (see Theorem 12). If there
exists one critical state jψi ∈ Hn with a trivial unitary
stabilizer, then there exists a set A ⊂ Hn of states with a
trivial stabilizer in G̃ that is open and of full measure inHn.
Because of this theorem, it is sufficient to find one critical
state with a trivial stabilizer inHn;d to prove Theorem 1 for
these values of n and d. Finally, we explicitly construct
such states and, therefore, complete the proof of Theorem 1
(see Sec. III C, Appendix B).
Let us now present the details of the proof of Theorem 1.

We first show that the set of critical states with a finite
stabilizer in K̃ coincides with the set of critical states with a
finite stabilizer in G̃, as stated in the following lemma.
Lemma 10. The following subset of critical states,

C̃ ¼ fjψi ∈ CritðHnÞj dimðK̃jψiÞ ¼ dimðK̃Þg; ð14Þ

coincides with the set

fjψi ∈ CritðHnÞj dimðG̃jψiÞ ¼ dimðG̃Þg: ð15Þ

Proof.—This lemma is a direct consequence of a much
stronger theorem (Theorem 2.12) proven in Ref. [26]. This
theorem states that, ifH is a symmetric subgroup ofGLðHnÞ
and the so-called maximal compact subgroup of H is
K0 ¼ H ∩ UðHnÞ, then LieðHÞ ¼ LieðK0Þ þ iLieðK0Þ.
That is, H ¼ K1ek2 , where K1 ∈ K0 and k2 ∈ LieðK0Þ. In
Ref. [21], it was shown that G̃ψ is a symmetric subgroup of
GLðHnÞ. As shown in Ref. [26], K̃ is a maximal compact
subgroup of G̃ and so is K̃ψ of G̃ψ [39]. Thus, we have that
LieðG̃ψ Þ ¼ LieðK̃ψÞ þ iLieðK̃ψÞ. Hence, if K̃ψ is finite,
then also G̃ψ is finite. Using now that Hjψi ≅ H=Hψ , for
H ¼ G̃; K̃, we obtain that C̃ coincides with the set of critical
states whose stabilizer is finite in G̃, which proves the
assertion. ▪
Using the lemma above, we are now in the position to

prove that, if a critical state has a finite stabilizer in K̃ (or
equivalently in G̃), then all symmetries in G̃ are unitary.
That is, we prove now the following lemma.
Lemma 11. For any state jψi ∈ C̃, with C̃ given in

Eq. (14), it holds that

K̃ψ ¼ G̃ψ :

Proof.—Because of Lemma 10, we have that C̃ is a
subset of C. Hence, Lemma 8 (i) implies that for any state
jψi ∈ C̃,Gψ ¼ Kψ . To prove now that this equivalence also
holds for K̃ψ and G̃ψ , we consider jψi ∈ C̃ and g ∈ G̃ψ . We
show that gmust be unitary. The Hilbert-Mumford theorem
(see, e.g., Refs. [26,40]) implies that, for any critical state
jψi, there exists a homogeneous SLIP f of some degree m
such that fðjψiÞ ≠ 0. Now, if g ∈ G̃ψ , we can write it as
g ¼ zg0, where 0 ≠ z ∈ C and g0 ∈ G. Hence, fðjψiÞ ¼
fðgjψiÞ ¼ zmfðg0jψiÞ ¼ zmfðjψiÞ. As fðjψiÞ ≠ 0, this
implies that zm ¼ 1. Using now the polar decomposition
of g, i.e., g ¼ u

ffiffiffiffiffiffiffi
g†g

p
, with u ∈ K̃, the Kempf-Ness theorem

(see Appendix A) implies, as g†g is positive, thatffiffiffiffiffiffiffi
g†g

p
jψi ¼ jψi. Hence, also u has to be a stabilizer of

jψi. In particular, u ∈ K̃ψ . Moreover, as z is only a phase,

we have that
ffiffiffiffiffiffiffi
g†g

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg0Þ†ðg0Þ

p
∈Gψ . Using now that

Gψ ¼ Kψ , we have that g ¼ u
ffiffiffiffiffiffiffi
g†g

p
∈ K̃ψ , which proves

the statement. ▪
With Lemma 11, it is easy to see that the following sets

all coincide:
(i)

C0 ¼ fjψi ∈ CjK̃ψ ¼ f1gg; ð16Þ
(ii)

fjψi ∈ CritðHnÞjK̃ψ ¼ f1gg; ð17Þ
(iii)

fjψi ∈ CritðHnÞjG̃ψ ¼ f1gg: ð18Þ
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We now use these results to prove the following theorem,
which states that, if C0 is nonempty, then our main theorem,
Theorem 1, is implied.
Theorem 12. If there exists a state jψi ∈ C0, i.e., if there

exists a critical state jψi such that K̃ψ ¼ f1g, then there
exists an open and full-measure (inHn) set of states whose
stabilizer in G̃ is trivial. More precisely, if C0 ≠ ∅, then the
set of states

A ¼ GC0 ¼ fgjψijjψi ∈ C0; g ∈ Gg; ð19Þ

which contains only states with a trivial stabilizer in G̃, is
open and of full measure in Hn.
Proof.—First of all, note that K̃ is a compact Lie group,

which acts differentiably on the connected smooth sub-
manifold C of Hn [see (iii) of Lemma 8]. Hence, the
principal orbit type theorem (see Appendix A) can be
applied. This theorem implies that the set

C0 ¼ fjψi ∈ CjK̃ψ ¼ f1gg ¼ fjψi ∈ CjG̃ψ ¼ f1gg ð20Þ

is, if it is nonempty, open and of full measure in C. Note
that, in the last equality in Eq. (20), we used Lemma 11.
According to (ii) of Lemma 8, we have that GC is open and
of full measure in Hn. Therefore, for any open and full-
measure set of C, the union of the orbits of all states in this
set is also open and full measure inHn. Using now that, for
any jϕi ∈ A, there exist g ∈ G and jψi ∈ C0 such that
G̃ϕ ¼ gG̃ψg−1, we have that, for any jϕi ∈ A, it holds that
G̃ϕ ¼ f1g, which completes the proof. ▪
In the subsequent section, we explicitly present states in

C0 for the Hilbert spaces specified in Theorem 1, which
completes the proof of this theorem. In Sec. II, the
implications of this result in the context of entanglement
theory are discussed. Let us stress here that our results also
encompass the results of Ref. [21], where it was shown that
almost all ðn > 4Þ-qubit states have a trivial stabilizer.
While no example of a state with a trivial stabilizer was
given in Ref. [21], our results allow us to construct states
with this property, as we show in the following section. Let
us further remark here that Theorem 12 holds for arbitrary
multipartite quantum systems. However, in this work, we
only use it for homogeneous systems, i.e., systems com-
posed of subsystems with equal dimension.

C. Critical states with trivial stabilizer in G̃

In this section, we present critical states with a trivial
stabilizer. First, we introduce a critical state that is defined
for n ¼ 5, n > 6, and d ≥ 2, and we give an outline of the
proof that its stabilizer is trivial. The proof itself is given in
Appendix B. It will become evident from the construction
of this state that the cases n ¼ 3, 4, 6 have to be treated
separately. However, also for these cases, we construct states
with a trivial stabilizer in Appendix B. This completes the

proof of Theorem 1, as it shows that the set C0 is nonempty
for the systems mentioned in this theorem.
Let us introduce the following notation before we define

the state with the desired properties for n ¼ 5, n > 6,
and d ≥ 2. Let Sn denote the symmetric group of n
elements. For a permutation σ ∈ Sn, we define the operator
Pσ via Pσji1i ⊗ … ⊗ jini ¼ jiσ−1ð1Þi ⊗ … ⊗ jiσ−1ðnÞi, for
all ði1;…; inÞ ∈ f0;…; d − 1gn. We call a state jψi sym-
metric if Pσjψi ¼ jψi for all σ ∈ Sn. Furthermore, we
define, for an arbitrary state jϕi ∈ Hn;d, the set of all
distinct permutations of jϕi as πðjϕiÞ ¼ fPσjϕijσ ∈ Sng
and the symmetrization of jϕi as jπðjϕiÞi ¼ P

jχi∈πðjψiÞjχi.
Using this notation, we define, for 0 ≤ k ≤ n and
j ∈ f1;…; d − 1g, the (un-normalized) state

jDk;nðjÞi ¼ jπðjji⊗kjj − 1i⊗n−kÞi:

