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Connecting nanoscale mechanical resonators to microwave quantum circuits opens new avenues for
storing, processing, and transmitting quantum information. In this work, we couple a phononic crystal
cavity to a tunable superconducting quantum circuit. By fabricating a one-dimensional periodic pattern in a
thin film of lithium niobate and introducing a defect in this artificial lattice, we localize a 6-GHz acoustic
resonance to a wavelength-scale volume of less than 1 cubic micron. The strong piezoelectricity of lithium
niobate efficiently couples the localized vibrations to the electric field of a widely tunable high-impedance
Josephson junction array resonator. We measure a direct phonon-photon coupling rate g=2π ≈ 1.6 MHz
and a mechanical quality factor Qm ≈ 3 × 104, leading to a cooperativity C ∼ 4 when the two modes are
tuned into resonance. Our work has direct application to engineering hybrid quantum systems for
microwave-to-optical conversion as well as emerging architectures for quantum information processing.
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I. INTRODUCTION

Compact and low-loss acoustic wave devices that per-
form complex signal processing at radio frequencies are
ubiquitous in classical communication systems [1]. Much
like their classical counterparts, emerging quantum
machines operating at microwave frequencies [2] also
stand to benefit from their integration with these devices.
This is conditioned on the realization of sufficiently
versatile quantum phononic technologies. Several promis-
ing approaches have emerged in the last few years. Each
has its own strengths and weaknesses, and they can be
broadly categorized by the degree to which the acoustic
waves are confined as compared to their wavelength. In a
series of remarkable experiments, thin-film [3], surface
[4–7], and bulk acoustic wave resonators [8,9] made of
piezoelectric materials have coupled gigahertz phonons
with varying levels of confinement to superconducting
circuits. Nonetheless, smaller mode volumes, lower losses,
and greater control over the mode structure are desired.
One of the most promising approaches for realizing

ultra-low-loss mechanical resonators is to use phononic

crystal cavities that confine acoustic waves in all three
dimensions. Wavelength-scale confinement and periodicity
qualitatively alter the properties of waves and allow far
greater control over the phonon density of states. Periodic
patterning of a thin slab of elastic material can give rise to a
phononic band gap—a range of frequencies devoid of
propagating waves. By introducing defects in such a
crystal, mechanical energy is localized at the wavelength
scale [10–14] without any “clamping” losses. The existence
of a complete phononic band gap eliminates all modes into
which a phonon can be linearly scattered, leading to a
significant increase in the coherence time of such reso-
nators. For example, lifetimes on the order of 1 s corre-
sponding to Q > 1010 have been optically measured in
5-GHz phononic crystal cavities made from silicon [15].
Moreover, the small mode volume of phononic crystal
cavities leads to a dramatic reduction in the density of
spurious modes that can negatively impact the performance
of quantum acoustic systems while enabling a denser
packing of devices for greater scalability.
The greater confinement and control over the acoustic

mode structure comes at the cost of weaker coupling. At
gigahertz frequencies, themodes of phononic crystal cavities
are confined to extremely small volumes (≲1 μm3). This
leads to smaller forces for a given oscillating voltage when
compared to approaches with transducer dimensions of tens
to hundreds of microns [16]. Up to now, it has only been
possible to efficiently read out and couple to localizedmodes
of phononic crystal cavities with optical photons where the
electromagnetic energy is similarly localized [10,17].
Nonetheless, to connect these systems to microwave
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superconducting quantum circuits, efficient and tunable
coupling between microwave photons and phonons is
needed. In this work, we demonstrate the direct coupling
of a superconducting circuit to a wavelength-scale phononic
nanocavity, opening a new avenue in quantum acoustics.

II. DEVICE DESIGN AND FABRICATION

At the heart of our device lies a suspended quasi-one-
dimensional phononic crystal fabricated from a 200-nm-
thick film of lithium niobate (LiNbO3). The crystal has a
lattice constant of 1 μm and has a complete phononic band
gap in the vicinity of ν ¼ 6 GHz [Fig. 1(a)]. This band gap
is used to localize the resonances of a single defect site
introduced in the center of the lattice. In particular, we
engineer a defect mode with a strain field S that generates a
charge polarization Pi ¼ eijkSjk, which is predominantly
aligned in-plane in the direction perpendicular to the lattice
[Fig. 1(b)]; here, e is the piezoelectric coupling tensor of
LiNbO3. We then use this polarization to couple the defect
mode to the microwave-frequency electric field of a read-
out circuit, applied by gate electrodes placed within 200 nm
of the defect. The read-out circuit is a lumped-element
microwave resonator formed from the capacitanceCr of the
gate electrodes and a series of Josephson junctions in a
superconducting quantum interference device (SQUID)
array configuration with total Josephson inductance Lr ¼
Φ2

