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Koopmans-compliant functionals have been shown to provide accurate spectral properties for molecular
systems; this accuracy is driven by the generalized linearization condition imposed on each charged
excitation, i.e., on changing the occupation of any orbital in the system, while accounting for screening and
relaxation from all other electrons. In this work, we discuss the theoretical formulation and the practical
implementation of this formalism to the case of extended systems, where a third condition, the localization
of Koopmans’s orbitals, proves crucial to reach seamlessly the thermodynamic limit. We illustrate the
formalism by first studying one-dimensional molecular systems of increasing length. Then, we consider the
band gaps of 30 paradigmatic solid-state test cases, for which accurate experimental and computational
results are available. The results are found to be comparable with the state of the art in many-body
perturbation theory, notably using just a functional formulation for spectral properties and the generalized-
gradient approximation for the exchange and correlation functional.
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I. INTRODUCTION

Accurate first-principles predictions of spectral
properties—such as band gaps or photoemission spectra—
attract considerable attention because of their critical role
in the design and characterization of optical and electronic
devices, e.g., for solar energy harvesting and conversion [1].
To date, the most common approaches to compute these
quantities in extended systems are based on many-body
perturbation theory (MBPT) using Green’s-function-based
approaches [2] (such as the GWapproximation [3]) or wave-
function-based methods like coupled cluster [4] or quantum
Monte Carlo [5], with GW being considered for the case of
solids a good compromise between accuracy and computa-
tional costs. Nevertheless, these high-level methods are still
significantly limited in system size and complexity, due to
their computational costs, and even in accuracy, at least
for the most common techniques. For these reasons, simpler
methods based on Kohn-Sham density-functional theory
[6,7] (KS-DFT), possibly including some fraction of nonlocal
exchange [8], are still frequently employed to evaluate

approximately the spectral properties of nanostructures,
interfaces, or solids.
In fact, exact KS-DFTwould correctly predict the energy

of the highest occupied eigenstate, since this determines
the long-range decay of the charge density into vacuum,
which needs to be described correctly in exact KS-DFT
[9,10] (see also Ref. [11] and references therein for an in-
depth discussion); all other eigenstates and spectral proper-
ties remain outside the domain of KS-DFT. In particular,
the lowest unoccupied eigenstate is not meant to be
correctly positioned, even in the exact theory, thus always
leading to incorrect fundamental gaps. Notably, when the
lowest unoccupied eigenstate becomes infinitesimally
occupied, it needs to jump to the correct highest occupied
eigenvalue, explaining why the exact KS potential has a
derivative discontinuity as a function of orbital occupations
[12–14]. Approximate KS-DFT (especially in the local or
generalized-gradient approximations) compounds these
issues, and both frontier orbital energies become incorrectly
positioned—typically raising the highest occupied eigen-
state, lowering the lowest unoccupied one, and further
decreasing the fundamental gap. These considerations
extend also to solids, and, e.g., the band gap energy Eg
is often greatly underestimated [14].
Such failures have been connected to the deviation from

piecewise linearity (PWL) of the total energy functional as
a function of particle number, and the associated lack of
derivative discontinuities at integer occupation (this PWL

*linh.nguyen@epfl.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 8, 021051 (2018)

2160-3308=18=8(2)=021051(12) 021051-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.8.021051&domain=pdf&date_stamp=2018-05-23
https://doi.org/10.1103/PhysRevX.8.021051
https://doi.org/10.1103/PhysRevX.8.021051
https://doi.org/10.1103/PhysRevX.8.021051
https://doi.org/10.1103/PhysRevX.8.021051
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


condition, thanks to Janak’s theorem [15], is equivalent to
stating that the energy of the highest occupied orbital needs
to be independent from the occupation of the orbital itself).
Deviations from PWL have also been suggested [16–20] to
be driven by electronic self-interaction errors (SIEs) [21],
and in recently developed functionals, such as range-
separated [22,23] or dielectric-dependent hybrid function-
als [24,25], PWL has been recognized as a critical feature to
address. The criterion of piecewise linearity was chosen in
particular as a key feature by some of us when introducing
the class of Koopmans-compliant (KC) functionals [26–30]
that enforce a generalized criterion of PWL; in these
approaches, every orbital energy is independent from the
occupation of the orbital itself (we note in passing that these
functionals generalize to all orbitals the linearization
criterion of the DFTþ HubbardU approach [16,17], which
linearizes the energy with respect to the occupation of the
Hubbard manifold). The accuracy of KC functionals in
reproducing spectral properties is quite remarkable [29–32]
and, in our view, it highlights the role of these functionals
as approximations to the exact spectral functional, i.e., the
functional able to reproduce spectral properties in addition
to total energies [33]. Last, we also mention that the potential
energy surface of KC functionals preserves exactly or
slightly improves [32] the base functional upon which they
are constructed (typically, the PBE [34] approximation is
used). We briefly summarize and expand here the concepts
alluded to above; a detailed description of the KC spectral
functionals, first introduced in Refs. [26,27], can be found
in Refs. [30,35]. The three core concepts that underpin
their formulation are those of linearization, screening, and
localization.
The first concept of linearization refers to the generali-