We are now ready to introduce the critical n-qudit state
(n ¼ 5, n > 6), for which we show that it has a trivial
stabilizer, namely,

jΨn;di ¼
Xd−1
j¼0

cjjji⊗n þ
Xd−1
j¼1

jDk;nðjÞi; ð21Þ

where c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−1k−1Þ þ 1

q
, ci ¼ 1 for 0 < i < d − 1, and

cd−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−1k Þ þ 1

q
, with k the smallest natural number

such that 3 ≤ k ≤ n − 2, n ≠ 2k, and gcdðn; kÞ ¼ 1. Here,
gcdðn; kÞ denotes the greatest common divisor of n and k.
The existence of k is obvious for n ¼ 5 and is proved for
n > 6 in Appendix B. The condition gcdðn; kÞ ¼ 1 is
crucial to ensure that the state jΨn;di has only trivial
symmetries, as we shall see later. Recall that jΨn;di is
critical if all of its single-subsystem reduced states are
proportional to the identity. A straightforward calculation
shows that jΨn;di indeed fulfills this property for n ¼ 5,
n > 6. Note further that jΨn;di is not defined for n ¼ 2, 3,
4, 6, since there is no k with the properties described
after Eq. (21).
Note that, for ðn > 4Þ-qubits, the existence of states

with a trivial stabilizer was shown in Ref. [21]. However,
no examples of states with this property were given.
The mathematical methods developed in this article allow
us to explicitly construct such states, namely, the states
fjΨn;2ign¼5;n>6 [41]. This shows that our work also
includes and, in fact, extends the results for qubits obtained
in Ref. [21]. To explicitly give an example of a qubit state
with a trivial stabilizer, consider the 5-qubit state,

jΨ5;2i ¼
ffiffiffi
7

p
j00000i þ j00111i þ j01011i þ j01101i

þ j01110i þ j10011i þ j10101i þ j10110i
þ j11001i þ j11010i þ j11100i þ

ffiffiffi
5

p
j11111i:
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The following lemma shows that jΨn;di has a trivial
stabilizer for n ¼ 5, n > 6, and d ≥ 2. It is a combination of
Lemmas 18 and 19 in Appendix B 1 a, where we prove this
statement for n > 6 and n ¼ 5, respectively.
Lemma 13. For n ¼ 5, n > 6, and d ≥ 2, the stabilizer

of jΨn;di is trivial, i.e., G̃Ψn;d
¼ f1g.

In the following, we give an outline of the proof of this
lemma, which is divided into four main steps.
First, we note that it is sufficient to show that

K̃Ψn;d
¼f1g, as Lemma 11 then implies that also G̃Ψn;d

¼
f1g holds. In the second step, we show that any v ∈ K̃Ψn;d

is
of the form v ¼ u⊗n for some u ∈ UðdÞ. The proof of this
statement is presented in Appendix B 1 a. It thus remains to
show that the only u ∈ UðdÞ that fulfills the equation

u⊗njΨn;di ¼ jΨn;di ð22Þ

also fulfills u⊗n ¼ 1. In the third step, we show that
Eq. (22) can only be fulfilled if u is diagonal, i.e., if
u ¼ P

iuijiihij. We show this in Appendix B 1 a by
considering the two-subsystem reduction of Eq. (22). In
the fourth step, we reinsert u ¼ P

iuijiihij into Eq. (22) and
see that it is equivalent to

uni ¼ 1 for i ∈ f0;…; d − 1g; ð23Þ

uki u
n−k
i−1 ¼ 1 for i ∈ f1;…; d − 1g: ð24Þ

Now, recall that gcdðn; kÞ ¼ 1. This can be used to show
that the only solution of Eqs. (23)–(24) is u ¼ ωm

n 1, where
ωn ¼ expð2πi=nÞ and m ∈ N. Hence, u⊗n ¼ 1 holds. This
completes the proof of Lemma 13.

IV. MULTIPARTITE PURE STATE
TRANSFORMATIONS

Combining our result with previous works, the following
picture of multipartite pure state entanglement transforma-
tions emerges (see Fig. 1). For bipartite pure states (region
A in Fig. 1), all deterministic and probabilistic LOCC
transformations are characterized [8,42] and SEP ¼ LOCC
holds [43]. Entangled bipartite pure states can always be
transformed via nontrivial deterministic LOCC, regardless
of their local dimensions. Moreover, they can always be
obtained from the maximally entangled state. Hence, this
(up to LUs) single state constitutes the maximally
entangled set of bipartite states.
Three qubits (region B in Fig. 1) are the only multipartite

system for which all deterministic LOCC transformations
between pure states are characterized [25]. They are,
moreover, the only tripartite system for which it is known
that all fully entangled pure states can be transformed to
other fully entangled states via nontrivial deterministic
LOCC. Moreover, SEP ¼ LOCC for deterministic trans-
formations within the GHZ class, i.e., for deterministic

transformations between generic states [44]. Furthermore,
the MES, i.e., the minimal set from which all other states
can be deterministically obtained via LOCC, is of measure
zero, albeit uncountably infinite [19]. This situation
changes drastically when the local dimension is increased
by only 1.
Generic 3-qutrit states (region C in Fig. 1) are isolated,

despite the fact that their stabilizer is nontrivial [18]. The
MES is of full measure. Moreover, SEP ≠ LOCC for
deterministic transformations of 3-qutrit pure states [18].
Regarding three-partite states, we show that, already for

four-, five-, or six-level systems (in region D in Fig. 1),
almost all pure states have a trivial stabilizer and are,
therefore, isolated (see Theorem 1). We further derive the
optimal probabilistic protocol for transformations between
generic states and find that SEP ¼ LOCC for these con-
versions. An open question is whether these results extend
to tripartite systems of any local dimension d > 3 (region E
in Fig. 1) or not.
Four-qubit pure states (region F in Fig. 1) generically

have a finite, nontrivial stabilizer and their MES is of full
measure [19,20]. Furthermore, SEP ¼ LOCC for trans-
formations among generic pure states, which were char-
acterized in Ref. [45]. However, almost all states are
isolated [19].
Finally, our work shows that almost all qudit states of n

d-level systems with n ¼ 3 and d ¼ 4, 5, 6 or n > 3 and
d ≥ 3 (region D in Fig. 1) have a trivial stabilizer (see
Theorem 1) and are, therefore, isolated. That is, almost all
qudit states are in the MES. We further determine the
optimal protocol for probabilistic transformations among
these states and find that SEP ¼ LOCC holds in these
cases. This shows, in particular, that the results of Ref. [21],
which are devoted to ðn > 4Þ-qubit systems (region G in
Fig. 1), can be generalized to arbitrary local dimension.

V. CONCLUSION

In this work, we used methods from geometric invariant
theory and the theory of Lie groups to prove that almost all
pure ðn > 3Þ-qudit states and almost all tripartite d-level
states, for d ¼ 4, 5, 6, have a trivial stabilizer. Combined
with the characterization of local transformations of states
with a trivial stabilizer provided in Ref. [21], this has
profound implications in entanglement theory. It allows us
to characterize all transformations via LOCC and via SEP
among almost all ðn > 3Þ-qudit pure states. We find that
these transformations are extremely restricted. In fact,
almost all ðn > 3Þ-qudit pure states are isolated. Because
of the results presented here, the simple expression for the
optimal success probability for probabilistic local trans-
formations presented in Ref. [21] is shown to hold among
generic states. The optimal SEP protocol is a so-called one-
successful-branch protocol (OSBP), i.e., a simple protocol
for which only one branch leads to the final state, which can
also be implemented via LOCC. Furthermore, we discussed
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implications of our result for the construction of entangle-
ment measures, the characterization of LU-equivalence
classes and for the determination of probabilistic multicopy
LOCC transformations of multiqudit pure states. All of
these results also hold for tripartite d-level systems, where
d ¼ 4, 5, 6.
This work shows that, in the context of local state

transformations, only a zero-measure subset of the expo-
nentially large space of ðn > 3Þ-qudit states is physically
significant. That is, the most powerful states are very rare.
This is consistent with investigations in other fields of
physics, e.g., condensed matter physics, where it has been
shown that, under certain conditions only, a zero-measure
subset of all quantum states is physically relevant [7]. These
results, therefore, suggest that the physically relevant zero-
measure subset of states, such as matrix-product states [7],
projected-entangled pair states [46] (with low bond dimen-
sion), or stabilizer states [4], should be investigated more
deeply. As transformations between fully entangled states
of homogeneous systems are almost never possible, it
would, moreover, be interesting to study transformations of
generic states of heterogeneous systems. The methods
developed in Sec. III B can be applied to arbitrary multi-
partite systems. However, interestingly, for certain hetero-
geneous systems, one can show that generic states always
have nontrivial local symmetries [47]. Our results further
suggest that more general local transformations should be
considered. This includes the multicopy case and trans-
formations between states of different local dimensions or
number of subsystems, e.g., transformations from n-qubit
states to (n − k)-qubit states, where 1 ≤ k ≤ n − 1. Finally,
the fact that almost all qudit states have a trivial stabilizer
and the mathematical tools that we developed to prove this
could also be relevant in other fields of physics, such as
condensed matter physics.
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APPENDIX A: KEMPF-NESS THEOREM AND
PRINCIPAL ORBIT TYPE THEOREM

In this appendix, we review two theorems that are central
to our work, the Kempf-Ness theorem and the principal
orbit type theorem, and discuss where they are used in the

main text. We also briefly review some implications of the
Kempf-Ness theorem in the context of entanglement theory.
For further details, the interested reader is referred to
Refs. [21,26].
Let us first review the Kempf-Ness theorem. In the main

text, we introduced the set of critical states in Eq. (10) as

CritðHnÞ≡ fjϕi ∈ HnjhϕjXjϕi ¼ 0;∀X ∈ LieðGÞg:
Note that a state jψi ∈ Hn is critical iff all of its local
density matrices are proportional to the identity [17]. That
is, a state is critical if every subsystem is maximally
entangled with the remaining subsystems. As mentioned
in the main text, many well-known quantum states are
critical, and the union of the G-orbits of all critical states is
dense and of full measure in Hn. Critical states have many
other interesting properties mentioned below. Some of
these can be derived from the Kempf-Ness theorem, which
provides a characterization of critical states.
Theorem 14. [31] The Kempf-Ness theorem
(1) jϕi ∈ CritðHnÞ iff kgjϕik ≥ kjϕik for all g ∈ G.
(2) If jϕi ∈ CritðHnÞ and g ∈ G, then kgjϕik ≥ kjϕik

with equality iff gjϕi ∈ Kjϕi. Moreover, if g is
positive definite, then the equality condition holds
iff gjϕi ¼ jϕi.

