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We consider a scenario where we wish to bring a closed system of known Hilbert space dimension dS
(the target), subject to an unknown Hamiltonian evolution, back to its quantum state at a past time t0. The
target is out of our control: This means that we ignore both its free Hamiltonian and how the system
interacts with other quantum systems we may use to influence it. Under these conditions, we prove that
there exist protocols within the framework of nonrelativistic quantum physics that reset the target system to
its exact quantum state at t0. Each “resetting protocol” is successful with nonzero probability for all
possible free Hamiltonians and interaction unitaries, save a subset of zero measure. When the target is a
qubit and the interaction is sampled from the Haar measure, the simplest resetting circuits have a significant
average probability of success and their implementation is within reach of current quantum technologies.
Finally, we find that, in case the resetting protocol fails, it is possible to run a further protocol that, if
successful, undoes both the natural evolution of the target and the effects of the failed protocol over the
latter. By chaining in this fashion several such protocols, one can substantially increase the overall
probability of a successful resetting.
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I. INTRODUCTION

In Newtonian physics, as well as in nonrelativistic
quantum theory, time is regarded as a real external
parameter that is not subject to dynamics, but describes
the evolution of the whole Universe in Newtonian absolute
space. This leaves out the possibility to influence or
manipulate it in any way.
This notion of time, however, does not correspond to the

entity that we measure in the lab when we speak of, e.g., the
time between a particle’s production and its subsequent
detection. In real life, to measure time, we use clocks, i.e.,
physical devices whose state describes a trajectory
fψðsÞ∶s ∈ Rg in state space. When we say that an event
happened at time s, what we actually mean is that the state
of our clock was ψðsÞ when we recorded the event [1].
Synchronizing two different clocks, with state trajecto-

ries fψ1ðs1Þ∶s1g, fψ2ðs2Þ∶s2g amounts to party 1 (2) being
able to predict the state ψ2 (ψ1) of clock 2 (1), given the
state of its own clock ψ1 (ψ2). Mathematically, this involves
identifying a parametrization s1ðsÞ, s2ðsÞ such that, for all
values of s, the simultaneous state of both clocks is
ψ1½s1ðsÞ�, ψ2½s2ðsÞ�, respectively. If both parties now

parametrize time by s, then they will always agree on
the time coordinate of each event. This other conception of
time, as a relation between the physical states of different
systems, is at the heart of our understanding of time in
general relativity and in the relational approach of dynam-
ics in quantum gravity [2].
It also opens the door to manipulating the local time

within a physical system or “moving it through time.”
Indeed, consider a physical system S that, left to its own,
would follow a trajectory in state space fψðtÞ∶tg, where t
denotes the agreed parametrization of time between us and
S. Now, imagine that we interacted with S within the time
interval t ∈ ½0; τ� in such a way that, at the end of our
interaction, the state of the system were not ψðτÞ, but ψðτ0Þ,
with τ0 ≠ τ. If, from this point on, S kept evolving as
expected, then therewould be amismatch τ − τ0 between the
time measured in our lab and at system S. From our point of
view, there would have been a disruption in the normal flow
or progress of time in system S. Following Merriam-
Webster, we will call such a disruption a “time warp.”
There exist a number of proposals to carry out this effect.

For instance, special relativity teaches us that we can
decrease the flow of time within a physical system just
by accelerating and decelerating it with respect to us. This
would allow us to carry a time-warp experience with
0 < τ0 < τ. Such a form of time warp is very limited,
though: It does not allow us to increase the flow of time
within the system (τ0 > τ) or to reverse its direction (τ0 < 0).
Further schemes based on general relativity have been
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proposed to achieve these other effects [3,4]. In this regard, it
is worth mentioning the interesting—and inexplicably
unnoticed—work of Ref. [5], where the authors show
how to use linear superpositions of space-time metrics to
accelerate, slow, or reverse the unitary time evolution of a
closed quantum system.
At this point, it is worth remarking that there is nothing

mysterious about time warp in itself. Consider, e.g., a gas of
classical particles.We could study its dynamics via aMaxwell
demon, and, oncewehad an accurateHamiltonian description
of the particles, ask the demon to return all of them to the
position they must have occupied a year ago. That would
qualify as time warp, according to our definition. However,
this time-warp scheme requires an absolute control of the
considered system. The merit of the proposals above is,
precisely, that they effect time warp within a system over
which we hardly have any control. Coming back to special
relativity, one does not need to act precisely on each internal
degree of freedomof a system inorder todilate its proper time:
It is enough to give the system a push.
Unfortunately, the time-warp schemes listed so far turn

out to be highly impractical, when not impossible, to
realize. We do observe time dilation in particle accelerators
and orbiting satellites, but large effects can just be mea-
sured at a subatomic level (and at a vast energy cost). Time-
warping schemes based on relativistic time travel seem to
require the violation of a number of basic physical
principles [6,7]. Technological challenges aside, the
scheme proposed in Ref. [5] to perform time translations
in quantum systems has an astronomically small proba-
bility of success. In the words of one of its coauthors, “it has
the same chances of succeeding as I have of delocalizing
and relocalizing somewhere else” [8].
In this paper, we investigate the feasibility of time warp

from the point of view of nonrelativistic quantum theory.
Surprisingly, we find that it is possible to engineer particle
beams with the property to project the systems they interact
with to a past quantum state. More specifically, the target
system, whose free evolution is governed by an unknown
time-independent Hamiltonian, is made to interact sequen-
tially with a number of quantum probes. By manipulating
these probes before and after their also unknown interaction
with the target, we induce a heralded probabilistic trans-
formation on the latter, that, if successful, will bring its
quantum state back to the one it had at an arbitrarily long time
before we started the “resetting protocol.” In the language
above, the physical realization of any such protocol can be
interpreted as a time-warp experience with τ0 < 0.
Contrary to the time-translation scheme proposed in

