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Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals
associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same
perceptual object. Object recognition and discrimination require classifying the manifolds in a manner that
is insensitive to variability within a manifold. How neuronal systems give rise to invariant object
classification and recognition is a fundamental problem in brain theory as well as in machine learning.
Here, we study the ability of a readout network to classify objects from their perceptual manifold
representations. We develop a statistical mechanical theory for the linear classification of manifolds with
arbitrary geometry, revealing a remarkable relation to the mathematics of conic decomposition. We show
how special anchor points on the manifolds can be used to define novel geometrical measures of radius and
dimension, which can explain the classification capacity for manifolds of various geometries. The general
theory is demonstrated on a number of representative manifolds, including l2 ellipsoids prototypical of
strictly convex manifolds, l1 balls representing polytopes with finite samples, and ring manifolds
exhibiting nonconvex continuous structures that arise from modulating a continuous degree of freedom.
The effects of label sparsity on the classification capacity of general manifolds are elucidated, displaying a
universal scaling relation between label sparsity and the manifold radius. Theoretical predictions are
corroborated by numerical simulations using recently developed algorithms to compute maximum margin
solutions for manifold dichotomies. Our theory and its extensions provide a powerful and rich framework
for applying statistical mechanics of linear classification to data arising from perceptual neuronal responses
as well as to artificial deep networks trained for object recognition tasks.
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I. INTRODUCTION

One fundamental cognitive task performed by animals
and humans is the invariant perception of objects, requiring
the nervous system to discriminate between different
objects despite substantial variability in each object’s
physical features. For example, in vision, the mammalian
brain is able to recognize objects despite variations in their
orientation, position, pose, lighting, and background. Such
impressive robustness to physical changes is not limited to

vision; other examples include speech processing, which
requires the detection of phonemes despite variability in the
acoustic signals associated with individual phonemes, and
the discrimination of odors in the presence of variability in
odor concentrations. Sensory systems are organized as
hierarchies, consisting of multiple layers, transforming
sensory signals into a sequence of distinct neural repre-
sentations. Studies of high-level sensory systems, e.g., the
inferotemporal cortex (IT) in vision [1], auditory cortex in
audition [2], and piriform cortex in olfaction [3], reveal that
even the late sensory stages exhibit significant sensitivity of
neuronal responses to physical variables. This suggests that
sensory hierarchies generate representations of objects that,
although not entirely invariant to changes in physical
features, are still readily decoded in an invariant manner
by a downstream system. This hypothesis is formalized
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by the notion of the untangling of perceptual manifolds
[4–6]. This viewpoint underlies a number of studies of
object recognition in deep neural networks for artificial
intelligence [7–10].
To conceptualize perceptual manifolds, consider a set of

N neurons responding to a specific sensory signal asso-
ciated with an object, as shown in Fig. 1. The neural
population response to that stimulus is a vector in RN .
Changes in the physical parameters of the input stimulus
that do not change the object identity modulate the neural
state vector. The set of all state vectors corresponding to
responses to all possible stimuli associated with the same
object can be viewed as a manifold in the neural state space.
In this geometrical perspective, object recognition is equiv-
alent to the task of discriminating manifolds of different
objects from each other. Presumably, as signals propagate
from one processing stage to the next in the sensory
hierarchy, the geometry of the manifolds is reformatted
so that they become “untangled”; namely, they are more
easily separated by a biologically plausible decoder [1]. In
this paper, we model the decoder as a simple single layer
network (the perceptron) and ask how the geometrical
properties of the perceptual manifolds influence their ability
to be separated by a linear classifier.
Linear separability has previously been studied in the

context of the classification of points by a perceptron, using
combinatorics [11] and statistical mechanics [12,13].
Gardner’s statistical mechanics theory is extremely impor-
tant as it provides accurate estimates of the perceptron
capacity beyond function counting by incorporating robust-
ness measures. The robustness of a linear classifier is
quantified by the margin, which measures the distance
between the separating hyperplane and the closest
point. Maximizing the margin of a classifier is a critical

objective in machine learning, providing support vector
machines (SVM) with their good generalization perfor-
mance guarantees [14].
The above theories focus on separating a finite set of

points with no underlying geometrical structure and are not
applicable to the problem of manifold classification, which
deals with separating an infinite number of points geomet-
rically organized as manifolds. This paper addresses the
important question of how to quantify the capacity of the
perceptron for dichotomies of input patterns described
by manifolds. In an earlier paper, we have presented the
analysis for classification of manifolds of extremely simple
geometry, namely, balls [15]. However, the previous
results have limited applicability as the neural manifolds
arising from realistic physical variations of objects can
exhibit much more complicated geometries. Can statistical
mechanics deal with the classification of manifolds with
complex geometry, and what specific geometric properties
determine the separability of manifolds?
In this paper, we develop a theory of the linear

separability of general, finite-dimensional manifolds. The
summary of our key results is as follows:

(i) We begin by introducing a mathematical model of
general manifolds for binary classification (Sec. II).
This formalism allows us to generate generic bounds
on the manifold separability capacity from the limits
of small manifold sizes (classification of isolated
points) to that of large sizes (classification of
entire affine subspaces). These bounds highlight
the fact that for large ambient dimension N, the
maximal number P of separable finite-dimensional
manifolds is proportional to N, even though each
consists of an infinite number of points, setting the
stage for a statistical mechanical evaluation of the
maximal α ¼ ðP=NÞ.

(ii) Using replica theory, we derive mean-field equations
for the capacity of linear separation of finite-dimen-
sional manifolds (Sec. III) and for the statistical
properties of the optimal separating weight vector.
The mean-field solution is given in the form of self-
consistent Karush-Kuhn-Tucker (KKT) conditions
involving the manifold anchor point. The anchor
point is a representative support vector for the
manifold. The position of the anchor point on
a manifold changes as the orientations of the other
manifolds are varied, and the ensuing statistics of the
distribution of anchor points plays a key role in our
theory. The optimal separating plane intersects a
fraction of the manifolds (the supporting manifolds).
Our theory categorizes the dimension of the span of
the intersecting sets (e.g., points, edges, faces, or full
manifolds) in relation to the position of the anchor
points in the manifolds’ convex hulls.

(iii) The mean-field theory motivates a new definition of
manifold geometry, which is based on the measure
induced by the statistics of the anchor points.

FIG. 1. Perceptual manifolds in neural state space.(a) Firing
rates of neurons responding to images of a dog shown at various
orientations θ and scales s. The response to a particular
orientation and scale can be characterized by an N-dimensional
population response. (b) The population responses to the images
of the dog form a continuous manifold representing the complete
set of invariances in the RN neural activity space. Other object
images, such as those corresponding to a cat in various poses, are
represented by other manifolds in this vector space.
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In particular, we define the manifold anchor radius
and dimension, RM and DM, respectively. These
quantities are relevant since the capacity of general
manifolds can be well approximated by the capacity
of l2 balls with radii RM and dimensions DM.
Interestingly, we show that, in the limit of small
manifolds, the anchor point statistics are dominated
by points on the boundary of the manifolds which
have minimal overlap with Gaussian random vec-
tors. The resultant Gaussian radius Rg and dimen-
sion Dg are related to the well-known Gaussian
mean width of convex bodies (Sec. IV). Beyond
understanding fundamental limits for classification
capacity, these geometric measures offer new quan-
titative tools for assessing how perceptual manifolds
are reformatted in brain and artificial systems.

(iv) We apply the general theory to three examples,
representing distinct prototypical manifold classes.
One class consists of manifolds with strictly smooth
convex hulls, which do not contain facets and are
exemplified by l2 ellipsoids. Another class is that of
convex polytopes, which arise when the manifolds
consist of a finite number of data points, and are
exemplified by l1 ellipsoids. Finally, ring manifolds
represent an intermediate class: smooth but non-
convex manifolds. Ring manifolds are continuous
nonlinear functions of a single intrinsic variable,
such as object orientation angle. The differences
between these manifold types show up most clearly
in the distinct patterns of the support dimensions.
However, as we show, they share common trends. As
the size of the manifold increases, the capacity and
geometrical measures vary smoothly, exhibiting a
smooth crossover from a small radius and dimension
with high capacity to a large radius and dimension
with low capacity. This crossover occurs as
Rg ∝ ð1= ffiffiffiffiffiffi

Dg
p Þ. Importantly, for many realistic

cases, when the size is smaller than the crossover
value, the manifold dimensionality is substantially
smaller than that computed from naive second-order
statistics, highlighting the saliency and significance
of our measures for the anchor geometry.

(v) Finally, we treat the important case of the classi-
fication of manifolds with imbalanced (sparse)
labels, which commonly arise in problems of object
recognition. It is well known that, in highly sparse
labels, the classification capacity of random points
increases dramatically as ðfj log fjÞ−1, where f ≪ 1
is the fraction of the minority labels. Our analysis of
sparsely labeled manifolds highlights the interplay
between manifold size and sparsity. In particular, it
shows that sparsity enhances the capacity only
when fR2

g ≪ 1, where Rg is the (Gaussian) manifold
radius. Notably, for a large regime of parameters,
sparsely labeled manifolds can approximately
be described by a universal capacity function

equivalent to sparsely labeled l2 balls with radii
Rg and dimensions Dg, as demonstrated by our
numerical evaluations (Sec. VI). Conversely, when
fR2

g ≫ 1, the capacity is low and close to ð1=DÞ,
where D is the dimensionality of the manifold affine
subspace, even for extremely small f.

(vi) Our theory provides, for the first time, quantitative
and qualitative predictions for the perceptron clas-
sification of realistic data structures. However,
application to real data may require further exten-
sions of the theory and are discussed in Sec. VII.
Together, the theory makes an important contribu-
tion to the development of statistical mechanical
theories of neural information processing in realistic
conditions.

II. MODEL OF MANIFOLDS

Manifolds in affine subspaces:—We model a set of P
perceptualmanifolds corresponding toP perceptual objects.
Each manifold Mμ for μ ¼ 1;…; P consists of a compact
subset of an affine subspace of RN with affine dimensionD
with D < N. A point on the manifold xμ ∈ Mμ can be
parametrized as

xμðS⃗Þ ¼
XDþ1

i¼1

Siu
μ
i ; ð1Þ

where uμ
i are a set of orthonormal bases of the (Dþ 1)-

dimensional linear subspace containing Mμ. The Dþ 1
components Si represent the coordinates of the manifold
point within this subspace and are constrained to be in the set
S⃗ ∈ S. The bold notation forxμ anduμ

i indicates that they are
vectors inRN , whereas the arrownotation for S⃗ indicates that
it is a vector in RDþ1. The set S defines the shape of the
manifolds and encapsulates the affine constraint. For sim-
plicity, wewill first assume that themanifolds have the same
geometry so that the coordinate set S is the same for all the
manifolds; extensions that consider heterogeneous geom-
etries are provided in Sec. VI A.
We study the separability ofPmanifolds into two classes,

denoted by binary labels yμ ¼ �1, by a linear hyperplane
passing through the origin. A hyperplane is described by a
weight vector w ∈ RN, normalized so kwk2 ¼ N, and the
hyperplane correctly separates the manifolds with a margin
κ ≥ 0 if it satisfies

yμw · xμ ≥ κ ð2Þ
for all μ and xμ ∈ Mμ. Since linear separability is a convex
problem, separating the manifolds is equivalent to separating
the convex hulls, convðMμÞ ¼ fxμðS⃗ÞjS⃗ ∈ convðSÞg, where

convðSÞ ¼
�XDþ1

i¼1

αiS⃗ijS⃗i ∈ S; αi ≥ 0;
XDþ1

i¼1

αi ¼ 1

�
: ð3Þ
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The position of an affine subspace relative to the
origin can be defined via the translation vector that is
closest to the origin. This orthogonal translation vector cμ is
perpendicular to all the affine displacement vectors in Mμ,
so that all the points in the affine subspace have equal
projections on cμ, i.e., x⃗μ · cμ ¼ kcμk2 for all xμ ∈ Mμ

(Fig. 2). We will further assume for simplicity that the P
norms kcμk are all the same and normalized to 1.
To investigate the separability properties of manifolds, it

is helpful to consider scaling a manifold Mμ by an overall
scale factor r without changing its shape. We define the
scaling relative to a center S⃗0 ∈ S by a scalar r > 0, by

rMμ ¼
�XDþ1

i¼1

½S0i þ rðSi − S0i Þ�uμ
i jS⃗ ∈ S

�
: ð4Þ

When r → 0, the manifold rMμ converges to a point:
xμ
0 ¼

P
iS

0
iu

μ
i . On the other hand, when r → ∞, the mani-

fold rMμ spans the entire affine subspace. If the manifold is
symmetric (such as for an ellipsoid), there is a natural choice
for a center. We will later provide an appropriate definition
for the center point for general, asymmetric manifolds. In
general, the translation vector c⃗ and center S⃗0 need not
coincide, as shown in Fig. 2. However, we will also discuss
later the special case of centered manifolds, in which the
translation vector and center do coincide.
Bounds on linear separability of manifolds:—For dichot-

omies of P input points in RN at zero margin, κ ¼ 0, the
number of dichotomies that can be separated by a linear
hyperplane through the origin is given by [11]

C0ðP;NÞ ¼ 2
XN−1

k¼0

CP−1
k ≤ 2P; ð5Þ

where Cn
k ¼ ½n!=k!ðn − kÞ!� is the binomial coefficient for

n ≥ k, and zero otherwise. This result holds for P input
vectors that obey the mild condition that the vectors are in
general position, namely, that all subsets of input vectors
of size p ≤ N are linearly independent.
For large P and N, the probability ð1=2PÞC0ðP;NÞ of a

dichotomy being linearly separable depends only upon the
ratio ðP=NÞ and exhibits a sharp transition at the critical
value of α0 ¼ 2. We are not aware of a comprehensive
extension of Cover’s counting theorem for general mani-
folds; nevertheless, we can provide lower and upper bounds
on the number of linearly realizable dichotomies by con-
sidering the limit of r → 0 and r → ∞ under the following
general conditions.
First, in the limit of r → 0, the linear separability of P

manifolds becomes equivalent to the separability of the P
centers. This leads to the requirement that the centers of
the manifolds xμ

0 are in a general position in RN . Second,
we consider the conditions under which the manifolds are
linearly separable when r → ∞, so that the manifolds span
complete affine subspaces. For a weight vector w to
consistently assign the same label to all points on an affine
subspace, it must be orthogonal to all the displacement
vectors in the affine subspace. Hence, to realize a
dichotomy of P manifolds when r → ∞, the weight vector
wmust lie in a null space of dimensionN −Dtot, whereDtot
is the rank of the union of affine displacement vectors.
When the basis vectors uμ

i are in general position, then
Dtot ¼ min ðDP;NÞ. Then, for the affine subspaces to be
separable, PD < N is required, and the projections of the P
orthogonal translation vectors also need to be separable in
the (N −Dtot)-dimensional null space. Under these general
conditions, the number of dichotomies for D-dimensional
affine subspaces that can be linearly separated, CDðP;NÞ,
can be related to the number of dichotomies for a finite set
of points via

CDðP;NÞ ¼ C0ðP;N − PDÞ: ð6Þ
From this relationship, we conclude that the ability to

linearly separateD-dimensional affine subspaces exhibits a
transition from always being separable to never being
separable at the critical ratio ðP=NÞ ¼ ð2=1þ 2DÞ for large
P and N [see Supplemental Materials (SM) [16], Sec. S1].
For general D-dimensional manifolds with finite size,

the number of dichotomies that are linearly separable will
be lower bounded by CDðP;NÞ and upper bounded by
C0ðP;NÞ. We introduce the notation αMðκÞ to denote
the maximal load ðP=NÞ such that randomly labeled
manifolds are linearly separable with a margin κ, with
high probability. Therefore, from the above considerations,
it follows that the critical load at zero margin, αMðκ ¼ 0Þ, is
bounded by

1

2
≤ α−1M ðκ ¼ 0Þ ≤ 1

2
þD: ð7Þ

FIG. 2. Model of manifolds in affine subspaces. D ¼ 2 mani-
fold embedded in RN . c is the orthogonal translation vector for
the affine space, and x0 is the center of the manifold. As the scale
r is varied, the manifold shrinks to the point x0 or expands to fill
the entire affine space.
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These bounds highlight the fact that, in the large N limit,
the maximal number of separable finite-dimensional mani-
folds is proportional to N, even though each consists of an
infinite number of points. This sets the stage for a statistical
mechanical evaluation of the maximal α ¼ ðP=NÞ, where P
is the number of manifolds, and is described in the
following section.