(3) If jϕi ∈ Hn, then Gjϕi is closed in Hn
iff Gϕ ∩ CritðHnÞ ≠ ∅.

The second part of the theorem implies that each SLOCC
orbit contains (up to local unitaries) at most one critical
state. Thus, critical states are natural representatives of
SLOCC orbits. They are the unique states in their SLOCC
orbits for which each qubit is maximally entangled to the
other qubits [17]. The Kempf-Ness theorem was also
important in the proof of Ref. [21] to show that g ∈ G̃ψ

iff g† ∈ G̃ψ for a critical state jψi. Together with the fact
that G̃ψ is Z-closed (which follows from the definition), this
shows that G̃ψ is a symmetric subgroup of GLðHnÞ (see,
e.g., Ref. [26] for the definition of the Zariski topology).
This property is central to the proof of Lemma 11 in
this work.
In order to state the principal orbit type theorem, we first

introduce some definitions and notation. We further discuss
how a subgroupH ⊂ GLðHnÞ induces a preorder on the set
of all H-orbits of states in Hn. The principal orbit type
theorem then provides conditions under which this preorder
gives rise to a maximal element.
Let jψi, jϕi ∈ Hn be two states. Then Hψ and Hϕ are

said to have the same type if there exists a h ∈ H such that
Hϕ ¼ hHψh−1, i.e., if they are conjugate in H. Clearly, the
stabilizers of jψi and hjψi are conjugate for any h ∈ H,
namely,

hHψh−1 ¼ Hhψ :

Hence, Hψ and Hϕ are of the same type iff there exists
h ∈ H such that Hϕ ¼ Hhψ . However, the fact that Hψ and
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Hϕ have the same type does not imply that there is a h ∈ H
such that jψi ¼ hjϕi; i.e., it does not imply that they are in
the same H-orbit. For example, the G̃-stabilizer of generic
4-qubit states has the same type as fσ⊗4

i g3i¼0 [19], despite
the fact that two 4-qubit states are generically SLOCC
inequivalent and, thus, not in the same G̃-orbit [48].
We further say that H=Hψ has a lower type than H=Hϕ,

denoted as

H=Hψ ≺type H=Hϕ;

ifHϕ is conjugate inH to a subgroup ofHψ . It is easy to see
that ≺type induces a preorder on the set of all H-stabilizers.
That this preorder also induces a preorder on the set of

all H-orbits can be seen as follows. Note that Hjψi is
isomorphic to the left coset of Hψ in H for all jψi, namely,

Hjψi ≅ H=Hψ :

We can, therefore, say thatHjψi is of lower type thanHjϕi,
denoted as

Hjψi ≺type Hjϕi;

if H=Hψ ≺type H=Hϕ holds.
The following theorem, called the principal orbit type

theorem (POT theorem), shows that, under certain very
general conditions, this preorder possesses a maximal
element. This key theorem can be found in Ref. [36], as
a combination of Theorems 3.1 and 3.8.
Theorem 15. [36] The principal orbit type theorem.

Let C be a compact Lie group acting differentiably on a
connected smooth manifold M (in this paper, we assume
M ⊂ Hn). Then, there exists a principal orbit type; that is,
there exists a state jϕi ∈ M such that C=Cψ ≺type C=Cϕ

for all jψi ∈ M. Furthermore, the set of jψi ∈ M such
that Cψ is conjugate to Cϕ is open and dense in M
with a complement of lower dimension and, hence, of
measure 0.
The following example illustrates how powerful the POT

theorem is. Suppose jψi ∈ Hn is a (not necessarily critical)
state with a trivial unitary stabilizer, K̃ψ ¼ f1g. Then, the
POT theorem applied to C ¼ K̃ and M ¼ Hn directly
implies that the set of states with a trivial unitary stabilizer
is of full measure in Hn.
However, in this work, we show that the stabilizer in G̃

is generically trivial. As G̃ is a noncompact Lie group,
the POT theorem cannot be applied directly. It is, never-
theless, central to the proof of Theorem 12, where we
applied it to the compact Lie group C ¼ K̃ that acts
differentiably on the connected smooth manifold M ¼ C
[see Lemma 8, (iii)].

APPENDIX B: CRITICAL STATES WITH
TRIVIAL STABILIZER

In this appendix, we provide examples of critical states
with a trivial stabilizer for n ¼ 3 and d ¼ 4, 5, 6; for n ¼ 4
and d > 2; and for n ≥ 5 and d ≥ 2. That is, we give
examples of critical states with a trivial stabilizer for all
Hilbert spaces described in Theorem 1 and for ðn > 4Þ-
qubit systems. Combined with Theorem 12, this completes
the proof of Theorem 1 that almost all pure states in these
Hilbert spaces have a trivial stabilizer. For n > 3, we
present these states in Sec. B 1. The states with n ¼ 3
have to be constructed differently and are presented in
Sec. B 2.

1. Critical (n > 3)-qudit states with trivial stabilizer

In this section, we present critical states with a trivial
stabilizer for n ¼ 4, d > 2 and n > 4, d ≥ 2. As we will
see, it is easy to show that these states are indeed critical,
i.e., that their single-subsystem reduced states are propor-
tional to the completely mixed state. In contrast to that, the
proof that their stabilizer is trivial is more involved and the
details of the proof depend on n and on d. However, since
we consider only permutationally symmetric states, the
main steps of this proof are the same for all n > 3. For the
sake of readability, we outline these four main steps before
we present the details in the subsequent subsections. The
main ingredients to show that a permutationally symmetric,
critical state considered here, say, jψn;di ∈ Hn;d, has a
trivial stabilizer, are the following.
(1) Since jψn;di is critical, it is sufficient to show that

K̃ψn;d
¼ f1g holds, i.e., that jψn;di has a trivial

unitary stabilizer, as Lemma 11 states that then also
G̃ψn;d

¼ f1g holds.
(2) We show that a unitary B fulfills B ⊗ B−1 ⊗

1⊗n−2jψn;di ¼ jψn;di iff B ¼ c1 for some phase c.
It was shown in Ref. [49] that then any v ∈ K̃ψn;d

can
be expressed as v ¼ u⊗n for some u ∈ UðdÞ (see
also Lemma 17 below for details).

(3) It remains to be shown that, for any unitary
u ∈ UðdÞ, the equation

u⊗njψn;di ¼ jψn;di ðB1Þ

implies that u⊗n ¼ 1. The corresponding equation
for the reduced state of the first two subsystems,

ρð1;2Þn;d ¼ Tr3;…;nðjΨn;dihψn;djÞ, reads

ðu ⊗ uÞρð1;2Þn;d ðu† ⊗ u†Þ ¼ ρð1;2Þn;d :

This equation can be used to show that u has to be
diagonal. However, the details of this proof depend
on n and d.
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(4) In the last step,we show that the only diagonal unitary
u that fulfills Eq. (B1) also fulfills u⊗n ¼ 1. This
shows that K̃ψn;d

¼ f1g and completes the proof.
The remainder of this section is devoted to the details of

this proof. In Appendix B 1 a, we consider the case n ¼ 5
and n > 6 and d ≥ 2. In Appendix B 1 b, we consider the
case n ¼ 4, d > 2 and, in Appendix B 1 c, the case n ¼ 6
and d ≥ 2.

a. A critical n-qudit state, n= 5, n > 6, with local
dimension d ≥ 2 and trivial stabilizer

In this section, we show that the critical state jΨn;di
introduced in Eq. (21) of Sec. III C is well defined and has a
trivial stabilizer for n ¼ 5, n > 6, and d ≥ 2. That is, we
prove Lemma 13 of the main text.
Let us first recall the following definitions made in