zation of the PWL condition of Perdew et al. [36]. Before
doing that, we note that PWL in the total energy with
respect to the total number of particles is equivalent to PWL
in the total energy with respect to the occupation of the
highest-energy state, and it is also equivalent to having a
constant orbital energy (i.e., an expectation value on the KS
Hamiltonian) for the highest-energy state as a function of
its occupation—all of this thanks to Janak’s theorem [15].
Then, the generalized PWL condition that KC functionals
introduce is one where there is a constant orbital energy for
any orbital in the system, rather than the highest-energy
one only, irrespectively of the fractional occupation of that
orbital. This condition can also be seen as a definition of
being self-interaction free: If the orbital energy does not
depend on the occupation of the orbital itself, that orbital
is free from self-interactions [27]. So, if one takes the
representation where the single-particle Hamiltonian is
diagonal (from now on referred to as “canonical” repre-
sentation), this generalized condition of PWL when
extracting an electron from an orbital is naturally akin
to that of (i) removing—heuristically—the self-interaction
contributions of that orbital from the functional and

(ii) allowing us to interpret single-particle eigenvalues as
charged excitation energies. This second point can be
understood by noting that the generalized PWL condition
in combination as above with Janak’s theorem enforces the
orbital energy (i.e., the expectation value of the Hamiltonian
on a given orbital) to be equal to the energy difference
between the system with N electrons and that with N − 1

electrons, where one electron has been removed from that
orbital; this is the definition of a charged excitation.
The discussion above is general, but it does not take into

account explicitly relaxations, i.e., the response of all the
electrons as the occupation of one orbital is changed. This is
where the second core concept of screening arises. In the KC
formalism, this is accounted for by introducing a screening
coefficient in front of a “bare” KC correction designed to
enforce the generalized PWL condition described above in
a frozen-orbitals picture, i.e., in a framework where the
relaxation of the orbitals is completely neglected [for the
definition, see Eq. (1) in the next section]. In the first
applications to atomic and molecular systems [27,29–31],
screening was approximately accounted for by using one
single screening coefficient to the Koopmans’s corrections
for all filled orbitals, andone for all emptyorbitals. These two
coefficients were determined, respectively, by the condition
that the energy of the highest occupied molecular orbital
(HOMO) of the neutral system needs to be equal to the
energy of the lowest unoccupied molecular orbital (LUMO)
of the cation (providing the screening coefficient for all filled
orbitals) and that theLUMOeigenvalue of the neutral system
needs to be equal to the HOMO eigenvalue of the anion
(providing the screening coefficient for the empty orbitals).
While this approximation can be satisfactory and even
accurate for small, simple molecules, an orbital-dependent
formalism calls for orbital-dependent screening; in addition,
it is essential to transition these concepts correctly in the
thermodynamic limit of a solid, as will be discussed in the
paper. We note in passing that these screening coefficients
can be calculated using finite differences (as done here and
detailed below) or, more elegantly, using linear-response
theory (detailed in Ref. [37]).
The third concept of localization becomes truly determi-

nant in the thermodynamic limit, i.e., for extended systems:
The condition of Koopmans’s compliance relies in an
essential way on localization when considering larger and
larger systems, where the variational Koopmans’s orbitals
converge rapidly to their thermodynamic limit, which is
localized (for the sake of illustration, they closely resemble
maximally localizedWannier functions [38]). This point will
be discussed in detail in the second part of the paper.
The fact that Koopmans’s compliance can lead to

orbital energies that can be compared to the quasiparticle
excitation energies of photoemission experiments, and
to canonical orbitals that resemble Dyson orbitals,
has been discussed extensively for the case of molecular
systems [33]. In previous work [29,31,32], we presented

NGUYEN, COLONNA, FERRETTI, and MARZARI PHYS. REV. X 8, 021051 (2018)

021051-2



the performance of KC functionals in predicting frontier
energies, ultraviolet photoemission spectra, and orbital
tomography momentum maps for different classes of
molecules, while also arguing that these functionals
provide accurate quasiparticle approximations to the exact
spectral potential [33,39]. In fact, we typically find very
good agreement with experiments, comparable or some-
times even better than state-of-the-art MBPT methods,
while preserving moderate computational costs and the
quality of the potential energy surface of the underlying
base functional [30] (or even improving on it when using
the KIPZ implementation of KC functionals [32]). In this
work, we discuss how the framework of KC functionals
extends to the case of solids. We focus first on the
conceptual issues, and then on the calculation of energy
gaps and IP energies (for surfaces). In Sec. II, we describe
the main theoretical challenges and the approach adopted
in this work. In Sec. II C, we study finite alkane chains of
increasing length and discuss the thermodynamic limit in
these one-dimensional systems. Then, in Sec. III A, we
assess the method against the calculation of band gaps in
3D semiconductors and insulators, as well as selected
surfaces. The accuracy in predicting Eg and IP energies is
compared to experiments, standard KS-DFT calculations,
many-body perturbation theory, and coupled-cluster
[CCSD(T)] wave function methods.

