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The eigenstate thermalization hypothesis (ETH) posits that the reduced density matrix for a subsystem
corresponding to an excited eigenstate is “thermal.”Herewe expound on this hypothesis by asking: For which
class of operators, local or nonlocal, is ETH satisfied? We show that this question is directly related to a
seemingly unrelated question: Is the Hamiltonian of a system encoded within a single eigenstate? We
formulate a strong form of ETHwhere, in the thermodynamic limit, the reduced densitymatrix of a subsystem
corresponding to a pure, finite energy density eigenstate asymptotically becomes equal to the thermal reduced
density matrix, as long as the subsystem size is much less than the total system size, irrespective of how large
the subsystem is compared to any intrinsic length scale of the system. This allows one to access the properties
of the underlyingHamiltonian at arbitrary energy densities (or temperatures) using just a single eigenstate.We
provide support for our conjecture by performing an exact diagonalization study of a nonintegrable 1D
quantum lattice model with only energy conservation. In addition, we examine the case in which the
subsystem size is a finite fraction of the total system size, and we find that, even in this case, many operators
continue to match their canonical expectation values, at least approximately. In particular, the von Neumann
entanglement entropy equals the thermal entropy as long as the subsystem is less thanhalf the total system.Our
results are consistent with the possibility that a single eigenstate correctly predicts the expectationvalues of all
operators with support on less than half the total system, as long as one uses a microcanonical ensemble with
vanishing energy width for comparison. We also study, both analytically and numerically, a particle-number
conserving model at infinite temperature that substantiates our conjectures.

DOI: 10.1103/PhysRevX.8.021026 Subject Areas: Condensed Matter Physics,
Quantum Physics, Statistical Physics

I. INTRODUCTION

Given a local Hamiltonian, what information about the
system is encoded in a single eigenstate? If the eigenstate
happens to be a ground state of the Hamiltonian, a
tremendous amount of progress can be made on this
question for Lorentz invariant systems [1,2], especially
conformal field theories (CFTs) [3–6], and for topological
phases [7–9]. For example, one can read off the central
charge of a CFT from the ground state entanglement [3–5],
while for topological phases, essentially all “topological
data” such as braiding statistics of anyons can be extracted
from the degenerate ground states [8–10]. In this paper, we
argue that a single finite energy density eigenstate of an

ergodic quantum many-body Hamiltonian is sufficient to
determine the properties of the system at all temperatures.
It is not very surprising that the ground states of quantum

many-body systems contain some information about their
excitations. This is because an entanglement cut often
mimics an actual physical cut through the system, thus
exposing the underlying excitations along the entangling
boundary [9]. The same intuition is tied to the fact that the
ground state entanglement satisfies a “boundary law” of
entanglement entropy [11,12]; that is, the von Neumann
entanglement entropy S1 ¼ −trAðρA logðρAÞÞ of the ground
state corresponding to a subsystem A scales with the size of
the boundary of subsystem A.
How does the nature of information encoded evolve as

one goes from the ground state to an excited eigenstate?
Typically, there always exist eigenstates with energy E just
above the ground state that continue to satisfy an area law
of entanglement. These are the eigenstates that have zero
energy density, i.e., limV→∞½ðE − E0Þ=V� ¼ 0, where E0 is
the ground state energy and V is the total volume of the
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system. These eigenstates can often be interpreted as the
action of a sum of local operators acting on the ground
state; for example, in a system with spontaneous symmetry
breaking, one can construct an eigenstate consisting of a
few magnons by a superposition of spin-flips acting on the
ground state. Furthermore, the level spacing between two
contiguous low-lying excitations scales as δE ∼ 1=Lα,
where α > 0 depends on dimensionality and the phase
of matter under consideration. In this paper, we will instead
be concerned with excited eigenstates that have a finite
energy density, i.e., limV→∞½ðE − E0Þ=V� ≠ 0. For nota-
tional convenience, we will set E0 ¼ 0 for the remainder of
this paper.
As argued by Srednicki [13], the question of how (and

whether) an isolated quantum system eventually reaches
thermal equilibrium is closely related to properties of its
finite energy density eigenstates. Let us consider an
arbitrary (nonequilibrium) initial state, with finite energy
density and subextensive energy fluctuations, as might be
prepared by performing a quantum quench [14]. Evolving
such a state under the Hamiltonian H for sufficient time is
expected to lead to the predictions dictated by the basic
tenets of equilibrium statistical mechanics, if the system
thermalizes. Such an expectation leads to the “eigenstate
thermalization hypothesis” (ETH) [13,15,16], which stip-
ulates that the thermalization occurs at the level of each
individual eigenstate. An alternative approach by Deutsch
[15], which is based on perturbing an integrable system by
a small integrability breaking term, leads to the same
suggestion. If ETH holds true, then, in the thermodynamic
limit, the equal-time correlators of an operator with respect
to a finite energy density eigenstate jψi are precisely equal
to those derived from the canonical ensemble, i.e.,

hψ jOjψi ¼ trðOe−βHÞ
trðe−βHÞ ; ð1Þ

where β is chosen such that Eq. (1) holds true whenO ¼ H,
the Hamiltonian. Henceforth, we will use the notation jψiβ
to denote an eigenstate whose energy density corresponds
to temperature β−1. A notable exception to ETH is a many-
body localized system in the context of strongly disordered
interacting quantum systems [17–23], which fails to ther-
malize and does not satisfy Eq. (1). The possibility [24–30],
or impossibility [31–34], of the violation of ETH without
disorder has also been discussed recently.
In this paper, we restrict ourselves to systems where