III. STATISTICAL MECHANICAL THEORY

In order to make theoretical progress beyond the bounds
above, we need to make additional statistical assumptions
about the manifold spaces and labels. Specifically, we will
assume that the individual components of uμ

i are drawn
independently and from identical Gaussian distributions
with zero mean and variance ð1=NÞ, and that the binary
labels yμ ¼ �1 are randomly assigned to each manifold
with equal probabilities. We will study the thermodynamic
limit where N, P → ∞, but with a finite load α ¼ ðP=NÞ.
In addition, the manifold geometries as specified by the set
S in RDþ1 and, in particular, their affine dimension D are
held fixed in the thermodynamic limit. Under these
assumptions, the bounds in Eq. (7) can be extended to
the linear separability of general manifolds with finite
margin κ, and characterized by the reciprocal of the critical
load ratio α−1M ðκÞ,

α−10 ðκÞ ≤ α−1M ðκÞ ≤ α−10 ðκÞ þD; ð8Þ

where α0ðκÞ is the maximum load for separation of random
independent and identically distributed (i.i.d.) points, with
a margin κ given by the Gardner theory [12],

α−10 ðκÞ ¼
Z

κ

−∞
Dtðt − κÞ2; ð9Þ

with Gaussian measure Dt ¼ ð1= ffiffiffiffiffiffi
2π

p Þe−ðt2=2Þ. For many
interesting cases, the affine dimension D is large, and the
gap in Eq. (8) is overly loose. Hence, it is important to
derive an estimate of the capacity for manifolds with finite
sizes and evaluate the dependence of the capacity and the
nature of the solution on the geometrical properties of the
manifolds, as shown below.

A. Mean-field theory of manifold separation capacity

Following Gardner’s framework [12,13], we compute
the statistical average of logZ, where Z is the volume of the
space of the solutions, which in our case can be written as

Z ¼
Z

dNwδðkwk2 − NÞΠμ;xμ∈MμΘðyμw · xμ − κÞ: ð10Þ

Θð·Þ is the Heaviside function to enforce the margin
constraints in Eq. (2), along with the delta function to
ensure kwk2 ¼ N. In the following, we focus on the

properties of the maximum margin solution, namely, the
solution for the largest load αM for a fixed margin κ, or
equivalently, the solution when the margin κ is maximized
for a given αM.
As shown in Appendix A, we prove that the general form

of the inverse capacity, exact in the thermodynamic limit, is

α−1M ðκÞ ¼ hFðT⃗ÞiT⃗ ; ð11Þ

where FðT⃗Þ ¼ minV⃗fkV⃗ − T⃗k2jV⃗ · S⃗ − κ ≥ 0; ∀ S⃗ ∈ Sg
and h…iT⃗ is an average over random (Dþ 1)-dimensional

vectors T⃗, whose components are i.i.d. normally distributed
Ti ∼N ð0; 1Þ. The components of the vector V⃗ represent
the signed fields induced by the solution vector w on the
Dþ 1 basis vectors of the manifold. The Gaussian vector T⃗
represents the part of the variability in V⃗ due to quenched
variability in the manifold’s basis vectors and the labels, as
will be explained in detail below.
The inequality constraints in F can be written equiva-

lently, as a constraint on the point on the manifold with
minimal projection on V⃗. We therefore consider the concave
support function of S, gSðV⃗Þ ¼ minS⃗fV⃗ · S⃗jS⃗ ∈ Sg, which
can be used to write the constraint for FðT⃗Þ as

FðT⃗Þ ¼ minV⃗fkV⃗ − T⃗k2jgSðV⃗Þ − κ ≥ 0g: ð12Þ

Note that this definition of gSðV⃗Þ is easily mapped to the
conventional convex support function defined via the max
operation [17].
KKT conditions:—To gain insight into the nature of the

maximum margin solution, it is useful to consider the KKT
conditions of the convex optimization in Eq. (12) [17]. For
each T⃗, the KKT conditions that characterize the unique
solution of V⃗ for FðT⃗) is given by

V⃗ ¼ T⃗ þ λS̃ðT⃗Þ; ð13Þ

where

λ ≥ 0

gSðV⃗Þ − κ ≥ 0

λ½gSðV⃗Þ − κ� ¼ 0: ð14Þ

The vector S̃ðT⃗Þ is a subgradient of the support function at
V⃗, S̃ðT⃗Þ ∈ ∂gSðV⃗Þ [17]; i.e., it is a point on the convex hull
of S with minimal overlap with V⃗. When the support
function is differentiable, the subgradient ∂gSðV⃗Þ is unique
and is equivalent to the gradient of the support function,

S̃ðT⃗Þ ¼ ∇gSðV⃗Þ ¼ argmin
S⃗∈S

V⃗ ·S⃗: ð15Þ
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Since the support function is positively homogeneous,
gSðγV⃗Þ ¼ γgSðV⃗Þ for all γ > 0; thus, ∇gSðV⃗Þ depends
only on the unit vector V̂. For values of V⃗ such that gSðV⃗Þ is
not differentiable, the subgradient is not unique, but S̃ðT⃗Þ is
defined uniquely as the particular subgradient that obeys
the KKT conditions, Eqs. (13)–(14). In the latter case,
S̃ðT⃗Þ ∈ convðSÞ may not reside in S itself.
From Eq. (13), we see that the capacity can be written in

terms of S̃ðT⃗Þ as

FðT⃗Þ ¼ kλS̃ðT⃗Þk2: ð16Þ

The scale factor λ is either zero or positive, corresponding to
whether gSðV⃗Þ − κ is positive or zero. If gSðV⃗Þ − κ is posi-
tive, then λ ¼ 0, meaning that V⃗¼T⃗ and T⃗ ·S̃ðT⃗Þ−κ>0. If
T⃗ · S̃ðT⃗Þ − κ < 0, then λ > 0 and V⃗ ≠ T⃗. In this case,
multiplying Eq. (13) with S̃ðT⃗Þ yields λkS̃ðT⃗Þk2 ¼
−T⃗ · S̃ðT⃗Þ þ κ. Thus, λ obeys the self-consistent equation,

λ ¼ ½−T⃗ · S̃ðT⃗Þ þ κ�þ
kS̃ðT⃗Þk2 ; ð17Þ

where the function ½x�þ ¼ maxðx; 0Þ.

B. Mean-field interpretation of the KKT relations

The KKT relations have a nice interpretation within the
framework of the mean-field theory. The maximum margin
solution vector can always be written as a linear combi-
nation of a set of support vectors. Although there are
infinite numbers of input points in each manifold, the
solution vector can be decomposed into P vectors, one per
manifold,

w ¼
XP
μ¼1

λμyμx̃μ; λμ ≥ 0; ð18Þ

where x̃μ ∈ convðMμÞ is a vector in the convex hull of the
μth manifold. In the large N limit, these vectors are
uncorrelated with each other. Hence, squaring this equa-
tion, ignoring correlations between the different contribu-
tions (Using the “cavity” method, one can show that the λ’s
appearing in the mean field KKT equations and the λ’s
appearing in Eq. (18) differ by an overall global scaling
factor which accounts for the presence of correlations
between the individual terms in Eq. (18), which we have
neglected here for brevity; see [18,19]), yields kwk2 ¼
N ¼ P

P
μ¼1 λ

2
μkS̃μk2; where S̃μ are the coordinates of x̃μ in

the μth affine subspace of the μth manifold; see Eq. (1).
From this equation, it follows that α−1 ¼ ðN=PÞ ¼
hλ2kS̃k2i, which yields the KKT expression for the capac-
ity; see Eqs. (11) and (16).
The KKT relations above are self-consistent equations

for the statistics of λμ and S̃
μ. The mean-field theory derives

the appropriate statistics from self-consistent equations of
the fields on a single manifold. To see this, consider
projecting the solution vector w onto the affine subspace
of one of the manifolds, say, μ ¼ 1. We define a (Dþ 1)-
dimensional vector V⃗1 as V1

i ¼ y1w · u1
i , i ¼ 1;…; Dþ 1,

which are the signed fields of the solution on the affine
basis vectors of the μ ¼ 1manifold. Then, Eq. (18) reduces
to V⃗1 ¼ λ1S̃

1 þ T⃗, where T⃗ represents the contribution
from all the other manifolds and since their subspaces are
randomly oriented, this contribution is well described as a
random Gaussian vector. Finally, self consistency requires
that for fixed T⃗, S̃1 is such that it has a minimal overlap with
V⃗1 and represents a point residing on the margin hyper-
plane; otherwise, it will not contribute to the max margin
solution. Thus, Eq. (13) is just the decomposition of the
field induced on a specific manifold into the contribution
induced by that specific manifold along with the contri-
butions coming from all the other manifolds. The self-
consistent Eqs. (14) and (17) relating λ to the Gaussian
statistics of T⃗ then naturally follow from the requirement
that S̃1 represents a support vector.

C. Anchor points and manifold supports

The vectors x̃μ contributing to the solution, Eq. (18), play
a key role in the theory. We will denote them or,
equivalently, their affine subspace components S̃μ as the
“manifold anchor points.” For a particular configuration of
manifolds, the manifolds could be replaced by an equiv-
alent set of P anchor points to yield the same maximum
margin solution. It is important to stress, however, that an
individual anchor point is determined not only by the
configuration of its associated manifold, but also by the
random orientations of all the other manifolds. For a fixed
manifold, the location of its anchor point will vary with the
relative configurations of the other manifolds. This varia-
tion is captured in mean-field theory by the dependence of
the anchor point S̃ on the random Gaussian vector T⃗.
In particular, the position of the anchor point in the

convex hull of its manifold reflects the nature of the relation
between that manifold and the margin planes. In general, a
fraction of the manifolds will intersect with the margin
hyperplanes; i.e., they have nonzero λ. These manifolds are
the support manifolds of the system. The nature of this
support varies and can be characterized by the dimension k
of the span of the intersecting set of convðSÞ with the
margin planes. Some support manifolds, which we call
“touching”manifolds, intersect with the margin hyperplane
only with their anchor point. They have a support dimen-
sion k ¼ 1, and their anchor point S̃ is on the boundary of
S. The other extreme is “fully supporting” manifolds,
which completely reside in the margin hyperplane. They
are characterized by k ¼ Dþ 1. In this case, V⃗ is parallel to
the translation vector c⃗ of S. Hence, all the points in S are

CHUNG, LEE, and SOMPOLINSKY PHYS. REV. X 8, 031003 (2018)

031003-6



support vectors, and all have the same overlap κ with V⃗.
The anchor point, in this case, is the unique point in the
interior of convðSÞ that obeys the self-consistent equation,
Eq. (13), namely, that it balances the contribution from the
other manifolds to zero out the components of V⃗ that are
orthogonal to c⃗. In the case of smooth convex hulls (i.e.,
when S is strongly convex), no other manifold support
configurations exist. For other types of manifolds, there are
also “partially supporting” manifolds, whose convex hull
intersections with the margin hyperplanes consist of k-
dimensional faces with 1 < k < Dþ 1. The associated
anchor points then reside inside the intersecting face.
For instance, k ¼ 2 implies that S̃ lies on an edge, whereas
k ¼ 3 implies that S̃ lies on a planar two-face of the convex
hull. Determining the dimension of the support structure
that arises for various T⃗ is explained below.

D. Conic decomposition

The KKT conditions can also be interpreted in terms
of the conic decomposition of T⃗, which generalizes
the notion of the decomposition of vectors onto linear
subspaces and their null spaces via Euclidean projection.
The convex cone of the manifold S is defined as
coneðSÞ ¼ fPDþ1

i¼1 αiS⃗ijS⃗i ∈ S; αi ≥ 0g; see Fig. 3. The
shifted polar cone of S, denoted S∘

κ, is defined as the convex
set of points given by

S∘
κ ¼ fU⃗ ∈ RDþ1jU⃗ · S⃗þ κ ≤ 0; ∀ S⃗ ∈ Sg ð19Þ

and is illustrated for κ ¼ 0 and κ > 0 in Fig. 3. For κ ¼ 0,
Eq. (19) is simply the conventional polar cone of S [20].
Equation (13) can then be interpreted as the decomposition
of −T⃗ into the sum of two component vectors: One
component is −V⃗, i.e., its Euclidean projection onto S∘

κ;
the other component λS̃ðT⃗Þ is located in coneðSÞ. When

κ ¼ 0, the Moreau decomposition theorem states that the
two components are perpendicular: V⃗ · ðλS̃ðT⃗ÞÞ ¼ 0 [21].
For nonzero κ, the two components need not be
perpendicular but obey V⃗ · ðλS̃ðT⃗ÞÞ ¼ κλ.
The position of vector T⃗ in relation to the cones, coneðSÞ

and S∘
κ, gives rise to qualitatively different expressions for

FðT⃗Þ and contributions to the solution weight vector and
inverse capacity. These correspond to the different support
dimensions mentioned above. In particular, when −T⃗ lies
inside S∘

κ, T⃗ ¼ V⃗ and λ ¼ 0, so the support dimension
k ¼ 0. On the other hand, when −T⃗ lies inside coneðSÞ,
V⃗ ¼ κc⃗, and the manifold is fully supporting, k ¼ Dþ 1.

E. Numerical solution of the mean-field equations

The solution of the mean-field equations consists of two
stages. First, S̃ is computed for a particular T⃗, and then the
relevant contributions to the inverse capacity are averaged
over the Gaussian distribution of T⃗. For simple geometries
such as l2 ellipsoids, the first step may be solved
analytically. However, for more complicated geometries,
both steps need to be performed numerically. The first step
involves determining V⃗ and S̃ for a given T⃗ by solving the
quadratic semi-infinite programming problem (QSIP),
Eq. (12), over the manifold S, which may contain infinitely
many points. A novel “cutting plane” method has been
developed to efficiently solve the QSIP problem; see SM
[16] (Sec. S4). Expectations are computed by sampling the
Gaussian T⃗ inDþ 1 dimensions and taking the appropriate
averages, similar to procedures for other mean-field meth-
ods. The relevant quantities corresponding to the capacity
are quite concentrated and converge quickly with relatively
few samples.
In the following sections, we will also show how the

mean-field theory compares with computer simulations that
numerically solve for the maximum margin solution of
realizations of P manifolds in RN , given by Eq. (2), for a
variety of manifold geometries. Finding the maximum
margin solution is challenging, as standard methods to
solve SVM problems are limited to a finite number of input
points. We have recently developed an efficient algorithm
for finding the maximum margin solution in manifold
classification and have used this method in the present
work [see Ref. [22] and SM [16] (Sec. S5)].

