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Local operations assisted by classical communication (LOCC) constitute the free operations in
entanglement theory. Hence, the determination of LOCC transformations is crucial for the understanding
of entanglement. We characterize here almost all LOCC transformations among pure multipartite
multilevel states. Combined with the analogous results for qubit states shown by Gour et al. [J. Math.
Phys. (N.Y.) 58, 092204 (2017)], this gives a characterization of almost all local transformations among
multipartite pure states. We show that nontrivial LOCC transformations among generic, fully entangled,
pure states are almost never possible. Thus, almost all multipartite states are isolated. They can neither be
deterministically obtained from local-unitary-inequivalent (LU-inequivalent) states via local operations,
nor can they be deterministically transformed to pure, fully entangled LU-inequivalent states. In order to
derive this result, we prove a more general statement, namely, that, generically, a state possesses no
nontrivial local symmetry. We discuss further consequences of this result for the characterization of
optimal, probabilistic single-copy and probabilistic multicopy LOCC transformations and the characteri-

zation of LU-equivalence classes of multipartite pure states.
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I. INTRODUCTION

Entanglement lies at the heart of quantum theory and is
the essential resource for many striking applications of
quantum information science [1-6]. The entanglement
properties of multipartite states are, moreover, fundamental
to important concepts in condensed matter physics [7]. This
relevance of entanglement in various fields of science has
motivated great research efforts to gain a better under-
standing of these intriguing quantum correlations.

Local operations assisted by classical communication
(LOCC) play an essential role in the theoretical and
experimental investigation of quantum correlations.
Spatially separated parties who share some entangled state
can utilize it to accomplish a certain task, such as telepor-
tation. The parties are free to communicate classically with
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each other and to perform any quantum operation on their
share of the system. To give an example, party 1 would
perform a generalized measurement on his/her system and
send the result to all other parties. Party 2 performs then,
depending on the measurement outcome of party 1, a
generalized measurement. The outcome is again sent to
all parties, in particular to party 3, who applies a quantum
operation, which depends on both previous outcomes, on
his/her share of the system, etc. Any protocol that can be
realized in such a way is a LOCC protocol. This physically
motivated scenario led to the definition of entanglement as a
resource that cannot be increased via LOCC. Stated differ-
ently, entanglement theory is a resource theory where the
free operations are LOCC. In particular, if |y) can be
transformed to |¢) via LOCC, then E(|y)) > E(|¢)) for
any entanglement measure E. Therefore, studying all
possible LOCC transformations among pure states also
leads to a partial order of entanglement.

In the bipartite case, simple, necessary, and sufficient
conditions for LOCC transformations among pure states
were derived [8]. This is one of the main reasons why
bipartite (pure state) entanglement is so well understood, as
those conditions resulted in an elegant framework that
explains how bipartite entanglement can be characterized,
quantified, and manipulated [2]. In particular, the optimal
resource of entanglement, i.e., the maximally entangled
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state, could be identified. It is, up to normalization and local
unitary (LU) operations (which do not alter the entangle-
ment), the state  .|ii). This state can be transformed into
any other state in the Hilbert space via LOCC. Many
applications within quantum information theory, such as
teleportation, entanglement-based cryptography, or dense
coding, utilize this state as a resource.

In spite of considerable progress [2,9], an analogous
characterization of multipartite LOCC transformations
remains elusive. The reasons for that are manifold.
Firstly, the study of multipartite entangled states is difficult,
and often intractable, due to the exponential growth of the
dimension of the Hilbert spaces. Secondly, multipartite
LOCC is notoriously difficult to describe mathematically
[10]. Thirdly, there exist multipartite entangled states,
belonging to the same Hilbert space, that cannot even be
interconverted via stochastic LOCC (SLOCC) [11] and,
thus, there is no universal unit of multipartite entanglement.

Apart from LOCC transformations, other, more tractable
local operations were considered. LU operations, which, as
mentioned before, do not alter the entanglement, have been
investigated [12]. SLOCC transformations, which corre-
spond to a single branch of a LOCC protocol, have been
analyzed [11]. Both relations define an equivalence rela-
tion. That is, two states are said to be in the same SLOCC
class (LU class) if there exists a g € G (g € K) that maps
one state to the other, respectively. Here, and in the
following, G (K) denotes the set of local invertible (unitary)
operators. Clearly, two fully entangled states, i.e., states
whose single-subsystem reduced states have full rank, have
to be in the same SLOCC class in case there exists a LOCC
transformation mapping one into the other. That is, it must
be possible to locally transform one state into the other with
a nonvanishing probability in case the transformation can
be done deterministically. Apart from LU and SLOCC,
where a single local operator is considered, transformations
involving more operators have been investigated, such as
LOCC transformations using only finitely many rounds of
classical communication [13] or separable operations (SEP)
[14]. Considering only finitely many rounds of classical
communication in a LOCC protocol is practically moti-
vated and leads to a simple characterization of (generic)
states to which some other state can be transformed via
such a protocol. However, it has been shown that there
exist transformations that can only be accomplished with
LOCC if infinitely many rounds of communication
are employed [15]. SEP transformations are easier to deal
with mathematically than LOCC. However, they lack a
clear physical meaning, as they strictly contain LOCC
[10,16]. Any separable map Aggp can be written as

Asep(r) = S ;M; ()M, where the Kraus operators M, =
MS) R...Q M;C") are local and fulfill the completeness

relation ZkMZM « = 1. In Ref. [17], necessary and suffi-
cient conditions for the existence of a separable map

transforming one pure state into another were presented.
Clearly, any LOCC protocol as explained above corre-
sponds to a separable map. However, not any separable
map can be realized with local operations and classical
communication [16], and there exist even multipartite pure
state transformations that can be achieved via SEP, but not
via LOCC [18].

Thus, despite all these efforts and the challenges
involved in characterizing and studying LOCC, the
fundamental relevance of LOCC within entanglement
theory makes its investigation inevitable in order to reach
a deeper understanding of multipartite entanglement.
Already, the identification of the analog of the max-
imally entangled bipartite state, the maximally entangled
set (MES), requires the knowledge of possible LOCC
transformations. This set of states, which was charac-
terized for small system sizes [18-20], is the minimal set
of states from which any other fully entangled state
(within the same Hilbert space) can be obtained via
LOCC. The investigation of LOCC transformations, in
particular for arbitrary local dimensions, might also lead
to new applications in many fields of science, e.g., new
ways to use quantum networks, which now become an
experimental reality, or new theoretical tools in con-
densed matter physics.

Instead of investigating particular LOCC transforma-
tions, we follow a different approach, which is based on the
theory of Lie groups and algebraic geometry (see also
Ref. [21]). This new viewpoint allows us to overcome many
of the usual obstacles in multipartite entanglement theory
described above. It enables us to characterize, rather
unexpectedly, all LOCC (and SEP) transformations, i.e.,
all local transformations, among pure states of a full-
measure subset of any system of (n > 3) d-level subsys-
tems and certain tripartite qudit systems. We show that
there exists no nontrivial LOCC transformation from or to
any of the states within this full-measure set. We call a local
transformation nontrivial if it cannot be achieved by
applying LUs (which can, of course, always be applied).
To be more precise, we show that a generic state |y) can
be deterministically transformed to a fully entangled
state |¢) via LOCC (and even SEP) if and only if (iff)
) = u; ® ... ® u,|y), where u; is unitary; that is, only if
lw) and |¢) are LU equivalent. As LU transformations are
trivial LOCC transformations, almost all pure multiqudit
states are isolated. That is, they can neither be determin-
istically obtained from other states via nontrivial LOCC nor
can they be deterministically transformed via nontrivial
LOCC to other fully entangled pure states. This also
holds if transformations via the larger class of SEP are
considered.