ETH, as defined by Eq. (1), holds. However, Eq. (1) alone
is incomplete unless one also specifies the class of
operators for which it holds. For example, one well-known
nonlocal operator for which Eq. (1) breaks down is the
projection operator jψihψ j onto the eigenstate jψi that
enters Eq. (1); the left-hand side of Eq. (1) yields unity for
this operator, while the right-hand side is exponentially
small in the volume, a clear disagreement. On that note, it is

often mentioned that in systems where Eq. (1) does hold, it
does so only for “few-body” operators [35–37], where, to our
knowledge, the precise meaning of a few-body operator has
not been clarified (seeRef. [38] for related discussion). In this
paper, we conjecture and provide numerical evidence that
Eq. (1) holds for all operators within a subsystemAwhen the
volume VA of subsystem A satisfies VA ≪ V (or, more
precisely, when VA=V → 0 as V → ∞). We also explore the
validity of ETH when the subsystem fraction VA=V is taken
to be finite as VA, V → ∞. While we find in this case that
Eq. (1) fails to hold for some operators, our results are
consistent with the possibility that ETH holds for all
operators, as long as a microcanonical ensemble is used
for comparison. [Wewill return to this case shortly, after first
considering the implications of Eq. (1).]
The satisfaction of Eq. (1) for all operators in a

subsystem A is equivalent to the statement that the reduced
density matrix ρAðjψiβÞ ¼ trĀjψiββhψ j corresponding to an
eigenstate jψiβ is given by [23]

ρAðjψiβÞ ¼ ρA;canonicalðβÞ; ð2aÞ

where

ρA;canonicalðβÞ ¼
trĀðe−βHÞ
trðe−βHÞ ;

Ā being the complement of A. Note that the trace in the
denominator is over the whole Hilbert space. The equality
in Eq. (2a) means that the density matrices become
elementwise equal in any basis as V → ∞.
One immediate consequence of Eq. (2a) is that the

thermodynamical properties of a system at arbitrary tem-
peratures can be calculated using a single eigenstate.
For example, Eq. (2a) implies that to the leading order,
the Renyi entropies Sα (¼ −½1=ðα − 1Þ� log ½trAðραAÞ�) for
an eigenstate jψiβ corresponding to a subsystem A with
VA ≪ V are given by [39,40]

Sα ¼
α

α − 1
VAβðfðαβÞ − fðβÞÞ; ð3Þ

where fðβÞ is the free energy density at temperature β−1.
The above equation allows one to access the free energy
density f at an arbitrary temperature by varying α. Note that
Eq. (3) holds only to the leading order because Renyi
entropies Sα receive additional subleading contributions
due to the conical singularity induced at the boundary of
subsystem A [3–5]. In the limit α → 1, one recovers the
equality between the von Neumann entanglement entropy
S1 and the thermal entropy Sth ¼ VAsthðβÞ, where sthðβÞ is
the thermal entropy density at temperature β−1, a result
which was argued to hold in Ref. [41] for the special case of
two weakly coupled ergodic systems. We emphasize that
these results could not be derived fromEq. (1) alone if it were
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to hold only for local operators, since entanglement entropies
do not correspond to the expectation value of any local
operator. We also note that Refs. [40,42] simulated the
thermal Renyi entropy Sα [starting with the expression on
the right-hand side of Eq. (2a)] using quantum Monte Carlo
to access the properties of the system at temperature ðαβÞ−1.
Of course, quantumMonte Carlomethods are not well suited
to verifying ETH since they cannot access properties of a
single eigenstate [the left-hand side of Eq. (2a)].
We will also discuss an approximate, but more intuitive

form of ETH, given by

ρAðjψiβÞ ≈
e−βHA

trAðe−βHAÞ ; ð2bÞ

whereHA is the projection of the original Hamiltonian onto
subsystem A. This form is approximate compared to
Eq. (2a) because, generically, it does not capture the
correlations near the boundary correctly because of the
somewhat arbitrary truncation scheme used to obtain HA.
Nevertheless, Eqs. (2a) and (2b) both yield the same results
for all bulk quantities, such as the Renyi entropy densities,
as well as correlation functions of operators that have
support only far from the boundary. Equation (2b) is also
related to the notion of “canonical typicality” [43–45],
which states that, when VA ≪ V, the vast majority of pure
states within a microcanonical energy shell will reproduce
the canonical ensemble within subregion A, assuming the
interaction between A and Ā to be small. Thus, when
Eq. (2b) holds, it implies that finite energy density
eigenstates are locally equivalent to typical states.
A central task of this paper is to check the validity of