IV. MANIFOLD GEOMETRY

A. Longitudinal and intrinsic coordinates

In this section, we address how the capacity to separate
a set of manifolds can be related to their geometry, in
particular, to their shape within the D-dimensional affine
subspace. Since the projections of all points in a manifold
onto the translation vector cμ are the same, x⃗μ · cμ ¼
kcμk2 ¼ 1, it is convenient to parametrize the Dþ1 affine

(a) (b)

FIG. 3. Conic decomposition of −T⃗ ¼ −V⃗ þ λS̃ at (a) zero
margin κ ¼ 0 and (b) nonzero margin κ > 0. Given a random
Gaussian T⃗, V⃗ is found such that kV⃗ − T⃗k is minimized, while
−V⃗ is on the polar cone S∘

κ:λS̃ is in coneðSÞ and S̃ is the anchor
point, a projection on the convex hull of S.

CLASSIFICATION AND GEOMETRY OF GENERAL … PHYS. REV. X 8, 031003 (2018)

031003-7



basis vectors such that uμ
Dþ1 ¼ cμ. In these coordinates,

the (Dþ 1)-dimensional vector representation of cμ is
C⃗ ¼ ð0; 0;…; 0; 1Þ. This parametrization is convenient
since it constrains the manifold variability to be in the
first D components of S⃗, while the Dþ 1 coordinate is a
longitudinal variable measuring the distance of the mani-
fold affine subspace from the origin. We can then write the
(Dþ 1)-dimensional vectors T⃗ ¼ ð⃗t; t0Þ, where t0 ¼ T⃗ · C⃗,
V⃗ ¼ ðv⃗; v0Þ, S⃗ ¼ ðs⃗; 1Þ, and S̃ ¼ ðs̃; 1Þ, where lowercase
vectors denote vectors in RD. We will also refer to the
D-dimensional intrinsic vector s̃ as the anchor point. In this
notation, the capacity, Eqs. (16) and (17), can be written as

α−1M ðκÞ ¼
Z

D⃗t
Z

Dt0
½−t0 − ⃗t · s̃ð⃗t; t0Þ þ κ�2þ

1þ ks̃ð⃗t; t0Þk2
: ð20Þ

It is clear from this form that when D ¼ 0, or when
all the vectors in the affine subspace obey s̃ð⃗t; t0Þ ¼ 0,
the capacity reduces to the Gardner result, Eq. (9).
Since V⃗ · S̃¼ v⃗ · s̃þv0, for all S̃, gðV⃗Þ ¼ gðv⃗Þ þ v0, and the
support function can be expressed as

gðv⃗Þ ¼ min
s⃗
fv⃗ · s⃗js⃗ ∈ Sg: ð21Þ

The KKT relations can be written as v⃗ ¼ ⃗tþ λs⃗, where
λ ¼ v0 − t0 ≥ 0, gðv⃗Þ ≥ κ − v0, λ½gðv⃗Þ þ v0 − κ� ¼ 0, and
s̃minimizes the overlap with v⃗. The resultant equation for λ
(or v0) is λ ¼ ½−t0 − ⃗t · s̃ð⃗t; t0Þ þ κ�þ=ð1þ ks̃ð⃗t; t0Þk2Þ,
which agrees with Eq. (17).

B. Types of supports

Using the above coordinates, we can elucidate the
conditions for the different types of support manifolds
defined in the previous section. To do this, we fix the
random vector ⃗t and consider the qualitative change in the
anchor point s̃ð⃗t; t0Þ as t0 decreases from þ∞ to −∞.
Interior manifolds ðk ¼ 0Þ:—For sufficiently positive t0,

the manifold is interior to the margin plane, i.e., λ ¼ 0 with
corresponding support dimension k ¼ 0. Although not
contributing to the inverse capacity and solution vector,
it is useful to associate anchor points to these manifolds
defined as the closest point on the manifold to the margin
plane: s̃ð⃗tÞ ¼ argmins⃗∈S ⃗t ·s⃗ ¼ ∇gð⃗tÞ, since v⃗ ¼ ⃗t. This
definition ensures continuity of the anchor point for
all λ ≥ 0.
This interior regime holds when gð⃗tÞ > κ − t0 or, equiv-

alently, for t0 − κ > ttouchð⃗tÞ, where
ttouchð⃗tÞ ¼ −gð⃗tÞ: ð22Þ

Nonzero contributions to the capacity only occur outside
this interior regime when gð⃗tÞ þ t0 − κ < 0, in which
case λ > 0. Thus, for all support dimensions k > 0, the
solution for v⃗ is active, satisfying the equality condition,
gðv⃗Þ þ v0 − κ ¼ 0, so that, from Eq. (13),

gðv⃗Þ þ t0 − κ þ λ ¼ 0; ð23Þ

outside the interior regime.
Fully supporting manifolds ðk ¼ Dþ 1Þ:—When t0 is

sufficiently negative, v0 ¼ κ, v⃗ ¼ 0, and λ ¼ −t0 þ κ. The
anchor point s̃ðT⃗Þ, which obeys the KKT equations, resides
in the interior of convðSÞ,

s̃ð⃗t; t0Þ ¼
−⃗t

κ − t0
: ð24Þ

For a fixed ⃗t, t0 must be negative enough, t0 − κ < tfs,
where

tfsð⃗tÞ ¼ argmax

�
t0j

−⃗t
κ − t0

∈ convðSÞ
�
; ð25Þ

guaranteeing that s̃ð⃗t; t0Þ ∈ convðSÞ. The contribution of
this regime to the capacity is

FðT⃗Þ ¼ kv⃗ − ⃗tk2 þ ðv0 − t0Þ2 ¼ k⃗tk2 þ ðκ − t0Þ2; ð26Þ

see Eq. (12). Finally, for values of t0 such that tfsð⃗tÞ ≤ t0 −
κ ≤ ttouchð⃗tÞ, the manifolds are partially supporting with
support dimension 1 ≤ k ≤ D. Examples of different sup-
porting regimes are illustrated in Fig. 4.

Interior (k=0) Touching (k=1) Fully supporting (k=3)

(a1) (a2) (a3)

Interior (k=0) Touching (k=1) Fully supporting (k=3)Partially supporting  (k=2)

(b1) (b2) (b3) (b4)

FIG. 4. Determining the anchor points of the Gaussian distrib-
uted vector ð⃗t; t0Þ onto the convex hull of the manifold, denoted
as s̃ð⃗t; t0Þ. Here, we show, for the same vector ⃗t, the change in
s̃ð⃗t; t0Þ as t0 decreases fromþ∞ to −∞. (a)D ¼ 2 strictly convex
manifold. For sufficiently positive t0, the vector −⃗t obeys the
constraint gð⃗tÞ þ t0 > κ; hence, −⃗t ¼ −v⃗, and the configuration
corresponds to an interior manifold (support dimension k ¼ 0).
For intermediate values where ðttouch > t0 − κ > tfsÞ, ð−⃗t;−t0Þ
violates the above constraints, and s̃ is a point on the boundary of
the manifold that maximizes the projection on the manifold of a
vector ð−v⃗;−v0Þ that is the closest to ð−⃗t;−t0Þ and obeys
gðv⃗Þ þ t0 þ λ ¼ κ. Finally, for larger values of −t0, v⃗ ¼ 0, and
s̃ is a point in the interior of the manifold in the direction of −⃗t
(fully supporting with k ¼ 3). (b) D ¼ 2 square manifold. Here,
in both the interior and touching regimes, s̃ is a vertex of the
square. In the fully supporting regime, the anchor point is in the
interior and collinear to −⃗t. There is also a partially supporting
regime when −t0 is slightly below tfs. In this regime, −v⃗ is
perpendicular to one of the edges and s̃ resides on an edge,
corresponding to manifolds whose intersections with the margin
planes are edges (k ¼ 2).
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C. Effects of size and margin

We now discuss the effect of changing manifold size
and the imposed margin on both capacity and geometry. As
described by Eq. (4), a change in the manifold size
corresponds to scaling every s̃ by a scalar r.
Small size:—If r → 0, the manifold shrinks to a point

(the center), whose capacity reduces to that of isolated points.
However, in the case where D ≫ 1, the capacity may be
affected by the manifold structure even if r ≪ 1; see
Sec. IV F. Nevertheless, the underlying support structure
is simple. When r is small, the manifolds have only two
support configurations. For t0 − κ > 0, the manifold is
interior with λ¼0, v0¼t0, and v⃗¼ t⃗. When t0 − κ < 0, the
manifold becomes touchingwith support dimension k¼1. In
that case, because s̃ has a small magnitude, v⃗ ≈ ⃗t, λ ≈ κ − t0,
and v0 ≈ κ. Thus, in both cases, v⃗ is close to the Gaussian
vector ⃗t. The probability of other configurations vanishes.
Large size:—In the large size limit r → ∞, separating the

manifolds is equivalent to separating the affine subspaces.
As we show in Appendix C, when r ≫ 1, there are twomain
support structures. With probability Hð−κÞ ¼ R

∞
−κ Dt0, the

manifolds are fully supporting; namely, the underlying
affine subspaces are parallel to the margin plane. This is
the first regime corresponding to fully supportingmanifolds,
which contributes to the inverse capacity an amount
Hð−κÞDþ α−10 ðκÞ. The second regime corresponds to
touching or partially supporting manifolds, such that the
angle between the affine subspace and the margin plane is
almost zero, and contributes an amountHðκÞD to the inverse
capacity. Combining the two contributions, we obtain, for
large sizes, α−1M ¼ Dþ α−10 ðκÞ, consistent with Eq. (8).
Large margin:—For a fixed T⃗, Eq. (25) implies that

larger κ increases the probability of being in the supporting
regimes. Increasing κ also shrinks the magnitude of s̃
according to Eq. (24). Hence, when κ ≫ 1, the capacity
becomes similar to that of P random points and the
corresponding capacity is given by αM ≈ κ−2, independent
of manifold geometry.
Manifold centers:—The theory of manifold classification

described in Sec. III does not require the notion of a
manifold center. However, once we understand how scaling
the manifold sizes by a parameter r in Eq. (4) affects their
capacity, the center points about which the manifolds are
scaled need to be defined. For many geometries, the center
is a point of symmetry such as for an ellipsoid. For general
manifolds, a natural definition would be the center of mass
of the anchor points S̃ðT⃗Þ averaging over the Gaussian
measure of T⃗. We will adopt here a simpler definition for
the center provided by the Steiner point for convex bodies
[23], S⃗0 ¼ ðs⃗0; 1Þ, with

s⃗0 ¼ h∇gS ð⃗tÞi⃗t; ð27Þ
and the expectation is over the Gaussian measure of
⃗t ∈ RD. This definition coincides with the center of mass

of the anchor points when the manifold size is small.
Furthermore, it is natural to define the geometric properties
of manifolds in terms of centered manifolds where the
manifolds are shifted within their affine subspace so that
the center and orthogonal translation vector coincide, i.e.,
s⃗0 ¼ c⃗ with ks⃗0k ¼ kc⃗k ¼ 1. This means that all lengths
are defined relative to the distance of the centers from the
origin and the D-dimensional intrinsic vectors s⃗ give the
offset relative to the manifold center.

D. Manifold anchor geometry

The capacity equation, Eq. (20), motivates defining
geometrical measures of the manifolds, which we call
“manifold anchor geometry.” Manifold anchor geometry is
based on the statistics of the anchor points s̃ð⃗t; t0Þ induced
by the Gaussian random vector ð⃗t; t0Þ, which are relevant to
the capacity in Eq. (20). These statistics are sufficient for
determining the classification properties and supporting
structures associated with the maximum margin solution.
We accordingly define the manifold anchor radius and
dimension as follows.
Manifold anchor radius:—Denoted RM, it is defined by

the mean squared length of s̃ð⃗t; t0Þ,

R2
M ¼ hks̃ð⃗t; t0Þk2it⃗;t0 : ð28Þ

Manifold anchor dimension: DM is given by

DM ¼ h(⃗t · ŝðt⃗; t0Þ)2it⃗;t0 ; ð29Þ

where ŝ is a unit vector in the direction of s̃. The anchor
dimension measures the angular spread between ⃗t and
the corresponding anchor point s̃ in D dimensions. Note
that the manifold dimension obeys DM ≤ hk⃗tk2i ¼ D.
Whenever there is no ambiguity, we will call RM and
DM the manifold radius and dimension, respectively.
These geometric descriptors offer a rich description of

the manifold properties relevant for classification. Since v⃗
and s̃ depend in general on t0 − κ, the above quantities are
averaged not only over ⃗t but also over t0. For the same
reason, the manifold anchor geometry also depends upon
the imposed margin.

E. Gaussian geometry

We have seen that, for small manifold sizes, v⃗ ≈ ⃗t, and
the anchor points s̃ can be approximated by s̃ð⃗tÞ ¼ ∇gSðt̂Þ.
Under these conditions, the geometry simplifies as shown
in Fig. 5. For each Gaussian vector ⃗t ∈ RD, s̃ð⃗tÞ is the point
on the manifold that first touches a hyperplane normal to −⃗t
as it is translated from infinity towards the manifold. Aside
from a set of measure zero, this touching point is a unique
point on the boundary of convðSÞ. This procedure is similar
to that used to define the well-known Gaussian mean width,
which in our notation equals wðSÞ ¼ −2hgS ð⃗tÞi⃗t [24].
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Note that, for small sizes, the touching point does not
depend on t0 or κ, so its statistics are determined only by the
shape of convðSÞ relative to its center. This motivates
defining a simpler manifold Gaussian geometry denoted by
the subscript g, which highlights its dependence over a
D-dimensional Gaussian measure for ⃗t.
Gaussian radius:—Denoted by Rg, this measures the

mean square amplitude of the Gaussian anchor point,
s̃gð ⃗tÞ ¼ ∇gSðt̂Þ:

R2
g ¼ hks̃gð⃗tÞk2i⃗t; ð30Þ

where the expectation is over the D-dimensional
Gaussian ⃗t.
Gaussian dimension:—Dg is defined by

Dg ¼ h(⃗t · ŝgð⃗tÞ)2i⃗t; ð31Þ

where ŝg is the unit vector in the direction of s̃g. While R2
g

measures the total variance of the manifold, Dg measures
the angular spread of the manifold, through the statistics
of the angle between ⃗t and its Gaussian anchor point. Note
that Dg ≤ hk⃗tk2i ¼ D.
It is important to note that, even in this limit, our

geometrical definitions are not equivalent to conventional
geometrical measures such as the longest chord or second-
order statistics induced from a uniform measure over the
boundary of convðSÞ. For the special case of D-dimen-
sional l2 balls with radius R, s̃gð⃗tÞ is the point on the
boundary of the ball in the direction of ⃗t so that Rg ¼ R and
Dg ¼ D. However, for general manifolds, Dg can be much
smaller than the manifold affine dimensionD, as illustrated
in some examples later.
We recapitulate the essential difference between the