We derive this result by using the fact that the existence
of local symmetries of a state is essential for it to be
transformable via LOCC or SEP (see Refs. [17,21] and
Sec. II). The local symmetries of an n-partite state |y) are
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all local invertible operators g = ¢; ® ... ® g, € G such
that gly) = |w). The set of all local symmetries of |y) is
also referred to as its stabilizer. We prove that, for the
aforementioned Hilbert spaces, there exists a full-measure
set of states that possess no nontrivial symmetry. These
results are a generalization of those presented in Ref. [21].
Here, the following remark is in order. One might be
tempted to believe that the stabilizer of most states is trivial
whenever the number of complex variables N, (describing
¢) in the equation g|y) = |w) is smaller than the number of
equations N, (describing |y)). However, this counting
argument already fails in the case of four qubits, where
13 =N, <N, =16, but only a zero-measure subset of
states has a trivial stabilizer and almost all states have
nontrivial symmetries [17,20,22]. Hence, a parameter
counting argument does not suffice to show that the set
of states with a trivial stabilizer is of full measure. In fact, a
rigorous proof of this fact is already very involved for the
qubit case. In Ref. [21], methods from algebraic geometry
and the theory of Lie groups were used to show that generic
(n > 4)-qubit (d = 2) states only have trivial symmetries.
However, a straightforward generalization beyond qubit
states was impossible, as in Ref. [21], special properties of
the qubit case were utilized, for instance, the existence of
polynomials of low degree that are invariant under the
action of the local special linear group, so-called SL-
invariant polynomials (SLIPs). Note that, because of these
special properties of qubit states, it was unclear whether,
indeed, a similar result holds for arbitrary dimensions. As
the statement is not true for less than five qubits, it could,
furthermore, have turned out that the number of parties for
which almost all states have a trivial stabilizer depends on
the local dimension, i.e., that n depends on d. We show
here, however, that this is not the case by employing new
tools from algebraic geometry. Clearly, the investigation of
higher local dimensions is central in quantum information
processing, where, for example, in quantum networks, the
parties have access to more than just a single qubit.
Moreover, in tensor network states, which are employed
for the investigation of condensed matter systems, the local
dimension is often larger than two.

A direct consequence of this result is that the maximally
entangled set (MES) [19] is of full measure in systems
of n>3 qudits (and certain tripartite systems). The
intersection of states that are in the MES and are convert-
ible, i.e., that can be transformed into some other (LU-
inequivalent) state, is of measure zero. These states are the
most relevant ones regarding pure state transformations.
Prominent examples of these states are the Greenberger-
Horne-Zeilinger (GHZ) state [23] or more generally sta-
bilizer states [4]. Hence, the results presented here do not
only identify the full-measure set of states that are isolated,
but also indicate which states can be transformed.

As generic LOCC transformations are impossible, it is
crucial to determine the optimal probabilistic protocol to

achieve these transformations. Given the result presented
here, the simple expression for the corresponding optimal
success probability presented in Ref. [21] also holds for a
generic state with arbitrary local dimensions. Moreover,
we show that the fact that almost no state possesses a
nontrivial local symmetry can be used to derive simple
conditions for two SLOCC-equivalent states to be LU
equivalent. We also show that our result leads to new
insights into scenarios in which LOCC transformations of
more than one copy of a state are considered. In
particular, a lower bound on the probability, with which
n copies of a state |y) can be transformed into m copies
of a state |¢), can be derived. Remarkably, this bound
holds for any pair of states |y), |¢), i.e., even those that
are not generic, and arbitrary numbers of copies, n, m.
Furthermore, it leads to a new lower bound on the
optimal rate to convert asymptotically many copies of |y)
into copies of |¢) via LOCC.

The rest of this paper is organized as follows. In Sec. II,
we present the main result of the paper and emphasize the
physical consequences thereof. In particular, we first state
that there exists a full-measure set of states (of almost all
Hilbert spaces with constant local dimension), with the
property that the local stabilizer of any state in this set is
trivial (Theorem 1). We then recap why local symmetries
play such an important role in state transformations and
that Theorem 1 implies that, generically, there is no state
transformation possible via LOCC. After that, we present
further consequences of Theorem 1 for the characteriza-
tion of optimal probabilistic LOCC transformations, of
LU-equivalence classes, and for the determination of
probabilistic multicopy LOCC transformations, as men-
tioned above.

In Sec. III, we present the mathematical methods used
to prove that almost all multiqudit states have a trivial
stabilizer. In Sec. III A, we introduce our notation and
briefly recap the results presented in Ref. [21], where qubit
systems were considered. In Sec. III B, we develop these
methods further and employ new tools from the theory of
Lie groups and algebraic geometry to show that, whenever
there exists a so-called critical state whose set of unitary
local symmetries is trivial, then the stabilizer of a generic
multipartite state is trivial (Theorem 12). In Sec. III C, we
present examples of n-qudit systems for all local dimen-
sions (d > 2) and any number of subsystems (n > 3) of
states that have these properties. In particular, we prove
there that the stabilizer of these states is trivial. Combined
with Theorem 12 mentioned above, this shows that the
stabilizer of a generic state, i.e., of a full-measure subset of
states, of n > 4 qubits and n > 3 qudits, is trivial. This
result also holds for three qudits with local dimension
d=4,5, 6. In Sec. IV, we illustrate and discuss the picture
of multipartite pure state transformations that emerges if we
combine this work with previous findings on bipartite [8],
3-qutrit [18], and qubit systems [19,21]. In Sec. V, we
present our conclusions.
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II. MAIN RESULTS AND IMPLICATIONS

Let us state here the main results of this paper and
elaborate on its consequences in the context of entangle-
ment theory.

We consider pure states belonging to the Hilbert space
H,o=®" C4, i.e., the Hilbert space of n qudits. Whenever
we do not need to be specific about the local dimensions,
we simply write H,, instead of H,, ;. As before, G denotes
the set of local invertible operators on H,,. Our main result
concerns the group of local symmetries of a multipartite
state |y), also referred to as its stabilizer in G, which is
defined as

G, ={9€Glgly) = w)} cG. (1)

We prove that, for almost all multiqudit Hilbert spaces
H, 4, there exists a full-measured set of states whose
stabilizer is trivial. Recall that a subset of H, is said to
be of full measure if its complement in 7, is of lower
dimension. Stated differently, almost all states are in the
full-measured set and its complement is a zero-measure set.

The main result presented here is given by the following
theorem.

Theorem 1. For any number of subsystems n > 3 and
any local dimension d > 2, there exists a set of states whose
stabilizer in G is trivial. This set is open, dense and of full
measure in H, ;. Such a set of states also exists for n = 3
and d =4, 5, 6.

Note that it will be clear from the proof of the theorem
why the case n =3 has to be treated differently (see
Sec. III). However, it is likely that the statement of the
theorem also holds for n = 3 and d > 6. Theorem 1 shows
that almost all multiqudit states |y) have only the trivial
local symmetry, i.e., G, ={1}. This result has deep
implications for entanglement theory. In order to explain
them, we briefly review the connection between the local
symmetries of multipartite states and their transformation
properties under LOCC and SEP.

As mentioned in the Introduction, we say that |y) can be
transformed via SEP into |¢) if there exists a separable map

Asep() = 2o M ()M} such that Asep(lw) (w]) = [¢)(¢],
where the Kraus operators M, = M\" @ ... @ M\") are

local and fulfill the completeness relation ZleM =1
The transformation is possible via LOCC if there is a Aggp
that achieves the transformation and that can be imple-
mented locally. It is clear that a fully entangled state |y) can
only be transformed into another fully entangled state |¢) if
these states are SLOCC equivalent, i.e., |¢) = h|y) for
some heG. In Ref. [17], it was shown that a
fully entangled state |y) can be transformed via SEP to
|p) = h|y) iff there exists a m € N and a set of proba-
bilities { py }7, (p = 0,0, pp = Dand {S}1, € G,
such that

> piSiHS = rl. (2)
k

Here, H=h'h=Q® H, is a local operator and
r=[(ll¢)1*)/(llw)]|?)]. This criterion for the existence
of a SEP transformation can be understood as follows. Let
M denote the local operator that maps |w) to |¢) = h|y),
i.e., My|w) = cyh|w) for some ¢, # 0. Hence, h~' M, must
be proportional to a local symmetry of |y). Using then the
completeness relation Y, M ',L'M « = 1 leads to the necessary
and sufficient conditions in Eq. (2) for the existence of a
separable map transforming one fully entangled state into
the other [17].