Ref. [5], our resetting protocols exhibit a significant
probability of success. In addition, should the resetting
protocol fail, it is possible to carry a further protocol to
revert both the past unitary evolution of the system and the
action of the first protocol over the target. By iterating this
procedure a few times, one can considerably increase the

probability of a successful reset. Finally, the simplest
protocols just require control over three qubits and, hence,
can be implemented with current quantum technologies.

II. THE SCENARIO

Think of a quantum system S (our target) of dimension
dS, undergoing an evolution determined by an (unknown)
time-independent Hamiltonian H0. Acting on S from time
t ¼ T > 0, we wish to reset the current state of the target,
jψðTÞi ¼ e−iH0T jψð0Þi, to its past value jψð0Þi.
There is an additional complication: The target system is

uncontrolled. This means that we ignore how the target
evolves by itself (i.e., we ignore H0) and how it jointly
evolves with other quantum systems we may use to
influence it. We can picture this scenario by imagining that
the target is outside our perfectly controlled quantum lab and
our only means of interacting with it is by setting a quantum
probe P in an orbit close to S and then back to the lab, for a
total amount of time δ; see Fig. 1. When we do so, the joint
state ρSP of both target and probe will have evolved
according to an unknown joint unitary WSP, the result of
integrating the evolution equation i½ðdρSPÞ=ðdsÞ� ¼ ½H0 þ
HSP(r̄ðsÞ); ρSP� from s ¼ 0 to s ¼ δ. Here,HSPðr̄Þ denotes

FIG. 1. A quantum resetting protocol. (a) At time t ¼ T, the
state of the target system S is the result of evolving the state
jψð0Þi for time T via the unknown Hamiltonian H0. (b) At
times t ¼ T; 2T þ δ; 3T þ 2δ…, the lab sets a probe in a
trajectory close to system S, that interacts with it in an unknown
(unitary) way for a time δ. For times t ∈ ½T þ δ; 2T þ δ�;
½2T þ 2δ; 3T þ 2δ�;…, the evolution is once more governed
by the free Hamiltonian H0. (c) Conditioned on some heralded
probabilistic operation on the returned probes (in blue) and
possibly an extra ancillary system (in green), the state of system S
at time nðT þ δÞ is again jψð0Þi.

MIGUEL NAVASCUÉS PHYS. REV. X 8, 031008 (2018)

031008-2



the (unknown) interaction between target and probe that
depends implicitly on time through the relative position r̄
between S and P.
To return the target system to its original state, we will

carry out the quantum resetting protocol sketched in Fig. 1:
At time T, we will send a first probe to system S. Upon its
return to the lab, at time T þ δ, we will prepare a second
probe, which we will keep in the lab for T time units, and
then send in an identical orbit around S at time 2T þ δ.
After this second probe arrives, we again prepare a third
probe, wait for time T and then send it around S. We iterate
this procedure until the nth probe arrives at the lab at time
tf ≡ nðT þ δÞ. By conducting an operation over the
returned probes and possibly on some extra ancillary
system, we wish to project system S to its exact quantum
state at time t ¼ 0.
The first probe, in principle, can be prepared at the

beginning of the protocol (i.e., at time T), but for theoretical
convenience and without loss of generality, we will pretend
that the probe already existed in the lab at time t ¼ 0 and
did not evolve between times ½0; T�. That way, for
k ¼ 1;…; n, the joint evolution of the target and the kth
probe from time ðk − 1ÞðT þ δÞ to kðT þ δÞ can be
modeled with the same bipartite unitary operator
U≡WSPðVS ⊗ IPÞ, with V ≡ e−iH0T (namely, a solo
evolution of system S for time T followed by an interaction
between S and P lasting δ seconds).
This allows us to reformulate the resetting scenario as a

quantum network of the form depicted in white in Fig. 2,

whereby the target and each probe undergo the joint
evolution U, and we can choose how to prepare each
probe before each unitary interaction and what we do with
it after it returns to the lab. Our hope is that there exists a
quantum circuit that produces inputs for the network and
processes its outputs in such a way that the final effect on
system S is simply to undo the effect of the interaction U;
see the purple device in Fig. 2.
Clearly, this hypothetical circuit cannot be deterministic.