Gaussian geometry and the full manifold anchor geometry.
In the Gaussian case, the radius is an intrinsic property of
the shape of the manifold in its affine subspace and is
invariant to changing its distance from the origin. Thus,

scaling the manifold by a global scale factor r as defined in
Eq. (4) results in scaling Rg by the factor r. Likewise, the
dimensionality Dg is invariant to a global scaling of the
manifold size. In contrast, the anchor geometry does not
obey such invariance for larger manifolds. The reason is
that the anchor point depends on the longitudinal degrees of
freedom, namely, on the size of the manifold relative to the
distance from the center. Hence, RM need not scale linearly
with r, and DM will also depend on r. Thus, the anchor
geometry can be viewed as describing the general relation-
ship between the signal (center distance) and noise (mani-
fold variability) in classification capacity. We also note that
the manifold anchor geometry automatically accounts for
the rich support structure described in Sec. IV D. In
particular, as t0 decreases, the statistics of the anchor
points change from being concentrated on the boundary
of convðSÞ to its interior. Additionally, for manifolds that
are not strictly convex and intermediate values of t0, the
anchor statistics become concentrated on k-dimensional
facets of the convex hull, corresponding to partially
supported manifolds.
We illustrate the difference between the two geometries

in Fig. 6 with two simple examples: a D ¼ 2 l2 ball and a
D ¼ 2 l2 ellipse. In both cases, we consider the distribu-
tion of ks̃k and θ ¼ cos−1 ð−t̂ · ŝÞ, the angle between −⃗t
and s̃. For the ball with radius r, the vectors −⃗t and s̃ are
parallel, so the angle is always zero. For the manifold
anchor geometry, s̃ may lie inside the ball in the fully
supporting region. Thus, the distribution of ks̃k consists of
a mixture of a delta function at r, corresponding to the
interior and touching regions, and a smoothly varying
distribution corresponding to the fully supporting region.
Figure 6 also shows the corresponding distributions for a

two-dimensional ellipsoid with major and minor radius,
R1 ¼ r and R2 ¼ 1

2
r. For the Gaussian geometry, the

distribution of ks̃k has finite support between R1 and R2,
whereas the manifold anchor geometry has support also
below R2. Since ⃗t and s̃ need not be parallel, the distribution

(a) (b) (c)

FIG. 5. Gaussian anchor points, with mapping from ⃗t to points
s̃gð⃗tÞ, showing the relation between −⃗t and the point on the
manifold that touches a hyperplane orthogonal to ⃗t. D ¼ 2
manifolds shown are (a) circle, (b) l2 ellipsoid, (c) polytope
manifold. In (c), only for values of ⃗t of measure zero (when ⃗t is
exactly perpendicular to an edge) will s̃gð⃗tÞ lie along the edge;
otherwise it coincides with a vertex of the polytope. In all cases,
s̃gð⃗tÞ will be in the interior of the convex hulls only for ⃗t ¼ 0.
Otherwise, it is restricted to their boundary.

(a) (b) (c)

FIG. 6. Distribution of ks̃k (norm of manifold anchor vectors)
and θ ¼ ∠ð−⃗t; s̃Þ forD ¼ 2 ellipsoids. (a) Distribution of s̃ for an
l2 ball with R ¼ 5. The Gaussian geometry is peaked at ks̃k ¼ r
(blue), while ks̃k < r has nonzero probability for the manifold
anchor geometry (red). (b),(c)D ¼ 2 ellipsoids, with radii R1 ¼ 5

and R2 ¼ 1
2
R1. (b) Distribution of ks̃k for Gaussian geometry

(blue) and anchor geometry (red). (c) Corresponding distribution
of θ ¼ ∠ð−⃗t; s̃Þ.
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of the angle varies between zero and ðπ=4Þ, with the
manifold anchor geometry being more concentrated near
zero due to contributions from the fully supporting regime.
In Sec. VI, we will show how the Gaussian geometry
becomes relevant even for larger manifolds when the labels
are highly imbalanced, i.e., sparse classification.

F. Geometry and classification of
high-dimensional manifolds

In general, linear classification as expressed in Eq. (20)
depends on high-order statistics of the anchor vectors
s̃ð⃗t; t0Þ. Surprisingly, our analysis shows that, for high-
dimensional manifolds, the classification capacity can be
described in terms of the statistics of RM and DM alone.
This is particularly relevant as we expect that, in many
applications, the affine dimension of the manifolds is large.
More specifically, we define high-dimensional manifolds
as manifolds where the manifold dimension is large, i.e.,
DM ≫ 1 (but still finite in the thermodynamic limit). In
practice, we find that DM ≳ 5 is sufficient. Our analysis
below elucidates the interplay between size and dimension,
namely, how small RM needs to be for high-dimensional
manifolds to have a substantial classification capacity.
In the high-dimensional regime, the mean-field equa-

tions simplify due to self-averaging of terms involving
sums of components ti and s̃i. The quantity, ⃗t · s̃, that
appears in the capacity, Eq. (20), can be approximated as
−⃗t · s̃ ≈ κM, where we introduce the effective manifold
margin κM ¼ RM

ffiffiffiffiffiffiffi
DM

p
. Combined with ks̃k2 ≈ R2

M, we
obtain

αMðκÞ ≈ α0

�
κ þ κMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

M

p �
; ð32Þ

where α0 is the capacity for P random points, Eq. (9). To
gain insight into this result, we note that the effective
margin on the center is its mean distance from the point
closest to the margin plane s̃, which is roughly the mean of
−⃗t · s̃ ≈ RM

ffiffiffiffiffiffiffi
DM

p
. The denominator in Eq. (32) indicates

that the margin needs to be scaled by the input norm,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

M

p
. In Appendix B, we show that Eq. (32) can also

be written as

αMðκÞ ≈ αBallðκ; RM;DMÞ; ð33Þ

namely, the classification capacity of a general high-
dimensional manifold is well approximated by that of l2

balls with dimension DM and radius RM.
Scaling regime:—Equation (32) implies that, to obtain a

finite capacity in the high-dimensional regime, the effective
margin κM ¼ RM

ffiffiffiffiffiffiffi
DM

p
needs to be of order unity, which

requires the radius to be small, scaling for large DM as

RM ¼ OðD−1
2

M Þ. In this scaling regime, the calculation of the
capacity and geometric properties are particularly simple.
As argued above, when the radius is small, the components

of s̃ are small; hence v⃗ ≈ ⃗t, and the Gaussian statistics for
the geometry suffice. Thus, we can replace RM and DM in
Eqs. (32) and (33) by Rg and Dg, respectively. Note that,
in the scaling regime, the factor proportional to 1þ R2

g in
Eq. (32) is the next-order correction to the overall capacity,
since Rg is small. Notably, the margin in this regime,
κg ¼ Rg

ffiffiffiffiffiffi
Dg

p
, is equal to half the Gaussian mean width

of convex bodies, κg ≈ 1
2
wðSÞ [25]. As for the support

structure, since the manifold size is small, the only signifi-
cant contributions arise from the interior (k ¼ 0) and
touching (k ¼ 1) supports.
Beyond the scaling regime:—When Rg is not small, the

anchor geometry, RM and DM, cannot be adequately
described by the Gaussian statistics, Rg andDg. In this case,
the manifold margin κM ¼ RM

ffiffiffiffiffiffiffi
DM

p
is large and Eq. (32)

reduces to

αM ≈
1þ R−2

M

DM
; ð34Þ

where we have used α0ðκÞ ≈ κ−2 for large margins and
assumed that κ ≪ κM. For strictly convex high-dimensional
manifolds with RM ¼ Oð1Þ, only the touching regime
(k ¼ 1) contributes significantly to the geometry and, hence,
to the capacity. For manifolds that are not strictly convex,
partially supporting solutions with k ≪ D can also contrib-
ute to the capacity.
Finally, when RM is large, fully supporting regimes

with k ≈D contribute to the geometry, in which case, the
manifold anchor dimension approaches the affine
dimensionDM → D and Eqs. (32) and (34) reduce to αM ≈
ð1=DÞ, as expected.

V. EXAMPLES

A. Strictly convex manifolds: l2 ellipsoids

The family of l2 ellipsoids are examples of manifolds
that are strictly convex. Strictly convex manifolds have
smooth boundaries that do not contain corners, edges, or
flats (see Appendix B). Thus, the description of the
anchor geometry and support structures is relatively
simple. The reason is that the anchor vectors s̃ð⃗t; t0Þ
correspond to interior (k ¼ 0), touching (k ¼ 1), or fully
supporting ðk ¼ Dþ 1Þ, while partial support ð1 < k <
Dþ 1Þ is not possible. The l2 ellipsoid geometry can be
solved analytically; nevertheless, because it has less
symmetry than the sphere, it exhibits some salient pro-
perties of manifold geometry, such as nontrivial dimen-
sionality and nonuniform measure of the anchor points.
We assume the ellipsoids are centered relative to their

symmetry centers as described in Sec. IV, and they can be
parametrized by the set of points Mμ ¼ xμ

0 þ
P

D
i¼1 siu

μ
i ,

where
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S ¼
�
s⃗j
XD
i¼1

�
si
Ri

�
2

≤ 1

�
: ð35Þ

The components of uμ
i and of the ellipsoid centers x0

μ

are i.i.d. Gaussian distributed with zero mean and variance
ð1= ffiffiffiffi

N
p Þ so that they are orthonormal in the large N limit.

The radii Ri represent the principal radii of the ellipsoids
relative to the center. The anchor points s̃ð⃗t; t0Þ can be
computed explicitly (details in the Appendix B), corre-
sponding to three regimes.
The interior regime (k ¼ 0) occurs when t0 − κ ≥

ttouchð⃗tÞ, where

ttouchð⃗tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
i¼1

R2
i t

2
i

vuut : ð36Þ

Here, λ ¼ 0, resulting in zero contribution to the inverse
capacity.
The touching regime (k ¼ 1) holds when ttouchð⃗tÞ > t0 −

κ > tfsð⃗tÞ and

tfsð⃗tÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
i¼1

�
ti
Ri

�
2

vuut : ð37Þ

Finally, the fully supporting regime ðk ¼ Dþ 1Þ occurs
when tfsð⃗tÞ > t0 − κ. The full expression for the capacity
for l2 ellipsoids is given in Appendix B. Below, we focus
on the interesting cases of ellipsoids with D ≫ 1.
High-dimensional ellipsoids:—It is instructive to apply

the general analysis of high-dimensional manifolds to
ellipsoids with D ≫ 1. We will distinguish among differ-
ent-size regimes by assuming that all the radii of the
ellipsoid are scaled by a global factor r. In the high-
dimensional regime, due to self-averaging, the boundaries
of the touching and fully supporting transitions can be
approximated by

ttouch ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiXD
i¼1

R2
i

vuut ð38Þ

tfs ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
i¼1

R−2
i

vuut ; ð39Þ

both independent of ⃗t. Then, as long as Ri

ffiffiffiffi
D

p
are not large

(see below), tfs → −∞, and the probability of fully sup-
porting vanishes. Discounting the fully supporting regime,
the anchor vectors s̃ð⃗t; t0Þ are given by

s̃i ¼ −λiti ð40Þ

λi ¼
R2
i

Zð1þ R2
i Þ
; ð41Þ

where the normalization factor Z2 ¼ P
D
i¼1½R2

i =ð1þ R2
i Þ2�

(see Appendix B). The capacity for high-dimensional
ellipsoids is determined via Eq. (32) with manifold anchor
radius

R2
M ¼

XD
i¼1

λ2i ð42Þ

and anchor dimension

DM ¼ ðPD
i¼1 λiÞ2P
D
i¼1 λ

2
i

: ð43Þ

Note that RM=r and DM are not invariant to scaling the
ellipsoid by a global factor r, reflecting the role of the fixed
centers.
The anchor covariance matrix:—We can also compute

the covariance matrix of the anchor points. This matrix is
diagonal in the principal directions of the ellipsoid, and its
eigenvalues are λ2i . It is interesting to compare DM with a
well-known measure of an effective dimension of a
covariance matrix, the participation ratio [26,27]. Given
a spectrum of eigenvalues of the covariance matrix, in
our notation λ2i , we can define a generalized participation
ratio as PRq ¼ ½ðPD

i¼1 λ
q
i Þ2=

P
D
i¼1 λ

2q
i �, q > 0. The con-

ventional participation ratio uses q ¼ 2, whereas DM
uses q ¼ 1.
Scaling regime:—In the scaling regime where the radii

are small, the radius and dimension are equivalent to the
Gaussian geometry:

R2
g ¼

P
D
i¼1 R

4
iP

D
i¼1 R

2
i

ð44Þ

Dg ¼
ðPD

i¼1 R
2
i Þ2P

D
i¼1 R

4
i

; ð45Þ

and the effective margin is given as

κg ¼
�XD

i¼1

R2
i

�1=2

: ð46Þ

As can be seen,Dg and ðRg=rÞ are invariant to scaling all
the radii by r, as expected. It is interesting to compare the
above Gaussian geometric parameters with the statistics
induced by a uniform measure on the surface of the
ellipsoid. In this case, the covariance matrix has eigenval-
ues λ2i ¼ R2

i , and the total variance is equal to
P

iR
2
i . In

contrast, in the Gaussian geometry, the eigenvalues of the
covariance matrix λ2i are proportional to R4

i . This and the
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corresponding expression (44) for the squared radius is
the result of a nonuniform induced measure on the
surface of the ellipse in the anchor geometry, even in its
Gaussian limit.
Beyond the scaling regime:—When Ri ¼ Oð1Þ, the

high-dimensional ellipsoids all become touching manifolds
since ttouch → −∞ and tfs → ∞. The capacity is small
because κM ≫ 1 and is given by Eq. (34) with Eqs. (42) and
(43). Finally, when all Ri ≫ 1, we have

R2
M ¼ DP

D
i¼1 R

−2
i

¼ 1

hR−2
i ii

: ð47Þ

Here, RM scales with the global scaling factor r, DM ¼ D,
and α−1 ¼ D. Although the manifolds are touching,
their angle relative to the margin plane is near zero.
When Ri ≈

ffiffiffiffi
D

p
or larger, the fully supporting transition

tfs becomes order one, and the probability of fully support-
ing is significant.
In Fig. 7, we illustrate the behavior of high-D-

dimensional ellipsoids, using ellipsoids with a bimodal
distribution of their principal radii Ri: Ri ¼ r, for
1 ≤ i ≤ 10, and Ri ¼ 0.1r, for 11 ≤ i ≤ 200 [Fig. 7(a)].
Their properties are shown as a function of the overall scale
r. Figure 7(b) shows numerical simulations of the capacity,
the full mean-field solution, and the spherical high-dimen-
sional approximation (with RM and DM). These calcula-
tions are all in good agreement, showing the accuracy of the
mean-field theory and spherical approximation. As seen in
Figs. 7(b)–7(d), the system is in the scaling regime for
r < 0.3. In this regime, the manifold dimension is constant
and equals Dg ≈ 14, as predicted by the participation ratio,
Eq. (45), and the manifold radius Rg is linear with r, as
expected from Eq. (44). The ratio ðRg=rÞ ≈ 0.9 is close to
unity, indicating that, in the scaling regime, the system is
dominated by the largest radii. For r > 0.3, the effective
margin is larger than unity, and the system becomes
increasingly affected by the full affine dimensionality of
the ellipsoid, as seen by the marked increase in dimension,
as well as a corresponding decrease in ðRM=rÞ. For larger r,
DM approaches D and α−1M ¼ D. Figures 7(e1)–7(e3) show
the distributions of the support dimension 0 ≤ k ≤ Dþ 1.
In the scaling regime, the interior and touching regimes
each have probability close to 1