As LOCC is contained in SEP, it is evident from this
result that the local symmetries of a state play also a major
role in the study of LOCC transformations. However, in
order to characterize LOCC transformations among fully
entangled states using Eq. (2), one has to determine their
local symmetries, find all solutions of Eq. (2), and check if
the corresponding separable measurement can be imple-
mented locally. For particular pairs of states, such a
procedure is feasible, even though it might be very tedious.
However, to find all possible LOCC transformations seems
infeasible. Our main result (see Theorem 1) allows us to
accomplish all the steps described above for almost all
multipartite qudit states and thereby provides a characteri-
zation of deterministic SEP and LOCC transformations for
almost all qudit states. This is one of the reasons why
Theorem 1 has such deep implications in entanglement
theory, as we explain below.

In Ref. [21], some of us proved a similar result as stated in
Theorem 1 for qubit states. There, so-called SL-invariant
polynomials (SLIPs) [24] were used to identify a full-
measure subset of all (n > 4)-qubit states that have a trivial
stabilizer. As the special characteristics of the qubit case, for
instance, the existence of SLIPs of low degree, cannot be
utilized for higher dimensions, this proof does not hold
beyond qubit states. Precisely due to these peculiarities of
qubit states, it was unclear whether, indeed, a similar result
holds for arbitrary local dimensions. Moreover, as the analog
of Theorem 1 is not true for less than five qubits, it could
have turned out that the number of parties for which almost
all states have a trivial stabilizer depends on the local
dimension, i.e., that n depends on d. Theorem 1 shows that
this is not the case. In order to tackle the case of arbitrary
local dimensions, we employ in this work new tools from
the theory of Lie groups and geometric invariant theory
without explicitly using SLIPs (see Sec. I1I). We also show in
Sec. III that the new results encompass the qubit case.

Let us now discuss the consequences of Theorem 1 in the
context of entanglement theory.

A. Nontrivial deterministic local transformations
are almost never possible

In Ref. [21], it was shown that states with a trivial
stabilizer are isolated. That is, a state with a trivial stabilizer

031020-4



TRANSFORMATIONS AMONG PURE MULTIPARTITE ...

PHYS. REV. X 8, 031020 (2018)

DN W o Ot Oy e

23 456 -
n

FIG. 1. Summary of results on the symmetries of n-partite
systems with local dimension d. The picture is divided into
different regions (A to G) that were treated separately in the
literature. The colors give information on the stabilizer of states in
the corresponding system: blue (all states have a noncompact
stabilizer, regions A [8] and B [19,25]), green (generic states have
a finite, nontrivial stabilizer, regions C [18] and F [19]); red
[generic states have a trivial stabilizer, regions D (see Theorem 1)
and G [21]]; grey (generic states have a finite stabilizer [17,26],
unknown if it is trivial, region E). The implications of these and
other results in entanglement theory are summarized in the
main text.

can neither be obtained from LU-inequivalent states via
LOCC nor can it be transformed to LU-inequivalent, fully
entangled states via LOCC. The same holds for trans-
formations via SEP. Indeed, for such a state, the only
solution to Eq. (2) is H = 1, which means that |y) is LU
equivalent to |¢). It was then shown in Ref. [21] that this
holds for almost all states of n > 4 qubits. Theorem 1
ensures that the same holds true for almost all multiqudit
states, which is stated in the following theorem.

Theorem 2. Let H, ,; be one of the multipartite qudit
Hilbert spaces in Theorem 1 and let |y) € H,, , be a fully
entangled n-partite state with a trivial stabilizer, i.e.,
G, = {1}. Then, |y) can be deterministically obtained
from or transformed to a fully entangled |¢) via LOCC
or SEPiff |y) and |¢) are related by local unitary operations;
that is, iff there exists a u € K such that |y) = u|¢).

Recall that K denotes the group of local unitary
operators. On the one hand, this result shows that, rather
unexpectedly, a characterization of LOCC transformations
of almost all multiqudit states is possible. On the other
hand, it proves that these transformations are generically
extremely restricted and nontrivial transformations are
generically impossible. That is, the parties who share a
generic state cannot transform it via LOCC deterministi-
cally into any other (LU-inequivalent) state. This result
might also be the reason why there has been so little
progress on multipartite state (or entanglement) transfor-
mations via local operations.

As the MES is defined as the minimal set of states that
can be transformed into any other fully entangled state in
the Hilbert space [19], Theorem 2 implies that the MES of
(n > 3)-qudits is of full measure. Note that this is in strong
contrast to the bipartite case, where a single state, namely,
the maximally entangled state |®*)=>",|ii), can be
transformed into any other state in the Hilbert space with
LOCC. In Sec. IV, we discuss in detail the picture of
multipartite pure state transformations that emerges if we
combine our findings with previous results on the subject
(see also Fig. 1).

Theorem 2 also has implications for the construction of
entanglement measures. Recall that an entanglement mea-
sure for pure states is a function E : H,, — R such that
E(y) > E(¢) holds whenever the transformation from |y)
to |¢) can be performed deterministically via LOCC. Since
generic multiqudit states cannot be reached via nontrivial
deterministic LOCC, one only has to verify if E is invariant
under LU transformations and nonincreasing under LOCC
transformations to and within the zero-measure subset of
states with nontrivial stabilizer, e.g., to states that are not
fully entangled.

B. A characterization of optimal probabilistic local
transformations for almost all multiqudit states

Given the fact that it is not possible to transform generic
multiqudit states via local transformations into any other
state, it is crucial to determine the optimal probability to
achieve these conversions. Note that, if both the initial and
final states are fully entangled, this probability is only
nonzero if they are elements of the same stochastic LOCC
(SLOCC) class [11]. In Ref. [21], some of us found an
explicit formula for this probability for qubit states.
Because of Theorem 1, this formula indeed holds for
arbitrary local dimensions.

Theorem 3. Let H, ; be one of the multipartite qudit
Hilbert spaces in Theorem 1, let |y) € H,, ; be a normal-
ized, fully entangled, n-partite state with a trivial stabilizer,
ie., G, = {1}, and let |¢) = hly) be a normalized state in
the SLOCC class of |y). Then the maximum probability to
convert |y) to |¢) via LOCC or SEP is given by

1

T () ®)

Pmax<|w> - |¢>) =

where A, (X) denotes the maximal eigenvalue of X.
Because of Theorem 1, this theorem gives a simple
expression for the optimal probability p..(lw) — |¢)) to
locally transform a generic (n > 3)-qudit state |y) into
another fully entangled state |¢). These results also hold for
tripartite d-level systems with d =4, 5, 6. It should be
noted here that the optimal success probability was only
known for very restricted transformations prior to these
results (see, e.g., Refs. [17,25] and references therein).
Theorem 2 and Theorem 3 now provide a characterization
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of deterministic and optimal probabilistic local transforma-
tions for almost all multiqudit states.

Note that the optimal success probability given in Eq. (3)
is optimal for transformations via LOCC and via SEP.
This shows that, despite the fact that there are pure state
transformations that can be achieved via SEP but not via
LOCC [18], the two classes of operations are equally
powerful for transformations among generic (n > 3)-qudit
states. The reason for this is that the optimal SEP protocol is
a so-called one-successful-branch protocol (OSBP), which
can always be implemented via LOCC in one round of
classical communication. As suggested by the name, a
OSBP is a simple protocol for which only one measurement
branch leads to the final state, while all other branches lead
to states that are no longer fully entangled (see Ref. [21]).
This optimal protocol to transform |y) into |¢) = h|y) via
LOCC, where h = h; @ ... ® h, € G, is implemented as
follows. The first party applies a local generalized meas-
urement that contains an element proportional to h;.
Similarly, party 2 applies a local generalized measurement
that contains an element proportional to h,, etc. The
successful branch is the one where all parties managed
to apply the operator h;. Because of the fact that the local
measurements have to obey the completeness relation, one
can show that the maximal success probability is given as in
Theorem 3. Note that this protocol can, of course, also be
performed if the corresponding state has nontrivial sym-
metries. That is, the success probability given in Eq. (3) is
always a lower bound on the success probability.

Because of Theorem 2, the optimal success probability
can only be one if the states are LU equivalent. Let us
verify that this is indeed the case. Given the premises of
Theorem 3, we make the following observation.

Observation 4. The optimal success probability as
given in Theorem 3 is equal to 1 iff H =h'h = 1.

This can be easily seen as follows. As |w) and |¢) = h|w)
are both normalized, we have that

Do (H) = max, L2 WlHly)

o T wlw)

Because of Eq. (3), the success probability is 1 iff the
maximal eigenvalue of H is 1. We hence obtain that |y) is
an eigenstate of H, i.e., H|w) = An. (H)|w). However, as
H is in G and as |y) does not have any nontrivial local
symmetry, it must hold that H = 1.