Suppose that the unknown unitary USP happened to be of
the form USP ¼ VS ⊗ ṼP, i.e., such that systems S and P
do not interact at all. Then, no matter what operations we
apply to our probes, the state of system S at time tf will be
jψðtfÞi ¼ Vn

Sjψð0Þi. If USP is just close to being a tensor
product, then, by continuity, the probability of success of
our undoing operation cannot be 1.
These considerations imply that, at best, our scheme will

have the effect of leaving the target in state jψðt ¼ 0Þi with
a probability pðUÞ that depends on the particular joint
evolution U between system and probe. In particular,
pðUÞ ¼ 0 when U is of tensor product form. In other
words, this circuit, if it exists, will involve conducting a
heralding measurement that we can postpone till the end of
the protocol. The outcome x of this binary measurement,
say, 0 or 1, will tell us whether the state of S remains the
same as it was at time t ¼ 0 (x ¼ 0) or, on the contrary, it
has experienced an uncontrolled evolution (x ¼ 1). In the
quantum network slang, such a circuit is termed a “quan-
tum tester” [9,10].
We remark once more that we demand this tester to be

sound under all unitaries U. That is, whenever the final
outcome x of the tester is 0, we must guarantee that the state
of system S is exactly jψð0Þi independently of the par-
ticular unitary interaction U that guided the evolution.
Because of this soundness requirement, one can prove that
quantum resetting is impossible if we allow U to be an
arbitrary, trace-preserving, completely positive map; see
Appendix C.
At this point, it is interesting to draw a comparison

between this scenario and that of refocusing; see, e.g.,
Refs. [11,12]. Given a quantum system S in state ρð0Þ,
subject to a partially unknown interaction with an envi-
ronment E, the purpose of refocusing is to make sure that,
at some fixed time Δ, the state of system S will still be
approximately ρð0Þ. This is achieved by applying over S a
fast sequence of unitary pulses for time t ∈ ½0;Δ�: If the
interaction with the environment is weak enough, the net
effect of the pulses will be to freeze the evolution of system
S. Contrarily to resetting, standard refocusing techniques
do not allow us to project the state ρð0Þ of S to ρð−TÞ for
any finite amount of time T > 0.
The related primitive universal unitary refocusing is

another story [13]. Here, as in resetting, it is assumed that
the target system has evolved under the action of an
unknown time-independent Hamiltonian H0 for a finite

FIG. 2. Process diagram for a quantum resetting protocol. Lines
denote quantum systems; the ‘cupped’ shape at the bottom of the
picture, a quantum state preparation; the ‘capped’ shape at the top of
the picture, ameasurement; and rectangles, unitary transformations.
Conditioned on a positive result x ¼ 0, the action of the purple tester
is to propagate the original state of the target to the future.
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time T, i.e., via the unitary operator V ¼ e−iH0T. A
universal unitary refocusing protocol consists in
alternating a sequence of unitary gates U1;…; Un
with the natural evolution of the target such that
UnVUn−1…U2VU1jψðTÞi ≈ jψð0Þi with very high prob-
ability. The main difference between universal unitary
refocusing (and also standard refocusing) and resetting
protocols is that, in the former, the target system is
controlled; i.e., we can act on it with any quantum operation
we wish (such as U1;…; Un). In those conditions, it is not
difficult to reverse or accelerate the evolution of the system:
One could, in principle, move the state of the system to a
quantum memory; find the unknown unitary via channel
tomography; apply it or its inverse several times on the
modified state of the system; and, finally, move back the
resulting state to system S. The merit of Ref. [13] is to show
that one does not need ancillas to accomplish this. While
technically interesting, this feature is irrelevant from the
point of view of time warp.
The next question is whether quantum resetting

protocols actually exist. We will next show an explicit
construction for the simplest nontrivial scenario: n ¼ 4,
dS ¼ dP ¼ 2.

III. A SIMPLE QUANTUM RESETTING
PROTOCOL

Suppose then that both systems S and P are qubits, and
that we wish our device to return S to its original state after
making it interact sequentially with n ¼ 4 probes (when the
target is a qubit, it can be proven that no resetting protocol
exists for n ¼ 3). A possible prototype to do the job is the
one depicted in Fig. 3. We call this protocol W4.
Let fj0i; j1ig be an orthonormal basis for the two-

dimensional Hilbert spaces where S and P live. As shown
in Fig. 3, it suffices to prepare our four probes P1, P2, P3,
P4 in the quantum state jψ−i12jψ−i34, where jψ−i is the
singlet state jψ−i ¼ ð1= ffiffiffi

2
p Þðj0ij1i − j1ij0iÞ. After their

return, probes 1,2,3,4 are postselected to the quasisym-
metric space Q generated by the vectors

jm1i¼ j0;0;0;0i;

jm2i¼
1

2
ðj1;0;0;0iþ j0;1;0;0iþ j0;0;1;0iþ j0;0;0;1iÞ;

jm3i¼
1

2
ðj1;0;1;0iþ j0;1;0;1iþ j1;0;0;1iþ j0;1;1;0iÞ;

jm4i¼
1ffiffiffi
2

p ðj0;0;1;1iþ j1;1;0;0iÞ;

jm5i¼
1

2
ðj1;1;1;0iþ j0;1;1;1iþ j1;0;1;1iþ j1;1;0;1iÞ;

