
 

Magnetotransport in a Model of a Disordered Strange Metal

Aavishkar A. Patel,1,2 John McGreevy,3 Daniel P. Arovas,3 and Subir Sachdev1,4,5
1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

2Kavli Institute for Theoretical Physics, University of California,
Santa Barbara, California 93106-4030, USA

3Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
4Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5
5Department of Physics, Stanford University, Stanford, California 94305, USA

(Received 30 December 2017; revised manuscript received 4 March 2018; published 22 May 2018)

Despite much theoretical effort, there is no complete theory of the “strange” metal state of the high
temperature superconductors, and its linear-in-temperature T resistivity. Recent experiments showing an
unexpected linear-in-field B magnetoresistivity have deepened the puzzle. We propose a simple model of
itinerant electrons, interacting via random couplings, with electrons localized on a lattice of “quantum dots”
or “islands.” This model is solvable in a particular large-N limit and can reproduce observed behavior. The
key feature of our model is that the electrons in each quantum dot are described by a Sachdev-Ye-Kitaev
model describing electrons without quasiparticle excitations. For a particular choice of the interaction
between the itinerant and localized electrons, this model realizes a controlled description of a diffusive
marginal-Fermi liquid (MFL) without momentum conservation, which has a linear-in-T resistivity and a
T lnT specific heat as T → 0. By tuning the strength of this interaction relative to the bandwidth of the
itinerant electrons, we can additionally obtain a finite-T crossover to a fully incoherent regime that also has
a linear-in-T resistivity. We describe the magnetotransport properties of this model and show that the MFL
regime has conductivities that scale as a function of B=T; however, the magnetoresistance saturates at large
B. We then consider a macroscopically disordered sample with domains of such MFLs with varying
densities of electrons and islands. Using an effective-medium approximation, we obtain a macroscopic
electrical resistance that scales linearly in the magnetic field B applied perpendicular to the plane of the
sample, at largeB. The resistance also scales linearly in T at small B, and as TfðB=TÞ at intermediate B. We
consider implications for recent experiments reporting linear transverse magnetoresistance in the strange
metal phases of the pnictides and cuprates.
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I. INTRODUCTION

Essentially all correlated electron high temperature
superconductors display an anomalous metallic state at
temperatures above the superconducting critical temper-
ature at optimal doping [1–3]. This metallic state has a
“strange,” linearly increasing dependence of the resistivity
ρ on temperature T; it can also exhibit bad metal behavior
with a resistivity much larger than the quantum unit ρ ≫
h=e2 (in two spatial dimensions) [4]. More recently, strange
metals have also been demonstrated to have a remarkable
linear-in-B magnetoresistance, with the crossover between

the linear-in-T and linear-in-B behavior occurring at
μBB ∼ kBT [5,6].
This paper will present a model of a strange metal that

exhibits the above linear-in-T and linear-in-B behavior. The
model builds on a lattice array of “quantum dots,” each of
which is described by a Sachdev-Ye-Kitaev (SYK) model
of fermions with random all-to-all interactions [7,8]. The
SYKmodels are (0þ 1)-dimensional quantum theories that
exhibit a “local criticality.” They have drawn a great deal of
interest for a variety of reasons:

(i) The SYK models are the simplest solvable models
without quasiparticle excitations. They can also be
used as fully quantum building blocks for theories of
strange metals in nonzero spatial dimensions [9,10].

(ii) The SYK models exhibit many-body chaos [8,11]
and saturate the lower bound on the Lyapunov time to
reach chaos [12]. So, they are “the most chaotic”
quantummany-body systems. The presence of maxi-
mal chaos is linked to the absence of quasiparticle
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excitations and the proposed [13] lower bound of
order ℏ=ðkBTÞ on a “dephasing time.” It is important
to note here that the coexistence of many-body chaos
and solvability is quite remarkable: Essentially all
other solvable models (e.g., integrable lattice models
in one dimension) do not exhibit many-body chaos.

(iii) Related to their chaos, the SYK models exhibit [14]
eigenstate thermalization (ETH) [15,16], and yet
many aspects are exactly solvable.

(iv) The SYKmodels are dual to gravitational theories in
1þ 1 dimensions that have a black hole horizon.
The connection between the SYK models and black
holes with a near-horizon AdS2 geometry was
proposed in Refs. [17,18] and made much sharper
in Refs. [8,19,20]. This connection has been used to
examine aspects of the black hole information
problem [21].

More specifically, a single SYK site is a (0þ 1)-
dimensional non-Fermi liquid in which the imaginary-time
(τ) fermion Green’s function has the low T “conformal”
form [7,9,22,23]

GðτÞ ∼
�

T
sinðπTτÞ

�
1=2

e−2πETτ; 0 < τ < 1=T; ð1:1Þ

where E is a parameter controlling the particle-hole asym-
metry. In frequency space, this correlator is GðωÞ ∼ 1=

ffiffiffiffi
ω

p
for ω ≫ T, and this implies non-Fermi liquid behavior. A
Fermi liquid has the exponent 1=2 in Eq. (1.1) replaced by
unity, and a constant density of states with GðωÞ frequency
independent. The Green’s function in Eq. (1.1) implies [7] a
“marginal” [24] susceptibility χ, with a real part that diverges
logarithmically with vanishing frequency (ω) or T.
Specifically, in the all-to-all limit of the SYK model, vertex
corrections are subdominant, and the Fourier transform of
χðτÞ ¼ −GðτÞGð−τÞ leads to the spectral density

ImχðωÞ ∼ tanh

�
ω

2T

�
; ð1:2Þ

whose Hilbert transform leads to the noted logarithmic
divergence. In contrast, a Fermi liquid has ImχðωÞ ∼ ω. The
form in Eq. (1.2) is consistent with recent electron scattering
observations [25]. A linear-in-T resistivity now follows
upon considering itinerant fermions scattering off such a
local susceptibility, and the itinerant fermions realize a
marginal Fermi liquid (MFL) with a ω lnω self-energy
[7,17,24,26].
We now review previous approaches to building a

finite-dimensional non-Fermi liquid from the (0þ 1)-
dimensional SYK model. An early model for a bulk strange
metal in finite spatial dimensions was provided by Parcollet
and Georges [9]. They considered a doped Mott insulator
described by a random t − J model at hole density δ, where
t is the root-mean-square (rms) electron hopping, and J is

the rms exchange interaction. At low doping with
δt ≪ J, they found strange metal behavior in the inter-
mediate T regime Ec < T < J, where the coherence energy
Ec ¼ ðδtÞ2=J. In this intermediate energy range, they found
that the electron Green’s function had the local form of the
SYK model in Eq. (1.1). Moreover, this metal had “bad
metal” resistivity with ρ ∼ ðh=e2ÞðT=EcÞ ≫ ðh=e2Þ. We
will refer to such a strange metal as an “incoherent metal”
(IM). This IM is to be contrasted from a MFL, which we
will describe below; the MFL does not appear in the model
of Parcollet and Georges.
Another finite-dimensional model of an IM appeared in

the recent work of Song et al. [10]. They considered a
lattice of SYK sites, with rms on-site interactionU, and rms
intersite hopping t. Each site was a quantum dot with N
orbitals and had random on-site interactions with typical
magnitude U. Electrons were allowed to hop between
nearest-neighbor states, with a random matrix element of
magnitude t. Although this is a model with strong inter-
actions, the remarkable fact is that the random nature of the
interactions renders it exactly solvable. As in Ref. [9], Song
et al. found an IM in the intermediate regime Ec < T < U,
with a local electron Green’s function, as in Eq. (1.1), and a
bad metal resistivity ρ ∼ ðh=e2ÞðT=EcÞ. Their coherence
scale was Ec ¼ t2=U. (This lattice SYK model should be
contrasted from earlier studies [27,28], which only had
fermion interaction terms between neighboring SYK sites:
The latter models realize disordered metallic states without
quasiparticle excitations asT → 0, but have a T-independent
resistivity.)
Although these models [9,10] reproduce bad metal

resistivity, we will show here that they are unable to
describe the experimentally observed large magnetoresist-
ance noted earlier [5,6]. The random nature of the hopping
between the sites, and the associated absence of a Fermi
surface, results in negligible magnetoresistance. Significant
orbital magnetoresistance only appears in models that have
fermions with nonrandom hopping and a well-defined
Fermi surface. Note that the existence of a Fermi surface
does not directly imply the presence of well-defined
quasiparticles: It is possible to have a sharp Fermi surface
in momentum space (where the inverse fermion Green’s
function vanishes) while the quasiparticle spectral function
is broad in frequency space.
With the aim of obtaining a well-defined Fermi

surface of itinerant electrons, in this paper we consider
a lattice of SYK “islands” coupled to a separate band of
itinerant conduction electrons, as illustrated in Fig. 1.
Our model is in the spirit of effective Kondo lattice
models that have been proposed as models of the
physics of the disordered, single-band Hubbard model
[29–31]. The other two band models of itinerant
electrons coupled to SYK excitations have been con-
sidered in Refs. [32,33]. Our model exhibits MFL
behavior as T → 0, with a linear-in-T resistivity, and
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a T lnT specific heat. For an appropriate range of
parameters, there is a crossover at higher T to an IM
regime, also with a linear-in-T resistivity. The itinerant
electrons have a nonrandom hopping t, the SYK sites
have a random interaction with rms strength J, and these
two subsystems interact with a random Kondo-like
exchange of rms strength g; see Fig. 1(a) for a
schematic illustration. Figure 1(b) illustrates the regimes
of MFL and IM behavior in our model. In the MFL
regime, our model exhibits a well-defined Fermi surface,
albeit of damped quasiparticles.
The magnetotransport properties of this model will be

a significant focus of our analysis. We will show that the
MFL regime with a Fermi surface indeed has a sizable
magnetoresistance, with characteristics in accord with
observations. We find that the longitudinal and Hall
conductivities of the MFL regime can be written as
scaling functions of B=T, as shown in Eq. (4.12). In
contrast, the B dependence is much less singular in the
IM regime. Although a B=T scaling is obtained in the
MFL in this computation, the magnetoresistance does
not increase linearly with B and instead saturates at
large B. To obtain a nonsaturating magnetoresistance,
we consider a macroscopically disordered sample with
domains of MFLs with varying electron densities;
employing earlier work on classical electrical transport
in inhomogeneous ohmic conductors [34–40], we obtain
the observed linear-in-B magnetoresistance with a cross-
over scale at B ∼ T.
This paper is organized as follows: In Sec. II, we

introduce our basic microscopic model of a disordered
MFL, and we determine its single-electron properties and
finite-temperature crossovers in Sec. III. In Sec. IV, we
solve for transport and magnetotransport properties of this
basic model exactly in various analytically tractable
regimes. In Sec. V, we introduce the effective-medium

approximation and apply it to a macroscopically disordered
sample containing domains of the basic model, obtaining
analytical results for the global magnetotransport properties
for certain simplified considerations of macroscopic dis-
order. We summarize our results and place them in the
context of recent experiments in Sec. VI.