-1 (4

C. A simple method to decide LU equivalence
of generic multiqudit states

Since local unitary transformations are the only trivial
LOCC transformations of pure states, i.e., the only trans-
formations that do not change the entanglement of a state
[27], it is important to know when two states are LU
equivalent. That is, given two states |y), |¢), one would
like to know whether there exists a local unitary # € K such

that |y) = u|¢). In general, this is a highly nontrivial
problem (see, e.g., Ref. [12]). However, we show now that
the results in this article also allow us to solve the LU-
equivalence problem for generic multiqudit states, as stated
in the following theorem.

Theorem 5. Let |y), |¢) € H, be both states in the
SLOCC class of a state |y, ), with a trivial stabilizer, i.e.,
G,, = {1}. That is, [y) = gly,) and |¢) = hly,). Then,
lw) is LU equivalent to |¢) iff G = H.

Proof—As before, we use the notation G = g'g and
H = h'h. First, note that G = H holds iff g = uh for some
local unitary u € K. Hence, |y) = gly,) = uhly,) = u|¢p)
and, therefore, the states are LU equivalent. The other
direction of the proof can be seen as follows. If |y) =
glws) = uhly,), then g~'uh = 1 musthold, as |y) does not
possess any nontrivial local symmetry. Thus, we have that
G =H. [

This strong implication follows only from the fact that
|w,) has a trivial stabilizer, which implies that the standard
form g|y,) with which a state in the SLOCC class of |y )
can be represented is unique. That is, the only ¢ such
that gly,) = ¢'|w,) is g = ¢, as otherwise, (¢)~'g would
be a nontrivial local symmetry of the state |y,). Because
of Theorem 1, Theorem 5 applies to almost all multiqudit
states.

Let us now generalize this result to the situation where it
is known that the two states are in the same SLOCC class,
but the local invertible operator transforming one into the
other (for the states above the operator sg~") is unknown.
To this end, we introduce now the notion of critical states.
A state is called critical if all of its single-subsystem
reduced states are proportional to the completely mixed
state [17]. Prominent examples of critical states are Bell
states, GHZ states [23], cluster states [3], graph states [28],
code states [1], and absolutely maximally entangled states
[29]. The set of all critical states in H, ,, denoted by
Crit(H,.4), plays an important role in entanglement theory
as the union of all SLOCC classes of critical states is of full
measure in H, ; [17]. For more details and properties of
critical states, we refer the reader to Sec. III.

Let us note that the standard form |y) = g|y,) of a
generic state corresponds to the normal form introduced in
Ref. [30]. The numerical algorithm presented in Ref. [30]
can be used to find the normal form of a generic state, i.e., a
local invertible g € G and a critical state |y) such that
lw) = glw,). Because of the Kempf-Ness theorem [31] (see
also Appendix A), there exists, up to local unitaries, only
one critical state in a SLOCC class. Hence, computing the
normal form for two states in the same SLOCC class leads
to [w) = gly,) and |¢) = hly}), where [y) = uly), with
u a local unitary. The question we address next is when
these two states are LU equivalent. The necessary and
sufficient condition is given by the following lemma.

Lemma 6. Let |y), |¢) € H, be both states in the
SLOCKC class of a critical state |y, ), with a trivial stabilizer.
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Let further |w) = gly,) and |¢) = hly}) be the normal
forms of the states derived with the algorithm presented in
Ref. [30]. Then, |y) is LU equivalent to |¢) iff the local
unitary u that transforms |y}) into |y), i.e., [y,) = u|w))
(which must exist and is unique) fulfills G = u'Hu.

Because of Theorem 1, this theorem again applies to
almost all multiqudit states. It provides an easy way to
solve the a priori, highly nontrivial problem of deciding the
LU equivalence of two generic states that are SLOCC
equivalent.

Proof—If: Let G = u' Hu. Then there exists a unitary v
such that g = vhu. As all operators u, h, and g are local
and invertible, v is a local unitary operator. Hence,
ly) = glw,) = vhulw,) = vhlyy) = v|¢p). Only if: If there
exists a local unitary, v transforming |¢) into ), we have
lw) = glws) = v|g) = vhlys) = vhuly,). The last equal-
ity follows from the uniqueness of the critical states in a
SLOCC orbit. As |y,) does not possess any nontrivial local
symmetry, it must hold that g = vhu. Therefore, we have
G =u'Hu. L]

D. Multicopy transformations and asymptotic
conversion rates

Let us briefly discuss which consequences the results
presented here have in the case where transformations of
many copies of a state are considered. First of all, note that
the fact that |y) has only trivial local symmetries does not
imply that the same holds for multiple copies of this state.
In fact, any k copies of a state |y), i.e., |)®¥, do have local
symmetries, namely, a local permutation operator (SWAP)
applied to all parties. Hence, multicopy states belong to the
zero-measure subset of multiqudit states with nontrivial
local symmetries. These nontrivial symmetries could give
rise to nontrivial local transformations [see Eq. (2)]. Indeed,
it has recently been shown in Ref. [32] that there are cases
where two copies of a state can be transformed to states that
cannot be reached from other states in the case of a single
copy. Hence, the MES can be made smaller even if only
two copies of the state are considered.

However, since we know the optimal probability to
locally transform a single copy of a generic state |y) into
a fully entangled state |¢), it is straightforward to obtain a
lower bound on the optimal probability to transform k
copies of |y) into m < k copies of a fully entangled state
|¢p) = hly) via LOCC, namely,

P ()% = [)7)
k
> Z(’]‘) Do () = )1 = P (1) — |84,
(5)

Although this bound follows trivially from our results on
single-copy transformations, it can provide new insights
into the multicopy case. This is exemplified if one

considers the asymptotic limit of k& — co, where one is
interested in the optimal rate R(|y) — |¢)) at which
asymptotically many copies of a state |y) can be trans-
formed into copies of a state |¢), which is defined as

R(lw) = 1)) = sup{ r{Jim  inf |[Aoce(v) (w]®)

~ o) ale ) =0}, (6)

Here, the infimum is taken over all LOCC maps, and

|1 X|l; = Tr(VX"X) denotes the trace norm of X. It was
recently shown in Ref. [33] that, for tripartite states |y),
|¢), it holds that

R(ly) = |¢#)) = min {S( 5

where p.g,l) = Tr.;(|w) (w|) (and similar for |¢)) and S(p) =
—Tr[plog(p)] is the Von Neumann entropy. Note that this
bound can obviously be improved by taking the maximum
over all bipartitions of the tripartite states. Little is known on
lower bounds on R(|y) — |¢)) for states of more than three
parties. However, because of Eq. (5) and the law of large
numbers (see, e.g., Ref. [1] and references therein), we
obtain the following theorem.

Theorem 7. Let |y), |¢) € H, be two multipartite
entangled states and let p,. (Jy) — |¢)) denote the optimal
success probability to transform |y) into |¢) via LOCC.
Then, the asymptotic LOCC conversion rate from |y) to |¢)
fulfills

R(ly) = [#)) 2 pmax () = [#)). (8)

For a normalized generic multiqudit state |y) (i.e., with a
trivial stabilizer) and a normalized state |¢) = hly), we can
insert the expression of Eq. (3) for pu.(jy) = |¢)) into
Eq. (8), and we obtain the following bound,

1

Rlly) = 16) 2 ;g

©)

Note that, even in the tripartite case (e.g., for three four-
level systems), one can easily construct examples where
the bound in Eq. (9) is better than the bound in Eq. (7)
(even if optimized over all bipartitions), while there are also
tripartite states for which the opposite holds.

III. MATHEMATICAL CONCEPTS AND
PROOF OF THE MAIN RESULT

In this section, we present the proof of our main result,
Theorem 1. In fact, we prove Theorem 1 by deriving results
that are stronger than actually required. However, we
believe that these tools are also useful in other contexts
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and should, therefore, be presented in the main text of this
article. We first introduce in Sec. III A our notation and the
main mathematical tools that we use. Furthermore, we
summarize some of the results that were presented in
Ref. [21]. In Sec. III B, we first give a concise outline of the
proof of Theorem 1. We then continue with a presentation
of the detailed proof. In Sec. III C, we give examples of
states with a trivial stabilizer, which are required to
complete the proof.