Sec. III C of the main text. For jϕi ∈ Hn;d, we define
the set of all distinct permutations of jϕi as πðjϕiÞ¼
fPσjϕijσ∈Sng and the symmetrization of jϕi as jπðjϕiÞi¼P

jχi∈πðjϕiÞjχi. Using this notation, we define the (un-
normalized) state

jDk;nðjÞi ¼ jπðjji⊗kjj − 1i⊗n−kÞi;

for 0 ≤ k ≤ n and j ∈ f1;…; d − 1g. These states fulfill

hDk;nðjÞjDk0;nðj0Þi ¼
�
n
k

�
δk;k0δj;j0 : ðB2Þ

For l ∈ f1;…; n − 1g, we can express jDk;nðjÞi in the
bipartite splitting of any l subsystems and the remaining
n − l subsystems as

jDk;nðjÞi ¼
Xminfl;kg

q¼0

jDq;lðjÞijDk−q;n−lðjÞi: ðB3Þ

In Sec. III C, we then defined, for n ¼ 5, n > 6, and
d ≥ 2, the state

jΨn;di ¼
Xd−1
j¼0

cjjji⊗n þ
Xd−1
j¼1

jDk;nðjÞi; ðB4Þ

where c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−1k−1Þ þ 1

q
, ci ¼ 1 for 0 < i < d − 1, and

cd−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−1k Þ þ 1

q
, with k the smallest natural number

such that 3 ≤ k ≤ n − 2, n ≠ 2k, and gcdðn; kÞ ¼ 1.
Let us first show that k as described above always exists

for n ¼ 5, n > 6 and that jΨn;di is, therefore, well defined.
For n ∈ N, the Euler totient function ϕðnÞ is defined as the
number of all natural numbers j that are smaller than n and
fulfill gcdðn; jÞ ¼ 1, i.e.,

ϕðnÞ ¼ jfj ∈ Njj < n; gcdðn; jÞ ¼ 1gj: ðB5Þ

It is straightforward to see that k as defined below Eq. (B4)
always exists if ϕðnÞ ≥ 5. We now prove that k exists if
n ¼ 4 and n > 6. If n is not divisible by 3, then k ¼ 3. If n
is divisible by 3 and 5, then Euler’s formula for ϕðnÞ
(cf. Ref. [50]) implies that ϕðnÞ ≥ 5. Finally, if n is
divisible by 3 but not 5 and n ≥ 9, then k ¼ 5.
Let us now show some properties of jΨn;di that will be

useful in the proof that it has a trivial stabilizer. Note first
that, because of Eq. (B3), we can express jΨn;di in the
bipartition of any l subsystems, with the rest as

jΨn;di ¼
Xd−1
j¼0

cjjji⊗ljji⊗n−l

þ
Xd−1
j¼1

Xminfl;kg

q¼0

jDq;lðjÞijDk−q;n−lðjÞi: ðB6Þ

Note further that the following useful lemma on sym-
metric states has been shown in Ref. [49].
Lemma 16. [49] Let jψi be symmetric. Suppose jψi has

the property that

B ⊗ B−1 ⊗ 1⊗n−2jψi ¼ jψi iff B ¼ b1; ðB7Þ

for some b ∈ Cnf0g. If g ∈ G̃ψ , then g ¼ h⊗n for some
h ∈ GLðd;CÞ.
This result can be easily understood as follows. Let jψi be

symmetric and let Pð1;2Þ denote the operator that permutes
subsystems 1 and 2. Note that, if g ¼ g1 ⊗ … ⊗ gn ∈ G̃ψ ,
then g−1jψi ¼ jψi and Pð1;2ÞgPð1;2ÞðPð1;2ÞjψiÞ ¼ Pð1;2Þjψi
hold. Using that Pð1;2Þjψi ¼ jψi, this implies that
g−1Pð1;2ÞgPð1;2Þjψi ¼ jψi, i.e.,

g−11 g2 ⊗ g−12 g1 ⊗ 1⊗n−2jψi ¼ jψi: ðB8Þ

Now, if Eq. (B7) holds, this implies that there is a c1;2 ∈
Cnf0g such that g1 ¼ c1;2g2. As jψi is symmetric, the same
argument can also be used to show that there is a ci;j ∈
Cnf0g such that gi ¼ ci;jgj for all i ≠ j and, thus, g ¼ h⊗n

for some h ∈ GLðd;CÞ. Note that if g ∈ K̃; then g−11 g2
in Eq. (B8) is unitary. Hence, in order to show that any
unitary symmetry v ∈ K̃ψ is of the form v ¼ u⊗n for some
u ∈ UðdÞ, it is, thus, sufficient to show that Eq. (B7) holds
for any unitaryB. We use this to prove the following lemma.
Lemma 17. If v ∈ K̃ fulfills vjΨn;di ¼ jΨn;di, then

v ¼ u⊗n for some u ∈ UðdÞ.
Proof.—jΨn;di is permutationally symmetric. Because of

Lemma 16, it is, thus, sufficient to show that the only
solution to

B ⊗ B−1 ⊗ 1⊗n−2jΨn;di ¼ jΨn;di; ðB9Þ

where B ∈ UðdÞ, is B ¼ b1 for some complex
number b ≠ 0.
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In order to show this, we first apply for i∈ f0;…;d−1g
the operator 1⊗2 ⊗ hij⊗n−2 to both sides of Eq. (B9). The
decomposition in Eq. (B6) for l ¼ 2 is very useful in
calculating the resulting equation. For k < n − 2, we obtain

ðB ⊗ B−1Þjii⊗2 ¼ jii⊗2 for i ∈ f0;…; d − 1g:

In the case of k ¼ n − 2, we get

ðB ⊗ B−1Þj0i⊗2 ¼ j0i⊗2;

ðB ⊗ B−1Þðcijii⊗2 þ ji − 1i⊗2Þ
¼ cijii⊗2 þ ji − 1i⊗2 for i ∈ f1;…; d − 1g:

It is then straightforward to see that these equations can
only be fulfilled if B is diagonal, i.e., B ¼ P

d−1
i¼0 bijiihij.

Analogously, we can apply 1⊗2 ⊗ hDk−1;n−2ðiÞj to both
sides of Eq. (B9) for i ∈ f1;…; d − 1g and see that

ðB ⊗ B−1ÞjD1;2ðiÞi ¼ jD1;2ðiÞi for i ∈ f1;…; d − 1g:

Using that jD1;2ðiÞi ¼ jiiji − 1i þ ji − 1ijii, it is easy to
see that these equations imply bi ¼ bj ¼ b for all i; j ∈
f0;…; d − 1g and, hence, B ¼ b1. ▪
With these results, we are in the position to prove

Lemma 13 in the main text, namely, that jΨn;di has a
trivial stabilizer for n > 4, n ≠ 6, d > 2. We first prove this
result for n > 6 (see Lemma 18). After that, we provide the
proof for n ¼ 5 (see Lemma 19), which is slightly different.
We first consider the case of n > 6 qubits and prove the

following lemma.
Lemma 18. For n > 6 and d ≥ 2, the stabilizer of jΨn;di

is trivial, i.e., G̃Ψn;d
¼ f1g.

Proof.—Because of Lemmas 11 and 17, it remains to be
shown that, for any unitary u ∈ UðdÞ, the equation

u⊗njΨn;di ¼ jΨn;di ðB10Þ

implies that u⊗n ¼ 1. We first show that Eq. (B10) implies
that u is diagonal and then that u⊗n ¼ 1.
Considering the reduced state of the first two subsys-

tems, ρð1;2Þn;d ¼ Tr3;…;nðjΨn;dihΨn;djÞ, Eq. (B18) implies that

ðu ⊗ uÞρð1;2Þn;d ðu† ⊗ u†Þ ¼ ρð1;2Þn;d : ðB11Þ

Note that, for n > 6, we have that k < n − 2, where k is
defined below Eq. (B4) [51]. This fact simplifies the

computation of ρð1;2Þn;d (in contrast to the case n ¼ 5, where
k ¼ 3; see Lemma 19). It is then easy to see that

ρð1;2Þn;d ¼ αðj0ih0j⊗2 þ jd − 1ihd − 1j⊗2Þ þ β
Xd−2
j¼1

jjihjj⊗2

þ γ
Xd−1
j¼1

jD1;2ðjÞihD1;2ðjÞj; ðB12Þ

with

α ¼
�
n − 1

k − 1

�
þ
�
n − 2

k

�
þ 1;

β ¼
�
n − 2

k

�
þ
�
n − 2

k − 2

�
þ 1;

γ ¼
�
n − 2

k − 1

�
:

Using Eq. (B11), we now prove that u is diagonal. In order
to do so, we first show that uj0i ¼ u0j0i for some phase u0.