0=EJðΦeÞ [Fig. 1(c)], where Φ0 ¼ ℏ=2e is the reduced
flux quantum. The effective Josephson energy EJðΦeÞ of
the array depends on the external flux Φe threading the
SQUIDs, making the resonator frequency ωr ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
LrCr

p
tunable by applying a small current to an on-chip flux line.
In addition, the small parasitic capacitance of the array
enables us to achieve a relatively large resonator impedance
Zr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr=Cr

p
≈ 580 Ω. This is an important feature of

our device, as the piezoelectric coupling strength is propor-
tional to the zero-point voltage fluctuations of the circuit
and Vzp ∼

ffiffiffiffiffi
Zr

p
. The resonator impedance is largely limited

by the presence of the flux line (highlighted in red in
Fig. 2), which is a major source of parasitic capacitance
between the two nodes of the resonator. From the simu-
lations, we estimate it contributes about 10fF to Cr.
Thin-film LiNbO3 has recently gained prominence in the

realm of classical radio-frequency systems [18–20]. Here,
device fabrication is performed on a 500-nm film of
X-cut LiNbO3 on a 500-μm high-resistivity (> 3 kΩ · cm)
Si substrate and involves seven masks of lithography con-
sisting of the following four stages [see Fig. 2(a)]:
(1) LiNbO3 film thinning, (2) patterning of phononic nano-
structures, (3) deposition of Al layers, including all micro-
wave circuitry and Josephson junctions, and (4) masked
undercut of structures. The film is first thinned down to the
target thickness (approximately 200 nm for this device) by
blanket argon milling. We then pattern positive resist with a
single step of electron-beam (e-beam) lithography and use it

as the only masking material to etch the phononic nano-
structures into the LiNbO3 film using an optimized argon
milling process. Now, masking only the structures, an argon
milling step is done to remove theLiNbO3 film from the entire
sample. This step allows us to place all microwave circuits on
a high-resistivity silicon substrate where they are not vulner-
able to acoustic radiation losses induced by the piezoelectric
film. Aluminum microwave ground planes and feedlines are
defined on the exposed silicon via liftoff, and the SQUID
arrays are fabricated with a Dolan bridge double-angle
evaporation process to grow the Al/AlOx/Al junctions
[21,22]. The gate electrodes used to address the phononic
defect sites are patterned with a separate e-beam mask and
normal-incidence Al evaporation, and finally, a bandage
process [23] is used to ensure lossless superconducting

(c)(a)

(b)

FIG. 1. Concept and design. (a) Phononic bands of a LiNbO3

quasi-one-dimensional phononic crystal with lattice constant
a ¼ 1 μm, showing the bands of all possible mode polarizations
in the range of frequencies relevant to this work. A complete band
gap near ν ¼ 6.5 GHz is clearly visible, with a narrower gap also
visible below. Other relevant simulation parameters (matching
those of the fabricated structures) are the length and width of the
connecting struts (320 nm and 240 nm, respectively), the film
thickness (224 nm), and the sidewall angle (5°). (b) Deformation
uðrÞ and electrostatic potential ϕðrÞ of a mode localized at the
defect site, at frequency ν ¼ 6.48 GHz near the center of the band
gap. Modes of this polarization can be coupled to electric fields
pointing in the direction perpendicular to the crystal lattice. Here,
the length and width of the defect are adef ¼ 1.6 μm and
wdef ¼ 500 nm, respectively. (c) Schematic of the device, includ-
ing the drive (or read-out) line (blue) capacitively coupled to the
resonator, the flux line (red) used to flux bias the SQUID array, and
the electrodes (gray) that couple the circuit to the phononic cavity
(light blue). The LiNbO3 crystal axes are indicated.
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connections between all metalization layers. As a final step,
we release the structures with a masked XeF2 dry etch that
etches the underlying Si with extremely high selectivity to the
LiNbO3 and theAl [19,20], leaving all aluminum layers intact
at the end of the process.
In Fig. 2(b), we show a set of scanning-electron micro-

graphs of a finished device nearly identical to the one used
in this experiment. The full microwave circuit is shown in
the center. The charge line (highlighted in blue) is capac-
itively coupled to the resonator and is used for driving and
read-out. The flux line (highlighted in red) is used to apply
either dc or rf magnetic fields to the SQUID array and tune
the resonator frequency. The flux line is shorted to ground
in a symmetric configuration in order to reduce leakage of
photons through the mutual inductance between the reso-
nator and the line. The junction array, placed 5 μm away
from the flux line, is composed of NSQ ¼ 17 nominally
identical SQUIDs in series and has a total inductance
Lr ≈ 11nH inferred by measuring the normal-state resis-
tance of three copies of the array on the same chip. The two
terminals of the SQUID array are routed to a set of
electrodes used to address six independent phononic crystal
defect cavities. These electrodes, the rest of the wiring, and
the immediate environment of the resonator amount to a
total capacitance of Cr ¼ 33 fF, determined from finite-
element electrostatics simulations.
Each of the six cavities has the same nominal mirror cell