Eqs. (2a) and (2b) and their consequences for model non-
integrable systems. As alreadymentioned, wewill argue that
ETH allows one to calculate thermodynamical quantities, as
well as correlators, at all energy densities (or temperatures)
using only a single eigenstate. We will demonstrate this
explicitly by studying a quantum 1D model numerically.
We also explore the validity of ETH in the more general

case, where subsystem A spans a finite fraction f ≡
VA=V > 0 of the total system size. In this case, the
thermodynamic limit VA, V → ∞ is taken in a way that
holds f constant. Although Eq. (1) does not hold for all
operators in this case, we find preliminary evidence that it
nevertheless holds for many operators when f < 1=2. In
particular, our results strongly indicate that f < 1=2 is
sufficient to guarantee equivalence between the von
Neumann entropy density of a pure eigenstate and the
thermal entropy density at the corresponding temperature.
This is in contrast to Ref. [46], where it was argued that
such an equivalence holds only in the limit f� → 0.
Recently [47,48], the requirement f� → 0 was substanti-
ated using analytical and large scale numerical calculations
for free fermions, an integrable system. Our results indicate
that the f� → 0 requirement is likely a consequence of the
integrable nature of the models in Refs. [47,48].

On the other hand, we are able to construct operators for
which Eq. (1) fails when VA=V is nonzero. These operators
include powers of the Hamiltonian HA restricted to sub-
system A, as well as certain “nonequithermal” operators
(which we define below) when the subsystem fraction is
greater than a critical Oð1Þ number, f�. Crucially, these
cases each correspond to operators for which the canonical
and microcanonical ensembles predict different results
(they are only strictly equivalent when VA ≪ V).
In fact, the results of Refs. [49,50] suggest that a single

eigenstate is expected to reproduce the results of a micro-
canonical ensemble, rather than the canonical ensemble,
when 0 < f < 1=2. A microcanonical ensemble with
energy width ΔE is given by an equal-weighted mixture
of nearby eigenstates,

ρmcðEÞ ¼
1

N

X
E0∈½E−ΔE=2;EþΔE=2�

jψiE0E0hψ j;

where jψiE0 denotes an eigenstate of energy E0. For the
purposes of this paper, the energy window ΔE is chosen
to vanish as the thermodynamic limit is taken in a way
such that the number of states N in the energy window
½E − ΔE=2; Eþ ΔE=2� is always large. We thus introduce
a third version of ETH that we explore in this paper,
given by

Ehψ jOjψiE ¼ tr ½OρmcðEÞ�: ð4Þ

If this equation holds for all operators O within subregion
A, it implies the equivalence

ρAðjψiEÞ ¼ ρA;mcðEÞ; ð2cÞ

where ρA;mcðEÞ≡ trĀ½ρmcðEÞ� is the microcanonical
ensemble restricted to subregion A.
As we will discuss, our results are consistent with the

possibility that Eq. (4) holds for all operators that span less
than half the system, which is equivalent to the notion that
Eq. (2c) holds precisely in the thermodynamic limit as long
as f < 1=2. Thus, ETH may hold for all operators with
support on less than half the total system, as long as a
microcanonical ensemble with vanishing energy width is
used for comparison.
The paper is organized as follows. Section II discusses

general considerations for the validity of ETH and intro-
duces a division of all operators spanning a macroscopic
subregion into two distinct classes, which have different
requirements for ETH to hold. Section III illustrates some
general features of ETH by studying properties of a
hardcore boson model with global particle-number con-
servation for infinite temperature eigenstates. Section IV
introduces the model that we study in the remainder of the
paper, the transverse field Ising model with longitudinal
field. Section V focuses on the entanglement entropies at
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finite temperature. Section VI studies the validity of ETH
when VA ≪ V by providing a close look into the entan-
glement Hamiltonian, focusing on its spectrum and
Schmidt vectors. This section also demonstrates the validity
of Eq. (2a) when VA ≪ V by considering the trace norm
distance between both sides. Section VII explores the
validity of ETH when VA=V is taken to be finite as
V → ∞. Section VIII provides an application, by using
the reduced density matrix from a single eigenstate to
predict correlators and free energy densities at all (finite)
temperatures. Section IX summarizes our results and
provides thoughts for future discussion.