2
, and the fully supporting

regime is negligible. As r increases beyond the scaling
regime, the interior probability decreases, and the solution
is almost exclusively in the touching regime. For very high
values of r, the fully supporting solution gains a substantial
probability. Note that the capacity decreases to approx-
imately 1

D for a value of r below which a substantial fraction
of solutions are fully supporting. In this case, the touching
ellipsoids all have a very small angle with the margin plane.
Until now, we have assumed that the manifold affine

subspace dimensionD is finite in the limit of large ambient

dimension N. In realistic data, it is likely that the data
manifolds are technically full rank, i.e.,Dþ 1 ¼ N, raising
the question of whether our mean-field theory is still valid
in such cases. We investigate this scenario by computing
the capacity on ellipsoids containing a realistic distribution
of radii. We have taken, as examples, a class of images from
the ImageNet data set [28], and analyzed the SVD spectrum
of the representations of these images in the last layer of a
deep convolutional network, GoogLeNet [29]. The com-
puted radii are shown in Fig. 8(a) and yield a value
D ¼ N − 1 ¼ 1023. In order to explore the properties of
such manifolds, we have scaled all the radii by an overall
factor r in our analysis. Because of the decay in the
distribution of radii, the Gaussian dimension for the
ellipsoid is only about Dg ≈ 15, much smaller than D or
N, implying that, for small r, the manifolds are effectively
low dimensional and the geometry is dominated by a
small number of radii. As r increases above r≳ 0.03,
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FIG. 7. Bimodal l2 ellipsoids. (a) Ellipsoidal radii Ri with
r ¼ 1. (b) Classification capacity as a function of scaling factor r:
full mean-field theory capacity (blue lines); approximation of the
capacity given by equivalent ball with RM and DM (black dashed
lines); simulation capacity (circles), averaged over five repeti-
tions, measured with 50 dichotomies per repetition. (c) Manifold
dimension DM as a function of r. (d) Manifold radius RM relative
to r. (e) Fraction of manifolds with support dimension k for
different values of r: k ¼ 0 (interior), k ¼ 1 (touching), k ¼
Dþ 1 (fully supporting). (e1) Small r ¼ 0.01, where most
manifolds are interior or touching. (e2) r ¼ 1, where most
manifolds are in the touching regime. (e3) r ¼ 100, where the
fraction of fully supporting manifolds is 0.085, predicted by
Hð−tfsÞ ¼ Hð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iR

−2
i

p
Þ [Eq. (39)].
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κM becomes larger than 1 and the solution leaves the
scaling regime, resulting in a rapid increase in DM and a
rapid falloff in capacity, as shown in Figs. 8(b) and 8(c).
Finally, for r > 10, we have α−1M ≈DM ≈D approaching
the lower bound for capacity as expected. The agreement
between the numerical simulations and the mean-field
estimates of the capacity illustrates the relevance of the
theory for realistic data manifolds that can be full rank.

B. Convex polytopes: l1 ellipsoids

The family of l2 ellipsoids represents manifolds that
are smooth and strictly convex. On the other hand, there
are other types of manifolds whose convex hulls are not
strictly convex. In this section, we consider D-dimensional
l1 ellipsoids. They are prototypical of convex polytopes
formed by the convex hulls of finite numbers of points
in RN . The D-dimensional l1 ellipsoid is parametrized by
radii fRig and specified by the convex set Mμ ¼ xμ

0 þP
D
i¼1 siu

μ
i , with

S ¼
�
s⃗j
XD
i¼1

jsij
Ri

≤ 1

�
: ð48Þ

Each manifoldMμ ∈ RN is centered at xμ
0 and consists of a

convex polytope with a finite number (2D) of vertices:

fxμ
0 � Rku

μ
k; k ¼ 1;…; Dg. The vectors uμ

i specify the
principal axes of the l1 ellipsoids. For simplicity, we
consider the case of l1 balls when all the radii are equal:
Ri ¼ R. We will concentrate on the cases when l1 balls are
high dimensional; the case for l1 balls with D ¼ 2 was
briefly described in Ref. [15]. The analytical expression of
the capacity is complex due to the presence of contributions
from all types of supports, 1 ≤ k ≤ Dþ 1. We address
important aspects of the high-dimensional solution below.
High-dimensional l1 balls, scaling regime:—In the

scaling regime, we have v⃗ ≈ ⃗t. In this case, we can write
the solution for the subgradient as

s̃ið⃗tÞ ¼
�−RsignðtiÞ; jtij > jtjj ∀ j ≠ i

0 otherwise
: ð49Þ

In other words, s̃ð⃗tÞ is a vertex of the polytope correspond-
ing to the component of ⃗t with the largest magnitude; see
Fig. 5(c). The components of ⃗t are i.i.d. Gaussian random
variables and, for large D, its maximum component tmax is
concentrated around

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logD

p
. Hence, Dg ¼ hðŝ · ⃗tÞ2i ¼

ht2maxi ¼ 2 logD, which is much smaller thanD. This result
is consistent with the fact that the Gaussian mean width of a
D-dimensional l1 ball scales with

ffiffiffiffiffiffiffiffiffiffiffi
logD

p
and not with D

[25]. Since all the points have norm R, we have Rg ¼ R,
and the effective margin is then given by κg ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logD

p
,

which is order unity in the scaling regime. In this
regime, the capacity is given by simple relation αM ¼
α0ð½κ þ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logD

p �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p
Þ.

High-dimensional l1 balls, R ¼ Oð1Þ:—When the
radius R is small as in the scaling regime, the only
contributing solution is the touching solution (k ¼ 1).
When R increases, solutions with all values of k,
1 ≤ k ≤ Dþ 1, occur, and the support can be any face
of the convex polytope with dimension k. As R increases,
the probability distribution pðkÞ over k of the solution
shifts to larger values. Finally, for large R, only two regimes
dominate: fully supporting (k ¼ Dþ 1) with probability
Hð−κÞ and partially supporting with k ¼ D with proba-
bility HðκÞ.
We illustrate the behavior of l1 balls with radius r and

affine dimension D ¼ 100. In Fig. 9, (a) shows the linear
classification capacity as a function of r. When r → 0, the
manifold approaches the capacity for isolated points,
αM ≈ 2, and when r → ∞, αM ≈ ð1=DÞ ¼ 0.01. The
numerical simulations demonstrate that, despite the differ-
ent geometry, the capacity of the l1 polytope is similar to
that of a l2 ball with radius RM and dimension DM. In (b),
for the scaling regime when r < 0.1 ¼ ð1= ffiffiffiffi

D
p Þ, we see

RM ≈ r, but when r ≫ 1, RM is much smaller than r,
despite the fact that all Ri of the polytope are equal. This is
because when r is not small, the various faces and
eventually interior of the polytope contribute to the anchor
geometry. In (c), we see DM ≈ 2 logD in the scaling
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FIG. 8. Ellipsoids with radii computed from realistic image
data. (a) SVD spectrum Ri, taken from the readout layer of
GoogLeNet from a class of ImageNet images with N ¼ 1024 and
D ¼ 1023. The radii are scaled by a factor r: R0

i ¼ rRi for
(b) Classification capacity as a function of r: full mean-field
theory capacity (blue lines); approximation of the capacity as that
of a ball with RM and DM from the theory for ellipsoids (black
dashed lines); simulation capacity (circles), averaged over 5
repetitions, measured with 50 random dichotomies per each
repetition. (c) Manifold dimension as a function of r. (d) Manifold
radius relative to the scaling factor r, RM=r as a function of r.
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regime, while DM → D as r → ∞. In terms of the support
structures, when r ¼ 0.001 in the scaling regime (d1), most
manifolds are either interior or touching. For intermediate
sizes (d2), the support dimension is peaked at an inter-
mediate value, and, finally, for very large manifolds (d3),
most polytope manifolds are nearly fully supporting.

C. Smooth nonconvex manifolds: Ring manifolds

Many neuroscience experiments measure the responses
of neuronal populations to a continuously varying stimulus,
with one or a small number of degrees of freedom. A
prototypical example is the response of neurons in visual
cortical areas to the orientation (or direction of movement)
of an object. When a population of neurons responds both
to an object identity and to a continuous physical variation,
the result is a set of smooth manifolds, each parametrized
by a single variable, denoted θ, describing continuous
curves inRN . Since, in general, the neural responses are not
linear in θ, the curve spans more than one linear dimension.
This smooth curve is not convex and is endowed with a
complex nonsmooth convex hull. It is, thus, interesting to
consider the consequences of our theory on the separability
of smooth but nonconvex curves.
The simplest example considered here is the case

where θ corresponds to a periodic angular variable such
as the orientation of an image, and we call the resulting
nonconvex curve a ring manifold. We model the
neuronal responses as smooth periodic functions of θ,
which can be parametrized by decomposing the neuronal
responses in Fourier modes. Here, for each object,

Mμ ¼ xμ
0 þ

P
D
i¼1 siu

μ
i , where x

μ
0 represents the mean (over

θ) of the population response to the object. The different D
components correspond to the different Fourier compo-
nents of the angular response, so that

s2nðθÞ ¼ Rnffiffiffi
2

p cosðnθÞ

s2n−1ðθÞ ¼ Rnffiffiffi
2

p sinðnθÞ; ð50Þ

where Rn is the magnitude of the nth Fourier component for
1 ≤ n ≤ D

2
. The neural responses in Eq. (1) are determined

by projecting onto the basis:

uμi
2n ¼

ffiffiffi
2

p
cosðnθμiÞ

uμi
2n−1 ¼

ffiffiffi
2

p
sinðnθμiÞ: ð51Þ

The parameters θμi are the preferred orientation angles for
the corresponding neurons and are assumed to be evenly
distributed between −π ≤ θμi ≤ π (for simplicity, we
assume that the orientation tunings of the neurons are all
of the same shape and are symmetric around the preferred
angle). The statistical assumptions of our analysis assume
that the different manifolds are randomly positioned and
oriented with respect to the others. For the ring manifold
model, this implies that the mean responses xμ

0 are
independent random Gaussian vectors and also that the
preferred orientation θμi angles are uncorrelated. With this
definition, all the vectors s⃗ ∈ S obey the normalization

ks⃗k ¼ r, where r2 ¼ PD
2

n¼1 R
2
n. Thus, for each object, the

ring manifold is a closed nonintersecting smooth curve
residing on the surface of a D-dimensional sphere with
radius r.
For the simplest case with D ¼ 2, the ring manifold is

equivalent to a circle in two dimensions. However, for
larger D, the manifold is not convex and its convex hull is
composed of faces with varying dimensions. In Fig. 10, we
investigate the geometrical properties of these manifolds
relevant for classification as a function of the overall scale
factor r, where for simplicity we have chosen Rn ¼ r for all
n. The most striking feature is the small dimension in the
scaling regime, scaling roughly as Dg ≈ 2 logD. This
logarithmic dependence is similar to that of the l1 ball
polytopes. Then, as r increases, DM increases dramatically
from 2 logD to D.
The similarity of the ring manifold to a convex polytope

is also seen in the support dimension k of the manifolds.
Support faces of dimension k ≠ 0, 1, Dþ 1 are seen,
implying the presence of partially supporting solutions.
Interestingly, ðD=2Þ < k ≤ D are excluded, indicating that
the maximal face dimension of the convex hull is ðD=2Þ.
Each face is the convex hull of a set of k ≤ ðD=2Þ points,
where each point resides in the 2D subspace spanned by a

(a) (b) (c)

(d1) (d2) (d3)

FIG. 9. Separability of l1 balls. (a) Linear classification
capacity of l1 balls as a function of radius r with D ¼ 100
andN ¼ 200: MFT solution (blue lines), spherical approximation
(black dashed lines), full numerical simulations (circles). Inset:
Illustration of l1 ball. (b) Manifold radius RM relative to the
actual radius r. (c) Manifold dimension DM as a function of r. In
the small r limit, DM is approximately 2 logD, while, in large r,
DM is close to D, showing how the solution is orthogonal to the
manifolds when their sizes are large. (d1)–(d3) Distribution of
support dimensions: (d1) r ¼ 0.001, where most manifolds are
either interior or touching; (d2) r ¼ 2.5, where the support
dimension has a peaked distribution; (d3) r ¼ 100, where most
manifolds are close to being fully supporting.
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pair of (real and imaginary) Fourier harmonics. The ring
manifolds are closely related to the trigonometric moment
curve, whose convex hull geometrical properties have been
extensively studied [30,31].
In conclusion, the smoothness of the convex hulls

becomes apparent in the distinct patterns of the support
dimensions [compare Figs. 8(d) and 10(e)]. However, we
see that all manifolds with Dg ∼ 5 or larger share common
trends. As the size of the manifold increases, the capacity
and geometry vary smoothly, exhibiting a smooth crossover
from a high capacity with low radius and dimension
to a low capacity with large radius and dimension. This
crossover occurs as Rg ∝ 1=

ffiffiffiffi
D

p
g. Also, our examples

demonstrate that, in many cases, when the size is smaller
than the crossover value, the manifold dimensionality is
substantially smaller than that expected from naive second-
order statistics, highlighting the saliency and significance
of our anchor geometry.

VI. MANIFOLDS WITH SPARSE LABELS

So far, we have assumed that the number of manifolds
with positive labels is approximately equal to the number of
manifolds with negative labels. In this section, we consider
the case where the two classes are unbalanced such that the
number of positively labeled manifolds is far less than
the negatively labeled manifolds (the opposite scenario is
equivalent). This is a special case of the problem of
classification of manifolds with heterogeneous statistics,
where manifolds have different geometries or label statis-
tics. We begin by addressing the capacity of mixtures of
manifolds and then focus on sparsely labeled manifolds.

A. Mixtures of manifold geometries

Our theory of manifold classification is readily extended
to a heterogeneous ensemble of manifolds, consisting of
L distinct classes. In the replica theory, the shape of the
manifolds appear only in the free energy term G1 [see
Appendix, Eq. (A13)]. For a mixture statistics, the com-
bined free energy is given by simply averaging the
individual free energy terms over each class l. Recall that
this free energy term determines the capacity for each
shape, giving an individual inverse critical load α−1l . The
inverse capacity of the heterogeneous mixture is then

α−1 ¼ hα−1l il; ð52Þ

where the average is over the fractional proportions of the
different manifold classes. This remarkably simple but
generic theoretical result enables analyzing diverse mani-
fold classification problems, consisting of mixtures of
manifolds with varying dimensions, shapes, and sizes.
Equation (52) is adequate for classes that differ in their

geometry, independent of the assigned labels. In general,
classes may differ in the label statistics (as in the sparse case
studied below) or in geometry that is correlated with labels.
For instance, the positively labeled manifolds may consist
of one geometry, and the negatively labeled manifolds may
have a different geometry. How do structural differences
between the two classes affect the capacity of the linear
classification? A linear classifier can take advantage of
these correlations by adding a nonzero bias. Previously, it
was assumed that the optimal separating hyperplane passes
through the origin; this is reasonable when the two classes
are statistically the same. However, when there are stat-
istical differences between the label assignments of the two
classes, Eq. (2) should be replaced by yμðw · xμ − bÞ ≥ κ,
where the bias b is chosen to maximize the mixture
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FIG. 10. Linear classification ofD-dimensional ring manifolds,
with uniform Rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffið2=DÞp
r. (a) Classification capacity forD ¼

20 as a function of r with m ¼ 200 test samples (for details of
numerical simulations, see SM [16], Sec. S9): mean-field theory
(blue lines), spherical approximation (black dashed lines),
numerical simulations (black circles). Inset: Illustration of a ring
manifold. (b) Manifold dimension DM, which shows DM ∼D in
the large r limit, showing the orthogonality of the solution.
(c) Manifold radius relative to the scaling factor r, ðRM=rÞ, as a
function of r. The fact that ðRM=rÞ becomes small implies that the
manifolds are “fully supporting” to the hyperplane, showing the
small radius structure. (d) Manifold dimension grows with affine
dimension, D, as 2 logD for small r ¼ ð1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 logD
p Þ in the

scaling regime. (e1)–(e3) Distribution of support dimensions.
(d1) r ¼ 0.01, where most manifolds are either interior or
touching; (d2) r ¼ 20, where the support dimension has a peaked
distribution, truncated at ðD=2Þ; (d3) r ¼ 200, where most
support dimensions are ðD=2Þ or fully supporting at Dþ 1.
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capacity, Eq. (52). The effect of optimizing the bias is
discussed in detail in the next section for the sparse labels
and in other scenarios in the SM [16] (Sec. S3).