II. THEORY AND METHODS

A. Linearization in Koopmans-compliant functionals

As mentioned, KC functionals [26–30,40,41] explicitly
enforce generalized PWL conditions to an entire electronic
manifold, introducing functionals that aim at having a
linear dependence of the energy as a function of the
occupation of any orbital in the system. Formally, these
functionals are constructed starting from the exact or an
approximate DFT energy functional EDFT (the “base”
functional) and replacing, orbital by orbital, the contribu-
tion to the total DFT energy that is not linear in the
fractional orbital occupation with one that is linear [this
entails subtracting out, for each orbital, the Slater integral,
i.e., the opposite of the first term in the right-hand side of
Eq. (2), and adding in lieu of that a linear fiηi Koopmans’s
term]:

EKC ¼ EDFT þ
X
i

αiΠKC
i ; ð1Þ

ΠKC
i ¼ −

Z
fi

0

hφijĤDFTðsÞjφiidsþ fiηi: ð2Þ

Here, ĤDFTðsÞ is the KS Hamiltonian of the base functional
(exact or approximated) calculated with a fractional occu-
pation s in orbital φi, and αi are screening coefficients
introduced to ensure that the linearity is preserved when
taking into account the response and relaxation of all other

orbitals fφj≠ig. The slope ηi in the linear Koopmans’s term
can be chosen in a number of ways, leading to different
KC flavors. In this work, we focus on the KI and
KIPZ implementations, described in detail in Ref. [30].
In KI, the slope ηi is chosen as the total energy difference
of two adjacent electronic configurations with integer
occupations:

ηKIi ¼ EDFT½fi ¼ 1� − EDFT½fi ¼ 0�

¼
Z

1

0

hφijĤDFTðsÞjφiids; ð3Þ

the explicit expression for the unscreened KI Koopmans’s
correction becomes thus

ΠKI
i ¼−

Z
fi

0

hφijĤDFTðsÞjφiidsþfi

Z
1

0

hφijĤDFTðsÞjφiids;

ð4Þ

where it can be seen that at integer occupations ΠKI
i ¼ 0,

and the KI functional becomes identical to its base func-
tional, independently from the screening coefficients. The
KI functional thus preserves exactly the potential energy
surface of the base functional it started from, including that
of the exact DFT functional (if one had it); its values at
fractional occupations are instead different (except when
the highest occupied state is concerned), and so are the
derivatives calculated at integer occupations—hence, the
effect on spectral properties.
In KIPZ, the slope ηi is also chosen as the total energy

difference of two adjacent electronic configurations with
integer occupations, but this time using the Perdew-Zunger
(PZ) self-interaction corrected (SIC) functional [21]
applied onto the approximate DFT base functional. We
have

ηKIPZi ¼ EPZ½fi ¼ 1� − EPZ½fi ¼ 0�

¼
Z

1

0

hφijĤPZ
i ðsÞjφiids; ð5Þ

providing the explicit expression for the unscreened ΠKIPZ
i

correction [42],

ΠKIPZ
i ¼ −

Z
fi

0

hφijĤDFTðsÞjφiids

þ fi

Z
1

0

hφijĤPZ
i ðsÞjφiids; ð6Þ

where ĤPZ
i ðsÞ¼ĤDFTðsÞ−v̂DFTHxc ½sjφiðrÞj2�, with −v̂DFTHxc ½sjφi

ðrÞj2� the PZ self-interaction correction for the ith orbital,
which subtracts out the sum of the Hartree and exchange-
correlation potentials for that orbital, which has occupation
s and orbital density sjφiðrÞj2. Note that, in the unscreened
case [αi ¼ 1 in Eq. (1)], the KIPZ functional can be thought
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of as the KI correction applied to the PZ-SIC functional
[this can be verified by replacing the base DFT functional
and Hamiltonian in Eqs. (1)–(4) with their PZ-SIC counter-
parts]. However, in the general case of αi ≠ 1, the KIPZ
functional form Eq. (6) implies also scaling each PZ self-
interaction correction with its own screening coefficient.
At integer occupations, the KIPZ functional thus results in a
scaled PZ-SIC functional; this is a desirable property, since
the bare PZ self-interaction correction tends to overcorrect
the base functional [43,44], and introducing a scaling
parameter often improves the energetics and thermochem-
istry [45–49]. The KIPZ screening coefficients thus play a
dual role; they ensure linearity when taking into account
orbital relaxations and act as physically motivated scaling
parameters for the PZ corrections [50].
In summary, these two approaches lead to two func-

tionals that depend only on orbital densities (hence, these
are orbital-density-dependent functionals), with the follow-
ing final expressions for the unscreened KI and KIPZ
corrections [30]:

ΠKI
i ¼ EHxc½ρ − ρi� − EHxc½ρ� þ fiðEHxc½ρ − ρi þ ni�
− EHxc½ρ − ρi�Þ; ð7Þ

ΠKIPZ
i ¼ ΠKI

i − fiEHxc½ni�; ð8Þ

having defined ρiðrÞ ¼ fijφiðrÞj2 and niðrÞ ¼ jφiðrÞj2, and
with EHxc denoting the Hartree and exchange-correlation
energy corresponding to the underlying base functional.
For all calculations presented in this work, the base func-
tional is PBE [34]. As mentioned, the orbital-dependent
screening coefficients αi account for the electronic screening
and orbital relaxation; if these were all set to be equal to 1,
the KC functionals in Eq. (1) would fulfill the Koopmans
condition at frozen orbitals [28], rather than at relaxed
orbitals.
The generalized linearity condition enforced by the KC

functionals is more stringent than the piecewise linearity
condition satisfied by the exact KS-DFT ground-state
energy. The latter holds when the occupation of the highest
occupied state (or, equivalently, the total number of
particles) is varied, while the former applies to any orbital
in the system. This, in turn, leads to a more general orbital-
density-dependent framework where, at variance with DFT
functionals but similarly to the other orbital-density-
dependent methods, such as the PZ self-interaction cor-
rection itself [21,51], the functionals are not invariant under
unitary transformations within the manifold of filled
orbitals. In these cases, the variational orbitals fjφiig that
minimize the functional are different from the eigenstates
or canonical orbitals fjϕmig that diagonalize the orbital-
density-dependent Hamiltonian, as discussed, e.g., in
Refs. [30,31,51–55]. The algorithm that we advocate to
minimize these functionals consists of two nested steps
[35], following the ensemble-DFTapproach [56]: First, (i) a

minimization is performed with respect to all unitary
transformations of the orbitals (the so-called “inner loop”;
this minimization enforces the Pederson condition
hφijv̂KCj φji ¼ hφiv̂KCi jφji with v̂KCi ¼ ½δ=ðδρiÞ�

P
jΠKC

j ,
first discussed in Refs. [53,57]). Then, (ii) a variational
optimization of the orbitals (outer loop) is performed using
a standard conjugated-gradient strategy.
Koopmans’s compliance from Eqs. (1)–(8) can be

imposed on both valence and conduction orbitals.
Currently, the only requirement is that the system under
consideration needs to have a finite gap, which ensures that
the occupation of any variational orbital is either 0 or 1,
and the definition of the corresponding orbital densities
ρiðrÞ is unambiguous (the occupation number of a varia-
tional orbital that is a mix of filled canonical orbitals, or of
empty canonical orbitals, is an eigenvalue and keeps the
occupation matrix diagonal, but this is not so, if filled and
empty canonical orbitals are mixed together). So, any
matrix element of the KC Hamiltonian between filled
and empty orbitals is projected out [28], and the mini-
mization can be performed separately for each manifold
(still keeping orbitals orthogonal).
When working on the occupied manifold, the KIPZ

functional leads to a set of well-localized variational orbitals.
This is also true for the KI functional, since it is defined as
the limit of the KIPZ functional with zero PZ correction [30]
(otherwise, thanks to its unitary invariance at integer
occupation, KI does not have a preferred representation).
On the other hand, the empty orbitals are often delocalized
[58]. Now, calculating the Koopmans corrections on a
localized set of orbitals fjφiig is a key requirement to deal
with extended systems, since one wants the ΠKC

i corrections
to remain finite (rather than tend to zero) and to converge
rapidly to their thermodynamic limit. A workaround for the
delocalization of empty orbitals in the current functionals is
to compute a non-self-consistent but screened Koopmans
correction using maximally localized Wannier orbitals as
the localized representation for the lower part of the manifold
of empty orbitals [59]. Even though this choice is arbitrary,
it can provide a practical and effective scheme, as clearly
supported by the results of the present work. Moreover,
this choice does not affect the occupied orbitals and, thus,
preserves the potential energy surface of the KI or KIPZ
functional. We note that a similar treatment has also been
introduced recently by Ma and Wang in Ref. [61]. In this
work, the authors correct the band gap of semiconductors
and insulators by enforcing a straight-line condition of the
total energy upon removal (addition) of a fractional electron
on Wannier functions constructed within the occupied
(empty) manifolds; i.e., they perform a KI correction on
Wannier functions.