II. GENERAL CONSIDERATIONS

A. Determining the Hamiltonian from microstates in
classical statistical mechanics

Suppose that, for an isolated system described by
classical statistical mechanics in a total volume V, we
are given access to all classical microstates in a small
energy window ½E; Eþ ΔE�, where ΔE ∼

ffiffiffiffi
V

p
is on the

order of the energy fluctuations in the total system if it were
coupled to a thermal bath, and, thus, all microstates
correspond to the same energy density. We pose the
question: Does this information suffice to determine the
underlying Hamiltonian, assuming that the Hamiltonian is
local? The answer is indeed yes, following the standard
procedure of obtaining the canonical ensemble from a
microcanonical ensemble. In particular, let us make a
fictitious division of the system into A and Ā, such that
VA ≪ VĀ, and count the number of times a particular
configuration CA appears in subsystem A. This determines
the probability distribution for finding a given configura-
tion, PðCAÞ. If all microstates are equally likely, then [51]

PðCAÞ ¼
e−βEðCAÞP
fCAge

−βEðCAÞ ; ð5Þ

where EðCAÞ is the energy in subsystem A. One may now
invert this equation to obtain the energy EðCAÞ ¼
−ð1=βÞ logðPðCAÞÞ, up to an irrelevant constant shift of
energy. In a classical statistical mechanical system, EðCAÞ
is the Hamiltonian for subsystem A. In particular, knowing
EðCAÞ, one may now calculate any thermodynamic prop-
erty at any temperature. Here it is crucial to note that Eq. (5)
does not assume that the energy density EðCAÞ=VA equals
the energy density E=V of the microstates being sampled.
As discussed in the Introduction, we will provide

evidence that the quantum mechanical analog of Eq. (5)
is given by Eqs. (2a)–(2c). We now proceed to discuss the
conditions under which Eqs. (2a)–(2c) are valid.

B. Two classes of operators

One of the central tasks of this paper is to investigate
whether a single finite energy density eigenstate can

contain information about a system at all temperatures.
In terms of Eqs. (2a) and (2b), this is equivalent to asking
whether a single eigenstate contains accurate information
about microstates in subregion A that have thermodynami-
cally rare energy density. In this paper, we phrase this
question in terms of which operators satisfy ETH. From this
perspective, it is useful to separate operators into two
classes with respect to a given Hamiltonian, H:

Equithermal operators: When the full system is
considered with respect to the canonical ensemble,
the expectation value of an equithermal operator
receives significant contribution only frommicrostates
in subregion A with thermodynamically common
energy density (i.e., those corresponding to the tem-
perature, β−1). [Here, A is the subregion spanned by
the operator, and “microstates” in subregion A are the
eigenvectors of either ρA;canonicalðβÞ or HA (corre-
sponding to Eq. (2a) or Eq. (2b), respectively).] Local
operators fall into this class because there are no
thermodynamically rare microstates on one site (or
very few sites). This class also includes sums of local
operators, as well as some nonlocal quantities, such as
the energy variance and von Neumann entropy (S1)
within some subregion. Essentially, equithermal op-
erators are those for which the saddle point approxi-
mation is valid. Crucially, a single eigenstate of energy
E need not contain accurate information about energy
densities away from E=V for Eq. (1) to hold for
equithermal operators.

Nonequithermal operators: Nonequithermal operators
are those that, when considered with respect to the
canonical ensemble, receive significant contribution
from microstates with thermodynamically rare energy
density, i.e., energy densities other than that corre-
sponding to the temperature, β−1. In many cases, these
are operators specifically designed to probe thermo-
dynamically rare microstates in a subregion of the
system. For instance, an operator that includes a factor
like e−β

0HA is nonequithermal because it probes micro-
states of subregion A at temperature ðβ þ β0Þ−1. A
projector onto the ground state (or any collection of
energetically rare microstates) within a macroscopic
subregion is also a nonequithermal operator. This
class also includes all Renyi entropies Sα for α ≠
1 [39].

If handed an operator as a black box, determining whether
it is most accurately characterized as equithermal or non-
equithermalwith respect to aHamiltonian requires analyzing
it on the subsystem spanned by the operator. Let HA be the

Hamiltonian restricted to this subregion, and let EðAÞ
n and

jnðAÞi denote the eigenvalues and eigenvectors, respectively,
of HA. Then, the expectation value hOiβ;HA

is equal to

ð1=ZAÞ
P

ne
−βEðAÞ

n hnðAÞjOjnðAÞi, where ZA ¼ trðe−βHAÞ.
Hence, we can create a weighted histogram of contributions
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e−βE
ðAÞ
n jhnðAÞjOjnðAÞij with respect to energy density

EðAÞ
n =VA. If, for various β, this histogram is peaked at the

same energy density as the histogram for e−βE
ðAÞ
n alone, then

the operator is equithermal.
It is important to recognize that the concept of a

nonequithermal operator becomes better defined as an
operator spans a larger (more macroscopic) subregion of
the system. However, even on subregions of moderate size
(e.g., three or more sites), we can directly probe whether all
microstates match between a single eigenstate and a
thermal ensemble. If ETH [in the sense of Eq. (1) or
Eq. (4)] is valid even for nonequithermal operators, it
implies that a single eigenstate contains information about a
system at all temperatures.