A. Notations and preliminaries

Throughout the remainder of this paper, we use the
following notation. We consider the following four differ-
ent groups, all acting on H,,:

G=SL(d,C)® ... ® SL(d.C) C SL(H,)

K=SUd)® ... ® SU(d) c SU(H,)
G=GL(d,C)® ... ® GL(d.C) c GL(H,,)
K=U(d)® .. U(d) C UH,).

Note that G = C*G, where C* =C\{0} and that
K=GnU(n). Thatis, K = {zulu € K, |z| = 1}.

Given a subgroup H C GL(H,,), the stabilizer subgroup
of a state |y) € H,, with respect to this group is defined as

H, ={h € Hlhly) = |y)} CH.

If we refer to the stabilizer of a state |y) without explicitly
mentioning the corresponding group, we mean Gvr
Moreover, the orbit of a state |y) under the action of H
is defined as

Hly) = {hly)|h € H}.

Note that the orbit contains states that are not necessarily
normalized, and any orbit H|y) is an embedded submani-
fold of H,,. Hence, any orbit H|y) has a dimension, which
we denote by dim(H |y)).

In Sec. II, we briefly mentioned the set of critical states,
Crit(H,), in H,,, which contains all states whose single-
subsystem reduced states are proportional to the completely
mixed state. Denoting by Lie(G) the Lie algebra of G, this
set can also be expressed as

Crit(H,) = {|#) € H, | (#IX|$) =0.YX €Lie(G)}.  (10)

Criteria for when a system with Hilbert space H,, contains
critical states were found in Refs. [34,35]. If Crit(#,,) is not
empty, the union of all orbits (in G) containing a critical
state, i.e., G - Crit(H,,), is open, dense, and of full measure
in H,, [17,26]. Moreover, the stabilizer of any critical state
is a symmetric subgroup of GL(H,), i.e., it is Zariski-
closed (Z-closed) (see, e.g., Ref. [26] for the definition of

the Zariski topology) and invariant under the adjoint [21].
The latter means that, if g€ G,, for |y) € Crit(H,,),
then g" € G,,.

Let us now briefly recall how some of us proved in
Ref. [21] that there exists an open and full-measure set of
states in the Hilbert space corresponding to n-qubit states
with n > 5, which contains only states with a trivial
stabilizer in G. In order to do so, we define the following
subset of critical states,

C = {jy) € Crit(H,)| dim(Gly)) = dim(G)}.  (11)

That is, C consists of all critical states whose orbits (under
G) have maximal dimension (i.e., the dimension of G).
Because of the identity Gly) =~ G/G,, it follows that
ly) € C iff |y) is critical and G, is a finite group [or,
equivalently, dim(G,,) = 0]. Using algebraic geometry and
the theory of Lie groups, some of us showed in Ref. [21] the
following important properties of this subset.

Lemma 8. [21] The set C defined in Eq. (11) has the
following properties:

(i) G, =K, forall |y) €C.

(ii) The set GC = {g|y)|g € G; |y) € C} is open with a

complement of lower dimension in H,,.
(iii) C is a connected smooth submanifold of H,,, and K
acts differentiably on C.

The principal orbit type theorem [36] (see also
Appendix A) was then central to the proof that the set
of states whose stabilizer in G is trivial is open and of full
measure. Defining the set

¢ ={lw) €CIG, = {1}}. (12)

we proved that, if C° is not empty, then C° is open, dense,
and of full measure in C [21]. Moreover, in this case, the set
GC® = {gly)|ly) € C° g € G} is open, dense, and of full
measure in GC. Clearly, any state |¢) in GC° has a trivial
stabilizer in G. Using now that GC is open and of full
measure in H,, (see property 2 in Lemma 8), we also have
that GC°, which contains only states with G, = {1}, is
open and of full measure in H,. As can be seen from the
proofs in Ref. [21], this result holds for arbitrary multi-
partite quantum systems (as long as it can be shown that C°
is not empty). In particular, we have [37]

Lemma 9. If there exists a state [y) € C°, then the set

{lg) € H,|G, # {1}} (13)

is of measure zero in H,,.

For n > 5, we presented, in Ref. [21], an n-qubit state
ly), which is contained in C°. Hence, for n > 5, a generic
n-qubit state has only a trivial stabilizer (in G). In order to
define the set .4 containing states with a trivial stabilizer in
G (not only G), which is also open, and with the comple-
ment of the lower dimension in H,,, we used, for the qubit
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case, homogeneous SL-invariant polynomials (SLIPs) [24].
With these SLIPs, we were able to identify a full-measure
subset A C GC° with the desired property that, for any state
lp) € A, G, = {1}.

As mentioned before, Lemma 9 holds for arbitrary qudit
systems. Note further that criteria for when the stabilizer in
G of a generic state is trivial were found in Ref. [35].
However, in order to obtain the strong implications in
entanglement theory (see Secs. II and IV), it is required to
prove that the stabilizer in G (and not only in G) is trivial.
Hence, the last step of the proof, as outlined above, is
essential here. However, it is precisely this step that cannot
be easily generalized to arbitrary local dimensions. Hence,
we employ new proof methods in the subsequent section to
prove directly the existence of a set A, which contains only
states whose stabilizer in G is trivial, and which is open and
of full measure in H,,.

B. Genericity of states with trivial stabilizer

Using Lemma 8, we prove now one of the main results of
this paper. We have already presented Theorem 1 and its
profound implications in entanglement theory in Sec. IL
We show in the following that, in order to prove Theorem 1
for given values of n and d, it will eventually be enough to
find only one critical state |y) € H,, 4 with a trivial unitary
stabilizer, i.e., with K,, = {1}.

Let us first give an outline of the proof of Theorem 1.

First, we consider the set of critical states, Crit(H,,) [see
also Eq. (10)]. We show that, if a critical state has only
finitely many local unitary symmetries, then there exists no
further local (nonunitary) symmetry of this state (see
Lemma 11). We then use this together with the results
from Ref. [21] and tools from geometric invariant theory to
prove the following statement (see Theorem 12). If there
exists one critical state |y) € H, with a trivial unitary
stabilizer, then there exists a set A C H,, of states with a
trivial stabilizer in G that is open and of full measure in H,,.
Because of this theorem, it is sufficient to find one critical
state with a trivial stabilizer in H,, , to prove Theorem 1 for
these values of n and d. Finally, we explicitly construct
such states and, therefore, complete the proof of Theorem 1
(see Sec. I C, Appendix B).

Let us now present the details of the proof of Theorem 1.
We first show that the set of critical states with a finite
stabilizer in K coincides with the set of critical states with a
finite stabilizer in G, as stated in the following lemma.

Lemma 10. The following subset of critical states,

C = {ly) € Crit(H,)| dim(K|y)) = dim(K)}. ~ (14)
coincides with the set

{lw) € Crit(H,)|dim(Gly)) = dim(G)}. ~ (15)

Proof.—This lemma is a direct consequence of a much
stronger theorem (Theorem 2.12) proven in Ref. [26]. This
theorem states that, if H is a symmetric subgroup of GL(H,,)
and the so-called maximal compact subgroup of H is
K'=HnNnU(H,), then Lie(H)=Lie(K’)+ iLie(K’).
That is, H = K,e*2, where K, € K’ and k, € Lie(K’). In
Ref. [21], it was shown that Gw is a symmetric subgroup of
GL(H,). As shown in Ref. [26], K is a maximal compact
subgroup of G and so is I~(,,, of Gw [39]. Thus, we have that
Lie(G,) = Lie(K,) + iLie(K,). Hence, if K, is finite,
then also G, is finite. Using now that H|y) = H/H,,, for
H = G, K, we obtain that C coincides with the set of critical
states whose stabilizer is finite in G, which proves the
assertion. [

Using the lemma above, we are now in the position to
prove that, if a critical state has a finite stabilizer in K (or
equivalently in G), then all symmetries in G are unitary.
That is, we prove now the following lemma.

Lemma 11. For any state |y) € C, with C given in
Eq. (14), it holds that

K, =G,.