II. MICROSCOPIC MODEL

We consider M flavors of conduction electrons c hop-
ping on a lattice that are coupled locally and randomly to
SYK islands on each lattice site [Fig. 1(a)]. The islands
contain N flavors of valence electrons f, which interact
among themselves in such a way that they realize SYK
models. The Hamiltonian for our system is given by

H¼−t
XM

hrr0i;i¼1

ðc†ricr0iþH:c:Þ−μc
XM
r;i¼1

c†ricri−μ
XN
r;i¼1

f†rifri

þ 1

NM1=2

XN
r;i;j¼1

XM
k;l¼1

grijklf
†
rifrjc

†
rkcrl

þ 1

N3=2

XN
r;i;j;k;l¼1

Jrijklf
†
rif

†
rjfrkfrl: ð2:1Þ

We will take the limits of M ¼ ∞ and N ¼ ∞, but we will
be interested in values of M=N that are at most Oð1Þ. We
choose Jrijkl and grijkl as independent complex Gaussian

random variables, with ⟪JrijklJ
r0
lkij⟫ ¼ ðJ2=8Þδrr0 and

⟪grijklg
r0
jilk⟫ ¼ g2δrr0 and all other ⟪̈ ⟫’s being zero, where

⟪̈ ⟫ denotes disorder averaging. Note that t is nonrandom,
and this will lead to a Fermi surface for the c fermions. The
disorder-averaged action then is

(a) (b)

FIG. 1. (a) Our microscopic model. Itinerant conduction electrons (green) hop around on a lattice (black). At each lattice site,
they interact locally and randomly with SYK quantum dots (blue) through an interaction (orange) that independently conserves the
numbers of conduction and island electrons. (b) Finite-temperature regimes of the model. When the conduction
electron bandwidth is large enough, it realizes a disordered marginal-Fermi liquid (MFL) for the conduction electrons for all
temperatures T ≪ J (Sec. III A). For a finite bandwidth, there can be a finite-temperature crossover to an incoherent metal (IM), in
which all notion of electron momentum is lost, if the coupling g is large enough (Sec. III B). Note that we always have
J ≫ T and J ≳ g.
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S ¼
Z

β

0

dτ

�XM
r;i¼1

c†riðτÞð∂τ − μcÞcriðτÞ − t
XM

hrr0i;i¼1

ðc†riðτÞcr0iðτÞ þ H:c:Þ þ
XN
r;i¼1

f†riðτÞð∂τ − μÞfriðτ0Þ
�

−M
g2

2

X
r

Z
β

0

dτdτ0Gc
rðτ − τ0ÞGc

rðτ0 − τÞGrðτ − τ0ÞGrðτ0 − τÞ − N
J2

4

X
r

Z
β

0

dτdτ0G2
rðτ − τ0ÞG2

rðτ0 − τÞ

− N
X
r

Z
β

0

dτdτ0Σrðτ − τ0Þ
�
Grðτ0 − τÞ þ 1

N

XN
i¼1

f†riðτÞfriðτ0Þ
�

−M
X
r

Z
β

0

dτdτ0Σc
rðτ − τ0Þ

�
Gc

rðτ0 − τÞ þ 1

M

XM
i¼1

c†riðτÞcriðτ0Þ
�
; ð2:2Þ

where we have followed the usual strategy for SYK models [23,28] and introduced the auxiliary fields G, Σ, Gc, and Σc,
corresponding to Green’s functions and self-energies of the f and c fermions, respectively, at each lattice site. In the M,
N ¼ ∞ limit, the integrals over the Σ, Σc fields enforce the definitions ofG,Gc at each lattice site r. The largeM, N saddle-
point equations are obtained by varying the action with respect to these G and Σ fields after integrating out the fermions:

Σrðτ − τ0Þ ¼ Σðτ − τ0Þ ¼ −J2G2
rðτ − τ0ÞGrðτ0 − τÞ −M

N
g2Grðτ − τ0ÞGc

rðτ − τ0ÞGc
rðτ0 − τÞ

¼ −J2G2ðτ − τ0ÞGðτ0 − τÞ −M
N
g2Gðτ − τ0ÞGcðτ − τ0ÞGcðτ0 − τÞ;

GðiωnÞ ¼
1

iωn þ μ − ΣðiωnÞ
; ð2:3Þ

and

Σc
rðτ − τ0Þ ¼ Σcðτ − τ0Þ ¼ −g2Gc

rðτ − τ0ÞGrðτ − τ0ÞGrðτ0 − τÞ ¼ −g2Gcðτ − τ0ÞGðτ − τ0ÞGðτ0 − τÞ;

GcðiωnÞ ¼
Z

ddk
ð2πÞd

1

iωn − ϵk þ μc − ΣcðiωnÞ
≡

Z
ddk
ð2πÞd G

cðk; iωnÞ: ð2:4Þ

The last expression shows that the c fermions have a
dispersion ϵk and an associated Fermi surface; the lifetime
of the Fermi surface excitations will be determined by the
frequency dependence of Σc, which will be computed in the
next section. We define chemical potentials such that half-
filling occurs when μ ¼ μc ¼ 0. The islands are not capable
of exchanging electrons with the Fermi sea, so there is no
reason a priori to have μ ¼ μc, or even for islands at
different sites to have the same μ. However, for conven-
ience, we will keep the μ of all the islands the same. The
real system would operate at fixed densities, and μ and μc
will appropriately renormalize as the mutual coupling g is
varied, in order to keep the densities of c and f individually
fixed, as the interaction between c and f conserves their
numbers individually. However, as we shall find, the half-
filled case always corresponds to μ ¼ μc ¼ 0 regardless of
g. We will always have J ≫ T in this work, and also J ≳ g.
A sketch of the phases realized by our model as a function
of temperature is shown in Fig. 1(b).

III. FATE OF THE CONDUCTION ELECTRONS

A. The case of infinite bandwidth

We first consider the case of infinite bandwidth or,
equivalently, t ≫ g, J ≫ T. The precise value of μc does

not matter as long as its magnitude is not infinite, as the
conduction electrons float on an effectively infinitely deep
Fermi sea. Then, we can use the standard trick for
evaluating integrals about a Fermi surface, and we have

GcðiωnÞ ¼
Z

ddk
ð2πÞd

1

iωn − ϵk þ μc − ΣcðiωnÞ
→ νð0Þ

Z
∞

−∞

dε
2π

1

iωn − ε − ΣcðiωnÞ
; ð3:1Þ

where νð0Þ is the density of states at the Fermi energy.
We take the lattice constant a to be 1. This makes k

dimensionless by redefining ka to be k. The energy
dimension of ϵk then comes from the inverse band mass.
The density of states νð0Þ then has the dimension of
1/(energy) [on a lattice νð0Þ ∼ 1=t ∼ 1=Λ, where Λ is the
bandwidth].
We will also have sgnðIm½ΣcðiωnÞ�Þ ¼ −sgnðωnÞ, so

GcðiωnÞ ¼ −
i
2
νð0ÞsgnðωnÞ;

GcðτÞ ¼ −
νð0ÞT

2 sinðπTτÞ ; −β ≤ τ ≤ β; ð3:2Þ
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with other intervals obtained by applying the Kubo-
Martin-Schwinger (KMS) condition GcðτþβÞ¼−GcðτÞ.
At T ¼ 0, we have

Gcðτ; T ¼ 0Þ ¼ −
νð0Þ
2πτ

: ð3:3Þ

WeconsiderM=N ¼ 0 to beginwith. Then, thef electrons
are not affected by the c electrons, and theirGreen’s functions
are exactly of the incoherent form of the SYKmodel, which,
in the low-energy limit, are given by [23]

GðτÞ ¼ −
π1=4cosh1=4ð2πEÞ
J1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−4πE

p
×

�
T

sinðπTτÞ
�

1=2
e−2πETτ; 0 ≤ τ < β; ð3:4Þ

where E is a function of μ, with E ∝ −μ=J for small μ=J.
Other intervals are again obtained by the KMS condition
Gðτ þ βÞ ¼ −GðτÞ. The zero-temperature limit of this, and
similar expressions appearing later, can be straightforwardly
taken [23]:

Gðτ > 0; T ¼ 0Þ ¼ −
cosh1=4ð2πEÞ

π1=4J1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−4πE

p 1

τ1=2
;

Gðτ < 0; T ¼ 0Þ ¼ cosh1=4ð2πEÞ
π1=4J1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e4πE

p 1

jτj1=2 : ð3:5Þ

Now we can compute the self-energy of the c fermions,
which is

ΣcðτÞ¼−g2GcðτÞGðτÞGð−τÞ

¼−
π1=2g2νð0ÞT2

4Jcosh1=2ð2πEÞsin2ðπTτÞ ; 0≤ τ< β: ð3:6Þ

Fourier transforming with a cutoff of τ at J−1 ≪ T−1 and
β − J−1 gives

ΣcðiωnÞ¼
ig2νð0ÞT

2Jcosh1=2ð2πEÞπ3=2

×

�
ωn

T
ln

�
2πTeγE−1

J

�
þωn

T
ψ

�
ωn

2πT

�
þπ

�
;

ð3:7Þ

where ψ is the digamma function and γE is the
Euler-Mascheroni constant. As foreseen, this satisfies
sgnðIm½ΣcðiωnÞ�Þ¼−sgnðωnÞ on the fermionic Matsubara
frequencies. For jωnj ≫ T,

ΣcðiωnÞ →
ig2νð0Þ

2J cosh1=2ð2πEÞπ3=2 ωn ln

�jωnjeγE−1
J

�
: ð3:8Þ

Note the MFL form of the itinerant c fermion self-energy,
∼ω lnω. Since the large N and M limits are taken at the
outset, thisMFL is stable even asT → 0. For finiteN andM,
the coupling g is irrelevant in the infrared (IR) [33], and the
model reduces to a theory of noninteracting electrons as
T → 0, with the MFL existing only above a temperature
scale whose magnitude is suppressed by N and the zero-
temperature entropy going to zero.
Upon analytically continuing iωn → ωþ i0þ, we get the

inverse lifetime for the conduction electrons defined by

γ ≡ −2Im½Σc
Rð0Þ�≡ −Im½Σcðiωn → 0þ i0þÞ�

¼ g2νð0ÞT
J cosh1=2ð2πEÞπ1=2 : ð3:9Þ

Since the coupling of the conduction electrons to the
SYK islands is spatially disordered, this rate also represents
the transport scattering rate up to a constant numerical
factor. The scattering of c electrons off the islands
requires the f electrons inside the islands to move between
orbitals. Hence, γ vanishes when the islands are flooded
or drained by sending E → ∓∞, respectively, say, by
doping them.
If we do not have M=N ¼ 0, the SYK Green’s function

will be affected, as there is a backreaction self-energy to the
SYK islands. To see what this does when we perturbatively
turn on M=N, we compute it with the M=N ¼ 0 Green’s
functions, with a cutoff of τ at J−1 and β − J−1:

Σ̃ðτÞ¼−
M
N
g2GðτÞGcðτÞGcð−τÞ

≈−
Mπ1=4 cosh1=4ð2πEÞg2ν2ð0ÞT5=2e−2πETτ

4NJ1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þe−4πE

p
sin5=2ðπTτÞ

: ð3:10Þ

If E ¼ 0, then Σ̃ðiωnÞ ∝ iðM=NÞg2ν2ð0Þωn as T, ωn → 0,
which is subleading to ΣðiωnÞjM=N¼0 ∼ ðJωnÞ1=2, so the
SYK character of the islands survives in the IR.
Now we consider the case of particle-hole symmetry

breaking with a nonzero spectral asymmetry, E in Eq. (1.1);
we will find that the basic structure of the results described
above persists. If E ≠ 0 but is small, then for T → 0,
Σ̃ðiωn → 0Þ ∼ −ðM=NÞg2ν2ð0ÞJE ∝ ðM=NÞg2ν2ð0Þμþ
OðiωnÞ. In contrast, Σðiωn → 0ÞjM=N¼0 ∼ μ þ Oðω1=2

n Þ.
Therefore, the frequency-dependent part of Σ̃ is still
subleading. Hence, in the IR we may still assume
that all that happens to the SYK islands is that
their chemical potential μ gets renormalized. By solving
Re½Σðiωn → 0; T ¼ 0Þ� ¼ μ, we obtain the corrected
E ↔ μ relation. At small μ=J, this is

E ≈ −
μ=J

π1=4
ffiffiffi
2

p ð1þ g2ν2ð0ÞM
6π3=2N

Þ
: ð3:11Þ
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The total particle number on each island, N r ¼
P

if
†
irfir,

commutes with H. Since the SYK particle density Q ¼
N =N is a universal function of E, independent of μ and J,
Eq. (3.11) just implies a renormalization of the nonuniversal
UV parts of the SYK Green’s function and the island
chemical potential, while the particle density remains fixed.
Similarly, the vanishing of the zero-frequency real part of
Eq. (3.7) regardless of E implies that there is no renorm-
alization of either the density or chemical potential of the
conduction electrons in this infinite-bandwidth limit, since
their number is independently conserved as well. For a
finite bandwidth, the chemical potential of the conduction
electrons renormalizes in such a way that their density
remains fixed.
In Appendix A, we consider the effects of adding a “pair-

hopping” term to Eq. (2.1),

H → H þ 1

NM1=2

XN
r;i;j¼1

XM
k;l¼1

½ηrijklf†rif†rjcrkcrl þ H:c:�;

ð3:12Þ

with ⟪jηrijklj2⟫ ¼ η2=8, and J ≳ η. This term has identical
power-counting to the f†fc†c term, but can trade c
electrons for f electrons and vice versa. Since the numbers
of c and f electrons are no longer independently conserved
in this case, there is only one chemical potential, and
μc ¼ μ. We find that this term also generates a MFL as long
as the bandwidth of the c electrons is large.
As is well known, the marginal-Fermi liquid self-

energy we obtained in Eqs. (3.7) and (3.8) also leads to
the leading low-temperature contribution to the specific
heat coming from the itinerant electrons scaling as CMFL

V ∼
Mg2½νð0Þ�2ðT=JÞ lnðJ=TÞ [41]. Note that the entropy
has a nonvanishing T → 0 limit from the contribution of
the SYK islands in the limit of N → ∞ [42], but this does
not contribute to the specific heat. The contribution to the
specific heat coming from the SYK islands scales linearly
in T as T → 0 [28], which is subleading to the T lnT
contribution of the itinerant electrons.

B. The case of a finite bandwidth

This subsection will show that a finite bandwidth does
not modify the basic structure of the low-temperature MFL
phase described above. However, if interactions between c
and f are strong enough, a crossover into an IM phase is
possible at higher temperatures. Readers not interested
in the details of the arguments can move ahead to the
next section.
If the bandwidth (and hence Fermi energy) of the

conduction electrons is sizable compared to the couplings,
then the momentum-integrated local Green’s function
GcðiωnÞ is no longer independent of the details of the
self-energy ΣcðiωnÞ. We consider two spatial dimensions,
with the isotropic dispersion εk ¼ k2=ð2mÞ − Λ=2, and a

bandwidth εmax
k − εk¼0 ¼ Λ. Since k is dimensionless, the

band massm has dimensions of 1=ðenergyÞ. The density of
states is then just νðεÞ ¼ νð0Þ ¼ m, at all energies ε, and we
implicitly make use of this fact while simplifying and
rewriting certain expressions. On a lattice, m ∼ νð0Þ∼
1=t ∼ 1=Λ.
The momentum-integrated conduction electron Green’s

function is

GcðiωnÞ ¼
νð0Þ
2π

ðln½Λþ 2μc þ 2iωn − 2ΣcðiωnÞ�
− ln½2μc − Λþ 2iωn − 2ΣcðiωnÞ�Þ: ð3:13Þ

We still expect sgnðIm½ΣcðiωnÞ�Þ ¼ −sgnðωnÞ. The chemi-
cal potential μc must now take an appropriate value to
reproduce the correct density of conduction electrons. The
conduction band filling is given by

Qc ¼
2πGcðτ ¼ 0−Þ

νð0ÞΛ ; ð3:14Þ

for the exact solution to Gc, which can be found by the
imaginary-time MATLAB code ggc.m [43] (the low-energy
“conformal-limit” solutions described below are not valid
at the short times 0− and do not display this property).
In general, the Dyson equations can now only be solved

numerically, which the imaginary-time MATLAB code
ggc.m [43] and real-time MATLAB code ggcrealtime.m
[44] do, albeit by holding the chemical potentials μ and μc,
rather than densities, fixed. In an extreme limit where jiωn þ
μc − ΣcðiωnÞj far exceeds the bandwidth for all ωn, which
can happen only at T ≠ 0, we have a simplification of
Eq. (3.13), obtained by expanding in Λ,

GcðiωnÞ ¼
Λνð0Þ

2π½iωn þ μc − ΣcðiωnÞ�
: ð3:15Þ

This then leads to a SYK solution in the low-energy
conformal limit for both G and Gc, realizing a fully
incoherent metal. We use the trial solutions

GcðτÞ¼−
Ccffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þe−4πEc
p �

T
sinðπTτÞ

�
1=2

e−2πEcTτ;

GðτÞ¼−
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þe−4πE
p �

T
sinðπTτÞ

�
1=2

e−2πETτ; 0≤ τ< β:

ð3:16Þ

Ec is universally related to the conduction band filling,
with Ec ¼ 0 at half filling, and Ec →∓ ∞ when the band is
full or empty, respectively. When M=N ¼ 0, there is no
backreaction to the islands, and G is given by (3.4).
We use the conditions Re½Σcðiωn → 0; T ¼ 0Þ� ¼ μc and
Gcðiωn→0;T¼0Þ¼Λνð0Þ=ð2π½μc−Σcðiωn→ 0;T¼ 0Þ�Þ
to determine Cc, and also μc in terms of the fixed Ec. Cutting
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off τ integrals in the Fourier transforms at a distance α−1UV
from singularities, we have

Cc¼
cosh1=4ð2πEÞ
21=2π1=4J1=2IM

; JIM≡ g2

JΛνð0Þ ; and

Ec≈−
π1=4cosh1=4ð2πEÞμc

gΛ1=2ν1=2ð0Þ

ffiffiffiffiffiffiffiffi
J

αUV

s
ðat small μc=gÞ; ð3:17Þ

with no feedback on the SYK islands. For Eq. (3.15) to derive
from Eq. (3.13), this requires jμc−Σcðiωn→0Þj≫Λ or

T ≫ T inc ≡ ΛJ
νð0Þg2 : ð3:18Þ

Furthermore, for Eqs. (3.4) and (3.16) to hold, we also
need J ≫ T inc and JIM ≫ T inc, implying g2 ≫ ΛJ. For
T ≪ T inc, we go back to the MFL, which now has a UV
cutoff of T inc instead of J, with its self-energy going as
ΣcðiωnÞ ∼ ðg2νð0Þ=JÞiωn lnðjωnj=T incÞ. The choice of the
UV cutoff αUV in the IM only affects the nonuniversal
Ec ↔ μc relation. An appropriate choice of the cutoff
is αUV ∼ JIM ≲ J.
Turning on a small but finite M=N, we have to addi-

tionally use the conditions Re½Σðiωn → 0; T ¼ 0Þ� ¼ μ and
Gðiωn → 0; T ¼ 0Þ ¼ 1=½μ − Σðiωn → 0; T ¼ 0Þ� simul-
taneously to determine a renormalized C and renormalized
μ, while keeping E fixed as before. We again cut off τ
integrals in the Fourier transforms at a distance α−1UV from
singularities. This gives

C ¼ cosh1=4ð2πEÞ π
1=4

J1=2

�
1 −

M
N
Λνð0Þ
2π

coshð2πEÞ
coshð2πEcÞ

�
1=4

;

Cc ¼
cosh1=2ð2πEÞΛ1=2ν1=2ð0Þ

21=2Cg
; ð3:19Þ

and we do not show the nonuniversal E, Ec ↔ μ, μc
relations because they are rather uninsightful and the
physics is better described in terms of E, Ec, which
universally represent the conserved densities.
If M=N is increased to approach ½2π coshð2πEcÞ�=

½Λνð0Þ coshð2πEÞ�, the condition for incoherence that
jiωn þ μc − ΣcðiωnÞj exceed the bandwidth for all ωn
becomes harder to fulfill, and larger and larger values of
the coupling g are required to achieve the IM phase at high
temperatures.
When M=N > ½2π coshð2πEcÞ�=½Λνð0Þ coshð2πEÞ�, we

still recover the MFL deep enough in the IR, due to the
backreaction self-energy Σ̃ being irrelevant, and the con-
duction electron self-energy Σc also vanishing at the lowest
energies. However, at values of the coupling g large enough
so that effects of the conduction electron bandwidth may be
ignored above a certain temperature, we find a crossover

into a different IM phase, with local Green’s functions
given by (at half-filling)

GcðτÞ ∼
�

T
sinðπTτÞ

�
Δc

;

GðτÞ ∼
�

T
sinðπTτÞ

�
1−Δc

; 0 < Δc < 1=2; ð3:20Þ

with Δc given by the solution to the equation

�
Δc

1 − Δc

�
cot2

�
πΔc

2

�
¼ M

N
Λνð0Þ
2π

; ð3:21Þ

which has the property that Δc → 0 as M=N → ∞ and
Δc → 1=2 as M=N → 2π=½Λνð0Þ�. These Green’s func-
tions may be derived by solving the Dyson equations (2.3)
and (2.4), while ignoring both the conduction electron
dispersion and the coupling J. Indeed, with the scalings in
Eq. (3.20), the term proportional to J2 in the expression for
ΣðτÞ is irrelevant compared to the other term. This phase
has a resistivity that scales as T2ð1−ΔcÞ. Since we are
only interested in models with linear-in-T resistivities,
we will henceforth assume that M=N is small enough to
avoid this regime.
Since νð0Þ ∼ 1=Λ ∼ 1=t on a lattice, fine-tuning g ∼ J ∼

Λ ≫ T makes the scattering rate in Eq. (3.9) “Planckian,”
i.e., an Oð1Þ number times T, since it is given by ratios of
large quantities. The MFL does not break down if we do
this. In Eq. (3.13), jΣc½iðωn ∼ TÞ�j ∼ T lnT=J ≪ Λ, so the
infinite-bandwidth result Eq. (3.9) is still applicable. The
crossover to the IM does not occur either, since T ≪ T inc,
and finally, the part of the backreaction self-energy to the
SYK islands that does not renormalize their chemical
potentials is jΣ̃½iðωn ∼ TÞ�j ∼ ðM=NÞ½gνð0Þ�2T, which is
≪ jΣ½iðωn ∼ TÞ�j ∼ ðJTÞ1=2, i.e., the part of the internal
self-energy of the SYK islands that does not renormalize
the chemical potential, as long as M=N is not ≫ 1, so the
SYK character of the islands also survives.
In the IM regime, since both the conduction and islands

electrons have local SYK Green’s functions, the specific
heat scales asCIM

V ∼MT=JIM þ NT=J, with no logarithmic
corrections [28].