C. ETH: Equithermal vs. nonequithermal operators

Let us first consider the relationship between Eq. (1) and
Eqs. (2a) and (2b). Equation (1) may be rewritten as

trAðρAOÞ ¼ trAðOtrĀðe−βHÞÞ
trðe−βHÞ : ð6Þ

If this equation holds for all operators in a subsystem A,
Hermitian as well as non-Hermitian, then one obtains
Eq. (2a), ρAðjψiβÞ ¼ ρA;canonicalðβÞ. This is because one
may expand both ρA and ρA;canonical in terms of the complete
set of operators in subsystem A and, by choosing appro-
priate O, prove that they are equal to each other element by
element. One of the most important consequences of this
equality is that it allows one to extract properties of the
Hamiltonian at arbitrary temperatures using a single eigen-
state, which is one of the central points of this paper.
We will now discuss ETH for both equithermal and

nonequithermal operators. For each class of operator, we
consider separately two cases: (i) when VA ≪ V and
(ii) when the ratio f ≡ VA=V is taken to be fixed and
finite as VA, V → ∞.

1. ETH for equithermal operators

Let us first briefly discuss ETH for equithermal operators
when VA ≪ V. The simplest case to consider is when VA is
held fixed as V → ∞. This generalizes the traditional
definition of ETH to go beyond “few-body” operators
and include those that span an arbitrary portion of the
system, greater than any intrinsic length scale. The con-
dition VA ≪ V also includes the case when the limits VA,
V → ∞ are taken such that VA=V → 0. If Eq. (2a) holds for
fixed subsystem size, it is reasonable to expect that it holds
in this case as well.
Let us now consider the validity of ETH for equithermal

operators in the fixed-ratio limit, where 0 < f < 1
2
is finite.

In contrast to classical statistical mechanics, we expect that
quantum mechanically, one does not require the constraint
VA ≪ VĀ for ETH to hold for a large class of equithermal

operators. Indeed, as discussed below, several known
results already point to the conclusion that ETH holds
for at least some equithermal operators, as long as VA < VĀ
with both VA, VĀ → ∞.
One piece of evidence that suggests that ETH might

hold for equithermal operators as long as VA < VĀ comes
from the study of quantum quenches in conformal
field theories (CFTs). As shown in Ref. [52], the time-
dependent reduced density matrix ρAðtÞ of a system
initially prepared in a low-entanglement state, and
evolved with a CFT Hamiltonian, approaches the canonical
reduced density matrix, as long as VA < V=2, with VA,
V→∞. The author of Ref. [52] characterized the
closeness between ρAðtÞ and the thermal density matrix
ρA;canonical [Eq. (2a)] in terms of the operator overlap
IðtÞ¼trðρAðtÞρA;canonicalÞ=½trðρ2AðtÞÞtrðρ2A;canonicalÞ�1=2, which
is exponentially close to unity for VA=2 < t < VĀ=2. It is
important to note that, in the thermodynamic limit, I only
receives contribution from eigenstates at temperature β−1,
so this only guarantees that equithermal operators will
satisfy Eq. (1). It is also important to recognize that the
initial states considered in Ref. [52] are constructed from
applying an exponential of the Hamiltonian to the CFT
boundary state. The initial states, therefore, have some
knowledge of the Hamiltonian, which perhaps explains
why the states relax to the canonical ensemble rather than a
different, diagonal ensemble.
Another piece of evidence comes from the recent studies

of large central charge conformal field theories [53–55]. In
particular, the authors of Refs. [53,55] studied the entangle-
ment entropy of pure eigenstates in finite temperature
conformal field theories with large central charge. In the
limitVA, V ≫ 1=T, while keepingVA=V fixed, it was found
that the entanglement entropy becomes equal to the thermal
entropy at all nonzero temperatures as long as VA < VĀ.
Lastly, the entanglement entropy for a random pure state

is given by [56–58]

S ¼ − log ðjHAj−1 þ jHĀj−1 − jHj−1Þ; ð7Þ
where jHAj, jHĀj, and jHj are the sizes of the Hilbert
spaces of subsystems A, Ā, and the total system (¼ A ∪ Ā),
respectively. Thus, as soon as VA < VĀ, one obtains
S ¼ − logðjHAjÞ, which is indeed the thermal entropy
for subsystem A at infinite temperature. Since random
pure states mimic eigenstates at infinite temperature (i.e.,
jψiβ¼0), this again suggests that the condition VA < VĀ is
perhaps sufficient, at least for some operators.
On the other hand, there is a well-known equithermal

operator for which Eq. (1) fails when the ratio of the
subsystem to the total system size f ¼ VA=V is finite [59].
When f is finite, the energy variance of the reduced density
matrix ρAðjψiβÞ will be suppressed by a factor of (1 − f)
compared with the value that the variance would have taken
in the canonical ensemble. Ultimately, this is due to the fact
that a single eigenstate has precisely zero energy variance
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hðH − hHiÞ2i in the full system, unlike in the canonical
ensemble, where the variance scales proportionally with
system size. This relationship can be expressed as