Proof.—Because of Lemma 10, we have that Cis a
subset of C. Hence, Lemma 8 (i) implies that for any state
lw) € C, G,, = K,,. To prove now that this equivalence also
holds for I?l,, and Gw» we consider |y) € Cand g € G,,,. We
show that g must be unitary. The Hilbert-Mumford theorem
(see, e.g., Refs. [26,40]) implies that, for any critical state
lw), there exists a homogeneous SLIP f of some degree m
such that f(|y)) # 0. Now, if g € G,,, we can write it as
g=1zq, where 0 # z € C and ¢ € G. Hence, f(|y)) =
flglw)) =2"f(d ) = "f(ly))- As f(lw)) #0, this

implies that z = 1. Using now the polar decomposition
of g,i.e.,g = u\/g'g, with u € K, the Kempf-Ness theorem
(see Appendix A) implies, as g¢'g is positive, that
V' glw) = |w). Hence, also u has to be a stabilizer of
). In particular, u € K,,. Moreover, as z is only a phase,

we have that \/g'g=+/(¢)"(¢)€G,. Using now that
G, = K,,, we have that g = u\/g'ge kw’ which proves
the statement. [

With Lemma 11, it is easy to see that the following sets
all coincide:

(1)
C' = {lw) eClk, = {1}}, (16)

(i1)
{ly) € Crit(H,)| K, = {1}}, (17)

(iif)
{lw) € Crit(H,)|G, = {1}}. (18)
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We now use these results to prove the following theorem,
which states that, if C’ is nonempty, then our main theorem,
Theorem 1, is implied.

Theorem 12. If there exists a state |y/) € C', i.e., if there
exists a critical state |y) such that K, = {1}, then there
exists an open and full-measure (in H,) set of states whose
stabilizer in G is trivial. More precisely, if C' # @, then the
set of states

A=GC = {gly)llw) €C'.g € G}, (19)

which contains only states with a trivial stabilizer in G, is
open and of full measure in H,.

Proof—TFirst of all, note that K is a compact Lie group,
which acts differentiably on the connected smooth sub-
manifold C of H, [see (iii) of Lemma 8]. Hence, the
principal orbit type theorem (see Appendix A) can be
applied. This theorem implies that the set

¢ = {lw) e Clk, = {1}} = {Iv) € I, = {1}}  (20)

is, if it is nonempty, open and of full measure in C. Note
that, in the last equality in Eq. (20), we used Lemma 11.
According to (ii) of Lemma 8, we have that GC is open and
of full measure in H,. Therefore, for any open and full-
measure set of C, the union of the orbits of all states in this
set is also open and full measure in H,,. Using now that, for
any |¢) € A, there exist g€ G and |y) € C’' such that
(:}¢ = gGV,g", we have that, for any |¢) € A, it holds that
G, = {1}, which completes the proof. ]

In the subsequent section, we explicitly present states in
C' for the Hilbert spaces specified in Theorem 1, which
completes the proof of this theorem. In Sec. II, the
implications of this result in the context of entanglement
theory are discussed. Let us stress here that our results also
encompass the results of Ref. [21], where it was shown that
almost all (n > 4)-qubit states have a trivial stabilizer.
While no example of a state with a trivial stabilizer was
given in Ref. [21], our results allow us to construct states
with this property, as we show in the following section. Let
us further remark here that Theorem 12 holds for arbitrary
multipartite quantum systems. However, in this work, we
only use it for homogeneous systems, i.e., systems com-
posed of subsystems with equal dimension.

C. Critical states with trivial stabilizer in G

In this section, we present critical states with a trivial
stabilizer. First, we introduce a critical state that is defined
forn =5, n> 6, and d > 2, and we give an outline of the
proof that its stabilizer is trivial. The proof itself is given in
Appendix B. It will become evident from the construction
of this state that the cases n = 3, 4, 6 have to be treated
separately. However, also for these cases, we construct states
with a trivial stabilizer in Appendix B. This completes the

proof of Theorem 1, as it shows that the set C’ is nonempty
for the systems mentioned in this theorem.

Let us introduce the following notation before we define
the state with the desired properties for n =5, n > 6,
and d>2. Let S, denote the symmetric group of n
elements. For a permutation ¢ € S,,, we define the operator
f)(y via P”|l1> ® ® |ln> = |i0'_](l)> ® ® |l.5—l(n)>, for
all (iy,...,i,) €{0,...,d —1}". We call a state |y) sym-
metric if P,|y) = |w) for all o € S,. Furthermore, we
define, for an arbitrary state |¢p) € H, 4, the set of all
distinct permutations of |¢) as z(|¢p)) = {P,|p)|lc € S,}
and the symmetrization of |¢) as [z(|))) = >}y ex(iy) X)-
Using this notation, we define, for 0 <k <n and
Jj€{l,...,d -1}, the (un-normalized) state

Dy, (4)) = |=(1j)®]j = 1)®"5)).

We are now ready to introduce the critical n-qudit state
(n =15, n > 6), for which we show that it has a trivial
stabilizer, namely,

d-1 d-1
Woa) =D cil)® + D IDLG). (1)
j=0 j=1

where ¢g=4/(}7))+1, ¢;=1 for 0<i<d-1, and

cao1 =4/ ("7") + 1, with k the smallest natural number

such that 3 < k < n—2, n # 2k, and ged(n, k) = 1. Here,
gcd(n, k) denotes the greatest common divisor of 7 and k.
The existence of k is obvious for n = 5 and is proved for
n > 6 in Appendix B. The condition ged(n, k) =1 is
crucial to ensure that the state |¥, ;) has only trivial
symmetries, as we shall see later. Recall that |¥,,) is
critical if all of its single-subsystem reduced states are
proportional to the identity. A straightforward calculation
shows that |¥, ;) indeed fulfills this property for n =5,
n > 6. Note further that |¥, ;) is not defined for n = 2, 3,
4, 6, since there is no k with the properties described
after Eq. (21).

Note that, for (n > 4)-qubits, the existence of states
with a trivial stabilizer was shown in Ref. [21]. Howeyver,
no examples of states with this property were given.
The mathematical methods developed in this article allow
us to explicitly construct such states, namely, the states
{I¥.2)}uesnse [41]. This shows that our work also
includes and, in fact, extends the results for qubits obtained
in Ref. [21]. To explicitly give an example of a qubit state
with a trivial stabilizer, consider the 5-qubit state,

Ws,) = V/7|00000) + [00111) 4 [01011) + |01101)
+101110) + [10011) + [10101) + [10110)
+[11001) 4 |11010) + [11100) + v/5[11111).
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The following lemma shows that |¥, ;) has a trivial
stabilizer forn = 5, n > 6, and d > 2. It is a combination of
Lemmas 18 and 19 in Appendix B 1 a, where we prove this
statement for n > 6 and n = 5, respectively.

Lemma 13. For n =5, n > 6, and d > 2, the stabilizer
of |¥, ) is trivial, i.e., Gy , = {1}.

In the following, we give an outline of the proof of this
lemma, which is divided into four main steps.

First, we note that it is sufficient to show that
KPM ={1}, as Lemma 11 then implies that also Gly”_ L=
{1} holds. In the second step, we show thatany v € Ky is

of the form v = u®" for some u € U(d). The proof of this
statement is presented in Appendix B 1 a. It thus remains to
show that the only u € U(d) that fulfills the equation

u®n|lpn,d> = |an,d> (22)

also fulfills u®* = 1. In the third step, we show that
Eq. (22) can only be fulfilled if u is diagonal, i.e., if
u="> .u;|i)(il. We show this in Appendix Bla by
considering the two-subsystem reduction of Eq. (22). In
the fourth step, we reinsert u = »_,u;|i)(i| into Eq. (22) and
see that it is equivalent to

fori € {0,...,d -1}, (23)

n
u? =1

k,n—k __
uiu—y =1

for i€ {1,....d—1}. (24)
Now, recall that ged(n, k) = 1. This can be used to show
that the only solution of Eqgs. (23)-(24) is u = w}'1, where
w, = exp(2zi/n) and m € N. Hence, u®" = 1 holds. This
completes the proof of Lemma 13.