B. Manifolds with sparse labels

We define the sparsity parameter f as the fraction of
positively labeled manifolds so that f ¼ 0.5 corresponds to
having balanced labels. From the theory of the classifica-
tion of a finite set of random points, it is known that having
sparse labels with f ≪ 0.5 can drastically increase the
capacity [12]. In this section, we investigate how the
sparsity of manifold labels improves the manifold classi-
fication capacity.
If the separating hyperplane is constrained to go through

the origin and the distribution of inputs is symmetric
around the origin, the labeling yμ is immaterial to the
capacity. Thus, the effect of sparse labels is closely tied to
having a nonzero bias. We thus consider inequality con-
straints of the form yμðw · xμ − bÞ ≥ κ, and we define the
bias-dependent capacity of general manifolds with label
sparsity f, margin κ, and bias b, as αMðκ; f; bÞ. Next, we
observe that the bias acts as a positive contribution to the
margin for the positively labeled population and as a
negative contribution to the negatively labeled population.
Thus, the dependence of αMðκ; f; bÞ on both f and b can be
expressed as

α−1M ðκ; f; bÞ≡ fα−1M ðκ þ bÞ þ ð1 − fÞα−1M ðκ − bÞ; ð53Þ

where αMðxÞ is the classification capacity with zero bias
(and, hence, equivalent to the capacity with f ¼ 0.5) for the
same manifolds. Note that Eq. (53) is similar to Eq. (52) for
mixtures of manifolds. The actual capacity with sparse
labels is given by optimizing the above expression with
respect to b, i.e.,

αMðκ; fÞ ¼ maxb αMðκ; f; bÞ: ð54Þ

In the following, we consider for simplicity the effect of
sparsity for zero margin, κ ¼ 0.
Importantly, if D is not large, the effect of the manifold

geometry in sparsely labeled manifolds can be much larger
than that for nonsparse labels. For nonsparse labels, the
capacity ranges between 2 and ðDþ 0.5Þ−1, while for sparse
manifolds, the upper bound can be much larger. Indeed,
small-sized manifolds are expected to have capacity that
increases upon decreasing f as αMð0; fÞ ∝ ð1=fj log fjÞ,
similar toP uncorrelated points [12]. This potential increase
in the capacity of sparse labels is, however, strongly con-
strained by the manifold size, since, when the manifolds are
large, the solution has to be orthogonal to the manifold
directions so that αMð0; fÞ ≈ ð1=DÞ. Thus, the geometry of
the manifolds plays an important role in controlling the
effect of sparse labels on capacity. These aspects are already

seen in the case of sparsely labeled l2 balls (Appendix E).
Here, we summarize the main results for general manifolds.
Sparsity and size:—There is a complex interplay

between label sparsity and manifold size. Our analysis
yields three qualitatively different regimes.
Low Rg:—When the Gaussian radius of the manifolds are

small, i.e., Rg < 1, the extent of the manifolds is noticeable
only when the dimension is high. Similar to our previous
analysis of high-dimensionalmanifolds, we find here that the
sparse capacity is equivalent to the capacity of sparsely
labeled random points, with an effective margin given by
Rg

ffiffiffiffiffiffi
Dg

p
,

αMðfÞ ≈ α0ðf; κ ¼ Rg

ffiffiffiffiffiffi
Dg

p Þ; ð55Þ

where α0ðκ; fÞ ¼ maxb α0ðκ; f; bÞ from the Gardner theory.
It should be noted that κg in the above equation has a
noticeable effect only for moderate sparsity. It has a negli-
gible effectwhenf → 0, since thebias is large and dominates
over the margin.
Moderate sizes, Rg > 2:—In this case, the equivalence to

the capacity of points breaks down. Remarkably, we find
that the capacity of general manifolds with substantial size
is well approximated by that of equivalent l2 balls with the
same sparsity f and with dimension and radius equal to the
Gaussian dimension and radius of the manifolds, namely,

αMðfÞ ≈ αBallðf; Rg;DgÞ: ð56Þ

Surprisingly, unlike the nonsparse approximation, where
the equivalence of general manifold to balls, Eq. (33), is
valid only for high-dimensional manifolds, in the sparse
limit, the spherical approximation is not restricted to large
D. Another interesting result is that the relevant statistics
are given by the Gaussian geometry, Rg and Dg, even when
Rg is not small. The reason is that, for small f, the bias is
large. In that case, the positively labeled manifolds have
large positive margin b and are fully supporting giving a
contribution to the inverse capacity of b2, regardless of their
detailed geometry. On the other hand, the negatively
labeled manifolds have large negative margin, implying
that most of them are far from the separating plane (interior)
and a small fraction have touching support. The fully
supporting configurations have negligible probability;
hence, the overall geometry is well approximated by the
Gaussian quantities Dg and Rg.
Scaling relationship between sparsity and size:—A

further analysis of the capacity of balls with sparse labels
shows it retains a simple form αðf̄; DÞ [see Appendix E,
Eq. (E10)], which depends on R and f only through the
scaled sparsity f̄ ¼ fR2. The reason for the scaling of fwith
R2 is as follows. When the labels are sparse, the dominant
contribution to the inverse capacity comes from theminority
class, and so the capacity is α−1Ball ≈ fb2 for large b. On the
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other hand, the optimal value of b depends on the balance
between the contributions from both classes and scales
linearly with R, as it needs to overcome the local fields from
the spheres. Thus, α−1 ∝ fR2.
Combining Eq. (E10) with Eq. (56) yields, for general

sparsely labeled manifolds,

α−1M ¼ f̄b̄2 þ
Z

∞

b̄
dtχDg

ðtÞðt − b̄Þ2; ð57Þ

where scaled sparsity is f̄ ¼ fð1þ R2
gÞ≲ 1.

Note that we have defined the scaled sparsity f̄¼
fð1þR2

gÞ rather than fR2 to yield a smoother crossover
to the small Rg regime. Similarly, we define the optimal

scaled bias as b̄ ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

g

q
≫ 1. Qualitatively, the func-

tion α is roughly proportional to f̄−1 with a proportionality
constant that depends on Dg. In the extreme limit of
j log f̄j ≫ Dg, we obtain the sparse limit α ∝ jf̄ log f̄j−1.
Note that, if f is sufficiently small, the gain in capacity due
to sparsity occurs even for large manifolds as long as f̄ < 1.
Large Rg regime, f̄ > 1:—Finally, when Rg is suffi-

ciently large such that f̄ increases above 1, b̄ is of order 1 or
smaller, and the capacity is small with a value that depends
on the detailed geometry of the manifold. In particular,
when f̄ ≫ 1, the capacity of the manifold approaches
αMðfÞ → ð1=DÞ, not ð1=DgÞ.
To demonstrate these remarkable predictions, Eq. (56),

we present in Fig. 11 the capacity of three classes of
sparsely labeled manifolds: l2 balls, l1 ellipsoids, and ring
manifolds. In all cases, we show the results of numerical
simulations of the capacity, the full mean-field solution,
and the spherical approximation, Eq. (56), across several
orders of magnitude of sparsity and size as a function of the

scaled sparsity f̄ ¼ fð1þ R2Þ. In each example, there is a
good agreement between the three calculations for the
range of f̄ < 1. Furthermore, the drop in α with increasing
f̄ is similar in all cases, except for an overall vertical shift,
which is due to the different Dg, similar to the effect of
dimension in l2 balls [Fig. 11(a)]. In the regime of
moderate radii, results for different f and r all fall on a
universal curve, which depends only on f̄, as predicted by
the theory. For small r, the capacity deviates from this
scaling, as it is dominated by f alone, similar to sparsely
labeled points. When f̄ > 1, the curves deviate from the
spherical approximation. The true capacity (as revealed by
simulations and full mean field) rapidly decreases with f̄
and saturates at ð1=DÞ, rather than to the ð1=DgÞ limit of the
spherical approximation. Finally, we note that our choice of
parameters in Fig. 11(c) (SM [16] Sec. VII) was such that
Rg (entering in the scaled sparsity) was significantly
different from simply an average radius. Thus, the agree-
ment with the theory illustrates the important role of the
Gaussian geometry in the sparse case.
As discussed above, in the (high and moderate) sparse

regimes, a large bias alters the anchor geometry of the two
classes in different ways. To illustrate this important aspect,
we show in Fig. 12 the effect of sparsity and bias on the

(a) (b) (c)

FIG. 11. (a),(b) Classification of l2 balls with sparse labels.
(a) Capacity of l2 balls as a function of f̄ ¼ fð1þ r2Þ, for D ¼
100 (red) and D ¼ 10 (blue) mean-field theory results. Overlaid
black dotted lines represent an approximation interpolating
between Eqs. (55) and (57) (details in SM [16], Sec. S9). (b),
(c) Classification of general manifolds with sparse labels.
(b) Capacity of l1 ellipsoids with D ¼ 100, where the first 10
components are equal to r, and the remaining 90 components are
1
2
r, as a function of f̄ ¼ fð1þ R2

gÞ. r is varied from 10−3 to 103:
numerical simulations (circles), mean-field theory (lines), spheri-
cal approximation (dotted lines). (c) Capacity of ring manifolds
with a Gaussian falloff spectrum, with σ ¼ 0.1 and D ¼ 100
(details in SM [16]). The Fourier components in these manifolds
have a Gaussian falloff, i.e., Rn ¼ A exp ð− 1

2
½2πðn − 1Þσ�2Þ.

(a) (b)

(c) (d)

FIG. 12. Manifold configurations and geometries for classifi-
cation of l1 ellipsoids with sparse labels, analyzed separately in
terms of the majority and minority classes. The radii for l1

ellipsoids are Ri ¼ r for 1 ≤ i ≤ 10 and Ri ¼ 1
2
r for

11 ≤ i ≤ 100, with r ¼ 10. (a) Histogram of support dimensions
for moderate sparsity f ¼ 0.1: minority (blue) and majority (red)
manifolds. (b) Histogram of support dimensions for high sparsity
f ¼ 10−3: minority (blue) and majority (red) manifolds. (c) Mani-
fold dimension as a function of f̄ ¼ fð1þ R2

gÞ as f is varied:
minority (blue) and majority (red) manifolds. (d) Manifold radius
relative to the scaling factor r as a function of f̄: minority (blue)
and majority (red) manifolds.
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geometry of the l1 ellipsoids studied in Fig. 11(c). Here,
we show the evolution of RM and DM for the majority and
minority classes as f̄ increases. Note that, despite the fact
that the shape of the manifolds is the same for all f, their
manifold anchor geometry depends on both class member-
ship and sparsity levels, because these measures depend on
themargin.When f̄ is small, theminority class hasDM ¼ D,
as seen in Fig. 12(c); i.e., the minority class manifolds are
close to be fully supporting due to the large positive margin.
This can also be seen in the distributions of support
dimension shown in Figs. 12(a) and 12(b). On the other
hand, the majority class has DM ≈Dg ¼ 2 logD1 ≪ D,
and these manifolds are mostly in the interior regime. As
f increases, the geometrical statistics for the two classes
become more similar. This is seen in Figs. 12(c) and 12(d),
where DM and RM for both majority and minority classes
converge to the zero margin value for large f̄ ¼ fð1þ R2

gÞ.

VII. SUMMARY AND DISCUSSION

Summary.— We have developed a statistical mechanical
theory for linear classification of inputs organized in
perceptual manifolds, where all points in a manifold share
the same label. The notion of perceptual manifolds is
critical in a variety of contexts in computational neurosci-
ence modeling and in signal processing. Our theory is not
restricted to manifolds with smooth or regular geometries;
it applies to any compact subset of a D-dimensional affine
subspace. Thus, the theory is applicable to manifolds
arising from any variation in neuronal responses with a
continuously varying physical variable, or from any
sampled set arising from experimental measurements on
a limited number of stimuli.
The theory describes the capacity of a linear classifier to

separate a dichotomy of general manifolds (with a given
margin) by a universal set of mean-field equations. These
equations may be solved analytically for simple geom-
etries, but, for more complex geometries, we have devel-
oped iterative algorithms to solve the self-consistent
equations. The algorithms are efficient and converge fast,
as they involve only solving for OðDÞ variables of a single
manifold, rather than invoking simulations of a full system
of P manifolds embedded in RN .
Applications:—The statistical mechanical theory of per-

ceptron learning has long provided a basis for under-
standing the performance and fundamental limitations of
single-layer neural architectures and their kernel exten-
sions. However, the previous theory only considered a
finite number of random points, with no underlying geo-
metric structure, and could not explain the performance of
linear classifiers on a large, possibly infinite number of
inputs organized as distinct manifolds by the variability due
to changes in the physical parameters of objects. The theory
presented in this work can explain the capacity and
limitations of the linear classification of general manifolds.