tr½ρAðjψiβÞOA;β� ¼
VĀ

V
tr½ρA;canonicalðβÞOA;β�; ð8Þ

where OA;β ¼ ðHA − hHAiβÞ2 is the energy variance oper-
ator. We will explore implications of the subsystem energy
variance mismatch between a single eigenstate and the
canonical ensemble more carefully in Sec. VII A.
Of course, it is important to note that a suitably defined

microcanonical ensemble has zero energy variance in the
thermodynamic limit, just like a single eigenstate. This
provides further evidence that a microcanonical ensemble
is the appropriate ensemble to compare a single eigenstate
with when VA=V is nonzero [49,50] and, therefore, that
Eq. (2c) is the most appropriate form of ETH to consider in
this case. We will consider this equation’s validity in
Sec. VII B.
There is another issue to consider regarding the sub-

system energy variance. For the case of time-evolved states,
the full system energy variance is independent of time. For
a given initial state, this variance may indeed be different
from the energy variance expected in the canonical ensem-
ble, which implies that the energy variance for any
subsystem that is a finite fraction of the total system will
disagree, even at long times [60]. In this case, the system
will relax to a subsystem energy variance given by the
diagonal ensemble, which depends upon the energy histo-
gram of the initial state.
In summary, while we expect that Eq. (1) is obeyed by

many equithermal operators when VA=V is nonzero, it
cannot be satisfied by all such operators, since the sub-
system energy variance provides an important counterex-
ample. Instead, a more appropriate definition of ETH in this
case is the one given by Eq. (2c), which compares the
reduced density matrix from a single eigenstate to a
microcanonical ensemble with vanishing energy window.

2. ETH for nonequithermal operators

The extra ingredient introduced by nonequithermal
operators is that if ETH holds for them, then taking such
an operator’s expectation value with respect to a state jψiβ
allows one to access the properties of the Hamiltonian
at a temperature different than β−1. For example, the
Renyi entropy Sα corresponding to ρAðjψiβÞ satisfies Sα ¼
½α=ðα − 1Þ�VAβðfðαβÞ − fðβÞÞ, thus allowing one to
access the free energy density at temperature ðαβÞ−1.
Let us first consider the validity of ETH for nonequi-

thermal operators when VA ≪ V. Remarkably, the results
presented in the remainder of this paper demonstrate that
ETH is valid for all nonequithermal operators in this limit.
Thus, a single eigenstate of finite energy density contains

knowledge of the properties of the system at all
temperatures.
Now let us turn to the case in which VA=V is nonzero,

which turns out to be much more subtle. First, we consider
the potential validity of Eqs. (1) and (2a) in this case,
which, for the purposes of the following discussion, we
refer to as “canonical ETH.” As mentioned in the previous
subsection, there is already an equithermal operator for
which this equation fails in this limit, namely, the sub-
system energy variance. Thus, we do not expect that Eq. (1)
will hold for all nonequithermal operators either when f is
nonzero. In addition, for a given ratio VA=V with both VA,
V → ∞, there is a physical constraint on the range of
energy densities for which the spectrum of jψiβ, in
principle, can match that of ρA;canonicalðβÞ. To appreciate
this, let us consider a slightly different problem—an
arbitrary Hamiltonian of hardcore bosons with particle-
number conservation, at infinite temperature. We will
consider an explicit example of such a system in the next
section. Since the total particle-number operator N̂ com-
mutes with the Hamiltonian and satisfies the equation
N̂ ¼ N̂A þ N̂Ā, the reduced density matrix ρA for a wave
function jψiβ¼0 is block diagonal in the number of particles
NA in subsystem A. Furthermore, if canonical ETH holds
[as given by a generalization of Eqs. (2a) and (2b)], then the
Schmidt decomposition is given by

jψiβ¼0 ¼
XN
NA¼0

ffiffiffiffiffiffiffi
λNA

q X
i

juiiNA
⊗ jviiN−NA

; ð9Þ

where λNA
are the Schmidt coefficients in the sectorNA, and

juiiNA
, jviiN−NA

are the corresponding eigenvectors. The
label i captures fluctuations of particles within a fixed
sector NA. Note that there is no index i on λNA

because we
are at infinite temperature and all Schmidt states within a
sector NA are equally likely.
The decomposition in Eq. (9) allows one to calculate

properties of subsystem A at infinite temperature even away
from filling N=V, since the reduced density matrix ρA will
contain sectors with various densities NA=VA. However,
there is both an upper limit and a lower limit on the density
in subsystem A, since

max ½N − ðV − VAÞ; 0� ≤ NA ≤ min ½N;VA�; ð10Þ

and, thus, the particle density NA=VA in subsystem A
satisfies

max ½1 − ð1 − nÞ=f; 0� ≤ NA

VA
≤ min ½n=f; 1�; ð11Þ

where n≡ N=V is the overall particle density and
f ≡ VA=V. A necessary condition for the wave function
in Eq. (9) to encode properties of the system at all fillings is
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f ≤ min ½n; 1 − n�: ð12Þ