IV. MULTIPARTITE PURE STATE
TRANSFORMATIONS

Combining our result with previous works, the following
picture of multipartite pure state entanglement transforma-
tions emerges (see Fig. 1). For bipartite pure states (region
A in Fig. 1), all deterministic and probabilistic LOCC
transformations are characterized [8,42] and SEP = LOCC
holds [43]. Entangled bipartite pure states can always be
transformed via nontrivial deterministic LOCC, regardless
of their local dimensions. Moreover, they can always be
obtained from the maximally entangled state. Hence, this
(up to LUs) single state constitutes the maximally
entangled set of bipartite states.

Three qubits (region B in Fig. 1) are the only multipartite
system for which all deterministic LOCC transformations
between pure states are characterized [25]. They are,
moreover, the only tripartite system for which it is known
that all fully entangled pure states can be transformed to
other fully entangled states via nontrivial deterministic
LOCC. Moreover, SEP = LOCC for deterministic trans-
formations within the GHZ class, i.e., for deterministic

transformations between generic states [44]. Furthermore,
the MES, i.e., the minimal set from which all other states
can be deterministically obtained via LOCC, is of measure
zero, albeit uncountably infinite [19]. This situation
changes drastically when the local dimension is increased
by only 1.

Generic 3-qutrit states (region C in Fig. 1) are isolated,
despite the fact that their stabilizer is nontrivial [18]. The
MES is of full measure. Moreover, SEP # LOCC for
deterministic transformations of 3-qutrit pure states [18].

Regarding three-partite states, we show that, already for
four-, five-, or six-level systems (in region D in Fig. 1),
almost all pure states have a trivial stabilizer and are,
therefore, isolated (see Theorem 1). We further derive the
optimal probabilistic protocol for transformations between
generic states and find that SEP = LOCC for these con-
versions. An open question is whether these results extend
to tripartite systems of any local dimension d > 3 (region E
in Fig. 1) or not.

Four-qubit pure states (region F in Fig. 1) generically
have a finite, nontrivial stabilizer and their MES is of full
measure [19,20]. Furthermore, SEP = LOCC for trans-
formations among generic pure states, which were char-
acterized in Ref. [45]. However, almost all states are
isolated [19].

Finally, our work shows that almost all qudit states of n
d-level systems with n =3 and d =4, 5, 6 or n > 3 and
d >3 (region D in Fig. 1) have a trivial stabilizer (see
Theorem 1) and are, therefore, isolated. That is, almost all
qudit states are in the MES. We further determine the
optimal protocol for probabilistic transformations among
these states and find that SEP = LOCC holds in these
cases. This shows, in particular, that the results of Ref. [21],
which are devoted to (n > 4)-qubit systems (region G in
Fig. 1), can be generalized to arbitrary local dimension.

V. CONCLUSION

In this work, we used methods from geometric invariant
theory and the theory of Lie groups to prove that almost all
pure (n > 3)-qudit states and almost all tripartite d-level
states, for d = 4, 5, 6, have a trivial stabilizer. Combined
with the characterization of local transformations of states
with a trivial stabilizer provided in Ref. [21], this has
profound implications in entanglement theory. It allows us
to characterize all transformations via LOCC and via SEP
among almost all (n > 3)-qudit pure states. We find that
these transformations are extremely restricted. In fact,
almost all (n > 3)-qudit pure states are isolated. Because
of the results presented here, the simple expression for the
optimal success probability for probabilistic local trans-
formations presented in Ref. [21] is shown to hold among
generic states. The optimal SEP protocol is a so-called one-
successful-branch protocol (OSBP), i.e., a simple protocol
for which only one branch leads to the final state, which can
also be implemented via LOCC. Furthermore, we discussed
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implications of our result for the construction of entangle-
ment measures, the characterization of LU-equivalence
classes and for the determination of probabilistic multicopy
LOCC transformations of multiqudit pure states. All of
these results also hold for tripartite d-level systems, where
d=4,5,6.

This work shows that, in the context of local state
transformations, only a zero-measure subset of the expo-
nentially large space of (n > 3)-qudit states is physically
significant. That is, the most powerful states are very rare.
This is consistent with investigations in other fields of
physics, e.g., condensed matter physics, where it has been
shown that, under certain conditions only, a zero-measure
subset of all quantum states is physically relevant [7]. These
results, therefore, suggest that the physically relevant zero-
measure subset of states, such as matrix-product states [7],
projected-entangled pair states [46] (with low bond dimen-
sion), or stabilizer states [4], should be investigated more
deeply. As transformations between fully entangled states
of homogeneous systems are almost never possible, it
would, moreover, be interesting to study transformations of
generic states of heterogeneous systems. The methods
developed in Sec. III B can be applied to arbitrary multi-
partite systems. However, interestingly, for certain hetero-
geneous systems, one can show that generic states always
have nontrivial local symmetries [47]. Our results further
suggest that more general local transformations should be
considered. This includes the multicopy case and trans-
formations between states of different local dimensions or
number of subsystems, e.g., transformations from n-qubit
states to (n — k)-qubit states, where 1 < k < n — 1. Finally,
the fact that almost all qudit states have a trivial stabilizer
and the mathematical tools that we developed to prove this
could also be relevant in other fields of physics, such as
condensed matter physics.
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APPENDIX A: KEMPF-NESS THEOREM AND
PRINCIPAL ORBIT TYPE THEOREM

In this appendix, we review two theorems that are central
to our work, the Kempf-Ness theorem and the principal
orbit type theorem, and discuss where they are used in the

main text. We also briefly review some implications of the
Kempf-Ness theorem in the context of entanglement theory.
For further details, the interested reader is referred to
Refs. [21,26].

Let us first review the Kempf-Ness theorem. In the main
text, we introduced the set of critical states in Eq. (10) as

Crit(H,) = {|4) € H,|{$X]$) = 0.¥X € Lie(G)}.

Note that a state |y) € H, is critical iff all of its local
density matrices are proportional to the identity [17]. That
is, a state is critical if every subsystem is maximally
entangled with the remaining subsystems. As mentioned
in the main text, many well-known quantum states are
critical, and the union of the G-orbits of all critical states is
dense and of full measure in H,,. Critical states have many
other interesting properties mentioned below. Some of
these can be derived from the Kempf-Ness theorem, which
provides a characterization of critical states.

Theorem 14. [31] The Kempf-Ness theorem

(1) |¢) € Crit(H,,) iff [lg|)[| > [[|¢p)| for all g € G.

(2) If |¢) € Crit(H,) and g € G, then [[g|)|| > |[¢)]]

with equality iff g|¢) € K|¢p). Moreover, if g is
positive definite, then the equality condition holds
iff gl¢p) = |).

3) If |p)€H,, then G|p) is

iff G N Crit(H,) # @.

The second part of the theorem implies that each SLOCC
orbit contains (up to local unitaries) at most one critical
state. Thus, critical states are natural representatives of
SLOCC orbits. They are the unique states in their SLOCC
orbits for which each qubit is maximally entangled to the
other qubits [17]. The Kempf-Ness theorem was also
important in the proof of Ref. [21] to show that g € Gu/
iff g* € G,,, for a critical state |y). Together with the fact
that Gu/ is Z-closed (which follows from the definition), this
shows that Gy, is a symmetric subgroup of GL(H,,) (see,
e.g., Ref. [26] for the definition of the Zariski topology).
This property is central to the proof of Lemma 11 in
this work.

In order to state the principal orbit type theorem, we first
introduce some definitions and notation. We further discuss
how a subgroup H C GL(H,,) induces a preorder on the set
of all H-orbits of states in H,. The principal orbit type
theorem then provides conditions under which this preorder
gives rise to a maximal element.

Let |y), [¢) € H, be two states. Then H,, and H, are
said to have the same type if there exists a & € H such that
Hy = hHl,,h‘l, i.e., if they are conjugate in H. Clearly, the
stabilizers of |y) and hly) are conjugate for any h € H,
namely,

closed in H,

hH,h™" = H,,,.

Hence, H,, and H are of the same type iff there exists
h € H such that H = H Iy - However, the fact that Hu/ and
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H 4 have the same type does not imply that thereisah € H
such that |w) = h|¢); i.e., it does not imply that they are in
the same H-orbit. For example, the G-stabilizer of generic
4-qubit states has the same type as {6®*}3_, [19], despite
the fact that two 4-qubit states are generically SLOCC
inequivalent and, thus, not in the same G-orbit [48].

We further say that H/H,, has a lower type than H/H ,
denoted as

H/H, <p H/Hy,

if H , is conjugate in H to a subgroup of H,,. Itis easy to see
that <, induces a preorder on the set of all H-stabilizers.