IV. TRANSPORT IN A SINGLE DOMAIN

In this section, we consider transport in two spatial
dimensions, with the isotropic dispersion εk ¼ k2=ð2mÞ−
Λ=2. We will find that many aspects of the transport can be
computed in a traditional Boltzmann transport computation,
due to the large N and M limits. In particular, quantum
corrections to transport, of the type leading to quantum
interference and localization, are suppressed by the local
disorder, the nonquasiparticle nature of the charge carriers,
and the large number of fermion flavors.
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In our double large N and M limit, if M=N ¼ 0, the
only vertex corrections to the uniform conductivities
that are not trivially killed by this limit are the ones that
involve uncrossed vertical ladders of f†i fj propagators in
the current-current correlator bubbles [first diagram of
Fig. 2(b)]. However, since the f propagators are purely

local and independent of momentum, these diagrams
vanish due to the averaging of the vector velocity in the
current vertices over the closed fixed-energy contours in
momentum space, as the scattering of the conduction
electrons is isotropic, just like in the textbook problem
of the noninteracting disordered metal [45]. Unlike
the noninteracting disordered metal, there is no localization
in two dimensions as the crossed-ladder “Cooperon”
diagrams are suppressed by the large M limit. Hence,
the relaxation-time-like approximation of keeping only
self-energy corrections is valid.
If M=N is nonzero but Oð1Þ or smaller, then certain

three-loop and higher order ladder insertions [such as
Fig. 2(c)] also contribute extensively in M to the cur-
rent-current correlation. However, these diagrams again
vanish due to the averaging of the vector velocity men-
tioned above. All of this happens regardless of the values of
g, J, Λ, or μc, and for both energy and electrical currents.

A. Marginal-Fermi liquid

We first discuss a Boltzmann transport approach in the
MFL regime. For simplicity, we consider infinite band-
width and an infinitely deep Fermi sea. The uniform
current-current correlation bubble [Fig. 2(a)] is given by,
for an isotropic Fermi surface,

hIxIxiðiΩmÞ ¼ −M
v2F
2
νð0ÞT

X
ωn

Z
∞

−∞

dε
2π

1

iωn − ε − ΣcðiωnÞ
1

iωn þ iΩm − ε − Σcðiωn þ iΩmÞ
; ð4:1Þ

where vF ¼ kF=m is the Fermi velocity (on a lattice vF ∼ t,
since the lattice constant a is set to 1). Using the spectral
representation, this can be converted to give the DC
conductivity

σMFL
0 ¼M

v2Fνð0Þ
16T

Z
∞

−∞

dE1

2π
sech2

�
E1

2T

�
1

jImΣc
RðE1Þj

: ð4:2Þ

Inserting the self-energy, we can scale out T and numeri-
cally evaluate the integral, giving

σMFL
0 ¼ 0.120251 ×MT−1J ×

�
v2F
g2

�
cosh1=2ð2πEÞ: ð4:3Þ

If wewant σMFL
0 =M ≪ 1, we must have T ≫ T inc, implying

a crossover into the IM regime. Thus, the MFL is never a
true bad metal, but its resistivity can still numerically
exceed the quantum unit h=e2, depending on parameters.
The “open-circuit” thermal conductivity κMFL

0 , which is
defined under conditions where no electrical current flows,
is given by

κMFL
0 ¼ κ̄MFL

0 −
ðαMFL

0 Þ2T
σMFL
0

; ð4:4Þ

where κ̄MFL
0 is the “closed-circuit” thermal conductivity in

the presence of electrical current, and αMFL
0 is the thermo-

electric conductivity. The thermoelectric conductivity van-
ishes when the temperature is much smaller than the
bandwidth and Fermi energy, due to effective particle-hole
symmetry about the Fermi surface, so κMFL

0 ¼ κ̄MFL
0 . The

Lorenz ratio is then given by

LMFL ¼ κMFL
0

σMFL
0 T

¼ κ̄MFL
0

σMFL
0 T

¼
R
∞
−∞

dE1

2π E2
1sech

2ðE1

2
Þ 1
jImðE1ψ ½−iE1=ð2πÞ�þiπÞjR∞

−∞
dE1

2π sech2ðE1

2
Þ 1
jImðE1ψ ½−iE1=ð2πÞ�þiπÞj

¼ 0.713063 × L0; ð4:5Þ

which is smaller than L0 ¼ π2=3 for a Fermi liquid.
In the presence of a uniform transverse magnetic field,

we can use the following improved relaxation-time

(a) (b)

(c)

FIG. 2. (a) The uniform current-current correlation bubble used
to compute conductivities. The current vertices are black squares
and the black lines are conduction electron (c) propagators. (b),
(c) Additional diagrams forming ladder series, with ladder units
of up to three loops, that contribute to the conductivities and are
not immediately suppressed by the large N andM limits. The red
lines are island fermion (f) propagators that do not carry
momentum. The dashed blue lines carry momentum and come
from disorder averaging of the nontranslationally invariant
coupling gxijkl. These diagrams, however, vanish upon momentum
integration in the loops containing the current vertices, for
reasons mentioned in the main text.
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linearized Boltzmann equation (which incorporates an off-
shell distribution function) for a temporally slowly varying
and spatially uniform applied electric field [46,47], since
there are no Cooperons in the large-M limit and, hence,
none of the typical localization-related corrections [48] to
the conductivity tensor. The Boltzmann equation reads
(here, t is time, not the hopping amplitude, and B is a
dimensionless version of the magnetic field B, which shall
be explained below)

ð1 − ∂ωRe½Σc
RðωÞ�Þ∂tδnðt; k;ωÞ þ vFk̂ · EðtÞn0fðωÞ

þ vFðk̂ × BẑÞ ·∇kδnðt; k;ωÞ
¼ 2δnðt; k;ωÞIm½Σc

RðωÞ�; ð4:6Þ
where nfðωÞ ¼ 1=ðeω=T þ 1Þ is the Fermi distribution, δn
is the change in the distribution due to the applied electric
field, the conduction electrons are negatively charged, and
the magnetic field points out of the plane of the system.
This equation is derived in Appendix B from the Dyson
equation on the Keldysh contour and can be solved by the
ansatz δnðt; k;ωÞ ¼ k · φðt;ωÞ ¼ kiφiðt;ωÞ.
In the DC limit, the effective mass enhancement

ð1 − ∂ωRe½ΣRðωÞ�Þ does not matter [47]. (The effective
mass enhancement is important for AC magnetotransport
and affects the frequency at which the cyclotron resonance
occurs; it shifts the cyclotron resonance from the cyclotron
frequency defined by the bare mass to the one defined by
the effective mass. The enhanced effective mass also

appears in the specific heat [41] and Lifshitz-Kosevich
formula [49] of MFLs.) We then have

vFk̂ ·En0fðωÞ þ vFðk̂ × BẑÞ ·∇kδnðk;ωÞ
¼ 2δnðk;ωÞIm½Σc

RðωÞ�; ð4:7Þ

We note that in Eq. (4.7), B is dimensionless in our
choice of units. Since the quantities we set to 1 were the
magnitude of the electron charge e, the lattice constant a,
and ℏ and kB, we have

B ¼ eBa2

ℏ
; ð4:8Þ

i.e., the flux per unit cell in units of ℏ=e.
Substituting δnðk;ωÞ ¼ kiφiðωÞ into Eq. (4.7), we

obtain

φiðωÞ¼
vF
kF

n0fðωÞ
�
2Im½Σc

RðωÞ�δijþ ϵijB
vF
kF

�
−1

ij
Ej: ð4:9Þ

Using the current density,

Ii ¼ −Mνð0Þ
Z

2π

0

dθ
2π

Z
∞

−∞

dω
2π

vFk̂iδnðkFk̂;ωÞ; ð4:10Þ

we get the longitudinal and Hall conductivities

σMFL
L ¼ M

v2Fνð0Þ
16T

Z
∞

−∞

dE1

2π
sech2

�
E1

2T

�
−Im½Σc

RðE1Þ�
Im½Σc

RðE1Þ�2 þ ½vF=ð2kFÞ�2B2
;

σMFL
H ¼ −M

v2Fνð0Þ
16T

Z
∞

−∞

dE1

2π
sech2

�
E1

2T

� ðvF=ð2kFÞÞB
Im½Σc

RðE1Þ�2 þ ½vF=ð2kFÞ�2B2
: ð4:11Þ

Note that, given the scaling of Eq. (3.7), these can be
immediately written as

σMFL
L ∼ T−1sL½ðvF=kFÞðB=TÞ�;

σMFL
H ∼ −BT−2sH½ðvF=kFÞðB=TÞ�: ð4:12Þ

The asymptotic forms of the functions sL and sH are

sL;Hðx → ∞Þ ∝ 1=x2; sL;Hðx → 0Þ ∝ x0: ð4:13Þ

So, we have obtained the advertised B=T scaling in the
MFL regime. However, with the asymptotic forms noted
above, it is not difficult to see that the magnetoresistance
ρxx saturates at large B. Nevertheless, the results above will
be useful as inputs into our consideration of the effects of
macroscopic disorder in Sec. V: We will show there that the

B=T scaling survives, and the macroscopic disorder leads
to a linear-in-B magnetoresistance.
We now show that the numerical scale of the B=T

crossover is in general accord with the observations. In
Eq. (4.11), for the “Planckian” choice of parameters
described at the end of Sec. III B, B becomes “large”
[i.e., the cyclotron term in the denominators overwhelms
Im½Σc

RðE1Þ� for jE1j≲ T, causing σMFL
H to start decreasing

with increasing B], when eBa2=ℏ≳ kBT=t. Using reason-
able values of the lattice constant a ¼ 3.82 Å and the
hopping t ¼ 0.25 eV, the above inequality can also
roughly be written as μBB≳ kBT, where μB is the Bohr
magneton, since a2et=ℏ ≈ 0.96μB for these parameters.
In the analysis of the IM regime to follow, there is no

such notion of large magnetic fields; regardless of the value
of B, the field-dependent corrections to the conductivity
tensor remain much smaller than its zero-field value.
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B. Incoherent metal

This subsection considers transport in the IM phase
discussed earlier, in which the Fermi surface is washed out,
and shows quantitatively that the orbital effects of a
magnetic field on charge transport are strongly suppressed
irrespective of the strength of the field. The physical reason
for this effect is that the effective mean-free path of the
electrons in the IM is less than a lattice spacing, with
conduction occurring locally and incoherently across indi-
vidual lattice bonds. The effect of the Lorentz force on the
electrons is, thus, negligible. If the reader is uninterested in
the details of the following computations, they may move
on to the next section.