design and, therefore, the same phononic band structure. As
a result, the modes that are supported by the cavities appear
in the same frequency bands. In order to spectrally resolve

these modes, we sweep the length adef of the defect cells,
from 1.4 μm to 1.65 μm in steps of 50 nm. Because the
band gap is quite small—only a small percentage of the
center frequency—many defects do not support localized
modes of the correct polarization (see Appendix D). By
scaling the defect across the six cavities, we therefore
increase the likelihood of generating and observing a
localized mode.

III. MODELING AND MEASUREMENT RESULTS

We model our system as a microwave-frequency electro-
magnetic mode with annihilation operator â and frequency
ωr, which is linearly coupled, with a rate g, to a mechanical
mode b̂ at frequency ωm. This model is valid so long as we
are interested in a range of frequencies sufficiently distant
from other mechanical resonances in the system as com-
pared to the relevant interaction rates. The Hamiltonian is

Ĥ=ℏ ¼ ωrâ†âþ χ

2
â†2â2 þ ωmb̂

†b̂þ gðâb̂† þ â†b̂Þ; ð1Þ

where χ is the Kerr nonlinearity of the microwave mode
introduced by the array. For an array of NSQ identical
SQUIDs, this is given by ℏχ ¼ −EC=N2

SQ, where EC ¼
e2=ð2CrÞ is the charging energy [24]. For this device,
χ=2π ≈ −2 MHz, which is larger than the typical anhar-
monicity of parametric amplifier devices [25] but
significantly smaller than that of transmon qubits [26].
We can further include the effect of a coherent drive sent

(a) (b)

FIG. 2. Device fabrication. (a) Schematic of the fabrication process, including (i) electron-beam patterning and argon milling of the
phononic nanostructures in the LiNbO3 film, (ii) masked removal of the film from the rest of the substrate, (iii) deposition of all
metallization layers, and (iv) masked undercut of the structures. The last step suspends both the phononic cavities and the edge of the
coupling electrodes over an etched Si trench. (b) False-colored scanning-electron micrographs of the final device. The charge and flux
lines are highlighted in blue and red, respectively. A close-up of the SQUID array clearly shows the Al/AlOx/Al junctions and the
trenching in the Si substrate on either side of the array, produced by a deliberate gap between the electron-beam and photolithography
masks used to pattern the LiNbO3 film, which results in the Si getting etched twice in those regions. To the left of the SQUID array, a
group of six phononic crystal cavities, coupled to the array by 200-nm-thick Al wires, is visible and highlighted by dashed black lines. A
close-up of this region shows the LiNbO3 structures (highlighted in blue), including the band-gap regions, the defect site surrounded by
the partially suspended aluminum electrodes, and the etched Si trench. The porouslike surface of the etched Si is attributed to
micromasking during the XeF2 undercut, but it is likely unimportant as it is located far (> 2 μm) from the region between the electrodes,
where the electric fields are strongest.
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into the input port by adding a drive term Ĥd=ℏ ¼
−i ffiffiffiffi

κe
p ðâ†α−iωdt

in − H:c:Þ to the Hamiltonian, where κe is
the extrinsic decay rate of the microwave mode into the
read-out channel and ωd is the drive frequency. For
sufficiently weak driving, the system response is linear,
and the Kerr term in Eq. (1) can be neglected. Specifically,
this is valid if χhâ†âi ≪ κ, when the frequency shift
induced by the drive is much smaller than the total
electromagnetic linewidth κ [27].
We perform our characterization measurements at the

bottom plate of a dilution refrigerator at a temperature of
T ¼ 7 mK. We probe the system by measuring the reflec-
tion spectrum S11ðωÞ through the charge port of the device
(full details of the measurement setup are provided in
Appendix E). In Fig. 3(a), we show a typical normalized
reflection spectrum of the resonator in the linear regime, in
this case tuned to a frequency of ν ¼ 5.9 GHz, far detuned
from any mechanical resonance. The reflection coefficient
is S11ðωÞ ¼ −1þ 2ηeχrðωÞ, where ηe ≡ κe=κ is the cou-
pling efficiency and χrðωÞ ¼ ½2iðω − ωrÞ=κ þ 1�−1 is the
dimensionless susceptibility (see Appendix A for details).
Fitting the data to this model, we obtain κ=2π ¼ 11 MHz
and κe=2π ¼ 6.3 MHz at a resonator frequency of 5.9 GHz.
This frequency is more than 2 GHz detuned from the
flux sweet spot, leading to a broadened intrinsic linewidth
κi ¼ κ − κe (see Appendix B). In Fig. 3(b), we show the
linear spectroscopy results for a range of values of the
external magnetic flux Φe, illustrating the dc-bias response