That this preorder also induces a preorder on the set of
all H-orbits can be seen as follows. Note that Hl|y) is
isomorphic to the left coset of H,, in H for all [y), namely,

Hly) = H/H,,.

We can, therefore, say that H|y) is of lower type than H|¢),
denoted as

Hly) <uype H).

if H/H,, <ype H/Hy holds.

The following theorem, called the principal orbit type
theorem (POT theorem), shows that, under certain very
general conditions, this preorder possesses a maximal
element. This key theorem can be found in Ref. [36], as
a combination of Theorems 3.1 and 3.8.

Theorem 15. [36] The principal orbit type theorem.
Let C be a compact Lie group acting differentiably on a
connected smooth manifold M (in this paper, we assume
M C 'H,). Then, there exists a principal orbit type; that is,
there exists a state |¢p) € M such that C/C,, <y, C/C,
for all |y) € M. Furthermore, the set of |w) € M such
that C, is conjugate to C, is open and dense in M
with a complement of lower dimension and, hence, of
measure 0.

The following example illustrates how powerful the POT
theorem is. Suppose |w) € H,, is a (not necessarily critical)
state with a trivial unitary stabilizer, K, = {1}. Then, the

POT theorem applied to C = K and M = H,, directly
implies that the set of states with a trivial unitary stabilizer
is of full measure in H,,.

However, in this work, we show that the stabilizer in G
is generically trivial. As G is a noncompact Lie group,
the POT theorem cannot be applied directly. It is, never-
theless, central to the proof of Theorem 12, where we
applied it to the compact Lie group C = K that acts
differentiably on the connected smooth manifold M = C
[see Lemma 8, (iii)].

APPENDIX B: CRITICAL STATES WITH
TRIVIAL STABILIZER

In this appendix, we provide examples of critical states
with a trivial stabilizer forn = 3 and d = 4, 5, 6;forn = 4
and d > 2; and for n > 5 and d > 2. That is, we give
examples of critical states with a trivial stabilizer for all
Hilbert spaces described in Theorem 1 and for (n > 4)-
qubit systems. Combined with Theorem 12, this completes
the proof of Theorem 1 that almost all pure states in these
Hilbert spaces have a trivial stabilizer. For n > 3, we
present these states in Sec. B 1. The states with n =3
have to be constructed differently and are presented in
Sec. B 2.

1. Critical (n > 3)-qudit states with trivial stabilizer

In this section, we present critical states with a trivial
stabilizer for n =4, d > 2 and n > 4, d > 2. As we will
see, it is easy to show that these states are indeed critical,
i.e., that their single-subsystem reduced states are propor-
tional to the completely mixed state. In contrast to that, the
proof that their stabilizer is trivial is more involved and the
details of the proof depend on n and on d. However, since
we consider only permutationally symmetric states, the
main steps of this proof are the same for all n > 3. For the
sake of readability, we outline these four main steps before
we present the details in the subsequent subsections. The
main ingredients to show that a permutationally symmetric,
critical state considered here, say, |y, ) € H,, has a
trivial stabilizer, are the following.

(1) Since |y, ) is critical, it is sufficient to show that
K, ,={1} holds, ie., that |y, ) has a trivial
unitary stabilizer, as Lemma 11 states that then also
G,,, = {1} holds.

(2) We show that a unitary B fulfills B® B! ®
192y, o) = [w,q) iff B = c1 for some phase c.
It was shown in Ref. [49] that then any v € IN(V,”A , can

be expressed as v = u®" for some u € U(d) (see
also Lemma 17 below for details).

(3) It remains to be shown that, for any unitary
u € U(d), the equation

u®n|l//n.d> = |Wn,d> (Bl)

implies that u®" = 1. The corresponding equation
for the reduced state of the first two subsystems,

1,2
PP = Tryy(1%,.0) Wa]), reads

(@ W\l (u' @ u') = pi\7.

This equation can be used to show that u has to be
diagonal. However, the details of this proof depend
on n and d.
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(4) Inthelaststep, we show that the only diagonal unitary
u that fulfills Eq. (B1) also fulfills «®" = 1. This
shows that K, = {1} and completes the proof.
The remainder of this section is devoted to the details of
this proof. In Appendix B 1 a, we consider the case n = 5
and n > 6 and d > 2. In Appendix B 1 b, we consider the
case n =4, d > 2 and, in Appendix B 1c, the case n = 6
and d > 2.

a. A critical n-qudit state, n =5, n > 6, with local
dimension d > 2 and trivial stabilizer

In this section, we show that the critical state |¥, )
introduced in Eq. (21) of Sec. III C is well defined and has a
trivial stabilizer for n = 5, n > 6, and d > 2. That is, we
prove Lemma 13 of the main text.

Let us first recall the following definitions made in
Sec. IIIC of the main text. For |¢) € H, , we define
the set of all distinct permutations of |¢) as z(|¢)) =
{P,|p)|o €S, } and the symmetrization of |¢) as |z(|¢))) =
> ipen(ipnlr)- Using this notation, we define the (un-

normalized) state

Dy (f)) = la(17)®41) = 1)®"7)),
for0<k<nand je{l,...,d—1}. These states fulfill

n

OuliNDeaP) = )ouwdry. (B2
For I €{l,...,n—1}, we can express |D;,(j)) in the
bipartite splitting of any / subsystems and the remaining
n — [ subsystems as

min{/k}

D) = D 1D 1)) |Dicgui(f)-

q=0

(B3)

In Sec. III C, we then defined, for n =5, n > 6, and
d > 2, the state

d-1 d—1
Woa) =D cilN® + D ID().  (B4)
Jj=0 J=1

where ¢y =4/(}7))+ 1, ¢;=1 for 0 <i<d-1, and

Ca—1 =
such that 3 <k <n-—2, n # 2k, and ged(n, k) = 1.

Let us first show that k as described above always exists
forn =5, n > 6 and that |¥,, ;) is, therefore, well defined.
For n € N, the Euler totient function ¢(n) is defined as the
number of all natural numbers j that are smaller than n and
fulfill ged(n, j) =1, ie.,

v/ (") + 1, with k the smallest natural number

¢(n) = {j €N|j <n.ged(n.j) =1} (BS)

It is straightforward to see that k as defined below Eq. (B4)
always exists if ¢(n) > 5. We now prove that k exists if
n =4 and n > 6. If n is not divisible by 3, then k = 3. If n
is divisible by 3 and 5, then Euler’s formula for ¢(n)
(cf. Ref. [50]) implies that ¢(n) > 5. Finally, if n is
divisible by 3 but not 5 and n > 9, then k = 5.

Let us now show some properties of |¥, ;) that will be
useful in the proof that it has a trivial stabilizer. Note first
that, because of Eq. (B3), we can express |¥, ) in the
bipartition of any [/ subsystems, with the rest as

+ Z 1D 4.1 Di—gn-1(J))-

Jj=1 q=0

(B6)

Note further that the following useful lemma on sym-
metric states has been shown in Ref. [49].

Lemma 16. [49] Let |y) be symmetric. Suppose |y) has
the property that

B® B! @ 19" 2|y) = |y) iff B=5b1, (B7)

for some b € C\{0}. If g € G,,, then g = h®" for some
h e GL(d,C).

This result can be easily understood as follows. Let |y) be
symmetric and let P, 5y denote the operator that permutes
subsystems 1 and 2. Note that,ifg=¢; ® ... @ g, € GV,,

then g~'|y) = [w) and P(5)9P12)(P(12)lw)) = Paylw)
hold. Using that P, |y) = |w), this implies that

9 "PugPusly) = |w), ie.,

99 ® 5" 91 @ 1% |y) = |y). (B8)
Now, if Eq. (B7) holds, this implies that there is a ¢;, €
C\{0} such that g; = ¢y ,9>. As |y) is symmetric, the same
argument can also be used to show that there is a ¢; ; €
C\{0} such that g; = c¢; ;g; for all i # j and, thus, g = h®"
for some h € GL(d,C). Note that if g € K, then g7'g,
in Eq. (B8) is unitary. Hence, in order to show that any
unitary symmetry v € I?,,, is of the form » = u®" for some
u € U(d), it s, thus, sufficient to show that Eq. (B7) holds