The above discussion, with some modifications, carries
to systems with (only) energy conservation, at an arbitrary
temperature. The Schmidt decomposition of an eigenstate
jψiβ with eigenvalue E may now be written as

jψiβ ¼
X
i

ffiffiffiffi
λi

p
juii ⊗ jvii: ð13Þ

The physical content of canonical ETH, as approximated in
Eq. (2b), is that λi ∝ e−βEA;i , where EA;i is the ith energy
eigenvalue of HA (the projection of the Hamiltonian to
subsystem A), while juii is the corresponding eigenstate of
HA. Following the discussion of particle number above,
one might naively expect that huijHAjuii ≤ E ∀ juii, since
the energy density in subsystem Ā cannot be less than zero
(which would correspond to region Ā being in its ground
state). However, this argument has a loophole since, in
contrast to the particle-number operator N̂, the total
Hamiltonian is not separable into subsystems A and Ā:
H ¼ HA þHĀ þHAĀ, which actually allows huijHAjuii to
exceed E, as we will see in Sec. VII in the context of the
model Hamiltonian in Eq. (30) below. To understand the
constraint on huijHAjuii precisely, let us derive an expres-
sion that encapsulates the classical notion that the sum of
energies in subsystem A and Ā equals E.
We first note

hui0j ⊗ hvi0jHjψiβ ¼ Ehui0j ⊗ hvi0jψiβ ð14Þ

¼ E
ffiffiffiffiffiffi
λi0

p
: ð15Þ

The above expression can be reevaluated using the decom-
position H ¼ HA þHĀ þHAĀ:

hui0j ⊗ hvi0jHjψiβ
¼ hui0j ⊗ hvi0jHA þHĀ þHAĀjψiβ
¼

ffiffiffiffiffiffi
λi0

p
hui0jHAjui0i þ

ffiffiffiffiffiffi
λi0

p
hvi0jHĀjvi0i

þ
X
j

ffiffiffi
λ

p
jhui0j ⊗ hvi0jHAĀjuji ⊗ jvji: ð16Þ

Equating the two ways to calculate the same expression,
one finds

hvi0jHĀjvi0i þ
X
j

ffiffiffiffiffiffi
λj
λi0

s
hui0j ⊗ hvi0jHAĀjuji ⊗ jvji

¼ E − hui0jHAjui0i: ð17Þ

Because of the variational principle, the energy density
in subregion Ā cannot be less than that of the ground
state. Allowing negative energy contributions due to

boundary terms in HĀ gives the inequality
hvi0jHĀjvi0i ≥ −cLd−1, where c is a constant (recall that,
in our convention, the ground state energy for the full
Hamiltonian is set to zero). Since both E and hui0jHAjui0i
scale as Ld, the only way that hui0jHAjui0i can exceed
E is if the second term on the left-hand side of Eq. (17),

viz. Eboundary¼def
P

j

ffiffiffiffiffiffiffiffiffiffiffiffi
λj=λi0

p hui0j ⊗ hvi0jHAĀjuji ⊗ jvji, is
negative and scales as Ld. When that happens, canonical
ETH no longer holds, as we now argue on general grounds,
and as we will also demonstrate numerically for a lattice
Hamiltonian in Sec. VII. To see this, we reiterate that
canonical ETH requires that (i) juii’s are approximate
eigenstates of HA, and (ii) λi ∝ e−βhuijHAjuii ¼ e−βEA;i .
Firstly, when hui0jHAjui0i < E so that canonical ETH
could in principle hold, the Eboundary term can be neglected
because the “diagonal term” in Eboundary (i.e., the term
corresponding to j ¼ i0) scales as the boundary (∝ Ld−1)
and is thus subleading, while the off-diagonal terms scale as
e−L

d
and thus vanish in the thermodynamic limit (recall that

VĀ > VA). On the other hand, when hui0jHAjui0i > E, the
jvi0i’s now correspond to states of zero energy density,
and the aforementioned argument for neglecting off-
diagonal terms is no longer valid. So, let us assume that
hui0jHAjui0i > E and each jui0i continues to be an eigen-
state of HA. Thus, one requires that

Z
de0

ffiffiffiffiffiffiffiffiffiffi
λðe0Þ
λðeÞ

s
Mðe; e0ÞeSðe0Þ ∝ gðeÞ=Ld−1; ð18Þ

where we have taken the continuum limit, and where
λðeÞ denotes the Schmidt eigenvalue corresponding
to an eigenvector jui at energy density e, while
Mðe;e0Þ¼huðeÞj⊗hvðeÞjHAĀjuðe0Þi⊗jvðe0Þi and gðeÞ ¼
e − huðeÞjHAjuðeÞi=Ld. It is obvious from Eq. (18) that
λðeÞ ∝ e−βEA ¼ e−βefL

d
is no longer the solution. In fact,

the only way for the integral on the left-hand side of
Eq. (18) not to have any exponential dependence on
L (as required by the right-hand side) is that the
integrand itself does not have such dependence, i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðe0Þ=λðeÞp