B. Screening in Koopmans-compliant functionals

The bare Koopmans correction enforces the linearity of
the energy under the assumption that single-particle orbitals
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are frozen upon changing one of the occupation numbers.
In reality, one wants to include the response of the system to
the ionization process (change of occupation) described by
the Koopmans correction, and we account for this response
(i.e., the screening) by introducing the orbital-dependent
coefficients αi in the definition of the KC functional in
Eq. (1). As mentioned earlier, for small molecules [31,32],
it is typically sufficient to compute two values of α, one to
be used for all the occupied orbitals, and the other to be
used for all empty orbitals; these two values can be chosen
by enforcing that the HOMO eigenvalue of a neutral
molecule be equal to the LUMO eigenvalue of the respective
cation, and that the HOMO eigenvalue of an anion molecule
be equal to the LUMO eigenvalue of the neutral one,
respectively. However, determining the screening on frontier
(canonical) orbitals is only meant to act as an average
measure of the response of the electronic system at hand.
In an orbital-resolved framework, screening should be
applied to the individual variational orbitals. Also, in the
solid state limit, there is no difference, e.g., in the valence
band maximum (VBM) for the neutral one and the con-
duction band minimum (CBM) for the singly ionized one.
The finite-difference procedure we adopt here for the

calculation of the screening coefficient αi, corresponding to
a given orbital φi, takes place in two steps and requires two
total-energy calculations corresponding to two different
occupations fi of the orbital φi. A linear-response approach
would be more elegant, and its implementation is under
way [37], but the protocol below can always be used when
linear-response techniques are not available. The goal is to
determine each screening coefficient αi such that the
expectation value of the Koopmans Hamiltonian on the
variational orbital under consideration is independent on its
own occupation:

dEKC

dfi

����
fi¼s

¼
D
φi

���ĤDFT þ αiv̂KCi

���φi

E���
fi¼s

¼ λαiii ¼ constant in s; ð9Þ

where the first identity is the generalization of the Janak
theorem [15] to orbital-density-dependent functionals. In
practice, this is achieved through the procedure illus-
trated below.
Step 1. For a given value of fi ¼ s ∈ ½0; 1�, we minimize

the KC total energy starting with a best-guess trial value of
α ¼ αð0Þ identical for all orbitals. In order to avoid φi
morphing into the VBM (this would always be the most
favorable solution because of the Aufbau principle), φi
is kept frozen during the minimization while imposing the
standard orthogonality condition with all other orbitals
belonging to the same spin channel. For orbitals in the
opposite spin channel, a standard optimization of the orbitals
is performed. At the end of the optimization, the minimum
total energy EKC

i ðsÞ compatible with the constraints imposed

is obtained, and the expectation value λα
ð0Þ

ii ðsÞ of the KC
Hamiltonian on φi is calculated. Typically, we repeat this
constrained minimization for two values s ¼ 0 and s ¼ 1,
with the wave functions initialized to those of the charge-
neutral system computed with the trial screening factor αð0Þ.
Step 2. We search for the optimal value of αi for which

λαiii ð0Þ ¼ λαiii ð1Þ. Within a second-order approximation of
the total energy as a function of fi, and assuming a linear
dependence of λii on αi, this condition leads to the
following expression for αi:

αi ¼ αð0Þ
ΔEi − hφijHDFT

i jφiij0
λα

ð0Þ
ii ð0Þ − hφijHDFT

i jφiij0
; ð10Þ

where ΔEi ¼ EKC
i ðs ¼ 1Þ − EKC

i ðs ¼ 0Þ. This two-step
procedure is applied to compute αi for each variational
orbital [62]. In practice, the number of calculations for αi
can be greatly reduced by exploiting the symmetry of the
variational orbitals, e.g., in bulk silicon there is only one
kind of variational orbital, similar to a bonding Wannier
function. Moreover, because each αi can be computed
independently, these calculations can be run trivially in
parallel.
It is relevant to note that, because of the finite size of the

supercells considered, the variation of s in Step 1 produces
a spurious interaction between the additional charge
density and its periodic replicas, spoiling both EKC

i and
λαiii . In order to overcome this problem, we used three-
dimensional (3D) real-space countercharge corrections
[63,64] for the study of isolated molecules, an image-
charge interaction correction model based on the gener-
alized Makov-Payne method [65] in the case of 3D
crystals, and extrapolations in one dimension and counter-
charges in the other two dimensions for the infinite
polyethylene chain (detailed expressions for these cor-
rections are provided in the Supplemental Material [66]).