ωrðΦeÞ ¼ ωr;max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij cosð2πΦe=Φ0Þj
p

of the resonator fre-
quency. We infer ωr;max=2π ¼ 8.31 GHz, lying outside of
our measurement band. Furthermore, since the SQUIDs are
composed of nominally identical junctions, the lower
frequency part of our tuning curve also lies outside of
the measurement band.
We can now use the tunable response of the resonator to

look for additional signatures in the spectrum. Tuning the
resonance from the top of our measurement band at ν ≈
8 GHz down to ν ≈ 5 GHz, we find a series of resonances
that anticross with the microwave mode, largely concen-
trated in the 6–6.5-GHz range. In Fig. 3(c), we show the
anticrossing of the most strongly coupled mechanical
mode we found for this device, along with a line cut
at the point of minimum detuning shown in Fig. 3(d).
Using the entire anticrossing data set, we extract the
parameters of the mechanical mode by fitting the spec-
trum to the simple linear input-output model described in
Appendix A. In the case of a single mechanical mode
coupled to the read-out resonator, the reflection spectrum
can be written as

S11ðωÞ ¼ −1þ 1

1þ CχmðωÞχrðωÞ
2ηeχrðωÞ; ð2Þ

where χmðωÞ ¼ ½2iðω − ωmÞ=γ þ 1�−1 is the dimension-
less mechanical susceptibility and C≡ 4g2=κγ is the
cooperativity. A least-squares fit to this model results

(a)

(b)

(c) (d)

FIG. 3. Linear spectroscopy. (a) Reflection spectrum S11ðωÞ of the SQUID-array resonator tuned to a frequency ofωr=2π ¼ 5.90 GHz,
including the raw data and the fit to the model (solid lines). The data are normalized to a spectrum collected with a very large probe power
(P ¼ 0 dBm, nominal VNA output), where the nonlinear resonance is saturated and absent from the spectrum. At this frequency, we obtain
resonator decay rates κ=2π ¼ 11 MHz and κe=2π ¼ 6.3 MHz. (b) Linear spectroscopy of the resonator with varying external flux. The
resonance is observed to tunewith the external fluxΦe in the usualway and has amaximum frequencyωr;max=2π ¼ 8.31 GHz. (c)Close-up
at the frequency indicated by the black dashed line in the wider tuning plot. An anticrossing of the microwave resonance and a mechanical
mode at frequencyωm=2π ¼ 5.9754 GHz is clearly observed, with themechanical feature only visiblewhen the resonator is tuned in close
proximity. The data are collected at a higher frequency resolutionwithin a 25-MHz band around themechanical frequency in order to better
resolve themechanical mode away from resonance. The value ofΦe at which the twomodes are directly on resonance is marked by a black
dashed line. (d) Line cut at the resonance, showing the two dips observed in the reflection spectrum. A least-squares fit (solid black lines) is
overlaid with the raw data, showing close agreement with the model.
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in ωm=2π ¼ 5.9754 GHz, g=2π ¼ 1.65� 0.07 MHz, and
γ=2π ¼ 220� 70 kHz, corresponding to a mechanical
quality factor Qm ¼ ωm=γ ≈ 3 × 104. The maximum
cooperativity, i.e., the ratio of the mechanical resonator’s
electromagnetic read-out coupling to its intrinsic losses,
approaches C ≈ 4.5 on resonance. Crucially, our mode
lies in a “quiet” region, where the closest observed
mechanical modes are 50 MHz and 250 MHz below
and above, respectively (see Appendix C).
In order to better understand the measured electro-

mechanical response, we perform finite-element simula-
tions of the full LiNbO3 structure, simultaneously solving
the equations of elasticity, electrostatics, and their
coupling via piezoelectricity (see Appendix D for details).
Following a procedure described in Ref. [16], we numeri-
cally calculate the electromechanical admittance function
YmðωÞ seen at the electrical terminals of a single phononic
cavity [28] and generate an effective circuit using Foster
synthesis [29]. Using this technique, we calculate coupling
rates in the range g=2π ≈ 1.5–2.5 MHz for the cavity
geometries present in this device, in agreement with the
measurement.
We measure the reflection spectra at higher drive power