In the IM regime, we have

σIM0 ¼ MΛ2

32πT

Z
∞

−∞

dE1

2π
sech2

�
E1

2T

�
½Acðk; E1Þ�2: ð4:14Þ

The spectral function is independent of k in the IM, and we
decoupled the momentum integral implicit in the above
equation, generating a prefactor of Λνð0Þ=ð2πÞ. For sim-
plicity, we consider M=N ¼ 0 in this subsection. A small
finite M=N only rescales Gc, as shown by Eqs. (3.19) and
(3.16) and, hence, leads to no qualitative difference in any
of the following results. We have

Acðk; E1Þ≡ 2π

Λνð0ÞA
cðE1Þ≡ −

4π

Λνð0Þ Im½Gcðiωn → E1 þ i0þÞ�

¼ −2Im

2
4ið−1Þ3=4π1=4ðiþ e2πEcÞJ1=2cosh1=4ð2πEÞ

gT1=2Λ1=2ν1=2ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e4πEc

p Γð1
4
− iðE1−2πEcTÞ

2πT Þ
Γð3

4
− iðE1−2πEcTÞ

2πT Þ

3
5; ð4:15Þ

and we get

σIM0 ¼ ðπ1=2=8Þ ×MT−1J ×

�
Λ

νð0Þg2
�
cosh1=2ð2πEÞ
coshð2πEcÞ

: ð4:16Þ

Because the IM exists only at temperatures above T inc, given by Eq. (3.18), we always have σIM0 =M ≪ 1, which makes the
IM a bad metal. Note that the slope of the resistivity ρ0ðTÞ ¼ 1=σ0ðTÞ vs temperature in the IM generically differs from that
in the MFL by an Oð1Þ number, as can be seen by comparing Eqs. (4.3) and (4.16).
The Lorenz ratio in the IM is (here, the thermoelectric conductivity αIM0 does not vanish, so κIM0 and κ̄IM0 are distinct

quantities)

LIM ¼
R∞
−∞

dE1

2π E2
1sech

2ðE1

2
Þ½AcðE1Þ�2 −

hR
∞
−∞

dE1
2π E1sech2ðE12 Þ½AcðE1Þ�2

i
2

R
∞
−∞

dE1
2π sech

2ðE1
2
Þ½AcðE1Þ�2R∞

−∞
dE1

2π sech2ðE1

2
Þ½AcðE1Þ�2

¼ 3

8
× L0; regardless of E; Ec: ð4:17Þ

This result was also obtained by a different method for the
IM of Ref. [10], although they only analyzed the particle-
hole symmetric case equivalent to Ec ¼ 0.
Another dimensionless ratio that is interesting is the

thermopower, i.e., the ratio of the thermoelectric to elec-
trical conductivities,

SIM
0 ¼ αIM0

σIM0
¼

R∞
−∞

dE1

2π E1sech2ðE1

2
Þ½AcðE1Þ�2R∞

−∞
dE1

2π sech2ðE1

2
Þ½AcðE1Þ�2

¼ 2πEc:

ð4:18Þ

This relationship between the thermopower and the spectral
asymmetry Ec was also found in a different model of
coupled SYK dots realized in Ref. [28]. The ratios in
Eqs. (4.17) and (4.18) hold even for a finite smallM=N, as
the effect of a finite smallM=N is simply a rescaling of the
Green’s function Gc.

Let us describe the fate of magnetotransport in the IM
regime. On a lattice, we haveΛνð0Þ ∼ 1. Then, JIM ¼ g2=J,
and the conduction electron self-energy is approximatelyffiffiffiffiffiffiffiffiffiffi
JIMT

p
. We have JIMT ≫ t2 ∼ Λ2, so, to leading order, we

can neglect the dispersion in Fermion propagators. Then,
there is nothing for the magnetic field to couple to, and
consequently no magnetotransport.
To illustrate this, let us compute the correlator of currents

in perpendicular directions in real space on a square lattice.
The uniform current operators are

IxðτÞ≡ 1

V1=2

X
r

IrxðτÞ≡−
it

2V1=2

XM
r;i¼1

c†rþx̂;iðτÞcriðτÞþH:c:;

IyðτÞ≡ 1

V1=2

X
r

IryðτÞ≡−
it

2V1=2

XM
r;i¼1

c†rþŷ;iðτÞcriðτÞeiϕðrÞ

þH:c:; ð4:19Þ
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where we have used a gauge with the magnetic vector
potentialAr pointing along the y direction, giving rise to the
phase factors eiϕðrÞ on bonds in the y direction. The system
volume in units of the unit cell volume is V. We then have

T τhIxðτÞIyðτ0Þi

¼ −M
t2

4V

X
rr0

½T τhc†rþx̂ðτÞcrðτÞc†r0þŷðτ0Þc0rðτ0Þeiϕðr
0Þi

− T τhc†rþx̂ðτÞcrðτÞc†r0 ðτ0Þcr0þŷðτ0Þe−iϕðr0Þi
− T τhc†rðτÞcrþx̂ðτÞc†r0þŷðτ0Þcr0 ðτ0Þeiϕðr

0Þi
þ T τhc†rðτÞcrþx̂ðτÞc†r0 ðτ0Þcr0þŷðτ0Þe−iϕðr0Þi�; ð4:20Þ

where we have dropped the sum over flavor indices in
favor of a global factor ofM, and T denotes time ordering.
To leading order in t, since the c Green’s functions are
completely local,

T τhcrðτÞc†r0 ðτ0Þi ¼ δrr0Gcðτ − τ0Þ; ð4:21Þ
none of the terms in Eq. (4.20) can be nonzero. Similarly, at
Oðt2Þ, there is no field-dependent correction to the hIxIxi
correlator.
Perturbing in t, in order for Eq. (4.20) to be nonzero, we

need to insert hopping vertices in order to close the four-
point correlation functions of the c’s. To lowest order in t,
this requires insertion of two hopping vertices into each of
the four-point correlation functions in Eq. (4.20), so that the
connected contractions of c’s and c†’s into local c Green’s
functions go around a single plaquette of the lattice. Again,
because of our choice of gauge, hopping vertices along
bonds in the y direction come with phase factors. But we
obtain, as we should, a gauge-invariant answer for the
connected part, which is of interest to us here (the electrons
are negatively charged, and B is defined in terms of B as in
Sec. IVA):

hIxIyiðiΩmÞ¼−iMsinðBÞt4T
X
ωn

ð½GcðiωnÞ�3

× ½GcðiωnþiΩmÞ−Gcðiωn−iΩmÞ�Þ: ð4:22Þ
At Oðt4Þ, vertex corrections from the coupling g to this
leading contribution vanish due to the noncorrelation of g
between distinct lattice sites, i.e., ⟪grijklg

r0
jilk⟫ ¼ g2δrr0 .

The DC Hall conductivity follows,

σIMH ¼ −lim
ω→0

1

iω
½hIxIyiðiΩm → ωþ i0þÞ

− hIxIyiðiΩm → 0þ i0þÞ�

¼ 2M sinðBÞt4P
Z

∞

−∞

dE1

2π

dE2

2π
Ac
3ðE1ÞAcðE2Þ

×
nfðE2Þ − nfðE1Þ

ðE2 − E1Þ2
; ð4:23Þ

where P denotes the Cauchy principal value, and

Ac
3ðE1Þ≡ −2Imð½Gcðiωn → E1 þ i0þÞ�3Þ

¼ Im

2
4ði − 1Þðiþ e2πEcÞ3cosh3=4ð2πEÞ
25=2π9=4J3=2IM T3=2ð1þ e4πEcÞ3=2

×
Γ3ð1

4
− iðE1−2πEcTÞ

2πT Þ
Γ3ð3

4
− iðE1−2πEcTÞ

2πT Þ

3
5 ð4:24Þ

is the spectral function of ½GcðiωnÞ�3. IfEc ¼ 0, then theHall
conductivity vanishes due to the evenness of the spectral
functions Ac and Ac

3. This corresponds to half-filling the
square lattice, so this is expected. Scaling out T and
evaluating the integral numerically gives

σIMH ¼ −M sinðBÞ t
4 coshð2πEÞ
J2IMT

2
ΞIM
H ðEcÞ; ð4:25Þ

where ΞIM
H ðEcÞ is odd in Ec, positive for positive Ec, and

vanishes when Ec ¼ 0, �∞. This is a very small contribu-
tion regardless of B; the already small flux per unit cell B is
further multiplied by a small parameter t4=ðJ2IMT2Þ. Note
that we consider coshð2πEÞ to be Oð1Þ. If jEj is very large,
then the conduction electrons do not scatter effectively off
the SYK islands, as discussed before, and our perturbative
expansion in hopping is no longer valid. In that case, the
system is once again described by the MFL. For the Hall
conductivity to be comparable to the longitudinal conduc-
tivity σIM0 ∼ t2=ðJIMTÞ, we need sinðBÞ ∼ JIMT=t2 ≫ 1,
which is not even mathematically possible.
Similarly, the field-dependent correction to the Ix-Ix

correlator is

ΔB½hIxIxiðiΩmÞ�
¼−Mt4cosðBÞT

X
ωn

½GcðiωnÞ�2½GcðiωnþiΩmÞ�2; ð4:26Þ

leading to the field-dependent correction to the longitudinal
conductivity

ΔB½σIML � ¼M
8

t4

T
cosðBÞ

Z
dE1

2π
Ac
2ðE1Þsech2

�
E1

2T

�
; ð4:27Þ

where

Ac
2ðE1Þ
≡−2Imð½Gcðiωn→E1þi0þÞ�2Þ

¼−Im

"
i
ðiþe2πEcÞ2cosh1=2ð2πEÞ
2π3=2JIMTð1þe4πEcÞ

Γ2ð1
4
− iðE1−2πEcTÞ

2πT Þ
Γ2ð3

4
− iðE1−2πEcTÞ

2πT Þ

#
;

ð4:28Þ
is the spectral function of ½GcðiωnÞ�2. Scaling out T and
evaluating the integral numerically gives
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ΔB½σIML � ¼ M
t4 coshð2πEÞ

J2IMT
2

cosðBÞΞIM
L ðEcÞ; ð4:29Þ

where ΞIM
L ðEcÞ is even in Ec, positive and nonzero for

Ec ¼ 0, and vanishes as Ec → �∞. The longitudinal
conductivity is, thus, reduced when a field is applied, as
is usually the case.
It is similarly not possible to get a field-dependent

correction to σIML that is comparable to its zero-field value.
Thus, we shall no longer consider the IM regime for
studying magnetotransport, as there is no qualitative differ-
ence between the regimes of large and small B, unlike in the
MFL regime. For completeness, the plots of ΞIM

H;LðEcÞ are
shown in Fig. 3.
Before we close this section, let us comment on the

controllability of the hopping expansion used to compute the
nonzero field-dependent conductivity corrections. Clearly,
this hopping expansion must break down when t is large
enough, as theMFL has a very different conductivity tensor.
Going from Eq. (4.20) to Eqs. (4.22) and (4.26), we
only kept those r0 relative to r that resulted in Oðt4Þ
corrections for the shortest closed paths from r to r0 and
back. For arbitrary r0, one can draw infinitely many paths
that go from r to r0 and back. These paths may also intersect
themselves in general. For a path length l, there are < 4l

paths for large l as, at each step, one has four choices of
direction, and not all possibilitieswill result in a formation of
the closed path from r to r0 and back. Each step involves
multiplying an additional local Green’s function and factor
of t, or roughly a factor of t=ðJIMTÞ1=2 ≪ 1 into the
amplitude. Therefore, the total weight of paths of length l
should be < ð4t=ðJIMTÞ1=2Þl. The total weight of all
paths between r and r0 then is <

P∞
l¼lmin

½4t=ðJIMTÞ1=2�l¼
½4t=ðJIMTÞ1=2�lmin=½1−4t=ðJIMTÞ1=2�, where lmin is the
length of the shortest closed path between r and r0, which
scales as the lattice distance between r and r0. Thus, for
t=ðJIMTÞ1=2 ≪ 1, the expansion is well behaved: As r0 gets
further away from r, the terms are exponentially suppressed
in the distance between r and r0, whereas the number of r0 ’s a
given distance away from r grows only linearly in that

distance in two dimensions. Unsurprisingly, this is just the
conditionT ≫ T inc that we obtained earlier for the crossover
into the IM regime.