C. Localization in Koopmans-compliant functionals,
and the thermodynamic limit

In order to investigate how KC functionals work on
extended systems, we start by calculating the IPs, as the
opposite of the HOMO energies, of linear alkane molecules
(CnH2nþ1—where n > 1) of increasing length. In particu-
lar, we study how the IPs change as a function of molecular
length towards the thermodynamic limit represented by the
infinite polyethylene (PE) chain. This example also clari-
fies the importance of localization when working with KC
functionals.
These alkane chains, with staggered conformation, are

studied in orthorhombic supercells with at least 15 Å of
separation in each direction; to study the infinite poly-
ethylene chain, we consider a supercell containing a CnH2n

(n ¼ 22) repeat unit (≃28.5 Å long), while using a Γ-point
sampling of the Brillouin zone. This is equivalent to a 1 ×
1 × 11 k-point mesh sampling of the Brilloiun zone for the
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primitive cell of formula unit C2H4. Details on the con-
vergence of the IP as a function of vacuum size along these
directions, as well as on the correction for the finite-cell
effects in the z-direction when computing the screening
factors αi, are discussed in Supplemental Material [66].
Calculations have been performed in a plane-wave basis set
using norm-conserving pseudopotentials [67] to describe
ion-electron interactions. The kinetic energy cutoff for
wave functions has been set to 80 Ry.
We show in Fig. 1 the IP energies for 19 CnH2nþ1 alkanes

(n going from 2 to 100) and for the extended polyethylene
chain, computed using DFT-PBE, KI, and KIPZ (the IP
energy is taken as the negative of the KS-HOMO energy or
the KS-VBM with respect to the vacuum level). For all
molecules, we also provide theΔSCF results, where the IP is
computed as the total energy difference between the neutral
molecule and its cation, both at the PBE level. Experimental
and CCSD(T) results are also shown (these latter are only
available for the three smallest alkanes) [68]. We find that the
KI and KIPZ mean absolute errors (MAE) with respect to
experiments are about 0.86 and 0.45 eV, respectively. This
accuracy is comparable with that of CCSD(T), which has a
MAE of about 0.62 eV. In contrast, DFT-PBE significantly
underestimates the IP for these molecules with a MAE of
3.74 eV, reflecting the intrinsic self-interaction error present
in this functional.
As expected, the performance of ΔSCF shows a strong

dependence on system size. For the three smallest molecules,
ΔSCF predicts IPs with an accuracy (MAE ¼ 0.43 eV)
equivalent to that of KC functionals. However, increasing the
size of the alkanes, the discrepancies become more and more
significant, and, as is well known, when approaching the
thermodynamic limit, the ΔSCF IP reduces to the PBE one
[12–14,69]. The failure ofΔSCF in the thermodynamic limit
has been discussed extensively, e.g., for silicon nanocrystals

(see Ref. [69] and associated discussion) and for hydrogen
chains [20]; some of the subtler reasons related to its
application to the exact or approximate (e.g., local) func-
tionals are still debated [20,70,71]. In a nutshell, in an
approximate functional and as the length of the molecule
increases, the HOMO orbital becomes delocalized along
the chain [see Fig. 1(b)]. Removing an electron from this
orbital—which is exactly what happens in a ΔSCF calcu-
lation—only slightly modifies the local value of the charge
density, since the orbital is normalized to 1 when integrating
over the entire system. In the limit of an infinite system, the
ΔSCF IP then reduces to the derivative of the total energy
with respect to the particle number [20], which, for a local or
semilocal density-functional approximation, is the negative
of the KS-DFT HOMO eigenvalue [72] (note that, for the
exact functional, the IP would be correct, as would be the
band gap calculated as ENþ1 þ EN−1 − 2EN [13,69]).
Two possible routes to overcome these limitations are,

e.g., going beyond the local or semilocal nature of the
approximate functionals (e.g., having a nonlocal second
derivative with respect to the density [73,74] or modeling the
discontinuity of the KS potential [75,76]) or retaining the
simplicity of standard density-functional approximations
and working in a localized representation of the orbitals.
The dielectric screening localization suggested by Chan and
Ceder [77], leading indeed to satisfactory prediction of
fundamental band gaps in solids, is an example of the
feasibility of this second route. Since, in KC functionals, the
generalized Koopmans condition is imposed on the varia-
tional orbitals, which are localized [as shown in Fig. 1(c)],
rather than the canonical ones, a nonzero correction is
present also in the thermodynamic limit; this is the central
message of the paper. In fact, KI and KIPZ calculations
predict the IP energy of polyethylene to be 10.50 and
10.07 eV, respectively, in very good agreement with early

FIG. 1. (a): IP energy as negative of the HOMO energy for linear alkane molecules as a function of the inverse of the system length
(Lz in Å) and polyethylene (infinite chain), computed with DFT-PBE, ΔSCF, KI, and KIPZ. ΔSCF and CCSD(T) results refer to IPs
calculated as total energy differences evaluated at the PBE and CCSD(T) level, respectively; the ΔSCF results for Lz → ∞ are an
extrapolation. The right panels show (b) the VBM (canonical) orbital of polyethylene computed with DFT-PBE and (c) two types of
variational orbitals for the same system computed using KIPZ. For these model systems, geometries were not optimized.
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experimental estimates [78] (about 10.0 eV); PBE under-
estimates these values by about 3.5 eV.