levels to verify the expected linearity of the mechanical
resonance and to distinguish it from other degrees of
freedom, such as two-level systems (TLS) that have been
observed in chip-scale devices [30]. The strong Kerr
nonlinearity of the resonator allows us to calibrate the
coherently driven photon occupation. We set the resonator
frequency to ωr=2π ¼ 5.90 GHz, detuned from the
mechanical mode, and vary the probe power. For very
low powers, we can approximate the effect of the drive as a
frequency shift δωr ¼ χhâ†âi=2 [Fig. 4(a)] and use this to
extract the photon number. For low probe powers, we
observe a linear dependence of the frequency shift as
expected from a linearized model in which the steady-state
occupation redshifts the resonance frequency seen by the
probe tone. However, as the probe power is increased, a
more complex nonlinear response is observed as evidenced
by the deviation of the estimated δωr from the simplified
linear dependence. We use the lower power points to obtain
a nominal calibrated photon number nr ¼ hâ†âi, which is
valid at low drive strengths and represents an upper bound
to the occupation when extrapolated to stronger drives.
This requires us to accurately estimate χ, which we do in
two different ways: first using the measured resonator
frequency and the normal-state junction resistance, and
second by simulating the capacitance matrix of the device.
Both of these methods give us nearly the same value of
χ=2π ¼ −2.0� 0.1 MHz. The uncertainty in this estimate
roughly corresponds to the deviation between the two ways
of obtaining it. We now place the resonator to the red side
of the mechanical mode and change the driving strength
while sweeping the probe frequency to obtain the traces
shown in Fig. 4(b). We observe the microwave mode

broaden and redshift as the occupation is increased to a
few photons, while the mechanical mode remains
unchanged. We therefore conclude that the observed
resonance is not due to a TLS. Additionally, we note that
the frequency and linewidth of the observed resonance
remained constant over several experimental runs that
involved temperature cycling the device. Finally, measure-
ments on a control sample with a nearly identical resonator
design but without the LiNbO3 cavities showed no coupled
linear resonances in the frequency range 5–8 GHz, ruling
out the possibility that the modes in question are spurious
electromagnetic modes.

IV. OUTLOOK

We have demonstrated efficient coupling between a
localized phononic cavity and a superconducting micro-
wave circuit. The cooperativity C ∼ 4 is already sufficient
for efficient conversion of microwave photons to highly
localized microwave phonons, which can in turn be up-
converted efficiently to optical photons [17]—a promising
route for microwave-to-optical conversion [12,14,31,32].
We note that our approach of direct coupling to a phononic

(a) (b)

FIG. 4. Nonlinear spectroscopy. (a) Frequency shift δωr ≡
ωrðnrÞ − ωrð0Þ of the microwave resonance as a function of
the probe tone power (at output from VNA). Since the anharmo-
nicity χ is negative, the resonator redshifts as its occupation nr
increases; here, we plot the absolute value of the shift for clarity.
As expected from a linearized model of a resonator with a Kerr
nonlinearity, the shift has a linear dependence for weak driving
strengths (dark blue points), but it deviates from this trend at
stronger driving (light blue points). We can calibrate the on-
resonance occupation nr by fitting δωr to a line in the weak driving
regime (dashed black line), using a value of χ=2π ¼ −2.0 MHz for
the anharmonicity. (b) Reflection spectra at various values of nr,
with the resonator placed to the red side of the mechanical mode.
As the occupation increases, the resonator redshifts as expected,
while the mechanical mode remains unchanged.
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crystal resonator differs from the “mode-conversion”
scheme used in Ref. [32], where interdigitated transducers
generate Lamb waves that are then focused into the
nanobeam from both ends. In our scheme, only one
mechanical mode, the localized mode, plays a role in
the coupling. This removes any loss associated with
inefficient mode conversion and scattering into spurious
acoustic modes, e.g., arising from the multiple polarizations
guided by the nanobeam [33]. Since there is only a single
acoustic resonance present in the device at the frequency
of interest, we are able to achieve efficient and tunable
coupling that is robust to fabrication imperfections. From
the measurements presented here, it is not clear whether the
observed quality factors are limited by intrinsic material
losses or by fabrication disorder and design. In the latter
case, the performance of the device can be further improved
by increasing the size of the band gap to allow for higher
mechanical Q. Larger phononic band gaps lead to greater
robustness to fabrication imperfections, which may cur-
rently limit the coherence time of the resonances (see
Appendix C). Further investigation is required to under-
stand the source of loss. In addition, optimizing the
electrode placement and mode profile can lead to an
increase in the coupling rate g.
For quantum acoustic structures to become competitive

with the best electromagnetic cavities, higher interaction
rates g and quality factors Q need to be achieved while
minimizing spurious resonances to allow for fast gate
operations [34]. Interestingly, due to the small capacitance
of the transducer and the ability to minimize crosstalk
between resonances through phonon band-gap engineering,
this architecture lends itself well to engineering systems
where many bosonic linear modes couple to a single qubit
[35]. Whether such a quantum acoustic approach will be
competitive in the realm of quantum information process-
ing relies on improvements in the g and Q of the devices,
which will be the focus of future work.
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APPENDIX A: REFLECTION SPECTRA