As Eq. (B12) is the spectral decomposition of ρð1;2Þn;d and
since α > β > γ (in fact, α ¼ β þ γ, as the state is critical),
the following equation must hold:

u ⊗ uj00i ¼ ϕ0j00i þ ϕd−1jd − 1d − 1i; ðB13Þ

for some coefficients ϕ0, ϕd−1. Note that the local operator
u ⊗ u cannot change the Schmidt rank of a state. Hence,
the state on the right-hand side of Eq. (B13) must have
Schmidt rank 1. That is, either uj0i ¼ u0j0i or uj0i ¼
u0jd − 1i holds for some phase u0. It is easy to see that only
the former can fulfill Eq. (B10). Hence, uj0i ¼ u0j0i holds.
Next, we show that if ujki ¼ ukjki for k < i then also

ujii ¼ uijii holds, for i ∈ f1;…; d − 1g. We consider the
eigenspace to eigenvalue γ, which is spanned by the states
fjD1;2ðiÞigd−1i¼1 . Using that uji−1i¼ ui−1ji−1i, we obtain

u ⊗ ujD1;2ðiÞi ¼ ui−1ðujiiji − 1i þ ji − 1iujiiÞ;

for i ∈ f1;…; d − 1g. This state has to be an element of the
eigenspace to eigenvalue γ. It is easy to see that this is only
possible if ujii ¼ uijii. Combined with uj0i ¼ u0j0i, we
have that u is diagonal.
We show next that, for any diagonal u fulfilling

Eq. (B10), it must hold that u⊗n ¼ 1. Using the notation
u ¼ P

d−1
i¼0 uijiihij, it is straightforward to show that

Eq. (B10) is equivalent to

uni ¼ 1 for i ∈ f0;…; d − 1g; ðB14Þ

uki u
n−k
i−1 ¼ 1 for i ∈ f1;…; d − 1g: ðB15Þ

Note that u is only uniquely determined up to a global phase
ωm
n , whereωn ¼ expð2πi=nÞ andm ∈ N. As un0 ¼ 1, we can

choose u0 ¼ 1without loss of generality. Equations (B14)–
(B15) then reduce to
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uni ¼ 1 and uki u
n−k
i−1 ¼ 1 for i∈ f1;…;d−1g: ðB16Þ

We now prove inductively that these equations, together
with u0 ¼ 1, imply that ui ¼ 1 for all i. That is, we show that
ui−1 ¼ 1 implies that ui ¼ 1. Because of Eq. (B16), we have
that ui−1 ¼ 1 implies that uki ¼ 1. As gcdðn; kÞ ¼ 1, a well-
known result from number theory implies that there exist a,
b ∈ Z such that anþ bk ¼ 1. Hence, we have

ui ¼ uanþbk
i ¼ 1: ðB17Þ

We hence proved that ui ¼ 1 for all i, which implies
u⊗n ¼ 1. This proves the assertion. ▪
In the proof for n > 6 (where k < n − 2), we used

Eq. (B12). Let us now consider the case n ¼ 5 (where
k ¼ 3 ¼ n − 2), for which we need to prove the statement
differently.
Lemma 19. The stabilizer of jΨ5;di is trivial for d ≥ 2,

i.e., G̃Ψn;d
¼ f1g.

Proof.—Because of Lemmas 11 and 20, it is again
sufficient to show that any unitary u that fulfills

u⊗5jΨ5;di ¼ jΨ5;di ðB18Þ

fulfills u⊗5 ¼ 1.
We first consider the necessary condition

ðu ⊗ uÞρð1;2Þ5;d ðu† ⊗ u†Þ ¼ ρð1;2Þ5;d ; ðB19Þ

where ρð1;2Þ5;d ¼ Tr3;4;5ðjΨ5;dihΨ5;djÞ. Let Kd denote the

kernel of ρð1;2Þ5;d and let K⊥
d denote the orthogonal comple-

ment of Kd. Clearly, Kd and K⊥
d have to be invariant under

u ⊗ u. In fact, jψi ∈ Kd iff ðu ⊗ uÞjψi ∈ Kd (and sim-
ilarly for K⊥

d ). In the following, we use this to prove that u
is diagonal. Before that, we have to characterize Kd and
K⊥

d . It is straightforward to see that the following holds:

Kd ¼ Q ⊕ S−; ðB20Þ

K⊥
d ¼ P ⊕ Sþ; ðB21Þ

where

Q ¼ spanfjiijjij0 ≤ i; j ≤ d − 1; ji − jj > 1g; ðB22Þ

S− ¼ spanfjiiji − 1i − ji − 1ijiigd−1i¼1 : ðB23Þ

P ¼ spanfjiijiigd−1i¼0 ; ðB24Þ

Sþ ¼ spanfjD1;2ðiÞigd−1i¼1 : ðB25Þ

Let us first prove that uj0i ¼ u0jui for some phase u0.
Let π⊥ denote the projector onto K⊥

d , i.e.,

π⊥1;2 ¼
Xd−1
i¼0

jiihij⊗2 þ 1

2

Xd−1
i¼1

jD1;2ðiÞihD1;2ðiÞj: ðB26Þ

As K⊥
d is invariant under u ⊗ u, it holds that

ðu ⊗ uÞπ⊥1;2ðu† ⊗ u†Þ ¼ π⊥1;2: ðB27Þ

For d ¼ 2, it is easy to see that this equation and Eq. (B18)
can only be fulfilled if uj0i ¼ u0jui for some phase u0.
For d > 2, let π⊥1 ¼ Tr2ðπ⊥1;2Þ denote the reduced state of
π⊥1;2, i.e.,

π⊥1 ¼ 3

2
ðj0ih0j þ jd − 1ihd − 1jÞ þ 2

Xd−2
i¼1

jiihij: ðB28Þ

Then, Eq. (B27) implies that

uπ⊥1 u† ¼ π⊥1 : ðB29Þ

It is easy to see that Eq. (B29) can only be satisfied if
uj0i ∈ spanfj0i; jd − 1ig. Combining this with the
fact that ðu ⊗ uÞj00i ∈ K⊥

d , we see that ðu ⊗ uÞj00i ∈
spanfj00i; jd − 1d − 1ig. However, as u ⊗ u cannot
change the Schmidt rank of a state, either uj0i ¼ u0j0i or
uj0i ¼ u0jd − 1i for some phase u0. It is easy to see that the
former cannot fulfill Eq. (B18) and, thus,uj0i¼ u0j0i holds.
Next, we show that if ujki ¼ ukjki holds for k < i, then

also ujii ¼ uijii holds, where i ∈ f1;…; d − 1g. Using
that uji − 1i ¼ ui−1ji − 1i, we get that

ðu ⊗ uÞjD1;2ðiÞi ¼ ui−1ðujiiji − 1i þ ji − 1iujiiÞ ∈ K⊥
d :

The state on the right-hand side can only be an element
of K⊥

d if ujii ¼ uijii. Combined with the fact that
uj0i ¼ u0j0i, we see that u is diagonal.
That u⊗5 ¼ 1 holds for diagonal u can then be proven

in the same way as it was done in the proof of Lemma 18
for n > 6. ▪
Note that this proof method could also be used to show

that jΨn;di has a trivial stabilizer for n > 6. However, we
think that the proof for n > 6 presented after Lemma 18 is
more concise.

b. A critical (n= 4)-qudit state with local dimension
d > 2 and trivial stabilizer

In this section, we consider 4-qudit systems with local
dimension d > 2. We define the (un-normalized) state

jΦ4;di ¼
ffiffiffiffiffi
15

p
c0j0i⊗4

þ
Xd−1
i¼1

cifjD3;4ðiÞi þ jD2;4ðiÞi − 3jii⊗4g; ðB30Þ
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where

ci ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
−

4

15

�
d−i

s
; for i∈ f0;…;d−1g: ðB31Þ

It is easy to show that this state is critical. In what follows,
we prove that jΦ4;di has only trivial symmetries.
Note that the following lemma holds.
Lemma 20. If v ∈ K̃ fulfills vjΦ4;di ¼ jΦ4;di for d > 2,

then v ¼ u⊗4 for some u ∈ UðdÞ.
The proof is similar to the proof of Lemma 17 and will be

omitted. Using this lemma, we prove the following lemma.
Lemma 21. For d > 2, the stabilizer of jΦ4;di is trivial,

i.e., G̃Φ4;d
¼ f1g.