jm6i¼ j1;1;1;1i; ð1Þ
where the state ja1; a2; a3; a4i must be understood as
ja1i1ja2i2ja3i3ja4i4. To get a grasp on the structure of Q,
note that the symmetric subspace of two qubits is spanned by

the vectors j0̄i≡ j00i;j1̄i≡ð1= ffiffiffi
2

p Þðj0;1iþj1;0iÞ; j2̄i≡
j11i. Q corresponds to the symmetric space of two copies
of two symmetric qubits; i.e., it is spanned by the vec-
tors fjk̄ijl̄i þ jl̄ijk̄i∶k; l ¼ 0; 1; 2g.
The result of postselecting the returned probes on any of

the states fjmiig6i¼1 is to multiply the wave function of
system S by a homogeneous polynomial of degree n ¼ 4
on the 2 × 2 complex matrices fUj;kgj;k¼0;1, where

Uk;l ≡
X
i;j¼0;1

hjjShljPUjiiSjkiPjjihij: ð2Þ

For example, if we postselect the output probe qubits to the
state jm1i, then the (non-normalized) state of system S at
time tf will be

FIG. 3. A resetting protocol for n ¼ 4, dS ¼ dP ¼ 2. We input
two copies of the singlet state and then project the four output
qubits onto the quasisymmetric space Q. If the projection
succeeds, the state of the target does not vary.
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jψðtfÞi ¼
1

2
½U0;0; U0;1�2jψð0Þi: ð3Þ

Now, note that ½U0;0; U0;1� can be expressed as a linear
combination of Pauli matrices X, Y, Z, i.e., ½U0;0; U0;1� ¼
cxX þ cyY þ czZ [the contribution of I2 is missing because
trð½U0;0; U0;1�Þ ¼ 0]. If we now square this operator, we
arrive at ½U0;0; U0;1�2 ¼ ðc2x þ c2y þ c2zÞI2. The matrix poly-
nomial 1

2
½U0;0; U0;1�2 is a central polynomial for dimension

2 [14], i.e., a polynomial that is proportional to the identity
when evaluated with 2 × 2 matrices U0;0; U0;1. There exist
no central polynomials for dimension dS ¼ 2 with degree
smaller than 4, not even when we restrict the matrices Uk;l

to be pieces of two-qubit unitaries, and hence, a resetting
protocol for n < 4 is impossible.
It can be verified that postselection with the remaining

elements of the basis (1) also leads to central polynomials
acting on S [15]. As long as we postselect on one of these
vectors, we thus have that system S will just acquire a
global phase; i.e., it will not change. We note that the state
of system S does change, though, during the course of the
protocol (i.e., it is not frozen). The projection on the space
Q spanned by the vectors in Eq. (1) acts as a sort of
quantum Ctrlþ z, undoing such an evolution.
The probability of success of protocolW4 just depends on

U, and not on the initial state of the target. This is a common
feature of all quantum resetting protocols. pðx ¼ 0jU;W4Þ
varies wildly withU: It ranges from 0 (for product unitaries)
to 1 (e.g., for U ¼ ½ðX ⊗ Z þ iY ⊗ XÞ= ffiffiffi

2
p �). If U is taken

uniformly according to the Haar measure, we find that the
average probability of success

R
dUpðx ¼ 0jU;W4Þ is

approximately 0.2170. Note that, if the interaction WSP
between probe and target is sampled from theHaar measure,
sowill beU ¼ WSPðVS ⊗ IPÞ, independently ofVS. Hence,
the average probability of success will not depend on either
H0 or T.
The ideas behind the above construction can be gener-

alized to show that there exist quantum resetting protocols
for target systems of arbitrarily high dimension dS involv-
ing at mostOðd3SÞ qubit probes; see Appendix A. There, the
reader can also find a semidefinite programming [16]
characterization of the set of resetting protocols for fixed
n, dS, dP. This characterization relies on the theory of
quantum testers [9,10] and on a variant of the method
proposed in Ref. [17] to compute the support of cut-and-
glue operators for homogeneous matrix product states.
In Appendix D, we also carry out a comparison between

the performance of all quantum resetting protocols with
n ¼ 4 probes and two extremal protocols with n ¼ 8 in
realistic physical scenarios. The results are paradoxical: in
some situations, as one would expect, the average proba-
bility of success decreases as we try to make the system
leap to a more distant past. In some others, the average
success probability grows with T. In addition, we observe
that no single extremal protocol outperforms all the others

in all situations. The decision to use one protocol or another
will depend on our prior knowledge on the target and its
interaction with the probes.