V.MACROSCOPIC TRANSPORTVIA EFFECTIVE-
MEDIUM/RANDOM-RESISTOR THEORY

We now return to the MFL with B=T scaling that was
described in Sec. IVA. We will show here that adding
macroscopic disorder leads to a linear-in-B magnetoresist-
ance at large B, while preserving the B=T scaling. We will
treat the inhomogeneity in a classical transport framework.
The quantum computation in Sec. IVA is used to compute a
local σxx and σxy, which is then input into a computation of
global transport in a disordered sample by composing
resistivities using Ohm’s and Kirchhoff’s laws.

A. Setup

We seek to understand the effects of additional macro-
scopic disorder on the transport of charge in theMFL at large
magnetic fieldsB, in two spatial dimensions. This additional
macroscopic disorder leads to the variation of the local
conductivity tensor σðxÞ across the sample. Since the
conduction electrons in our model interact with valence
electrons in the SYK islands through a nontranslationally
invariant interaction microscopically, the Navier-Stokes
equation of hydrodynamics that describes dynamics of a
nearly conserved macroscopic momentum [50] is not appli-
cable to us, since this requires microscopic equilibration of
the electron fluid through momentum-conserving inter-
actions. (The effects of weak disorder on the magnetoresist-
ance of a generic electron fluidwithmacroscopicmomentum
were studied in Ref. [51]. They did not find any regimes of
linear magnetoresistance, instead finding that the magneto-
resistance was quadratic with a prefactor controlled by the
fluid viscosity.) Thus, at the coarse-grained level, we just
have the equation for charge conservation, and Ohm’s law:

∇ ·IðxÞ¼ 0; IðxÞ¼ σðxÞ ·EðxÞ; EðxÞ¼−∇ΦðxÞ:
ð5:1Þ
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FIG. 3. Plots of (a) ΞIM
H ðEcÞ and (b) ΞIM

L ðEcÞ. Both functions vanish in the limits of the fully filled and empty lattice (Ec ¼∓ ∞
respectively), as they should.
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The effective local electric field EðxÞ (which includes the
effects of Coulomb potentials generated due to charge
inhomogeneities [52]) fluctuates spatially due to themacro-
scopic disorder, but equals an applied external electric field
E0 ¼ hEðxÞi≡ ð1=VÞ R d2xEðxÞ on spatial average. We
define the global conductivity tensor σe through the
relation hIðxÞi ¼ σe ·E0 and parametrize the deviation
σðxÞ − σe ¼ δσðxÞ. The condition hIðxÞ − hIðxÞii ¼ 0
then gives hχðxÞ ·E0 ≡ δσðxÞ ·EðxÞi ¼ 0.
Following Ref. [35], without making any additional

approximations, the solution of these equations can be
formally cast in the form

ΦðxÞ¼−E0 ·xþ
Z

d2x0Gðx;x0Þ∇0 · ½δσðx0Þ ·∇0Φðx0Þ�;

ð5:2Þ
where the Green’s function satisfies ∇ · ½σe ·∇Gðx;x0Þ� ¼
−δðx − x0Þ, Gðx;x0Þ ¼ Gðx0;xÞ, and Gðx;x0 ∈ ∂VÞ ¼ 0,
for the system boundary ∂V, which we take to infinity.
Taking a gradient on both sides, we get

EðxÞ¼E0−
Z

d2x0ð½δσðx0Þ ·Eðx0Þ� ·∇0Þ ·∇Gðx;x0Þ; or

χðxÞ¼ δσðxÞ−δσðxÞ ·
Z

d2x0Kðx;x0Þ ·χðx0Þ; ð5:3Þ

where the second line follows from the first by left-
multiplying both sides by δσðxÞ, and then demanding that
it hold for any E0, and Kijðx;x0Þ ¼ ∂i∂ 0

jGðx;x0Þ.
We now assume that the disorder divides the sample into

macroscopic domains whose size is much smaller than the
sample size, but much bigger than the smaller of the
electron mean-free path and electron cyclotron radius, and
the tensors χ and δσ take on constant values in a given
domain. For a given domain p, we can write

χp ¼ δσp − δσp ·
Z
p
d2x0Kðx ∈ p;x0Þ · χp

− δσp ·
X
p0≠p

·
Z
p0
d2x0Kðx ∈ p;x0Þ · χp0

: ð5:4Þ

For the second integral over domains other than the given
domain, we replace χn with its spatial average hχi. This is
the “effective-medium” approximation [35]: The equivalent
conductivity of each domain is controlled in part by a
“mean field” of domains surrounding it. However, since our
conventions are set up so that hχi ¼ 0, this second term
drops out. Then, spatially averaging both sides, we obtainX
p

Vpχp¼ 0⇒
X
p

VpðIþδσp ·MpÞ−1 ·δσp¼ 0; ð5:5Þ

where Vp is the volume fraction of domain p and Mp
ij¼H

∂ 0p∂iGðx;x0Þn̂0pj , where the integral is over the primed
coordinate, and n̂0p is the outward-pointing unit normal

vector on the boundary of p, varying with the primed
coordinate.
If the local conductivity tensor σðxÞ is known in all

domains, Eq. (5.5) can then be solved for σe. In our two-
dimensional electron problem,we expect σeij¼δijσ

e
L−ϵijσeH,

where σeL is even in B and σeH is odd in B because of
Onsager reciprocity, so we obtain the Green’s function
Gðx;x0Þ ¼ − lnðjx − x0j0þÞ=ð2πσeLÞ. Then, for circular
domains, Mp

ij ¼ δij=ð2σeLÞ is indeed independent of x.
This makes Eqs. (5.4) and (5.5) self-consistent [35]. For
other domain shapes, there are correctionswhenx is near the
domain boundary.
For an analytically solvable toy model, we assume that

the σðxÞ can take either of two possible values σa and σb in
circular domains that are spatially randomly distributed
over the sample [34,38] [Fig. 4(a)]. As far as the asymptotic
low- and high-field magnetoresistance goes, this already
yields the same qualitative behavior at large and small
fields as a more complicated model with a distribution of
different types of domains [40]. Furthermore, the mean-
field-like effective-medium approximation has also been
shown to produce results for the magnetoresistance equiv-
alent to exact numerical solutions of Eq. (5.1) in random-
resistor network models [36,37,40]. In the simplified
two-type scenario, Eq. (5.5) then reduces to [38]

Va

�
I þ σa − σe

2σeL

�
−1

· ðσa − σeÞ

þ ð1 − VaÞ
�
I þ σb − σe

2σeL

�−1
· ðσb − σeÞ ¼ 0: ð5:6Þ

If Va ¼ 1=2, this yields an unsaturating high-field linear
magnetoresistance [38]. For the model with a distribution
of domains, the equivalent condition is that the distribution
is symmetric about its mean [40]. For Va detuned from 1=2,
the magnetoresistance saturates, but there is an intermediate
regime of fields in which the magnetoresistance is approx-
imately linear, and the saturation field becomes arbitrarily
large as Va approaches 1=2 [38]. The rough reasoning
behind the saturation appears to be that, if one type of
domain is far more common than the other, the current
flowing through the sample mainly finds paths involving
only one type of domain. Hence, the global magnetoresist-
ance behaves like that of a single domain, which saturates
at high fields [37]. We will do our analysis with the
symmetric distribution Va ¼ 1 − Va ¼ 1=2.
A physical picture for the high-field linear magneto-

resistance was provided in Ref. [36] and involves the
contribution of the local Hall resistance (which is linear in
B) to the global longitudinal resistance due to the distortion
in current paths arising from spatial fluctuations of the local
Hall resistance: In a uniform sample, charge accumulation
at the edges of the sample parallel to the applied electric
field produces a global Hall electric field perpendicular to
the applied electric field that cancels out Hall currents
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throughout the sample. On the other hand, if the sample has
a disordered local conductivity tensor, the global Hall
electric field no longer cancels out local Hall currents
throughout the sample. Thus, the global longitudinal
resistance becomes dependent on the local Hall resistances.

B. Application

We note that, in Eq. (4.11), the sech is strongly peaked
near E1 ¼ 0, whereas for a finite temperature, Im½Σc

RðE1Þ�
does not vary drastically with E1 near E1 ¼ 0 over the
range in which the sech is appreciable. We can, thus,
replace Im½Σc

RðE1Þ� with γ=2 from Eq. (3.9). Regardless of
this approximation, we note from Eq. (4.11) that σMFL

L ∼
T=B2 and σMFL

H ∼ 1=B at large B, which is what the
effective-medium theory needs to produce linear magneto-
resistance at large B. This asymptotic scaling holds even if

we had multiple MFL bands, thus adding their conductivity
tensors to get the appropriate local conductivity tensor.
We thus input the following conductivity tensors into the

effective-medium calculation (we take the band mass m ¼
kF=vF to be the same in both types of electronlike domains
a and b):

σa;bij ¼ σMFL
0a;b

1þ B2=ðmγa;bÞ2
�
δij þ ϵij

B
mγa;b

�
: ð5:7Þ

The scattering rate γ can fluctuate across domains due to
fluctuations in g, induced by fluctuations in the densities of
SYK islands, and the base conductivity σMFL

0a;b can fluctuate
across domains due to fluctuations in both g and in the
electron density. Then, solving Eq. (5.6) for Va ¼ 1 − Va ¼
1=2, we get the global longitudinal and Hall resistances,
respectively,

ρeL ≡ σeL
σe2L þ σe2H

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB=mÞ2ðγaσMFL

0a − γbσ
MFL
0b Þ2 þ γ2aγ

2
bðσMFL

0a þ σMFL
0b Þ2

q
γaγbðσMFL

0a σMFL
0b Þ1=2ðσMFL

0a þ σMFL
0b Þ ;