Proof.—Because of Lemmas 11 and 17, it remains to
show that, for any unitary u ∈ UðdÞ, the equation

u⊗4jΦ4;di ¼ jΦ4;di ðB32Þ

implies that u⊗4 ¼ 1. We first show that Eq. (B18) implies
that u is diagonal and then that u⊗4 ¼ 1.
Considering the reduced state of the first two subsys-

tems, ρð1;2Þ4;d ¼ Tr3;4ðjΦ4;dihΦ4;djÞ, Eq. (B32) implies that

ðu ⊗ uÞρð1;2Þ4;d ðu† ⊗ u†Þ ¼ ρð1;2Þ4;d : ðB33Þ

Let us denote by Kd the kernel of ρð1;2Þ4;d and by K⊥
d the

orthogonal complement of Kd. In Observation 22, we show
that Kd ¼ Q ⊕ S− and K⊥

d ¼ P ⊕ Sþ, where Q, S−, P, Sþ
are given in Eqs. (B22)–(B25). The proof that u is diagonal
can then be completed as in the proof of Lemma 19 and
will, therefore, be omitted.
Using that u ¼ P

d−1
i¼0 uijiihij, Eq. (B32) is equivalent to

u4i ¼ 1 for i ∈ f0;…; d − 1g; ðB34Þ

u3i u
1
i−1 ¼ 1 for i ∈ f1;…; d − 1g; ðB35Þ

u2i u
2
i−1 ¼ 1 for i ∈ f1;…; d − 1g: ðB36Þ

Similar to the proof of Lemma 17, we set, without loss of
generality, u0 ¼ 1. It is then straightforward to see that
Eqs. (B34)–(B36) only have the solution ui ¼ 1 for i ∈
f0;…; d − 1g. Hence, we proved that u⊗4 ¼ 1 holds. ▪
Here, we prove the following observation used in the

proof of Lemma 21.
Observation 22. Let Q; S−; P, and Sþ be as defined in

Eqs. (B22)–(B25). Then, the kernel of ρð1;2Þ4;d is Kd ¼ Q ⊕
S− and the orthogonal complement of the kernel is
K⊥

d ¼ P ⊕ Sþ.
Proof.—Note that jψi ∈ Kd iff

1;2hψ jΦ4;di1;2;3;4 ¼ 0; ðB37Þ

where we explicitly labeled on which subsystems these
states are defined. Using this, it is easy to see that
Q ⊕ S− ⊂ Kd. As Cd ⊗ Cd ¼ Q ⊕ S− ⊕ P ⊕ Sþ, it is,
therefore, sufficient to show that P ⊕ Sþ does not contain
any nontrivial element of Kd, i.e., ðP ⊕ SþÞ ∩ Kd ¼ f0g,
in order to prove the observation. That is, we have to show
that an element jψi¼P

d−1
k¼0α

�
kjkijkiþ

P
d−1
i¼1 β

�
kjD1;2ðkÞi∈

P⊕Sþ fulfills Eq. (B37) iff αk, βk ¼ 0 for all k.
First, it is easy to see that Eq. (B37) implies that βk ¼

−αk=2 for k ∈ f1;…; d − 1g. Using this and the notation
α⃗ ¼ ðα0;…; αd−1ÞT , it is straightforward to show that
Eq. (B37) is equivalent to the system of linear equations

Mα⃗ ¼ 0; ðB38Þ

where

M ¼

0
BBBBBBBBBBBB@

ffiffiffiffiffi
15

p
c0 c1 0 0 … 0 0 0 0

c1 −4c1 c2 0 0 … 0 0 0

0 c2 −4c2 c3 0 … 0 0 0

..

. . .
. ..

. ..
. ..

.

0 0 0 0 0 … cd−2 −4cd−2 cd−1
0 0 0 0 0 … 0 cd−1 −4cd−1

1
CCCCCCCCCCCCA
:

As M is a tridiagonal matrix, its determinant detðMÞ can
be computed via the following recurrence relation (see,
e.g., Ref. [52]):

fðkÞ ¼ −4ck−1fðk − 1Þ − c2k−1fðk − 2Þ; ðB39Þ

for k ∈ f2;…; dg; fð1Þ ¼
ffiffiffiffiffi
15

p
c0; fð0Þ ¼ 1; ðB40Þ

where detðMÞ ¼ fðdÞ. Using the definition of fckgd−1k¼0, one
can show that fjfðkÞjgdk¼1 is monotonically increasing and,
hence, detðMÞ ¼ fðdÞ ≠ 0 holds. That is, M is invertible,
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ðP ⊕ SþÞ ∩ Kd ¼ f0g, and, therefore, Kd ¼ Q ⊕ S−,
which proves the assertion. ▪

c. A critical (n= 6)-qudit state with trivial
stabilizer for d ≥ 2

In this section, we present a state in ðCdÞ⊗6, d ≥ 2,
with a trivial stabilizer. Before that, we introduce, for

2 ≤ j ≤ d − 1, the (un-normalized) state

jϕ6ðjÞi ¼ jπðjjijj − 1i⊗3jj − 2i⊗2Þi; ðB41Þ

where jπðjψiÞi ¼ P
jϕi∈πðjψiÞjϕi and πðjψiÞ ¼ fPσjψijσ ∈

Sng as in the main text. For d > 3, we then introduce the
(un-normalized) critical state

jΦ6;di¼
ffiffiffiffiffiffiffiffi
194

5

r
j0i⊗6þ

ffiffiffiffiffi
11

5

r
jD5;6ð1Þiþ

Xd−3
j¼2

jji⊗6þ
ffiffiffiffiffi
21

p
jd−2i⊗6þ

ffiffiffiffiffi
51

p
jd−1i⊗6þ

Xd−1
j¼2

jϕ6ðjÞi: ðB42Þ

Note that this state is not defined for d ¼ 2 and not critical for d ¼ 3. However, for these cases, we can define the
critical states,

jΦ6;2i ¼ 2j0i⊗6 þ jD5;6ð1Þi þ jD3;6ð1Þi;

jΦ6;3i ¼ 3j0i⊗6 þ jD5;6ð1Þi þ
1ffiffiffi
2

p jϕ6ð2Þi þ
ffiffiffiffiffi
15

p
j2i⊗6:

Note that, for d > 3, the state jΦ6;di can also be expressed as

jΦ6;di ¼ c0j0i⊗2j0i⊗4 þ c1j1i⊗2jD3;4ð1Þi þ c1jD1;2ð1Þij1i⊗4 þ
Xd−3
j¼2

jji⊗2jji⊗4 þ
Xd−1
j¼2

fjj − 2i⊗2jD1;4ðjÞi

þ jj − 1i⊗2jαji þ jD1;2ðjÞijD2;4ðj − 1Þi þ ðjjijj − 2i þ jj − 2ijjiÞjD3;4ðj − 1Þi þ jD1;2ðj − 1Þijβjig
þ cd−2jd − 2i⊗2jd − 2i⊗4 þ cd−1jd − 1i⊗2jd − 1i⊗4: ðB43Þ

Here, we defined jαji ¼ jπðjjijj − 1ijj − 2i⊗2Þi, jβji ¼
jπðjjijj − 1i⊗2jj − 2iÞi and c0¼

ffiffiffiffiffiffi
194
5

q
, c1¼

ffiffiffiffi
11
5

q
, cd−2¼ffiffiffiffiffi

21
p

, and cd−1 ¼
ffiffiffiffiffi
51

p
. This decomposition will be con-

venient in later considerations.
Let us now show that jΦ6;di has a trivial stabilizer for

d > 2. For that, the following lemma is useful.
Lemma 23. If v ∈ K̃ fulfills vjΦ6;di ¼ jΦ6;di, then

v ¼ u⊗6 for some u ∈ UðdÞ.
The proof is similar to the proof of Lemma 17 and will be

omitted. We are now in the position to prove that jΦ6;di has
a trivial stabilizer for d > 2.
Lemma 24. For d ≥ 2, the stabilizer of jΦ6;di is trivial,

i.e., G̃Φ6;d
¼ f1g.

Proof.—Because of Lemmas 11 and 23, it is again
sufficient to show that any unitary u that fulfills

u⊗6jΦ6;di ¼ jΦ6;di ðB44Þ

fulfills u⊗6 ¼ 1. We divide the proof into three parts. In
parts (a) and (b), we consider the cases with d > 3. In parts
(c) and (d), we provide a proof of the theorem for d ¼ 2 and
d ¼ 3, respectively.
(a) u is necessarily diagonal for d > 3. We consider the

case d > 3. From Eq. (B44), we get the following
necessary condition,

ðu ⊗ uÞρð1;2Þ6;d ðu† ⊗ u†Þ ¼ ρð1;2Þ6;d ; ðB45Þ

where ρð1;2Þ6;d ¼ Tr3;…;6ðjΦ6;dihΦ6;djÞ. Let us first de-

termine ρð1;2Þ6;d .
With the help of the decomposition in Eq. (B43),

one can easily show that the two-subsystem reduced
state of jΦ6;di for d > 3 reads

ρð1;2Þ6;d ¼ 214

5
j0ih0j⊗2þ17

Xd−3
j¼2

jjihjj⊗2þ33jd−2ihd−2j⊗2þ51jd−1ihd−1j⊗2þ71

5
jD1;2ð1ÞihD1;2ð1Þj

þ18
Xd−2
j¼2

jD1;2ðjÞihD1;2ðjÞjþ6jD1;2ðd−1ÞihD1;2ðd−1Þjþ4
Xd−1
j¼3

ðjjijj−2iþ jj−2ijjiÞðhjjhj−2jþhj−2jhjjÞþR;

ðB46Þ
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where

R ¼ ð4c21 þ 16Þj11ih11j
þ 4c1½j11iðh20j þ h02jÞ þ c:c:�
þ 4ðj20i þ j02iÞðh20j þ h02jÞ;

where c.c. denotes the complex conjugate. Note that the
only part of ρð1;2Þ6;d that is not yet diagonalized is the operator
R. The only nonzero eigenvalues of R are 2

5
ð41� ffiffiffiffiffiffiffiffi

881
p Þ.