IV. UNDOING FAILURE

Being probabilistic, it is expected that sometimes a
resetting protocol yields a negative outcome. Think of
protocol W4: At time tf, we conduct a projection onto the
quasisymmetric space Q; see Eq. (1). Suppose that said
projection fails, but we conducted it in a nondemolition
way. Let fjm̃iigi be an orthonormal basis for the orthogonal
complement ofQ. Then, at the end of the protocol, the joint
state between S and the measurement apparatus A in the lab
is of the form

X
i

fiðUÞjψð0ÞiSjm̃iiA; ð4Þ

where fiðUÞ are homogeneous polynomials of degree 4 of
the operators (2). No linear combination of these poly-
nomials is central [18]. Under these circumstances, is there
any way to return S to its original state?
Actually, there is. Suppose that we sent two more probes

P1, P2 to S, say, in the singlet state, and then we processed
the state of the measurement apparatus together with these
two probes; see Fig. 4. If we project systems A, P1, P2 onto
a pure state jm0i, the final state of system S will be

X
i

giðUÞfiðUÞjψð0ÞiS; ð5Þ

where fgiðUÞgi are homogeneous polynomials of degree 2.
In principle, it could be that, even though ffiðUÞgi are

not central, there exist fgiðUÞgi such that
P

igiðUÞfiðUÞ is
a central polynomial. Let Q0 be the space of tripartite
measurement vectors in the two probes and the measure-
ment apparatus inducing a central polynomial on S. If we
implemented a projection onQ0 over P1, P2, A, conditioned
on a successful outcome, we would undo not only the
unitary evolution under those two more time steps, but also
the action of the previous resetting process; see Fig. 4.
Using the tools developed in Appendixes C and D, we

find that our theoretical speculations are sound (MATLAB

code available in the Supplemental Material [19]). The
second row of Table I shows the total probability of success
of the resetting protocol after this second step. Note that,
should this second measurement also fail (x0 ¼ 1), we can
make two more probes in the singlet state interact with the
target and identify the controlled measurement that induces
a central polynomial on S. Iterating this trick m times, we
end up at a resetting protocol whose duration is itself a
dynamical variable; i.e., its exact value, that lies between
3T þ 4δ and ð3þ 2mÞT þ ð4þ 2mÞδ, is determined dur-
ing the course of the experiment.
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Table I presents the average probabilities of success of
such concatenated resetting protocols for different values of
m. The numbers between brackets reflect our precision in
computing the average success probability over the Haar

measure, which we replaced by a Monte Carlo sampling of
100 random unitaries U. Calculating the last row was a
highly demanding computational task, as it involved
characterizing subspaces of central polynomials spanned
by thousands of vectors. The resulting truncated sequence
of probabilities does not show any signs of saturation; for
all we know, it may converge to 1. The last value that we
managed to estimate was 0.6585� 0.0212.

V. CONCLUSION

We have proven that there exist probabilistic nonrela-
tivistic quantum protocols that allow one to bring an
uncontrolled quantum system to a past state. These pro-
tocols work by making the uncontrolled system interact
sequentially (in an unknown way) with a number of
quantum probes, which are then processed in a controlled
way. We showed that, should these protocols fail, one can
then carry further protocols to undo the mess induced in the
target and still drive it to its original state.
Our work raises several questions, the most important of

which is how much more we can increase the average
probability of success. It is a theoretical possibility that, as
we consider protocols involving more and more probes, we
manage to reset all possible unitary gates with probability
arbitrarily close to 1, except for a subset of measure 0.
Another question concerns the duration of a resetting

protocol. The protocol in Fig. 3 requires more than 3T time
units to send the target T time units backwards in time. Is it
feasible to reset the state of a quantum system T time units
by investing an arbitrarily short amount of time? Surely not,
if we stick to the family of resetting protocols depicted in
Fig. 1. We do believe, however, that an improvement in
duration is possible, provided that we are allowed to exploit
the which-path degree of freedom of the sent probes. It is
also a topic for further research whether similar schemes
can be devised to “fast-forward” the evolution of the target
system, i.e., to achieve a time-warp experience with τ0 > τ.
We conclude with this last reflection. We believe that the

best thing one can do with a time-warping device is not to
speculate about its theoretical features, but to turn it on.
Hence, some experimental work towards an implementa-
tion of a resetting protocol would be welcome. In this
regard, we feel that a future implementation of protocolW4

or some suboptimal variant, while challenging, is within
reach of current quantum technologies.
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APPENDIX A: RESETTING PROTOCOLS
FOR ARBITRARY dS

The ideas behind protocol W4 can be generalized to
show that there exist quantum resetting protocols for target
systems of arbitrarily high dimension dS involving Oðd3SÞ
qubit probes.
Indeed, suppose that we prepare n probes in state j0i, and

make them interact sequentially via a unitary V with a dS-
dimensional target. If we project the outgoing probes onto
the state

P
i1;…;inp

�
i1;…;in

ji1;…; ini, the final wave function
of the target will be PðV0;0; V1;0Þjψð0Þi, where

Vi;j ¼ ðIS ⊗ hijÞVðIS ⊗ jjiÞ ðA1Þ

and PðY0; Y1Þ is the homogeneous matrix polynomial
PðY0; Y1Þ ¼

P
i1;…;inpi1;…;inYin…Yi1 . To show that there

exists a resetting protocol for system S, we will prove that
there exists a polynomial F such that, for any 2dS × 2dS
unitary V, FðV0;0; V1;0Þ ¼ fðVÞIdS , with fðVÞ vanishing
just for a subset of unitaries of zero measure.
For any dimension dS, there exists a homogeneous