We model the mechanical system as a collection of
harmonic modes fb̂ig linearly coupled to a Kerr oscillator,
which in turn is coupled to a single input-output channel for
driving and read-out.
The Hamiltonian of the system is

Ĥ=ℏ ¼ ωrâ†âþ χ

2
â†2â2 þ

X
k

ωðkÞ
m b̂†kb̂k

þ
X
k

gkðâþ â†Þðb̂k þ b̂†kÞ

− i
ffiffiffiffiffi
κe

p ðâ†αine−iωdt − H:c:Þ þ ĤB; ðA1Þ
where ωr is the frequency of the microwave mode, χ is

the anharmonicity, fωðkÞ
m g are the frequencies of the

mechanical modes, and fgkg are their coupling rates to
the microwave mode. We have explicitly included a
coherent driving field at frequency ωd (which couples to
the system at rate κe) and bundled all other bath terms into
ĤB—following a standard input-output treatment, these
terms simply generate additional decay terms in the
Heisenberg equations. We can eliminate the time depend-
ence in Ĥ by going into an interaction frame with respect to
Ĥ0=ℏ≡ ωdðâ†âþP

b̂†kb̂kÞ. The transformed Hamiltonian
(now omitting the bath terms) becomes

Ĥ=ℏ¼−Δrâ†âþ
χ

2
â†2â2−

X
k

ΔðkÞ
m b̂†kb̂k

þ
X
k

gkðâb̂†kþ â†b̂kÞ− i
ffiffiffiffiffi
κe

p ðâ†αin−H:c:Þ; ðA2Þ

where Δj ≡ ωd − ωj.
We can neglect the nonlinear term in the weak-

drive regime where χjαinj2 ≪ κ2. Our experiment only
measures the average output field amplitudes in the steady
state, given by hâi≡ α and hb̂ki≡ βk. These obey the
Heisenberg equations of motion,

_α ¼
�
iΔr −

κ

2

�
α − i

X
k

gkβk þ
ffiffiffiffiffi
κe

p
αin; ðA3Þ

_βk ¼
�
iΔðkÞ

m −
γk
2

�
βk − igkα; ðA4Þ

which can be written in the Fourier domain as

κ

2
χ−1r ðωÞα ¼ −i

X
k

gkβk þ
ffiffiffiffiffi
κe

p
αin; ðA5Þ

γk
2
χ−1m;kðωÞβk ¼ −igkα: ðA6Þ

We define the bare dimensionless susceptibilities

χrðωÞ ¼ ½−2iðωþ ΔrÞ=κ þ 1�−1; ðA7Þ

χm;kðωÞ ¼ ½−2iðωþ ΔðkÞ
m Þ=γk þ 1�−1; ðA8Þ
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where κ ¼ κe þ κi and fγkg are the total decay rates
of the microwave and mechanical modes, respectively.
Together with the input-output boundary condition αout ¼
−αin þ ffiffiffiffiffi

κe
p

α, we can then directly solve for the reflection
coefficient S11 ≡ αout=αin and obtain

S11ðωÞ ¼ −1þ 2κe=κ
1þP

kCkχm;kðωÞχrðωÞ
χrðωÞ; ðA9Þ

where Ck ≡ 4g2k=κγk is the cooperativity (or read-out
efficiency) for mode k. We can finally assume that a single
mechanical mode b̂k ≡ b̂ is relevant at a given resonator
frequency ωr, in the sense that it is the only mode that
imprints a measurable signature in the reflection signal.
Some algebraic manipulation leads us to the expression
for S11ðωÞ,

S11ðωÞ ¼ −1þ 2κe=κ
1þ CχmðωÞχrðωÞ

χrðωÞ; ðA10Þ

shown in the main text and used for fitting the data.