This new theory is important for the understanding of
how sensory neural systems perform invariant perceptual
discrimination and recognition tasks of realistic stimuli.
Furthermore, beyond estimating the classification capacity,
our theory provides theoretically based geometric measures
for assessing the quality of the neural representations of the
perceptual manifolds. There are a variety of ways for
defining the geometry of manifolds. Our geometric mea-
sures are unique in that they determine the ability to linearly
separate the manifold, as our theory shows.
Our theory focuses on linear classification. However, it

has broad implications for nonlinear systems and, in
particular, for deep networks. First, most models of sensory
discrimination and recognition in biological and artificial
deep architectures model the readouts of the networks as
linear classifiers operating on the top sensory layers. Thus,
our manifold classification capacity and geometry can be
applied to understand the performance of the deep network.
Furthermore, the computational advantage of having multi-
ple intermediate layers can be assessed by comparing the
performance of a hypothetical linear classifier operating on
these layers. In addition, the changes in the quality of
representations across the deep layers can be assessed by
comparing the changes in the manifold’s geometries across
layers. Indeed, previous discussions of sensory processing
in deep networks hypothesized that neural object repre-
sentations become increasingly untangled as the signal
propagates along the sensory hierarchy. However, no
concrete measure of untangling has been provided. The
geometric measures derived from our theory can be used to
quantify the degree of entanglement, tracking how the
perceptual manifolds are nonlinearly reformatted as they
propagate through the multiple layers of a neural network
to eventually allow for linear classification in the top layer.
Notably, the statistical, population-based nature of our
geometric measures renders them ideally suited for com-
parison between layers of different sizes and nonlinearities,
as well as between different deep networks or between
artificial networks and biological ones. Lastly, our theory
can suggest new algorithms for building deep networks, for
instance, by imposing successive reduction of manifold
dimensions and radii as part of an unsupervised learning
strategy.
We have discussed above the domain of visual object

classification and recognition, which has received immense
attention in recent years. However, we would like to
emphasize that our theory can be applied for modeling
neural sensory processing tasks in other modalities. For
instance, it can be used to provide insight on how the
olfactory system performs discrimination and recognition
of odor identity in the presence of orders-of-magnitude
variations in odor concentrations. Neuronal responses to
sensory signals are not static, but vary in time. Our theory
can be applied to explain how the brain correctly decodes
the stimulus identity despite its temporal nonstationarity.
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Some of these applicationsmay require further extensions
of the present theory. Themost important ones (currently the
subject of ongoing work) include the following.
Correlations:— In the present work, we have assumed

that the directions of the affine subspaces of the different
manifolds are uncorrelated. In realistic situations, we
expect to see correlations in the manifold geometries,
mainly of two types. One is center-center correlations.
Such correlations can be harmful for linear separability
[32,33]. Another is correlated variability, in which the
directions of the affine subspaces are correlated but not the
centers. Positive correlations of the latter form are benefi-
cial for separability. In the extreme case when the manifolds
share a common affine subspace, the rank of the union of
the subspaces is Dtot ¼ D, rather than Dtot ¼ PD, and the
solution weight vector need only lie in the null space of this
smaller subspace. Further work is needed to extend the
present theory to incorporate more general correlations.
Generalization performance:— We have studied the

separability of manifolds with known geometries. In many
realistic problems, this information is not readily available
and only samples reflecting the natural variability of input
patterns are provided. These samples can be used to
estimate the underlying manifold model (using manifold
learning techniques [34,35]) and/or to train a classifier
based upon a finite training set. Generalization error
describes how well a classifier trained on a finite number
of samples would perform on other test points drawn from
the manifolds [36]. It would be important to extend our
theory to calculate the expected generalization error
achieved by the maximum margin solution trained on point
cloud manifolds, as a function of the size of the training set
and the geometry of the underlying full manifolds.
Unrealizable classification:—Throughout the present

work, we have assumed that the manifolds are separable
by a linear classifier. In realistic problems, the load
may be above the capacity for linear separation, i.e.,
α > αMðκ ¼ 0Þ. Alternatively, neural noise may cause
the manifolds to be unbounded in extent, with the tails
of their distribution overlapping so that they are not
separable with zero error. There are several ways to handle
this issue in supervised learning problems. One possibility
is to nonlinearly map the unrealizable inputs to a higher-
dimensional feature space, via a multilayer network or
nonlinear kernel function, where the classification can be
performed with zero error. The design of multilayer net-
works could be facilitated using manifold processing
principles uncovered by our theory.
Another possibility is to introduce an optimization

problem allowing a small training error, for example, using
a SVM with complementary slack variables [14]. These
procedures raise interesting theoretical challenges, includ-
ing understanding how the geometry of manifolds changes
as they undergo nonlinear transformations, as well as
investigating, by statistical mechanics, the performance
of a linear classifier of manifolds with slack variables [37].

In conclusion, we believe the application of this theory
and its corollary extensions will precipitate novel insights
into how perceptual systems, biological or artificial, effi-
ciently code and process complex sensory information.
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APPENDIX A: REPLICA THEORY OF
MANIFOLD CAPACITY

In this section, we outline the derivation of the mean-
field replica theory summarized in Eqs. (11) and (12). We
define the capacity of linear classification of manifolds,
αMðκÞ, as the maximal load, α ¼ ðP=NÞ, for which with
high probability a solution to yμw · xμ ≥ κ exists for a given
κ. Here, xμ are points on the P manifolds Mμ, Eq. (1), and
we assume that all NPðDþ 1Þ components of fuμ

i g are
drawn independently from a Gaussian distribution with
zero mean and variance ð1=NÞ, and that the binary labels
yμ ¼ �1 are randomly assigned to each manifold with
equal probabilities. We consider the thermodynamic limit,
where N, P → ∞, but α ¼ ðP=NÞ, and D is finite.
Note that the geometric margin κ0, defined as the distance

from the solution hyperplane, is given by yμw ·xμ≥κ0kwk¼
κ0

ffiffiffiffi
N

p
. However, this distance depends on the scale of the

input vectors xμ. The correct scaling of the margin in the
thermodynamic limit is κ0 ¼ ðkxk= ffiffiffiffi

N
p Þκ. Since we

adopted the normalization of kxμk ¼ Oð1Þ, the correct
scaling of the margin is yμw · xμ ≥ κ.
Evaluation of solution volume:—Following Gardner’s

replica framework, we first consider the volume Z of the
solution space for α < αMðκÞ. We define the signed projec-
tions of the ith direction vector uμ

i on the solution weight as
Hμ

i ¼
ffiffiffiffi
N

p
yμw · uμ

i , where i¼ 1;…;Dþ1 and μ ¼ 1;…; P.
Then, the separability constraints can be written asPDþ1

i¼1 SiH
μ
i ≥ κ. Hence, the volume can be written as

Z ¼
Z

dNwδðw2 − NÞΠP
μ¼1ΘμðgSðH⃗μÞ − κÞ; ðA1Þ

where ΘðxÞ is a Heaviside step function. gS is the
support function of S defined for Eq. (12) as gSðV⃗Þ ¼
minS⃗fV⃗ · S⃗jS⃗ ∈ Sg.
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The volume defined above depends on the quenched
random variables uμ

i and yμ through Hμ
i . It is well known

that, in order to obtain the typical behavior in the thermo-
dynamic limit, we need to average logZ, which we carry
out using the replica trick, hlogZi ¼ limn→0ðhZni − 1Þ=n,
where hi refers to the average over uμ

i and y
μ. For natural n,

we need to evaluate

hZni ¼
Z Yn

α

dwαδðw2
α − NÞ

YP
μ

Z
DH⃗μα

×

�YDþ1

i

ffiffiffiffiffiffi
2π

p
δðHμα

i − yμwT
αu

μ
i Þ
�

uμ
i ;y

μ

; ðA2Þ

where we have used the notation

DH⃗ ¼ ΠDþ1
i¼1

dHiffiffiffiffiffiffi
2π

p ΘðgSðH⃗Þ − κÞ: ðA3Þ

Using a Fourier representation of the delta functions, we
obtain

hZni¼
Z Yn

α

dwαδðw2
α−NÞ

YP
μ

Z
DH⃗μα

×
YDþ1

i¼1

Z
dĤμα

iffiffiffiffiffiffi
2π

p hexpfiĤμα
i ðHμα

i −yμwT
αu

μ
i Þgiuμ

i ;y
μ :

ðA4Þ
Performing the average over the Gaussian distribution of

uμ
i (each of the N components has zero mean and variance

ð1=NÞ) yields
�
exp

XDþ1

i¼1

X
μα

	
iĤμα

i

�
−yμ

XN
j¼1

wj
αu

μ
i;j

�
�
uμ
i ;y

μ

¼ exp

�
−
1

2

X
αβ

qαβ
X
iμ

Ĥμα
i Ĥμβ

i

�
; ðA5Þ

where qαβ ¼ ð1=NÞPN
j¼1 w

j
αw

j
β. Thus, integrating the var-

iables Ĥμα
i yields

hZni¼
Z Yn

α¼1

dwαδðw2
α−NÞ

Z
dqαβΠαβ

·δðNqαβ−wT
αwβÞ

	
exp

�
−
ðDþ1Þ

2
logdetq

�
X



P
;

ðA6Þ

where

X ¼
Z Y

α

DH⃗α exp

	
−
1

2

X
i;α;β

Hα
i ðq−1ÞαβHβ

i



; ðA7Þ

and we have used the fact that all manifolds contribute the
same factor.
We proceed by making the replica symmetric ansatz

on the order parameter qαβ at its saddle point, qαβ ¼
ð1 − qÞδαβ þ q, from which one obtains, in the n → 0 limit,

q−1αβ ¼ 1

1 − q
δαβ −

q
ð1 − qÞ2 ðA8Þ

and

log det q ¼ n logð1 − qÞ þ nq
1 − q

: ðA9Þ

Thus, the exponential term in X can be written as

exp

	
−
1

2

X
αi

ðHα
i Þ2

1 − q
þ 1

2

X
i

� ffiffiffi
q

p
1 − q

X
α
Hα

i

�
2


: ðA10Þ

Using the Hubbard-Stratonovich transformation, we
obtain

X ¼
Z

DT⃗

	Z
DH⃗ exp

�
−
1

2

H⃗2

1 − q
þ

ffiffiffi
q

p
1 − q

H⃗ · T⃗

�
n
;

ðA11Þ
where DT⃗ ¼ ΠiðdTi=

ffiffiffiffiffiffi
2π

p Þ exp ½−ðT2
i =2Þ�. Completing

the square in the exponential and using
R
DT⃗An ¼

expn
R
DT⃗ logA in the n → 0 limit, we obtain X ¼

exp f½nqðDþ 1Þ=2ð1 − qÞ�g þ n
R
DT⃗ log zðT⃗ÞÞ, with

zðT⃗Þ ¼
Z

DH⃗ exp
n
−

1

2ð1 − qÞ jjH⃗ −
ffiffiffi
q

p
T⃗jj2

o
: ðA12Þ

Combining these terms, we write the last factor in
Eq. (A6) as exp nPG1, where

G1 ¼
Z

DT⃗ log zðT⃗Þ − ðDþ 1Þ
2

logð1 − qÞ: ðA13Þ

The first factors in hZni, Eq. (A6), can be written as
expnNG0, whereas, in the Gardner theory, the entropic
term in the thermodynamic limit is

G0ðqÞ ¼
1

2
lnð1 − qÞ þ q

2ð1 − qÞ ðA14Þ

and represents the constraints on the volume of wα due to
normalization and the order parameter q. Combining theG0

and G1 contributions, we have

hZnit0;t ¼ eNn½G0ðqÞþαG1ðqÞ�: ðA15Þ

The classification constraints contribute αG1, with
Eq. (A13), and
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zðT⃗Þ¼
Z

ΠDþ1
i¼1

dYiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1−qÞp

×exp

�
−

Y⃗2

2ð1−qÞ
�

Θ(gSð ffiffiffi
q

p
T⃗þ Y⃗Þ−κ); ðA16Þ

where we have written the fields Hi as

Hi ¼
ffiffiffi
q

p
Ti þ Yi: ðA17Þ

Note that
ffiffiffi
q

p
Ti represents the quenched random compo-

nent due to the randomness in theuμ
i , and Yi is the “thermal”

component due to the variability within the solution space.
The order parameter q is calculated via 0 ¼ ð∂G0=∂qÞþ
αð∂G1=∂qÞ.
Capacity:—In the limit where α → αMðκÞ, the overlap

between the solutions becomes unity and the volume
shrinks to zero. It is convenient to define Q ¼ q=ð1 − qÞ
and study the limit of Q → ∞. In this limit, the leading
order is

hlogZi ¼ Q
2
½1 − αhFðT⃗ÞiT⃗ �; ðA18Þ

where the first term is the contribution from G0 → ðQ=2Þ.
The second term comes from G1 → −ðQ=2ÞαhFðT⃗ÞiT⃗ ,
where the average is over the Gaussian distribution of
the (Dþ 1)-dimensional vector T⃗, and

FðT⃗Þ → −
2

Q
log zðT⃗Þ ðA19Þ

is independent of Q and is given by replacing the integrals
in Eq. (A16) by their saddle point, which yields

FðT⃗Þ ¼ min
V⃗

fkV⃗ − T⃗k2jgSðV⃗Þ − κ ≥ 0g: ðA20Þ

At the capacity, logZ vanishes, and the capacity of a
general manifold with margin κ is given by

α−1M ðκÞ ¼ hFðT⃗ÞiT⃗ ðA21Þ

FðT⃗Þ ¼ min
V⃗

fkV⃗ − T⃗k2jgSðV⃗Þ − κ ≥ 0g: ðA22Þ

Finally, we note that the mean squared “annealed”
variability in the fields due to the entropy of solutions
vanishes at the capacity limit, as 1=Q; see Eq. (A16). Thus,
the quantity kV⃗ − T⃗k2 in the above equation represents the
annealed variability times Q, which remains finite in the
limit of Q → ∞.

APPENDIX B: STRICTLY CONVEX MANIFOLDS

1. General

Here, we evaluate the capacity of strictly convex mani-
folds, starting from the expression for general manifolds,
Eq. (20). In a strictly convex manifold S, any point in
the line segment connecting two points x⃗ and y⃗, x⃗, y⃗ ∈ S,
other than x⃗ and y⃗, belongs to the interior of S. Thus,
the boundary of the manifold does not contain edges or
flats with spanning dimension k > 1. Indeed, the only
possible spanning dimensions for the entire manifold are
k ¼ 0; 1, and Dþ 1. Therefore, there are exactly two
contributions to the inverse capacity. When t0 obeys
ttouchð⃗tÞ > t0 − κ > tfsð⃗tÞ, the integrand of Eq. (20) con-
tributes ½ð−⃗t · s̃ðT⃗Þ − t0 þ κÞ2=ð1 þ ks̃ðT⃗Þk2Þ�. When t0 <
κ þ tfsð⃗tÞ, the manifold is fully embedded. In this case,
v⃗ ¼ 0, and the integrand reduces to Eq. (26). In summary,
the capacity for convex manifolds can be written as

α−1ðκÞ ¼
Z

D⃗t
Z

κþttouch ð⃗tÞ

κþtfs ð⃗tÞ
Dt0

ð−⃗t · s̃ð⃗t; t0Þ − t0 þ κÞ2
1þ ks̃ð⃗t; t0Þk2

þ
Z

D⃗t
Z

κþtfs ð⃗tÞ

−∞
Dt0½ðt0 − κÞ2 þ k⃗tk2�; ðB1Þ

where ttouchð⃗tÞ and tfsð⃗tÞ are given by Eqs. (22) and (25),
respectively, and s̃ð⃗t; t0Þ ¼ arg min⃗sðv⃗ · ⃗sÞ, with v⃗ ¼
⃗t þ ðv0 − t0Þs̃.

2. l2 balls

In the case of l2 balls with D and radius R, gðv⃗Þ ¼
−Rkv⃗k. Hence, ttouchð⃗tÞ ¼ Rk⃗tk and tfsð⃗tÞ ¼ −R−1k⃗tk.
Thus, Eq. (B1) reduces to the capacity of balls is

α−1Ball ¼
Z

∞

0

dtχDðtÞ
Z

κþtR

κ−tR−1
Dt0

ð−t0 þ tRþ κÞ2
ð1þ R2Þ

þ
Z

∞

0

dtχDðtÞ
Z

κ−tR−1

−∞
Dt0½ðt0 − κÞ2 þ t2�; ðB2Þ

where

χDðtÞ ¼
21−

D
2

ΓðD
2
Þ t

D−1e−
1
2
t2 ; t ≥ 0 ðB3Þ

is the D-dimensional Chi probability density function,
reproducing the results of Ref. [15]. Furthermore,
Eq. (B2) can be approximated by the capacity of points
with a margin increase of R

ffiffiffiffi
D

p
, i.e., αBallðκ; RM;DMÞ ≈

ð1þ R2Þα0ðκ þ R
ffiffiffiffi
D

p Þ (details are given in Ref. [15]).