central polynomial PðXÞ for dimension dS of degree d2S
involving dS þ 1 matrix variables X1;…; XdSþ1 [14]. Let
X̄1;…; X̄dSþ1 be dS × dS matrices such that PðX̄Þ ≠ 0. In
Appendix B, we show that there exists a unitary U for 2dS-
dimensional systems such that the products fUi1;0…UiL;0∶
i1;…; iL ¼ 0; 1g span BðCdSÞ, for L ¼ OðdSÞ. This
implies, in particular, that there exist homogeneous
matrix polynomials ffiðY0; Y1ÞgdSþ1

i¼1 of degree L such
that fiðU0;0; U1;0Þ ¼ X̄i for i ¼ 1;…; dS þ 1. It follows
that the homogeneous central polynomial FðY0; Y1Þ≡
P½f1ðY0; Y1Þ; f2ðY0; Y1Þ;…� of degree Oðd3SÞ is nonzero
when evaluated on ðU0;0; U1;0Þ.
It just remains to show that FðV0;0; V1;0Þ is also nonzero

for generic unitaries V. For an arbitrary unitary
V ∈ BðC2dSÞ, FðVÞ≡ FðV0;0; V1;0Þ ¼ fðVÞIdS , where
fðVÞ is an analytic function on the entries of V. If we

parametrize V via the generators of fRjg4d
2
S−1

j¼1 of SUð2dSÞ
as V ¼ ei

P
j
cjRj , then fðVÞ ¼ f̃ðc⃗Þ, with f̃ analytic in

R4d2S−1. Since f̃ is nonzero, by analyticity it can just vanish
in a subset of R4d2S−1 of zero measure. Hence, fðVÞ is
nonzero for generic V.

APPENDIX B: IDENTIFYING
INJECTIVE UNITARIES

The purpose of this appendix is to prove that, for
any dS ∈ N, there exists a unitary interaction U ∈ BðC2dSÞ

such that the products fUi1;0…UiL;0g span BðCdSÞ, for
L ¼ OðdSÞ.
Choose then two matrices A0, A1 ∈ BðCdSÞ such that, for

some L, the products fAi1…AiLg span the space BðCdSÞ.
This can be done for L ¼ 2dS þ 1; see Appendix A.1 in
Ref. [17]. Note that, by rescaling and perturbing A0, A1, we
can make sure that there exists ρ > 0 with

P
iA

†
i ρAi ¼ ρ.

Let ρ ¼ R2, with R > 0, and define the matrices
Ui;0 ≡ R−1AiR. It is trivial to see that the products
fUi1;0…UiL;0g span BðCDÞ and that

P
i¼0;1U

†
i;0Ui;0 ¼ I.

Let us define the operator U ∈ BðC2dSÞ on the subspace
CdS ⊗ j0i via the relation Ujψij0i ¼ P

i¼0;1Ui;0jψijii.
Since, within this subspace, hujU†Ujvi ¼ hujvi, there
exists a unitary extension Ũ of U to the whole space
CdS × C2. By construction, Ũi;0 ¼ Ui;0, and so the products
fŨi1;0…ŨiL;0g span BðCdSÞ.

APPENDIX C: CHARACTERIZING THE SET
OF RESETTING PROTOCOLS

The argument given in Appendix A cannot be used to
devise practical quantum resetting protocols. In effect,
taking the family of central polynomials proposed in
Ref. [14] and using the construction above invariably leads
to protocols with a negligible average probability of
success. What we need are methods that help us identify
practical resetting schemes. This is the topic of the present
appendix.
Intuitively, everything amounts to making sure that, no

matter how we interact with the probes, at the end of the
protocol, the wave function of system S is multiplied by a
central polynomial, or, at least, a matrix polynomial that is
central when restricted to pieces of unitaries of the form of
Eq. (2). Building upon this idea, we provide a full charac-
terization of the set of all quantum resetting protocols for
fixed n, dS, dP. This characterization relies on the theory of
quantum testers [9,10] and on a variant of the method
proposed in Ref. [17] to compute the support of cut-and-
glue operators for homogeneous matrix product states.
Take the quantum network depicted in Fig. 2 in the main

text, and fix the value of the unitary U. The action on the
target system conditioned on a result x ¼ 0 is given by

trIO

�
(IS ⊗ ðM0ÞTIO)SUjϕð0Þihϕð0ÞjS†U

�
; ðC1Þ

where SU is a rectangular operator of the form

SU ¼
X

i1;j1;…;in;jn

Ujn;in…Uj1;i1 ⊗ ji1iI1 jj1iO1
…jiniIn jjniOn

:

ðC2Þ

Here, Ok (Ik) denotes the Hilbert space of the kth output

(input) qubit, and O ¼ ⊗
n

k¼1
Ok (I ¼ ⊗

n

k¼1
Ik). fMxgx¼0;1 are
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the Choi operators of our quantum tester [9,10]. They are
characterized by the conditions Mx ≥ 0, x ¼ 0, 1,P

xMx¼IOn
⊗ΓðnÞ, with trIkðΓðkÞÞ ¼ IOk−1

⊗ Γðk−1Þ [9,10].
Let

P
sλsjcsihcsj be the spectral decomposition of

MT
0 ≥ 0. Since we want jψð0Þi to remain the same, it

follows that, for s ¼ 1;…; 22n and for all initial states
jψð0Þi and U’s, ðIS ⊗ hcsjÞSU must be proportional to the
identity matrix.
This shows why a generalization of resetting protocols to