As a consequence, we can directly get a basis of all
eigenspaces with eigenvalues different from 2

5
ð41�ffiffiffiffiffiffiffiffi

881
p Þ; 0 from Eq. (B46). For example, the states j0i⊗2,
jd − 2i⊗2, jd − 1i⊗2 span the one-dimensional eigenspaces

of ρð1;2Þ6;d with eigenvalues 214
5
, 33, 51, respectively. Note

further that u ⊗ u maps an eigenspace of ρð1;2Þ6;d to a given
eigenvalue to itself. Combining these observations, one can
easily see that

uj0i ¼ u0j0i; ðB47Þ

ujd − 2i ¼ ud−2jd − 2i; ðB48Þ

ujd − 1i ¼ ud−1jd − 1i; ðB49Þ

for some phases u0, ud−1, ud−2. For d ¼ 4, this already
implies that u is diagonal. For d > 4, we can consider the
eigenspaces to nonzero eigenvalues that have dimensions
larger than 1 to show that u is diagonal.
Using that ujd − 2i ¼ ud−2jd − 2i [see Eq. (B48)], it

remains to be shown that, if ujki ¼ ukjki holds for k > i,
then also ujii ¼ uijii holds, where i ∈ f2;…; d − 3g.
Using that ujiþ 1i ¼ uiþ1jiþ 1i, we get the following:

ðu ⊗ uÞjD1;2ðiþ 1Þi ¼ uiþ1ðjiþ 1iujii þ ujiijiþ 1iÞ:
ðB50Þ

Note that u ⊗ u maps the eigenspace of ρð1;2Þ6;d to eigenvalue
18, spanned by fjD1;2ðjÞigd−2j¼2, to itself. Hence, Eq. (B50)
can only be fulfilled if ujii ¼ uijii for some phase ui.
Combined with Eqs. (B47)–(B49), we have that ujii ¼
uijii for i ∈ f0g ∪ f2;…; d − 1g. As u is unitary, this also
implies that uj1i ¼ u1j1i for some phase u1 and, therefore,
u is diagonal.
(b) u⊗6 ¼ 1 is the only solution for d > 3. Using that

u ¼ P
i¼0uijiihij for d > 3, it is easy to see that

Eq. (B44) is equivalent to

u6i ¼ 1 for i ∈ f0;…; d − 1g ðB51Þ

u0u51 ¼ 1 ðB52Þ

uiu3i−1u
2
i−2 ¼ 1 for i ∈ f2;…; d − 1g: ðB53Þ

As in the proof of Lemma 13, we can set, without loss
of generality, u0 ¼ 1. According to Eqs. (B51)–(B53),
this implies u51 ¼ 1 and u2u31 ¼ 1. Taking the sixth
power of the second equation, we obtain u62u

18
1 ¼

u31 ¼ 1. The only solution to u31 ¼ u51 ¼ 1 is u1 ¼ 1.
Using that u0 ¼ u1 ¼ 1 in Eq. (B53), we finally obtain
ui¼1 for i ∈ f0;…; d − 1g. Hence,u⊗6 ¼ 1 ford > 3.

(c) u⊗6 ¼ 1 is the only solution for d ¼ 2. Using that

u ⊗ u leaves eigenspaces of ρð1;2Þ6;2 invariant, it is
straightforward to see that u is diagonal. Reinserting
this into Eq. (B44) shows that, indeed, u⊗6 ¼ 1.

(d) u⊗6 ¼ 1 is the only solution for d ¼ 3. In this case, it
is easy to see that

ρð1;2Þ6;3 ¼ 11j0ih0j⊗2 þ 10j1ih1j⊗2 þ 15j2ih2j⊗2

þ 7jD1;2ð1ÞihD1;2ð1Þj þ 3jD1;2ð2ÞihD1;2ð2Þj
þ 2ðj02i þ j20iÞðh02j þ h20jÞ
þ 2

ffiffiffi
2

p
½ðj02i þ j20iÞh11j þ c:c:�: ðB54Þ

Using that u ⊗ u maps eigenspaces of ρð1;2Þ6;d with a
given eigenvalue to themselves, it is easy to see that
uj0i ¼ u0j0i and uj2i ¼ u2j2i for some phases u0, u2.
As u is unitary, this implies that u ¼ P

2
i¼0 uijiihij.

This form can then be reinserted into Eq. (B44) to
verify that u⊗6 ¼ 1 is, in fact, the only solution of this
equation.

2. A way to construct critical tripartite states
with trivial stabilizer for d > 3

In this section, we present a method to look for critical
tripartite states with a trivial stabilizer in G̃. It is particularly
useful if one wants to find nonsymmetric states with these
properties. We then employ this approach to explicitly
construct such a state for local dimension d ¼ 4, 5, 6.

a. On the symmetries of certain tripartite states

Let jψi ∈ ðCdÞ⊗3 be a critical state. Because of
Lemma 11, we know that jψi does not have any nontrivial
symmetries iff it does not have any nontrivial unitary
symmetries. In what follows, we derive necessary and
sufficient conditions for some jψi that allow us to deter-
mine when this is the case. We consider the following
critical states in ðCdÞ⊗3,

jψi ¼ 1ffiffiffi
d

p
Xd−1
j¼0

jji ⊗ ðUj ⊗ 1Þjϕþi; ðB55Þ

where jϕþi ¼ ð1= ffiffiffi
d

p ÞPd−1
i¼0 jiii, and the operators

fUigd−1i¼0 are unitaries that fulfill TrðU†
i UjÞ ¼ dδij, i.e.,

that are orthogonal. Suppose V1 ⊗ V2 ⊗ V3 is a unitary
symmetry, i.e.,
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Vð1Þ ⊗ Vð2Þ ⊗ Vð3Þjψi ¼ jψi: ðB56Þ

We use the notation Vð1Þ ¼ P
ijV

ð1Þ
ij jiihjj. With the help

of the decomposition in Eq. (B55) and using that
1 ⊗ Ajϕþi ¼ AT ⊗ 1jϕþi for all matrices A, it is then
easy to see that Eq. (B56) is equivalent toX
j

Vð1Þ
ij ðVð2ÞUjVð3ÞT ⊗ 1Þjϕþi¼ ðUi⊗ 1Þjϕþi ∀i:

ðB57Þ
Using that ðA ⊗ 1Þjϕþi ¼ ðB ⊗ 1Þjϕþi iff A ¼ B, we can
rewrite Eq. (B57) asX

j

Vð1Þ
ij Uj ¼ Vð2Þ†UiðVð3ÞÞ� ∀i: ðB58Þ

These equations are equivalent to Eq. (B56). Let us use the
notation Wi ≡ Vð2Þ†UiðVð3ÞÞ�. Then, a direct consequence
of Eq. (B58) is the following necessary condition:

WiW
†
i ¼ 1þ

X
j≠k

Vð1Þ
ij V

ð1Þ
ik

�UjU
†
k ¼ 1 ∀i: ðB59Þ

That is, X
j≠k

Vð1Þ
ij V

ð1Þ
ik

�UjU
†
k ¼ 0 ∀i ðB60Þ

has to hold.

b. Special critical states with trivial stabilizer

From now on, we consider critical states for which
Eq. (B58) admits a particularly simple form. More precisely,
we consider states for which U0 ¼ 1 and for which the
unitaries fUiU

†
jgi≠j are linearly independent. The second

condition implies that Eq. (B60) can only be fulfilled if

Vð1Þ
ij V

ð1Þ
ik

� ¼ 0 for all i and for all j ≠ k, i.e., only if Vð1Þ has
exactly one nonzero entry in each row. That is, only if

Vð1Þ
ij ¼ eiϕiδi;σðiÞ, where σ ∈ Sd is a permutation. In the

particular case we are considering, Eq. (B58), therefore,
simplifies to

eiϕiUσðiÞ ¼ Vð2Þ†UiVð3Þ� ∀i: ðB61Þ

Because of Eq. (B61), it holds that Vð2Þ† ¼
eiϕσ−1ð0ÞVð3ÞTUσ−1ð0Þ†. Reinserting this into Eq. (B61) and

using the notation Ũ ≡Uσ−1ð0Þ and ϕ̃i ≡ ϕσ−1ð0Þ − ϕi, we
obtain

UσðiÞ ¼ eiϕ̃iVð3ÞTŨ†UiVð3Þ� ∀i: ðB62Þ

In the following section, we use the insights gained in
this section to explain in detail how a tripartite state with

local dimension d ¼ 4 and a trivial stabilizer can be
explicitly constructed. After that, we show how the same
method can be applied to d ¼ 5 and d ¼ 6.