3. l2 ellipsoids

a. Anchor points and support regimes

With ellipsoids, Eq. (35), the support function in Eq. (15)
can be computed explicitly as follows. For a vector
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V⃗ ¼ ðv⃗; v0Þ, with nonzero v⃗, the support function gðv⃗Þ is
minimized by a vector s⃗, which occurs on the boundary of
the ellipsoid; i.e., it obeys the equality constraint fðs⃗Þ ¼ 0

with ρðs⃗Þ ¼ P
D
i¼1 ðsi=RiÞ2 − 1, Eq. (35). To evaluate g, we

differentiate −
P

D
i¼1 siv⃗i þ ρfðs⃗Þ) with respect to si, where

ρ is a Lagrange multiplier enforcing the constraint, yielding

s̃i ¼
viR2

i

gðv⃗Þ ðB4Þ

and

gðv⃗Þ ¼ −kv⃗∘R⃗k; ðB5Þ

where R⃗ is the D-dimensional vector of the ellipsoid
principal radii, and ∘ refers to the pointwise product of
vectors, ðv⃗∘R⃗Þi ¼ viRi. For a given ð⃗t; t0Þ, the vector
ðv⃗; v0Þ is determined by Eq. (13), and the analytic solution
above can be used to derive explicit expressions for s̃ð⃗t; t0Þ
in the different regimes as follows.
Interior regime:—In the interior regime λ ¼ 0, v⃗ ¼ ⃗t,

resulting in zero contribution to the inverse capacity. The
anchor point is given by the following boundary point on
the ellipse, given by Eq. (B4) with v⃗ ¼ ⃗t. This regime holds
for t0, obeying the inequality t0 − κ ≥ ttouchð⃗tÞ, with
Eq. (22), yielding

ttouchð⃗tÞ ¼ k⃗t ∘ R⃗k: ðB6Þ
Touching regime:—Here, the anchor point is given by

Eq. (B4) where v⃗ ¼ ⃗tþ λs̃. Substituting ti þ λs̃i for vi in
the numerator of that equation, and gðv⃗Þ ¼ κ − v0 ¼
κ − t0 − λ, yields

s̃touch;ið⃗t; t0Þ ¼ −
tiR2

i

λð1þ R2
i Þ þ ð−t0 þ κÞ ; ðB7Þ

where the parameter λ is determined by the ellipsoidal
constraint,

1 ¼
XD
i¼1

t2i R
2
i

½λð1þ R2
i Þ þ ð−t0 þ κÞ�2 : ðB8Þ

In this regime, the contribution to the capacity is given by
Eqs. (16) and (17), with s̃ in Eq. (B7).
The touching regime holds for ttouch > t0 − κ > tfs,

where λ → κ − t0, v⃗ vanishes, and the anchor point is
the point on the boundary of the ellipsoid antiparallel to ⃗t.
Substituting this value of λ in Eq. (B8) yields

tfsð⃗tÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

�
ti
Ri

�
2

s
: ðB9Þ

Fully supporting regime:—When t0 − κ < tfs, we have
v⃗ ¼ 0, v0 ¼ κ, and λ ¼ t0 − κ, implying that the center, as
well as the entire ellipsoid, is fully supporting the max

margin solution. In this case, the anchor point is antiparallel
to ⃗t at the interior point, Eq. (24), and its contribution to the
capacity is as in Eq. (26).

APPENDIX C: LIMIT OF LARGE MANIFOLDS

In the large size limit, ks̃k → ∞, linear separation of
manifolds reduces to linear separation of P random
D-dimensional affine subspaces. When separating subspa-
ces, all of themmust be fully embedded in the margin plane;
otherwise, they would intersect it and violate the classifi-
cation constraints. However, the way large-size manifolds
approach this limit is subtle. To analyze this limit, we note
that, when ks̃k is large, gðv⃗Þ > −ks̃kkv⃗k and, from the
condition that gðv⃗Þ≥ð−v0þκÞ, we have kv⃗k≤ ½ð−v0þ κÞ=
ks̃k�; i.e., kv⃗k is Oðks̃k−1Þ. A small kv⃗k implies that the
affine basis vectors, except the center direction, are all either
exactly or almost orthogonal to the solution weight vector.
Since λs̃ ¼ −⃗tþ v⃗ ≈ −⃗t, it follows that s̃ is almost anti-
parallel to the Gaussian vector ⃗t, and hence, DM → D; see
Eq. (29). To elucidate the manifold support structure, we
note first that, by Eq. (22), ttouch ∝ −jj⃗tjjjjs̃jj → −∞; hence,
the fractional volume of the interior regime is negligible, and
the statistics is dominated by the embedded regimes. In
fact, the fully embedded transition is given by tembed ≈ −κ
[see Eq. (25)], so that the fractional volume of the fully
embedded regime is Hð−κÞ ¼ R

∞
−κ Dt0, and its contribution

to inverse capacity is, therefore,
R∞
−κDt0½hkt⃗k2iþðt0þκÞ2�¼

Hð−κÞDþα−10 ðκÞ. The remaining summed probability of
the touching and partially embedded regimes (k ≥ 1)
is, therefore, HðκÞ. In these regimes, λ2ks̃k2 ≈ λ2ks̃k2≈
k⃗tk2, so that this regime contributes a factor ofR
−κ
−∞ Dt0hk⃗tk2i ¼ HðκÞD. Combining these two contribu-
tions, we obtain, for large sizes, α−1M ¼ Dþ α−10 ðκÞ, con-
sistent with Eq. (8).

APPENDIX D: HIGH-DIMENSIONAL
MANIFOLDS

1. High-dimensional l2 ball

Before we discuss general manifolds in high dimensions,
we focus on the simple case of high-dimensional balls, the
capacity of which is given by Eq. (B2). When D ≫ 1,
χDðtÞ, Eq. (B3) is centered around t ¼ ffiffiffiffi

D
p

. Substituting
χDðtÞ ≈ δðt − ffiffiffiffi

D
p

) yields

α−1Ballðκ; R;DÞ ¼
Z

κþR
ffiffiffi
D

p

κ−
ffiffi
D

p
R

Dt0
ðR ffiffiffiffi

D
p þ κ − tÞ20
R2 þ 1

þ
Z

κ−
ffiffi
D

p
R

−∞
Dt0ð½t0 − κ�2 þDÞ: ðD1Þ

As long as R ≪
ffiffiffiffi
D

p
, the second term in Eq. (D1) vanishes

and yields
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α−1Ballðκ; R;DÞ ¼
Z

κþR
ffiffiffi
D

p

−∞
Dt0

ðR ffiffiffiffi
D

p þ κ − t0Þ2
R2 þ 1

: ðD2Þ

Here, we note that the t0 term in the numerator is
significant only if R ¼ OðD−1=2Þ or smaller, in which case
the denominator is just 1. When R is of order 1, the term t0
in the integrand is negligible. Hence, in both cases, we can
write

α−1Ballðκ; R;DÞ ≈ α−10

�
κ þ R

ffiffiffiffi
D

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p
�
: ðD3Þ

In this form, the intuition beyond the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p
is

clear, stemming from the fact that the distance of a point
from the margin plane scales with its norm; hence, the
margin entering the capacity should factor out this norm.
As stated above, Eq. (D3) implies a finite capacity only

in the scaling regime, where R
ffiffiffiffi
D

p ¼ Oð1Þ. If, on the other
hand, R

ffiffiffiffi
D

p
≫ 1, Eq. (D2) implies

α−1Ball ¼
R2D
1þ R2

ðD4Þ

[where we have used the asymptote α−10 ðxÞ → x2 for large
x], reducing to α−1 ¼ D for large R.
The analysis above also highlights the support structure of

the balls at largeD. As long asR ≪
ffiffiffiffi
D

p
, the fraction of balls

that lie fully in the margin plane is negligible, as implied by
the fact that tfs ≈ −

ffiffiffiffi
D

p
=R → −∞. The overall fraction of

interior balls is Hðκ þ R
ffiffiffiffi
D

p Þ, whereas the fraction that
touch the margin planes is 1 −Hðκ þ R

ffiffiffiffi
D

p Þ. Despite the
fact that there are no fully supporting balls, the touching
balls are almost parallel to the margin planes if R ≫ 1;
hence, the capacity reaches its lower bound.
Finally, the large manifold limit discussed in Appendix C

is realized for R ≪
ffiffiffiffi
D

p
. Here, tfs ¼ −κ, and the system is

either touching or fully supporting with probabilities HðκÞ
and Hð−κÞ, respectively.

2. General manifolds

To analyze the limit of high-dimensional general mani-
folds, we utilize the self-averaging of terms in Eq. (20),
involving sums of the D components of ⃗t and s̃, i.e.,

⃗t · s̃ ≈ hjjs̃jjih⃗t · ŝi ≈ RM

ffiffiffiffiffiffiffi
DM

p
¼ κM: ðD5Þ

Also, ttouch ≈ ⃗t · s̃ ≈ κM; hence, we obtain for the capacity

α−1M ðκÞ ≈ h½κM þ κ − t0�2þit0
R2
M þ 1

≈ α−1Ballðκ; RM;DMÞ; ðD6Þ

where the average is with respect to the Gaussian t0.
Evaluating RM and DM involves calculations of the

self-consistent statistics of the anchor points. This calcu-
lation is simplified in high dimensions. In particular, λ,
Eq. (17), reduces to

λ ≈
h½κM þ κ − t0�þit0

1þ R2
M

: ðD7Þ

Hence, it is approximately constant, independent of T⃗.
In deriving the above approximations, we used self-

averaging in summations involving the D intrinsic coor-
dinates. The full dependence on the longitudinal Gaussian
t0 should remain. Thus, RM and DM should, in fact, be
substituted by RMðt0Þ and DMðt0Þ, denoting Eqs. (28) and
(29), with averaging only over ⃗t. This would yield a more
complicated expressions than Eqs. (D6) and (D7).
The reason why we can replace them by average

quantities is the following: The potential dependence of
the anchor radius and dimension on t0 is via λðt0Þ.
However, inspecting Eq. (D7), we note two scenarios. In
the first one, RM is small and κM is of order 1. In this case,
because the manifold radius is small, the contribution λs̃ is
small and can be neglected. This is the same argument why,
in this case, the geometry can be replaced by the Gaussian
geometry, which does not depend on t0 or κ. The second
scenario is that RM is of order 1 and κM ≫ 1, in which case
the order 1 contribution from t0 is negligible.

APPENDIX E: CAPACITY OF l2 BALLS
WITH SPARSE LABELS

First, we note that the capacity of sparsely labeled points
is α0ðf; κÞ ¼ maxb α0ðf; κ; bÞ, where

α−10 ðf; κ; bÞ ¼ f
Z

κþb

−∞
Dtð−tþ κ þ bÞ2

þ ð1 − fÞ
Z

κ−b

−∞
Dtð−tþ κ − bÞ2: ðE1Þ

Optimizing b yields the following equation for b:

0 ¼ f
Z

bþκ

−∞
Dtð−tþ κ þ bÞ

þ ð1 − fÞ
Z

b−κ

−∞
Dtð−tþ κ − bÞ: ðE2Þ

In the limit of f → 0, b ≫ 1. The first equation
reduces to

α−10 ≈ fb2 þ exp ð−b2=2Þ; ðE3Þ

yielding for the optimal b ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j log fjp

. With this b, the
inverse capacity is dominated by the first term, which
is α−10 ≈ 2fj log fj.
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The capacity for l2 balls of radius R, with sparse labels,
with sparsity f [Eqs. (53) and (B2)], is given by

α−1Ball¼f
Z

∞

0

dtχDðtÞ ·
	Z

κþtRþb

κ−tR−1þb
Dt0

ð−t0þtRþbþκÞ2
ð1þR2Þ

þ
Z

bþκ−tR−1

−∞
Dt0½ðt0−b−κÞ2þt2�




þð1−fÞ
Z

∞

0

dtχDðtÞ ·
	Z

κþtR−b

κ−tR−1−b
Dt0

ð−t0þtRþκ−bÞ2
ð1þR2Þ

þ
Z

−bþκ−tR−1

−∞
Dt0½ðt0−κþbÞ2þt2�



; ðE4Þ

and the optimal bias b is given by ∂αBall=∂b ¼ 0. Here, we
analyze these equations in various size regimes, assum-
ing κ ¼ 0.
Small R:—For balls with small radius, the capacity is that

of points, unless the dimensionality is high. Thus, if D is
large, but R

ffiffiffiffi
D

p ≲ 1,

α−1Ball ¼ f
Z

R
ffiffiffi
D

p þb

−∞
Dt0

ð−t0 þ R
ffiffiffiffi
D

p þ bÞ2
ð1þ R2Þ

þ ð1 − fÞ
Z

R
ffiffiffi
D

p
−b

−∞
Dt0

ð−t0 þ R
ffiffiffiffi
D

p þ bÞ2
ð1þ R2Þ ; ðE5Þ

that is,

αBallðf; R;DÞ ≈ α0ðf; κ ¼ R
ffiffiffiffi
D

p
Þ: ðE6Þ

As noted above, when f → 0, the optimal bias diverges;
hence the presence of order 1 in the induced margin
is noticeable only for moderate f, such that R

ffiffiffiffi
D

p ¼
Oðj log fjÞ.
Small f and large R:—Here, we analyze the above

equations in the limit of small f and large R. We assume
that f is sufficiently small so that the optimal bias b is large.
The contribution of the minority class to the inverse
capacity α−1Ball is dominated by

f
Z

∞

0

dtχDðtÞ
Z

b

−∞
Dt0(ð−t0 þ bÞ2 þ t2) ≈ fb2: ðE7Þ

The dominant contribution of the majority class to α−1Ball is

ð1 − fÞ
Z

∞

0

dtχDðtÞ
Z

−bþtR

−b−Rt−1
Dt0

ð−t0 þ tR − bÞ2
ð1þ R2Þ ðE8Þ

≈ð1 − fÞ
Z

∞

b̄
dtχDðtÞðt − b̄Þ2; ðE9Þ

where b̄ ¼ b=R. In deriving the last equation, we used
½ð−t0þ tR−bÞ2=ð1þR2Þ�→ ðt− b̄Þ2 as R, b→∞. Second,
the integrals are of substantial value only if t ≥ b̄, in which

case the integral of t0 is
R
b
−Rðb̄−tÞ Dt0 ≈ 1, and the integral

over t is from b̄ to∞. Combining the two results yields the
following simple expression for the inverse capacity:

α−1Ball ¼ f̄b̄2 þ
Z

∞

b̄
dtχDðtÞðt − b̄Þ2; ðE10Þ

where scaled sparsity is f̄ ¼ fR2. The optimal scaled bias is
given by

f̄ b̄ ¼
Z

∞

b̄
dtχDðtÞðt − b̄Þ: ðE11Þ

Note that R and f affect the capacity only through the
scaled sparsity. When f̄ → 0, capacity is proportional to
ðf̄j log f̄jÞ−1. In a realistic regime of small f̄ (between 10−4

and 1), capacity decreases with f̄ roughly as 1=f̄, with a
proportionality constant that depends on D, as shown in the
examples of Fig. 12(a). Finally, when R is sufficiently large
that f̄ > 1, b̄ is order 1 or smaller. In this case, the second term
in Eq. (E10) dominates and contributes ht2i ¼ D, yielding a
capacity that saturates as D−1, as shown in Fig. 11(a). It
should be noted, however, that when b is not large, the
approximations in Eqs. (E10) and (E11) no longer hold.
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