scenarios where U represents a general trace-preserving
completely positive map is impossible. Indeed, let fAkgk be
the Kraus operators of the map induced by U. After the
action of the tester, the state ρf of system S would be a
conic combination of states jψ s

k1;…;kn
i of the form

jψ s
k1;…;kn

i¼
X

i1;j1;…;in;jn

csi1;j1;…;in;jn
Akn
jn;in

…Ak1
j1;i1

jψð0Þi; ðC3Þ

with Ak
j;i ¼ IS ⊗ hjjPAkIS ⊗ jiiP. Define now a quantum

channel with Kraus operators A0¼ðI−j0ih0jÞS⊗IP,
Aði;jÞ¼ð1= ffiffiffi

2
p Þj0ih0j⊗ jjihij. Then, jψ ði1;j1Þ;…;ðin;jnÞðc̄Þi¼

2−n=2csi1;j1;…;in;jn
h0jψð0Þij0i. If csi1;j1;…;in;jn

≠ 0, we thus
have a term (in general) not proportional to jψð0Þi in the
decomposition of ρf. It is immediate to see that this also
holds for small perturbations of the considered channel.
Coming back to unitaryU’s, the set of all vectors jci such

that, for all unitaries U, ðIS ⊗ hcsjÞSU is proportional to the
identity forms a vector subspaceHc ⊂ ðC2Þ⊗2n. In order to
identify this subspace, we apply the same scheme used in
Ref. [17] to identify the related subspace of cut-and-glue
vectors for matrix product states. Namely, we generate a
sequence of states ðjξiiÞi of the form jξi ¼ ðhφjS ⊗
IIOÞSUjφ⊥iS by choosing random instances of U;φ;φ⊥,
with hφjφ⊥i ¼ 0.Applying theGram-Schmidtmethod to the
states ðjξiiÞi,weobtainanorthonormalbasis for the subspace
Hc⊥ spanned by them. The process is complete when the kth
randomly generated vector lives in the span of the former
k − 1 vectors. This, indeed, indicates that ðjξiiOÞk−1i¼1 span
Hc⊥, because, if they did not, the probability that a random
vector in Hc⊥ belonged to their span would be zero.
Hc is the orthogonal complement of Hc⊥. Indeed, let

jvi⊥Hc. Then, for fixed U, we have that, for all vectors
jψLi⊥jψRi,

ðhψLj ⊗ hvjÞSUjψRi ¼ 0: ðC4Þ
It follows that ðIS ⊗ hvjÞSU ¼ fðUÞIS, where fðUÞ is a
scalar. This must hold for all U, so jvi ∈ Hc. The opposite
implication is immediate.
Now, suppose that we have a prior distribution ρðUÞdU

of unitaries U, and we want to maximize the average
probability of success

R
ρðUÞpðx ¼ 0; jU; πÞdU over all

quantum resetting protocols π involving n probes. By all
the above, this reduces to the following problem:

max tr(MT
0XðρÞ)

such that suppðMT
0 Þ ⊂ Hc;M0;M1 ≥ 0

M0 þM1 ¼ IAout
n

⊗ ΓðnÞ;

trIkðΓðkÞÞ ¼ IOk−1
⊗ Γðk−1Þ; ðC5Þ

with XðρÞ ¼ R
dUρðUÞWðUÞWðUÞ†, WðUÞ ¼

ðh0jS ⊗ IIOÞSUj0i.
This is a semidefinite program [16], and, as such, we can

solve it in a timepolynomial on2n. Takingn ¼ 4,dS ¼ 2 and
using the numerical packages MOSEK [20] and YALMIP [21],
we find that themaximumaverage success probability for the
prior ρðUÞdU ¼ dU coincides with the one achieved by
protocol W4 (up to a precision of 10−6). This suggests that
W4 is an optimal or extremal resetting protocol.

APPENDIX D: DEVISING NEW
RESETTING PROTOCOLS

The implementation of the SDP (C5) for n > 4 turned
out to be computationally prohibitive, mainly because of a
lack of computer memory. Hence, we had to rely on
heuristics to devise new resetting schemes. We settled on
prepare-and-measure protocols, where we input an n-qubit
state into the network and then measure the n output qubits
in some appropriate basis. Note that the optimal protocol
W4 falls into this category, so perhaps this restriction is not
that limiting after all.
In the following, we present two heuristics to find

extremal measure-and-prepare resetting protocols for high
n. Given a guess jφi on the input state, heuristic #1 returns
the projection operator Π with maximum support such that
the pair ðφ;ΠÞ constitutes a sound quantum resetting
protocol. Conversely, given a guess on the final projection
operator Π, heuristic #2 returns the state space HΠ, such
that, for any φ ∈ HΠ, the pair ðφ;ΠÞ is a valid resetting
protocol. Given a prior ρðUÞdU, identifying the state φ⋆ ∈
HΠ that maximizes the average success probability reduces
to an eigenvalue problem.
For extreme prepare-and-measure strategies, M0 ¼ jφi

hφjI ⊗ ΠT
O, where jφi is the input state and Π is the

projector describing the measurement of the output qubits.
To devise a resetting protocol, we need to make sure that
the support of MT