III. RESULTS AND DISCUSSION

A. Band energies for solids

Having described how KC functionals work in extended
systems, we apply such formalism to predict the band gap
Eg for a set of 30 compounds, including small gap semi-
conductors and large gap insulators for which accurate
experimental and theoretical reference results are available.
In Fig. 2 and Table I, we show the accuracy of the KC
methods as compared with experiments, standard DFT-
PBE, and state-of-the-art many-body perturbation theory
methods. The zero-point contribution is removed from the
experimental data, when available (see the Supplemental
Material [66] for the complete list). The results show that
in PBE the value of Eg is underestimated with a MAE
and mean absolute percent error (MAPE) with respect to
experiments of about 2.5 eV and 50%, respectively.
Notably, MAEs in KI and KIPZ are down to 0.27 and
0.22 eV; this latter is comparable with that obtained by
quasiparticle self-consistent GW with vertex corrections in
the polarizability [these are accounted for by an effective
exchange-correlation kernel fxc obtained from the Bethe-
Salpeter equation (BSE) [79], or from the bootstrap
approximation [80] ], and more than twice as accurate as
G0W0½PBE� [80,81], which has a MAE of 0.56 eV. In the
present calculations, the experimental lattice constants are
used for consistency with the literature; also, a supercell
technique is used where the Brillouin zone integration is
sampled only at the Γ point. The band gap is estimated as
the energy difference between the highest occupied and the

lowest unoccupied state at this point. The band gap con-
vergence with respect to supercell size has been tested,
yielding an error bar smaller than 0.06 eV. Detailed con-
vergence studies with respect to supercell size and cutoff
energy for the plane wave expansion of wave functions for
each system are presented in the Supplemental Material [66].
To further stress how KC functionals perform in cor-

recting the band gap of extended systems, we consider ZnO
as a paradigmatic case study: this system is known to be a
difficult case to deal with at the GW level, requiring a large
number of empty states and dense k-point sampling for the
calculation of quasiparticle corrections [85,86]. For this
system, the use of KC functionals has two main effects:
first, d states are shifted to a more accurate position with
respect to the top of the valence band, and second, the
fundamental gap is enlarged with respect to that of PBE, in
much better agreement with experiments. The KI and KIPZ
predictions of Eg for ZnO are about 3.96 and 3.76 eV,
respectively, close to the experimental value of 3.6 eV
when the zero-point renormalization correction is consid-
ered (3.44 eV otherwise). At the end of the KC minimi-
zation, three classes of variational orbitals are found,
corresponding also to three different αi screening values:
the d-like orbitals centered on Zn atoms, the σ-like orbitals
localized near O atoms, and the σ�-like orbitals near Zn.
From the analysis of the projected DOS, we find that, with
the optimal αi values, the energy levels of the d-band center
computed by KI and KIPZ are about 6.81 eV and 7.00 eV
with respect to the VBM, close to the experimental values
(7.50–8.81 eV); for reference, the PBE prediction is
5.10 eV and the DFTþ U is 9.00 eV [87]. Figure 3 shows
the density of states (DOS) of ZnO as predicted by KI and
KIPZ and highlights the good agreement with the exper-
imental ultraviolet photoemission spectrum [82].
Overall, we find that KIPZ performs slightly better than

KI in predicting Eg. This can be explained by the fact that
the KIPZ functional is able to modify not only the
electronic excitation energies of approximate DFT func-
tionals, but also the manifold of electronic orbitals (i.e., the
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single-particle KS density-matrix) [30]. In particular, a
more accurate spatial decay of the density matrix is usually
expected as a result of imposing PWL via KIPZ [30].
It is relevant to note that a side effect of having a finite
variational PZ term in KIPZ (or infinitesimal in KI) is a
small symmetry breaking and splitting of the d levels; this
unphysical broken symmetry of the d-orbitals is driven by
the PZ functional and its lack of rotational invariance [54] (in
this case, it does not even affect the band gap of the system
since it only comes from the s- and p-like orbitals [88]).

B. Surfaces: Determination of band edges

Besides the fundamental gap, the accurate determination
of band edge positions is also very important, affecting,
e.g., the band alignment at interfaces. In practice, band edge
positions cannot be extracted directly from periodic bulk
calculations, since an absolute energy reference is needed.
A viable solution is to make reference to the ionization
potential calculated through the use of surface slabs. This
IP is formally defined as the energy difference between
the vacuum level Evac and the VBM. To simplify the
convergence of results with respect to the slab thickness,
the VBM is determined in a separate bulk calculation and
referenced to a local reference potential Vb

ref , which
corresponds to the sum of the electrostatic potential and
the local pseudopotential term [89,90]. The IP is, therefore,
calculated as

IP ¼ ðEvac − Vs
refÞ − ðϵbVBM − Vb

refÞ; ð11Þ

where the superscript “s” (“b”) refers to slab (bulk)
calculations. The slab system is taken sufficiently thick
so that the local reference potential inside the slab Vs

ref
corresponds to Vb

ref . In practice, Evac and Vs
ref are com-

monly determined at the PBE level, which has been shown
to be reasonably accurate in comparison with higher-level
methods such as hybrid functionals [91,92] or GW [93].