APPENDIX B: WIDE-BAND
CHARACTERIZATION OF SQUID

ARRAY RESONATOR

The center frequency of the SQUID array resonator is
widely tunable, allowing us to probe the mechanical mode
spectrum over a large range of frequencies. In Fig. 5, we
plot the resonator frequency ωr=2π as a function of the bias
voltage applied to run a current through the on-chip flux
line (see Appendix E for details) along with a fit to the
function ωrðVÞ ¼ ωr;max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij cosðGV þ ϕoffsetÞj
p

, giving us a
calibration of the external flux Φe threading the SQUIDs.
We infer that the flux-insensitive point is at ωr;max=2π ¼
8.31 GHz and lies outside of our measurement band. At
every bias point, we fit the reflection spectrum S11ðωÞ to
the model derived in Appendix A [Eq. (2) with g ¼ 0] in
order to extract the total and extrinsic resonator linewidths
(κ and κe, respectively), also shown in Fig. 5. We also
define an intrinsic linewidth κi ≡ κ − κe, which contains
contributions from both energy relaxation and pure dephas-
ing. Since our scattering parameter measurement uses only
mean-field amplitudes, we do not have the ability to separate
these two contributions, but we can still look at the frequency
dependence of κi in order to gain insight into the
decoherence mechanisms affecting this device. We find that
κe increases with frequency as expected from capacitive
coupling to the feedline, whereas κi decreases as ωr
approaches the flux-insensitive point. This may be attributed
to flux-noise dephasing. In fact, we see that at the mechani-
cal frequency ωm=2π ≈ 6 GHz, the intrinsic linewidth is
larger than it is at the flux sweet spot, suggesting that the
coherence times in future experiments can be improved by
operating the tunable circuits near this point.

APPENDIX C: COMPLETE MECHANICAL
SPECTRUM OF THE SYSTEM

In addition to the mode at ωm=2π ¼ 5.9754 GHz pre-
sented in the main text, we observe other modes distributed
over a wide range of frequencies. In Fig. 6, we show the
complete mechanical spectrum of this device. The positions
of all observed modes are indicated with vertical lines, and
we plot the quality factor Qm and coupling rate g of nine
modes with sufficiently strong signatures in S11 to be fit
reliably to the model. The mode presented in the main
text is indicated in red. Interestingly, we find that all
modes have quality factors on the order of 104. This may
be attributed to a combination of acoustic radiation, or
“clamping loss,” and intrinsic material losses; more detailed
studies of these devices will be needed in order to elucidate
the relaxation mechanisms. However, it is possible that
clamping loss is indeed dominant in these cavities as these
measurements are consistent with previous studies of losses
in phononic crystal cavities made from silicon that lack
complete phononic band gaps [36]. The size of the band gap
in this work is not very large (< 5% of its center frequency
according to our finite element simulations); it is of
comparable magnitude to the fabrication-induced disorder
in the phononic crystals. This allows trapped phonons to
tunnel out of the defect region and irreversibly escape
through the clamping points [36]. In order to suppress this
loss channel, future devices will require larger band gaps,
which can be achieved through further improvements to
the design and fabrication. We also observe that with the
exception of the mode presented in the main text—indicated
by the red point at g=2π ≈ 1.6 MHz—all modes have

FIG. 5. Wide band resonator characterization. Calibration of the
external flux as a function of the applied bias voltage (left panel),
including data points (circles) and fit to theory. The flux sweet
spot at ωr;max ¼ 8.31 GHz lies outside our measurement band.
The total, extrinsic, and intrinsic linewidths (κ, κe, and κi,
respectively) are also plotted as a function of frequency. A
monotonic decrease in κi as the resonator is tuned towards the
flux sweet spot may be due to a reduction in the flux noise
contribution to the linewidth.
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coupling rates on the order of 100 kHz. This reduction in the
coupling rate has been observed in silicon optomechanical
crystals, as the modes are tuned outside of a band-gap region
[11], and it is supported by the numerical simulations
presented in Appendix D. In our case, finite element
simulations of all six cavity geometries present in this
device predict rates in the range 1.5–2.5 MHz for localized
modes of the “correct” polarization, leading us to conclude
that only one resonance in the spectrum has such properties.
The coupling rates can therefore be improved by engineering
cavities with larger band gaps, optimizing the geometry of
the defect, or changing the placement of the electrodes.

APPENDIX D: FINITE-ELEMENT SIMULATIONS

In order to better understand the dense mechanical
spectrum measured in this device, we perform finite-
element simulations of the full phononic cavities, including
their clamping to the Si substrate [28]. We include the effect
of acoustic radiation by appropriate incorporation of
perfectly matched layers at the clamping points. For the
set of defect-site lengths adef ¼f1400;1425;…;1650g nm,
we solve for all the eigenmodes of these cavities in the
approximate frequency range 6–6.6 GHz and calculate the
mechanical energy stored in the defect site and normalize it

to the total energy stored in the mode. This quantity gives a
simple measure of the extent to which a mode is localized
and is plotted as a function of mode frequency in Fig. 7(a).
The positions of complete and partial phononic band gaps
are indicated by dark grey and light grey shaded regions,
respectively. Unsurprisingly, we see that as the defect
length increases, several modes shift to lower frequencies

FIG. 6. Mechanical spectrum. Quality factorsQm (top panel) and
coupling rates g (bottom panel) of various modes are plotted as a
function of frequency. The positions of all modes observed in this
device are indicated by vertical blue lines, clearly showing that the
resonances tend to tightly cluster within certain regions. All of
these resonances were verified to be linear in the same way as the
mode presented in the main text, ruling out TLS resonances. In
both plots, the resonance at ωm=2π ¼ 5.975 GHz presented in the
main text is indicated by the red point. The quality factors and
coupling rates are obtained through reflection spectra collected at
various detunings Δ ¼ ωr − ωm around each mechanical mode
and fitted to Eq. (2); error bars indicate the standard deviation of
the parameter estimates for these fits.