ρeH ≡ −
σeH=B

σe2L þ σe2H
¼ γa þ γb

mγaγbðσMFL
0a þ σMFL

0b Þ : ð5:8Þ

The magnetoresistance ρeLðBÞ − ρeLð0Þ is thus linear as promised at high fields and is quadratic at low fields.
Considering the isotropic parabolic dispersion εk ¼ k2=ð2mÞ − Λ=2, and using Eq. (4.3), Eq. (3.9), and νð0Þ ¼ m, we

can write σMFL
0a;b ¼ MwσE

a;b
F =γa;b, where wσ ¼ 0.135689 and Ea;b

F ¼ mv2Fa;b=2 are the Fermi energies. We can then rewrite
Eq. (5.8) as

wσρ
e
L ¼

�
γ2a þ ðBmÞ2

ð1−EF
b =E

F
a Þ2

ðγb=γaþEF
b =E

F
a Þ2
�
1=2

Mðγa=γbÞ1=2ðEF
aEF

b Þ1=2
; wσρ

e
H ¼ ð1þ γb=γaÞ

MmEF
a ðEF

b=E
F
a þ γb=γaÞ

: ð5:9Þ
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FIG. 4. (a) A two-dimensional sample with a random distribution of approximately equal fractions of two types of domains, for which
an exact analytic solution of the effective-medium equations for magnetotransport is possible. The magnetic field B points out of the
plane of the sample. (b) Plots of the normalized change in global longitudinal resistance due to dimensionless magnetic field B (orange)
and due to temperature T (blue), obtained from Eq. (5.9). We use EF

b =E
F
a ¼ 0.8 and γb=γa ¼ 0.8. The dimensionless magnetic field B is

the flux per unit cell Ba2 in units of ℏ=e [Eq. (4.8)]. We use m ¼ 0.005 ∼ 1=EF
a;b. The orange (B) curve is evaluated at T ¼ 1.0 and

γa ¼ 0.1, and the blue (T) curve is evaluated at B ¼ 0.0025 and γa ¼ 0.1T. The curves are slightly offset for visualization, but actually
lie on top of each other, demonstrating a scaling between magnetic field and temperature. Both the B and T dependencies are quadratic at
small fields or temperatures and cross over to linear at large fields or temperatures.
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Plots of the normalized change in ρeL due to B and T are
shown in Fig. 4(b). This simplified model with two types of
domains thus leads to a global longitudinal resistance that
adds T and B in quadrature, [53] as seen in the experiment
of Ref. [5]. A continuous Gaussian distribution of electron
densities across the domains will also yield a qualitatively
similar scaling function to the above quadrature function
[40]. In general, the zero-field linear-in-T and high-
field linear-in-B behavior (as well as the scaling between
B andT) will emerge universally from such resistor-network
models, but the interpolation between the two regimes is
sensitive to the distribution of the local conductivity tensors.
The Hall resistance ρeH is sensitive to the disorder

distribution and, thus, is not trivially controlled by the
average carrier density ∝ MmðEF

b þ EF
a Þ=2, even for the

isotropic Fermi surfaces we consider, unless γa ¼ γb. In
this simplified version of the problem, ρeH is independent of
temperature. However, we expect that more complicated
disorder distributions generically give rise to some temper-
ature dependence of ρeH, which would depend on the
disorder distribution, even at a qualitative level. A detailed
analysis of such effects is beyond the scope of the present
work and will be considered in the future.
Since γa;b ∝ T, the crossover from quadratic to linear

magnetoresistance occurs at a field scale proportional to
temperature. Additionally, if we use the Planckian choice
of parameters, and if the disorder distribution is such that
j1 − EF

b=E
F
a j=ðγb=γa þ EF

b=E
F
a Þ is an Oð1Þ number, the

crossover occurs at a field scale given by μBB ∼ kBT, as
discussed at the end of Sec. IVA. While this is most
definitely a fine-tuned situation, and would require sub-
stantial variation in the charge densities between domains,
it is within the scope of our theory. Alternatively, if
γaðγb=γa þ EF

b=E
F
a Þ=ðkBTj1 − EF

b=E
F
a jÞ is an Oð1Þ quan-

tity (but γa ∝ T is much smaller than kBT), then ρeL can still
be controlled by the approximate scaling functionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðμBBÞ2=ðkBTÞ2

p
for much smaller variations in the

charge densities between domains.
The effective-medium theory is applicable when the

domain sizes are much greater than the smaller of the
electron mean-free path and electron cyclotron radius in a
single domain. At low temperatures and weak fields,
electrons can move through a domain without significant
loss or deflection of momentum, and the effects of
scattering off the boundaries between domains then become
important, adding a temperature-independent residual resis-
tivity to the result of the above computation.
In our analysis, we have neglected the effects of the

feedback of heat currents on charge transport. In general,
one would have an additional analogous set of equations to
Eq. (5.1) for heat currents and temperature gradients in
place of charge currents and electric fields. Since there is no
concept of bulk fluid motion due to translational symmetry
breaking at the microscopic level, the equations for heat
currents and charge currents would only be coupled if the

local thermoelectric tensor αðxÞ were nonzero. However, in
the MFL, with T ≪ EF

a;b, αðxÞ is negligible, as discussed in
Sec. IVA, and our decoupled analysis of charge currents is
hence still applicable. Somewhere in the crossover region
between the MFL and the IM, a regime may exist where
both αðxÞ and the effects of magnetic fields on the local
conductivity tensors are simultaneously significant, and
there may be a significant feedback of thermoelectric
effects on the charge magnetotransport. We leave a detailed
study of such effects for future work.

VI. DISCUSSION

The strange metal phases of the cuprate and pnictide
high-Tc superconductors occur at finite dopings and con-
sequently display significant amounts of disorder.
Experimentally, there is direct evidence for disorder at
(i) microscopic levels, due to irregular placements of
dopant atoms [55], and (ii) meso- and macroscopic levels,
due to a variety of factors, ranging from crystalline
imperfections to charge puddles caused by impurities
and nonisovalent dopants [56,57]. Additionally, due to
these materials being layered, with relatively poor inter-
layer conductivities, imperfections in a layer may further
induce heterogeneities in the charge distributions of adja-
cent layers through Coulomb forces.
We have attempted to paint an impressionist picture of

transport and magnetotransport in a strange metal by
developing a solvable model that incorporates disorder at
both the microscopic and macroscopic levels. At the
microscopic level, we built off remarkable recent develop-
ments [10,27,28,33,58,59] in realizing solvable field-
theoretic descriptions of extended non-Fermi liquid phases
using SYK models. These models couple together SYK
quantum dots without quasiparticle excitations and show
how this can lead to non-Fermi liquid transport in an
extended finite-dimensional phase. In our model, we
locally and randomly couple mobile conduction electrons
to immobile quantum dots described by SYK models in a
particular way. In this manner, we realized a disordered
MFL phase at low temperatures, with a linear-in-T resis-
tivity and an identifiable Fermi surface. We determined the
two-point functions, conductivities, and magnetotransport
properties of this phase exactly in two spatial dimensions,
finding a scaling between magnetic field and temperature in
the conductivity tensor. Additionally, we showed that
nearly local IM phases, with no identifiable Fermi surface,
are also realized in our model at higher temperatures in
certain parameter regimes; these IMs can also have linear-
in-T resistivities, but they have very weak effects of
magnetic fields on their charge transport properties, making
them unlikely candidates for a description of the strange
metals seen in experiments at lower temperatures, which is
where the large linear-in-B magnetoresistances are also
observed. However, the IMs may still be the correct concept
at high temperatures, due to strong bad-metallic behavior
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displayed through their large resistivities, as is seen in
experiments. It should also be noted that the large linear
magnetoresistances are not observed in experiments per-
formed at high temperatures where the system is a bad
metal, with a zero-field resistivity much larger than the
quantum unit h=e2 [5,6], which is consistent with the
behavior of an IM.
While the MFL regime of our model does indeed have a

linear-in-T resistivity, and also a B=T scaling at approx-
imately the observed B scale, it yields a magnetoresistance
that saturates at large B. To obtain a nonsaturating
magnetoresistance, we argued for the importance of macro-
scopic disorder in the MFL regime. To model such effects,
we applied the effective-medium approximation to a
sample containing domains of our disordered linear-in-T
MFLs with varying electron densities. While the effective-
medium approximation is a mean-field theory at the level of
Kirchhoff’s and Ohm’s laws for current flow, it has shown
to be equivalent to exact numerical simulations of random-
resistor networks for magnetotransport [40], and it has also
had remarkable successes in describing experimentally
observed magnetoresistances in other two-dimensional
disordered materials [40,60,61]. For certain simplified
disorder distributions, the effective-medium equations for
magnetotransport are analytically solvable. These exactly
solvable equations yield, in our case, a magnetoresistance
that is quadratic in field at low fields, crosses over to linear
in field at high fields, and is controlled by a scaling function
between field and temperature, as seen in recent experi-
ments on the pnictide and cuprate strange metals [5,6].
On the experimental front, the anomalous high-field

linear magnetoresistance in the cuprate and pnictide strange
metals is already known to be dependent on the component
of the magnetic field perpendicular to the sample plane
[62], a feature that our model reproduces, since it is based
on orbital effects of the magnetic field on charge transport.
Furthermore, a strong linear component of the high-field
magnetoresistance is seen even away from the critical
doping at which the zero-field resistance is almost exactly
linear in T [5,6]. The disorder based mechanism considered
by us would be consistent with this observation, as the zero-
field linear-in-T behavior is not a prerequisite for high-field
disorder-induced linear magnetoresistance; all that is
required is that the local conductivity tensor behave like
Eq. (5.7) as a function of the magnetic field.
On the theoretical front, we have been able to analyti-

cally calculate nontrivial magnetotransport properties in a
somewhat contrived, but solvable, model of a disordered
non-Fermi liquid. Studies along the lines of Refs. [29–31]
could show how such models emerge naturally as effective
theories of realistic, disordered, single-band Hubbard
models. We hope that our study motivates further inves-
tigations into the interplay of disorder and strong inter-
actions in the transport properties of the strange metal
phases of the pnictides and cuprates.
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E.-A. Kim, A. Lucas, and B. Ramshaw for useful discus-
sions. A. A. P. was supported by the NSF Grant No. PHY-
1125915 via a KITP Graduate Fellowship. This research
was also supported by the NSF Grant No. DMR-1664842,
by the MURI Grant No. W911NF-14-1-0003 from ARO,
and by funds provided by the U.S. Department of Energy
(DOE) under cooperative research agreement DE-
SC0009919. Research at the Perimeter Institute is supported
by the Government of Canada through Industry Canada and
by the Province of Ontario through theMinistry of Research
and Innovation. S. S. also acknowledges support from
Cenovus Energy at the Perimeter Institute and from the
Hanna Visiting Professor program at Stanford University.

Note added.—Recently, we learned of related but indepen-
dent work by Chowdhury et al. on realizing translationally
invariant microscopic models of non-Fermi liquids using
SYK models [63].