c. A critical tripartite state with local
dimension d = 4 and trivial stabilizer

Let us construct a critical tripartite state with local
dimension d ¼ 4 and trivial stabilizer. Our goal is to find
unitaries fU0; U1; U2; U3g such that Eq. (B61) is only
fulfilled for σ ¼ id and Vð3Þ ¼ eiα31 for some α ∈ R. These
conditions then imply that Vð1Þ ⊗ Vð2Þ ⊗ Vð3Þ ¼ 1, as we
show now.
Recall that Vð1Þ

ij ¼ eiϕiδi;σðiÞ. As σ ¼ id, the unitary Vð1Þ

is a phase gate. Using that Vð3Þ ¼ eiα31 in Eq. (B61), it is,
moreover, easy to see that Vð2Þ ¼ e−iðϕiþα3Þ1. Hence,
the phases eiϕi cannot depend on i and, therefore, fulfill
eiϕi ¼ eiα1 for some α1 ∈ R. Thus, Vð1Þ ¼ eiα11. Hence, we
have that Vð1Þ ⊗ Vð2Þ ⊗ Vð3Þ ¼ 1.
In the following, we show that the conditions σ ¼ id and

Vð3Þ ¼ eiα31 are fulfilled if we choose

U0 ¼ 1; ðB63Þ

U1 ¼
1

10
T1diagð6þ 8i;−6 − 8i;−6þ 8i; 6 − 8iÞT†

1;

ðB64Þ

U2 ¼
1

102
T2diagð96þ 28i; 96 − 28i;−96

þ 28i;−96 − 28iÞT†
2; ðB65Þ

U3 ¼
1

103
diagð936þ 352i;−936 − 352i;−936

þ 352i; 936 − 352iÞ; ðB66Þ

where

T1 ¼
1

2

0
BBBB@

1 1 1 1

1 −i −1 i

−1 1 −1 1

−1 −i 1 i

1
CCCCA;

T2 ¼
1

2

0
BBBB@

i i 1 −1
1þiffiffi
2

p − 1−iffiffi
2

p − 1þiffiffi
2

p 1−iffiffi
2

p

−i i 1 1
1þiffiffi
2

p 1−iffiffi
2

p 1þiffiffi
2

p 1−iffiffi
2

p

1
CCCCA:

Note that T1 and T2 transform the computational basis into
the eigenbasis of the generalized Pauli operators X4Z2

4 and
X3
4Z4, respectively, where

SAUERWEIN, WALLACH, GOUR, and KRAUS PHYS. REV. X 8, 031020 (2018)

031020-20



X4 ¼
X3
k¼0

jkþ 1 mod 4ihkj;

Z4 ¼ diagð1; i;−1;−iÞ:

Hence, the unitaries in fUig have the same eigenbases as
the matrices in f1; X4Z2

4; X
3
4Z4; Z4g. However, their spectra

are different. The choice f1; X4Z2
4; X

3
4Z4; Z4g would give

rise to nontrivial solutions of Eq. (B61) and, therefore, to
nontrivial symmetries. One can show that the same happens
if one chooses any other subset of generalized Pauli
operators to define the unitaries fUig3i¼0.
It is straightforward to show that the unitaries

fU0; U1; U2; U3g fulfill the requirements necessary for
Eq. (B62) to be valid. That is, they are all mutually
orthogonal and the unitaries fUiU

†
jgi≠j are linearly inde-

pendent. In what follows, we show that the only choice of
Ũ ¼ Uσ−1ð0Þ that can fulfill Eq. (B62) is Ũ ¼ 1. It is
straightforward to see that Eq. (B62) can only be fulfilled
if, for any i ∈ f0; 1; 2; 3g, the spectrum of Ũ†Ui is propor-
tional to the spectrum of UσðiÞ. It is, however, easy to see
that this necessary condition cannot be fulfilled for Ũ ≠ 1.
For example, for Ũ ¼ U1, the spectrum of Ũ†U3 is not
proportional to the spectrum of any of the unitaries in fUig.
Consequently, Ũ ¼ 1 is the only way to satisfy Eq. (B62),
which then simplifies to

UσðiÞ ¼ eiϕ̃iVð3ÞTUiVð3Þ� ∀i: ðB67Þ

As the spectra of the fUig are not proportional to each
other, the only way to fulfill Eq. (B67) is if σ ¼ id. It is,
moreover, easy to see that eiϕ̃0 ¼ 1 and eiϕ̃j ∈ f−1;þ1g
for j ∈ f1; 2; 3g.
As eiϕ̃1 ∈ f−1;þ1g holds, we square Eq. (B67) for

i ¼ 1 and obtain

U2
1 ¼ Vð3ÞTU2

1V
ð3Þ�: ðB68Þ

Note that the spectrum of U2
1 is degenerate, as we have

U2
1 ¼ −

1

25
T1diagð7 − 24i; 7 − 24i; 7þ 24i; 7þ 24iÞT†

1:

Hence, Eq. (B68) can only be fulfilled if Vð3ÞT is of the
form

Vð3ÞT ¼ T1BT
†
1; ðB69Þ

where the unitary matrix B is a block diagonal matrix, i.e.,
B ¼ diagðB1; B2Þ, where B1, B2 are unitary 2 × 2matrices.
Using the form of VT

3 given in Eq. (B69), it is easy to show
that Eq. (B67) with eiϕ̃j ∈ f−1;þ1g for all j can only be
fulfilled if eiϕ̃j ¼ 1 for all j and if Vð3ÞT ¼ c1 for
some c ≠ 0.

In summary, we showed that σ ¼ id and Vð3Þ ¼ c1 for
some c ≠ 0. As outlined at the beginning of this section,
these conditions can then be used to show that, indeed,
Vð1Þ ⊗ Vð2Þ ⊗ Vð3Þ ¼ 1 is the only solution. Hence, the
state corresponding to the unitaries fU0; U1; U2; U3g in
Eqs. (B63)–(B66), i.e., the state

jψi ¼ 1

2

X4
j¼0

jji ⊗ ðUj ⊗ 1Þjϕþi; ðB70Þ

has a trivial stabilizer in G̃.

d. Tripartite states with d = 5, 6 and trivial stabilizer

In this section, we use the techniques presented in the
previous section to prove that there exist critical tripartite
states with local dimension d ¼ 5, 6 and trivial stabilizer.
As in the case of d ¼ 4, we explicitly construct unitaries

fUigd−1i¼0 for d ¼ 5, 6 that are diagonal in the eigenbasis of
certain generalized Pauli operators. We then prove that the
fUig are orthogonal and show that the unitaries fUiU

†
jgi≠j

are linearly independent. This shows that Eq. (B61) can be
used to prove that the corresponding critical quantum state
has a trivial stabilizer. Analogously to the case of d ¼ 4, we
show that σ ¼ id and Vð3Þ ¼ c1 for some c ≠ 0 is the only
solution of Eq. (B61) for these choices of unitaries fUig.
Since the matrices fUiU

†
jgi≠j are linearly independent, this

then shows that the state

jψi ¼ 1ffiffiffi
d

p
Xd−1
j¼0

jji ⊗ ðUj ⊗ 1Þjϕþi; ðB71Þ

is critical and has a trivial stabilizer in G̃.
Let us now present these unitaries fUigd−1i¼0 for d ¼ 5, 6.

Recall that, for every d ≥ 2 and for any k ¼ ðk1; k2Þ ∈
f0;…; d − 1g2, a generalized Pauli operator is defined as

Sd;k ¼ Xk1
d Z

k2
d ; ðB72Þ

where

Xd ¼
Xd−1
k¼0

jkþ 1 mod dihkj;

Zd ¼
Xd−1
k¼0

ωk
djkihkj;

and ωd ¼ expð2πi=dÞ. As shown in Ref. [53], the matrix
Ud;t transforms the computational basis into the eigenbasis
of Sd;ð1;tÞ for t ∈ f0;…; d − 1g, where
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Ud;t ¼
1ffiffiffi
d

p
Xd−1
i;j¼0

ðωj
dÞd−iðω−t

d Þ
P

d−1
l¼i

ljiihjj: ðB73Þ

The unitaries fUigd−1i¼0 for which we show that the state in
Eq. (B71) is critical and has a trivial stabilizer in G̃ are then
the following:

d ¼ 5∶

U0 ¼ 1;

U1 ¼ U5;1diagðeiβ1 ; e−iβ1 ; eiα1 ; e−iα1 ;−1ÞU†
5;1;

U2 ¼ diagð−1; eiβ2 ; e−iβ2 ; eiα2 ; e−iα2Þ;
U3 ¼ S5;ð1;3Þ;

U4 ¼ S5;ð3;1Þ;

with α1 ¼ π=3, α2 ¼ π=6, and βi ¼ arccos½1=2 − cosðαiÞ�,
for i ¼ 1, 2.

d¼6∶

U0¼1;

U1¼
1

10
U6;0diagð6þ8i;6−8i;−6þ8i;−6−8i;i;−iÞU†

6;0;

U2¼
1

100
diagð96þ28i;−96−28i;i;−i;96−28i;−96þ28iÞ;

U3¼S6;ð1;1Þ;

U3¼S6;ð2;3Þ;

U3¼S6;ð4;2Þ:

It is easy to verify that, for these choices of fUig, the
unitaries fUiU

†
jgi≠j are linearly independent. Following

the same argument as in the previous section, one can then
show that jψi [given in Eq. (B71)] is critical with a trivial
stabilizer.
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