Using the above definitions, we carried out calculations
of IPs for six different surfaces, including Si(111), C(111),
GaAs(1010), ZnOð101̄0Þ, TiO2ð110Þ, and MgO(110). For
comparison, we have used the same surface geometries as
in Ref. [80]: 13 atomic layers for GaAs(1010), 12 atomic
layers for the TiO2 and MgO (110) surfaces, and 24 atomic
layers for the (111) reconstructed surface of Si, Ge, and
diamond. The thickness of the vacuum region (25 Å) has
been chosen to ensure that there are no interactions between
periodic images, and it has been kept the same for all slabs.
Results are reported in Fig. 4 and Table I, showing that the
accuracy of the KC functionals is not only much higher
than PBE, but also compares favorably with the G0W0 and
QSGW̃ methods (performed on the same geometries [80]),
being basically twice as accurate. As mentioned, QSGW̃
uses an approximate bootstrap exchange-correlation kernel
[80] to account for vertex corrections in the polarizability.
We note that KC functionals perform equally well for both
IPs and band gaps, with a MAE of around 0.2 eV for the
KIPZ functional (see Table I). Within the diagrammatic
technique, the inclusion of the vertex correction in the
polarizability alone is adequate for band gaps, but not
enough for IPs, for which further improvements could be
achieved by the inclusion of vertex corrections also in the
self-energy [94]. It is noteworthy that the KI method does
not change the ground-state density of the base functional,
making KI Evac and Vs

ref identical to those computed at the
PBE level. This is not true for the KIPZ functional and, to
overcome this inconsistency, one might compute also Evac
and Vs

ref at the KIPZ level; work in this direction could be
considered for a future study.

IV. CONCLUSIONS

We have investigated Koopmans-compliant functionals in
the case of extended systems, comparing the results with
experimental data and state-of-the-art many-body perturba-
tion theory for a broad range of well-characterized semi-
conductors and insulators. In doing so, we have developed
an approach to compute orbital-dependent screening
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ZnO(110)

TiO 2
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MgO(110)

5

6

7

8
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 [e
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]
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FIG. 4. Ionization potential (in eV) of six different surfaces,
including Si(111), C(111), GaAs(1010), ZnOð101̄0Þ, TiO2ð110Þ,
and MgO(110), calculated using PBE, KI, and KIPZ. The results
are compared to experimental values taken from Ref. [80].

TABLE I. Mean absolute errors (MAE, in eV) andmean absolute
percent errors (MAPEs, in percent) with respect to experiments for
(i) band gaps of 16 solids presented in Fig. 2 for which exper-
imental, G0W0, and quasiparticle self-consistentGWwith approxi-
mate vertex-correction (QSGW̃) data are available (see Table II of
the Supplemental Material [66] and Refs. [79–81]), and (ii) IP of
six surfaces presented in Fig. 4. Experimental values for solid band
gap and surfaces are taken from Refs. [80,82–84], respectively.

PBE G0W0 KI KIPZ QSGW̃

Eg MAE (eV) 2.54 0.56 0.27 0.22 0.18
MAPE (%) 48.28 12.10 7.09 5.37 4.46

IP MAE (eV) 1.09 0.39 0.19 0.21 0.49
MAPE (%) 15.58 5.71 2.99 3.14 7.41
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coefficients for KC functionals with finite differences, and
we have applied it to predict IPs and band gaps for both finite
and extended systems. First, we have discussed KC func-
tionals for the case of one-dimensional systems with
increasing size, as the thermodynamic limit is reached.
This analysis has reiterated the importance of imposing
the criterion of piecewise linearity on localized orbitals, at
variance with the ΔSCF approach, which can only use
canonical orbitals to predict IPs and EAs and breaks down in
extended systems. Then, we have studied reference solids
and shown that the KI and KIPZ functionals can yield very
accurate results for band gaps of different semiconductors
and insulators, with mean absolute errors that are of the order
of 0.2 eV, and comparable with the most accurate QSGW̃.
The comparison is even more favorable for the IPs studied,
with an accuracy doubled with respect to QSGW̃. These
results are more remarkable considering that the fundamental
ingredient in our functionals remains the PBE generalized-
gradient approximation, and they have been obtained with a
functional theory of the occupied states. Their accuracy and
simplicity, given the computational costs broadly com-
parable to standard density-functional theory, make KC
functionals very attractive for studying electronic levels in
complex materials and devices. It also reiterates the
suggestion that charged excitations, such as electron
additions and removals, can be studied not only with
diagrammatic approaches, such as GW, but with func-
tional theories that are dynamical (i.e., frequency depen-
dent) and even local (as discussed in Refs. [33,39]), with
KC functionals taking the role of approximated spectral
functionals, i.e., able to reproduce not only the total energy,
but also the spectral properties of the system at hand.
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