APPENDIX A: EFFECTS OF PAIR HOPPING
AND BILINEAR TERMS ON THE

MARGINAL-FERMI LIQUID

We consider the effects of the pair-hopping term
[Eq. (3.12)] on the MFL as T → 0. With the Hamiltonian
given by Eq. (3.12), the Dyson equations are given by

ΣðτÞ ¼ −J2G2ðτÞGð−τÞ −M
N
g2GðτÞGcðτÞGcð−τÞ

−
M
N
η2Gð−τÞ½GcðτÞ�2;

GðiωnÞ ¼
1

iωn þ μ − ΣðiωnÞ
;

ΣcðτÞ ¼ −g2GcðτÞGðτÞGð−τÞ − η2Gcð−τÞ½GðτÞ�2;

GcðiωnÞ ¼
Z

ddk
ð2πÞd

1

iωn − ϵk þ μ − ΣcðiωnÞ
: ðA1Þ

If μ ¼ 0, the exact relations GðτÞ ¼ −Gð−τÞ and GcðτÞ ¼
−Gcð−τÞ imply that the only effect of the pair-hopping term
on the physics considered in the main text in all regimes is
just a redefinition of g, with g → ðg2 þ η2Þ1=2.
As long as the bandwidth is large, i.e., t ≫ g, η, J, Eq. (3.3)

is still valid. Following the same procedure as we did in
Sec. III A, and using GðτÞ given by Eq. (3.5), we obtain

Σcðiωn → 0Þ¼ ig2νð0Þ
2Jcosh1=2ð2πEÞπ3=2ωn ln

�jωnjeγE−1
J

�

þη2νð0Þcosh1=2ð2πEÞ
2π3=2

�
i
ωn

J
ln

�jωnjeγE−1
J

�

− tanhð2πEÞ
�
þOðωnÞ: ðA2Þ
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This is clearly a marginal-Fermi liquid with an additional
chemical potential correction

δμ ¼ η2νð0Þ cosh1=2ð2πEÞ
2π3=2

tanhð2πEÞ ≪ Λ; ðA3Þ

which leads to a harmless small change in the size of the
conduction electron Fermi surface, as the numbers of c and f
electrons are no longer independently conserved (but their
sum is conserved).
There is also a backreaction to the SYK dots,

Σ̃ðτÞ¼−
M
N
g2GðτÞGcðτÞGcð−τÞ−M

N
η2Gð−τÞ½GcðτÞ�2;

ðA4Þ

Σ̃ðiωn → 0Þ ¼ Mg2½νð0Þ�2J sinhðπEÞ
3

ffiffiffi
2

p
Nπ9=4 cosh1=4ð2πEÞ þOðωnÞ; ðA5Þ

which is again a chemical potential correction plus irrel-
evant frequency-dependent corrections. This chemical
potential correction actually changes E, which is no longer
a conserved quantity, and it is determined by the con-
dition Re½Σðiωn → 0Þ� ¼ μþ δμ.
We also briefly discuss qualitatively the effects of certain

fermion bilinears in (2.1). Terms bilinear in the f’s destroy
their SYK behavior and nonzero entropy as T → 0. The c’s
then scatter off essentially noninteracting random-
matrix islands, with GðiωnÞ ∼ isgnðωnÞ. This leads to
Im½Σc

Rð0Þ� ∼ T2, and the c’s hence realize a weakly inter-
acting disordered Fermi liquid as T → 0. However, if the
coefficients of the f-bilinears are small, then their SYK
behavior is restored for temperatures larger than a small
energy scale Ec [10]. Hence, the marginal-Fermi liquid
behavior of the c’s is also restored for T > Ec.
The effects of bilinears which hybridize c’s and f’s (such

as c†f) were discussed in Ref. [33]. In the N → ∞ limit,
these lead to Im½Σc

Rð0Þ� ∼ 1=
ffiffiffiffi
T

p
when the f’s are described

by SYK models. This is more relevant than the MFL self-
energy (∼T) at low T, but less relevant at high T. Thus,
once again, if the coefficients of these bilinears are small,
then the MFL self-energy will dominate above a certain
temperature scale, and the MFL behavior will be restored.

APPENDIX B: BOLTZMANN EQUATION FOR
THE MARGINAL-FERMI LIQUID

We provide a derivation of Eq. (4.6). We follow the
notation, style, and mechanics of Chapter 5 of Ref. [46].
The general off-shell Boltzmann equation for modes close
to the isotropic Fermi surface (jpj ≈ pF; we do not use
boldface for momentum-space vectors) is given by

− ½ði∂t þ vFj∇þAE þABjÞ∘; F�
¼ Σc

K − ðΣc
R∘F − F∘Σc

AÞ; ðB1Þ

where Fðt; r; p;ωÞ ¼ 1–2½nfðωÞ þ δnðt; r; p;ωÞ� is a para-
metrization of the distribution function, and AEðtÞ and
ABðrÞ are parts of the electromagnetic vector potential
giving rise to the uniform electric and magnetic fields,
respectively, with −dAEðtÞ=dt¼EðtÞ and ∇×ABðrÞ¼Bẑ
(∇ denotes the spatial gradient). Σc

R;A;K are the retarded,
advanced, and Keldysh components of the conduction
electron self-energy, respectively. Equation (B1) follows
from the Dyson equation for two-point functions on the
Keldysh contour [46] and, hence, it is exact due to the large
M, N limits. The ∘ denotes the convolution,

Z ¼ X ∘ Y ⇒ Zðt1; r1; t2; r2Þ

¼
Z

dt3d2r3 Xðt1; r1; t3; r3ÞYðt3; r3; t2; r2Þ; ðB2Þ

in the two-coordinate representation, and the ½:; :� denotes a
commutator. We will, however, mostly use the central-
relative coordinate representation instead, with p, ω being
Fourier transforms of the relative coordinate r1 − r2; t1 − t2,
and r, t denoting the central coordinate ðr1 þ r2Þ=2;
ðt1 þ t2Þ=2; this convolution can then be appropriately
reexpressed in this representation following Ref. [46].
We then use a coordinate remapping k¼pþABðrÞ [64,65]

to redefine Fðt;r;p;ωÞ¼ 1–2½nfðωÞþδnðt;r;p;ωÞ�⇒
Fðt;k;ωÞ¼ 1−2½nfðωÞþδnðt;k;ωÞ�. This is valid as long
as the Fermi energy is large enough to make the effects of
Landau quantization insignificant at the fields in question.
The only r dependence inF then is fictitious, coming from the
r dependence ofAB, and should not affect physical results for
spatially uniform transport quantities due to gauge invariance.
It is now absorbed into an implicit r dependence in k.
We consider the part of Eq. (B1) proportional to the

infinitesimal EðtÞ. Because of the isotropy of the Fermi
surface and the scattering, we then use the ansatz
δnðt; k;ωÞ ¼ k · φðt;ωÞ. We use a first-order gradient
expansion in spatial and time derivatives with respect to
the central coordinate, which is justified by the spatial
uniformity of EðtÞ and B, and the slow temporal variation
of EðtÞ. The change in the momentum-integrated Keldysh
conduction electron Green’s function caused by EðtÞ
through δn then is [46]

δGc
Kðt;ωÞ≡

Z
d2kδGc

Kðt; k;ωÞ

¼ −2
Z

d2k½Gc
Rðjkj;ωÞ −Gc

Aðjkj;ωÞ�δnðt; k;ωÞ

− 2i
Z

d2k∂ωRe½Gc
Rðjkj;ωÞ�∂tδnðt; k;ωÞ

þ 2i
Z

d2k∂kRe½Gc
Rðjkj;ωÞ� · ∇ABðrÞ

· ∂kδnðt; k;ωÞ ¼ 0; ðB3Þ
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as GR;A
f are isotropic. We have used ∇δnðt;k;ωÞ¼

∇ABðrÞ ·∂kδnðt;k;ωÞ, due to the implicit r dependence
in k. The retarded and advanced conduction electron
Green’s functions are not changed by the applied electric
field, as they are only influenced by the change in the
distribution δn through the self-energies [46], which, as we
show below, are unaffected by the applied electric field.
On the Keldysh contour, the conduction electron self-

energy is given by, analogous to Eq. (2.4),

Σcðt1;t2Þ¼−g2Gcðt1;t2ÞGðt1;t2ÞGðt2;t1Þ; or
Σc
>;<ðt1;t2Þ¼−g2Gc

>;<ðt1;t2ÞG>;<ðt1;t2ÞG<;>ðt2;t1Þ:
ðB4Þ

Using the standard relations between the >;< representa-
tion and the R, A, K representation [46,66], the changes in
the conduction electron self-energies due to δn are then
given by

δΣc
Rðt1; t2Þ¼−

g2

4
θðt1− t2ÞδGc

Kðt1; t2Þ½GKðt1; t2ÞGAðt2; t1Þ
þGKðt2; t1ÞGRðt1; t2Þ�;

δΣc
Aðt1; t2Þ¼−

g2

4
θðt2− t1ÞδGc

Kðt1; t2Þ½GKðt1; t2ÞGRðt2; t1Þ
þGKðt2; t1ÞGAðt1; t2Þ�;

δΣc
Kðt1; t2Þ¼−

g2

4
δGc

Kðt1; t2Þ½ðGKðt1; t2ÞGKðt2; t1Þ
þGRðt1; t2ÞGAðt2; t1Þ�;ðt1 > t2Þ;

δΣc
Kðt1; t2Þ¼−

g2

4
δGc

Kðt1; t2Þ½GKðt1; t2ÞGKðt2; t1Þ
þGAðt1; t2ÞGRðt2; t1Þ�;ðt1 < t2Þ; ðB5Þ

which vanish due to Eq. (B3). Here,GR;A;K denote the island
electron Green’s functions at equilibrium. Similarly, for the
SYK islands, we also get δΣR;A;K ¼ 0, for the same reason.
The OðEÞ part of the rhs of Eq. (B1) then is

2ðΣc
R ∘ δn − δn ∘ Σc

AÞ. Using the p, k, r-independence of
the by-definition t-independent equilibrium self-energies
Σc
R;A;K, and a first-order gradient expansion in central time

derivatives, the rhs of Eq. (B1) reduces to [46]

4iIm½Σc
RðωÞ�δnðt; k;ωÞ þ 2i∂ωRe½Σc

RðωÞ�∂tδnðt; k;ωÞ:
ðB6Þ

We now turn to the part of the lhs of Eq. (B1) propor-
tional to EðtÞ. Following Sec. 5.7 of Ref. [46], and noting
that the Wigner transform of ∇þ ABðrÞ is k, it reduces in
the first-order gradient expansion in central spatial and time
derivatives to

2i∂tδnðt; k;ωÞ þ 2ið−vF∂tjkþAEðtÞjn0fðωÞ
þ vF∇jkj · ∂kδnðt; k;ωÞ
− vF∂kjkj ·∇ABðrÞ · ∂kδnðt; k;ωÞÞ: ðB7Þ

After some algebra, this further reduces to

2i∂tδnðt; k;ωÞ þ 2ivFEðtÞ · k̂n0fðωÞ
þ 2ivFBðk̂ × ẑÞ · ∂kδnðt; k;ωÞ: ðB8Þ

Then, combining this with Eq. (B6), we recover Eq. (4.6).
The solution to Eq. (4.6) then shows our ansatz
δnðt; k;ωÞ ¼ k · φðt;ωÞ to be self-consistent.
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