(a)

(b)

FIG. 7. Simulated mechanical spectra. (a) Eigenfrequency
simulation results for cavities with defect lengths adef ¼ f1400;
1425;…; 1650g nm. The normalized defect-site energies (which
are unitless and range from 0 to 1) are plotted for all the modes in
the frequency range 6–6.6 GHz, with the bold lines correspond-
ing to the fabricated defect lengths. The mirror cell design is the
same as that used for the band diagram of Fig. 1(a); here, the
positions of the complete and partial phononic band gaps are
indicated with dark grey and light grey regions. Modes with
defect energy greater than 0.3 are considered “localized” and are
marked with a circle, and localized modes with the correct
polarization are marked with a filled square. We see that as the
defect length is increased, several modes shift into the band gap
and become localized, but only a small fraction of them have the
correct polarization. (b) Electrostatic potential of the three modes
labeled in (a), which have distinct profiles and coupling rates.
Only modes that have the right polarization and are localized
have simulated coupling rates that exceed 1 MHz.
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and enter the gap, becoming localized. Furthermore, we
note that modes entering the gap have different polar-
izations, so we mark, with a filled square, those with the
“correct” polarization for this coupling electrode configu-
ration. In these simulations, only two such modes become
localized for the fabricated defect designs, one for adef ¼
1400 nm and one for adef ¼ 1600 nm.
It is also helpful to understand how various kinds of

modes present in these simulated spectra couple to the
microwave resonator via the electrodes. The coupling rate g
depends on the extent to which the driving electric field and
the polarization field in the crystal overlap. Therefore,
modes that lie outside of the band gap and are not well
localized to the defect will tend to have a smaller g than
highly localized modes. For the same reason, modes of
different polarization will have different g, even if they are
localized to a similar region. We illustrate this in Fig. 7(b),
where we show the mode profiles (electrostatic potential) of
the three modes indicated in Fig. 7(a): (1) a localized mode
with the wrong polarization, (2) a localized mode with the
correct polarization, and (3) a delocalized mode with the
correct polarization. We also indicate their simulated
coupling rates for this particular resonator design, which
were calculated using the technique discussed in Ref. [16].
Together with the simulated mode distributions of Fig. 7(a),
these numerical results help explain why we observe a

dense mechanical spectrum in our device but only a single
mode with a large g.

APPENDIX E: EXPERIMENTAL SETUP

Our sample is packaged in a copper enclosure to protect
it from stray radiation and limit spurious modes. The
package is placed inside a multilayer magnetic shield
anchored to the mixing-chamber plate (T ≈ 7 mK) of a
cryogen-free dilution refrigerator (see Fig. 8). A Rhode &
Schwartz ZNB20 vector network analyzer (VNA) gener-
ates a probe tone that is sent down to the input port of the
device through a cascade of attenuators thermalized to
various temperature stages of the refrigerator. A circulator
(QuinStar QCY-060400C000) separates the input and
output signals, and an additional isolator (QuinStar
QCY-060400C000) protects the device from hot
(T ∼ 3 K) radiation in the output line. The output signal
is routed up to the 3-K stage through superconducting NbTi
cables, where it is amplified by a high-electron mobility
transistor (HEMT) amplifier (Caltech CITCRYO1-12A).
The signal is further amplified at room temperature by two
low-noise amplifiers (Miteq AFS4-02001800-24-10P-4
and AFS4-00100800-14-10P-4) with a 4–8-GHz bandpass
filter (Keenlion KBF-4=8-Q7S) between them before being
detected at the VNA.
Flux biasing is provided by a programmable voltage

source (SRS SIM928). The dc voltage passes through a
cold low-pass filter (Aivon Therma-24G) at the 3-K stage
and enters the dc port of a bias tee (Anritsu K250) mounted
at the mixing-chamber plate. In addition, an ac flux can be
applied with a microwave generator (Keysight E8257D),
which sends a tone to the rf port of the bias tee through an
additional attenuated line, though this capability is not used
in this experiment. Finally, the dcþ rf output of the tee is
sent directly to the flux port of the device.
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