0 is in Hc.
Suppose that we have a guess on the n-qubit input state

jφi. In analogy with the characterization of Hc, the maxi-
mum support of Π corresponds to the orthogonal comple-
ment of the subspace Hc

φ spanned by vectors of the form

ðhψLj ⊗ hφ�jI ⊗ IOÞSUjψRi; ðD1Þ

with jψLi⊥jψRi. The latter can be characterized using the
randomizing algorithm described before. Note that there
may exist vectors jmi with jφ�i ⊗ jmi ∈ Hc such that, for
all unitariesU, IS ⊗ hφ�jIhmjOSU is the dS × dS null matrix.
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The corresponding measurements do not contribute to the
final average probability of success, so such vectors can be
eliminated. This can be achieved by considering the space
Hφ spanned by vectors of the form of Eq. (D1), with
jψLi ¼ jψRi. Themeasurement spacewe are interested in is,
thus, Hφ ∩ Hc

φ.
Similarly, given a guess on the support of Π, we can find

the subspace HΠ of input states such that φ ∈ HΠ
implies suppðjφ�ihφ�j ⊗ ΠÞ ⊂ Hc.
We first used heuristic #1 to explore the scenario

dS ¼ dP ¼ 2, n ¼ 8. We identified the protocols W8,

W̃8, with input states jφi ¼ ⊗
4

k¼1
jψ−i2k−1;2k and jφ̃i ¼

jψ−i13jψ−i24jψ−i57jψ−i68, respectively, and corresponding
projective measurements Π, Π̃ of ranks 39 and 78. The
MATLAB code employed is in the Supplemental
Material [19].
Let us test the performance of these new protocols in a

specific physical scenario. Let system S evolve freely via the
HamiltonianH0 ¼ λZ for time T and interact with systemP
through the term −ðX þ ZÞS ⊗ YP. We assume that probes
access and leave the system very quickly, and that they are
quantum memories, i.e., HP ¼ 0. The full interaction
between the probe and the target is, thus, modeled by the
Hamiltonian HI ¼ −ðX þ ZÞ ⊗ Y þ λZ ⊗ I, and the total
unitary interaction isUðλ; TÞ ¼ e−iHINTδe−iH0T . We take λ to
be distributed uniformly in the interval ½−1; 1�, and δ ¼ 0.5.
Note that the above assumptions are just required to

compute the average probability of success. Even if all of
them turned out to be false, any resetting protocol we will
consider next would be sound. That is, conditioned on
x ¼ 0, it would reset S to jψð0Þi, as long as the total unitary
interaction USP between the target and the probe is the
same during the n steps of the protocol.
Figure 5 compares the results of strategies W8, W̃8 with

the best available protocol for n ¼ 4 probes, computed via
SDP. The curves obtained are peculiar in that, at the
beginning, the probability of success increases the further
in the past we want to revert the target. We also see thatW8,
W̃8 supersede all protocols involving four probes, at the
price of doubling the duration of the whole resetting
procedure.
We must not conclude, though, thatW8, W̃8 are superior

to, say, W4. Let us keep the same free Hamiltonian H0ðλÞ,
again with λ distributed uniformly in ½−1; 1�, but change the
interaction Hamiltonian HINT to H0

INT ¼ −0.7464X ⊗ X þ
1.4885Y ⊗ Y − 3.1014Z ⊗ Z þ λZ ⊗ I [i.e., Uðλ; TÞ ¼
e−iH

0
INTδe−iH0T]. For δ ¼ 1, we obtain the curves depicted

in Fig. 6.
Now, n ¼ 4 protocols supersede both W8 and W̃8, and

the latter protocol achieves the worst results. The take-
home message is that no single protocol outperforms all the
others in all situations. The decision to use one strategy or
another will depend on our prior knowledge on the target
and its interaction with the probes.

To conclude, we tried to identify some resetting proto-
cols for dS ¼ 3. This turned out to be very challenging,
because there exist no central polynomials for dimension 3
with degree smaller than 8 [14]. Moreover, for n ¼ 8, there
seems not to be any resetting protocol involving qubit
probes. For n ¼ 9, the only protocol we found,W9, involves
projecting the output qubits on the symmetric space of n
qubits and inputting a vector determined by the heuristic #2.
Our prior onUwas a discrete distribution given by 100 6 × 6

FIG. 5. Probability of success as a function of the resetting time
T for an interaction generated by the Hamiltonian HINT, with
δ ¼ 0.5. The black, blue, and red lines represent, respectively, the
average probabilities of success achieved by the optimal n ¼ 4

protocol, W8, and W̃8.

FIG. 6. Probability of success as a function of the resetting time
T for an interaction generated by the Hamiltonian H0

INT, with
δ ¼ 1. The black, blue, and red lines represent, respectively, the
average probabilities of success achieved by the optimal n ¼ 4

protocol, W8, and W̃8.
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unitaries sampled from the Haar measure. Putting
it all together, we obtain the discouragingly small
value hpðx ¼ 0jU;W9ÞiU ¼ 0.0035ð�0.0004Þ.
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