∝ e−Sðe0Þ=Mðe; e0Þ. This implies a breakdown
of canonical ETH when hui0jHAjui0i > E.
The above discussion implies that for a given wave

function and bipartition, the maximum energy density that
is potentially accessible in a subsystem A, such that the
corresponding Schmidt weight satisfies canonical ETH, is

e� ¼ minðE=VA; emaxÞ ¼ minðe=f; emaxÞ; ð19Þ

where e ¼ E=V is the energy density corresponding to the
wave function and emax is the maximum energy density for
the Hamiltonian H (recall that emax can be finite for lattice-
regularized quantum systems, e.g., for models of fermions
or spins/hardcore bosons). Above, we have assumed that

DOES A SINGLE EIGENSTATE ENCODE THE FULL … PHYS. REV. X 8, 021026 (2018)

021026-7



e < emax=2. In the case when e > emax=2, the range of
available energies is instead bounded from below by
max ½0; emaxð1 − 1=fÞ − e=f�. If our goal is to capture
fluctuations in the system for all energy densities so that
all nonequithermal operators can potentially satisfy canoni-
cal ETH, we obtain an analog of Eq. (12) for the energy:
E=VA ≥ emax and ðemaxV − EÞ=VA ≥ emax. Expressed in
terms of the fraction f ¼ VA=V and the energy density of
the eigenstate e ¼ E=V, this constraint is

f ≤ f� ≡min

�
e

emax
; 1 −

e
emax

�
: ð20Þ

Let us emphasize that the above constraint is a necessary
condition for canonical ETH to hold for all nonequithermal
operators, not a sufficient one. Just as some equithermal
operators cannot satisfy Eq. (1) when f is finite, we expect
that there also exist nonequithermal operators for which the
same equation fails when f is finite, even when the above
condition holds. Even so, significant deviation in the
eigenvalue spectrum begins where this constraint breaks
down, as our numerical results will demonstrate in Sec. VII.
We also emphasize that the above considerations apply only
to canonical ETH as described by Eqs. (1), (2a), and (2b).
We now briefly consider the potential validity of Eqs. (4)

and (2c) (“microcanonical ETH”) when VA=V is held fixed
as VA, V → ∞. To our knowledge, there is nothing con-
ceptual that prevents the exact equivalence given by Eq. (4)
when VA=V < 1

2
; in other words, these general consider-

ations leave open the possibility that microcanonical ETH
holds for all operators that span less thanhalf the system.This
potentially includes nonequithermal operators; operators for
which equivalence between canonical and microcanonical
ensembles breaks down; and operators that cannot be
represented as a sum of local operators (including, e.g.,
the von Neumann entanglement entropy SA ¼ h− log ρAi,
which we study in Sec. V). Of course, it is clear that Eq. (2c)
cannot be valid when VA=V > 1

2
because the Schmidt values

of a single eigenstate are symmetric under the transformation
A ↔ Ā, while a microcanonical ensemble (mixture of many
nearby eigenstates) does not have this property.

D. Summary

Let us summarize the discussion in this section.
1.We conjecture that ETHholds for all local and nonlocal

equithermal operators as long as VA ≪ V. This implies that
ETH is not restricted only to few-body operators (as can be
seen in the limit VA=V → 0 as VA, V → ∞).
2. We conjecture that ETH also holds for all non-

equithermal operators when VA ≪ V. It follows that a
single eigenstate contains information about all energy
densities available to the system.
3. Determining the full Hamiltonian from a single

eigenstate is equivalent to the satisfaction of Eq. (1) for
both equithermal and nonequithermal operators. Our
results provide strong evidence that this is true when

VA ≪ V. Therefore, one should be able to extract infor-
mation about the full Hamiltonian at arbitrary energy
densities (or temperatures) using a single eigenstate. We
demonstrate this explicitly in Sec. VIII.
We also considered, in this section, the case where the

subregion spans a finite fraction 0 < VA=V < 1
2
of the

system as VA, V → ∞. We demonstrated that there are
both equithermal and nonequithermal operators for which
the single eigenstate expectation value disagrees with that
of the canonical ensemble, and, hence, Eq. (2a) must break
down in this case. However, the considerations in this
section leave open the possibility that ETH holds precisely
when VA=V < 1

2
as long as a microcanonical ensemble with

a vanishing energy window is used for comparison
[Eq. (2c)]. We find further evidence supporting this
possibility in Sec. VII.

III. A WARMUP: EIGENSTATES AT
INFINITE TEMPERATURE

A. Von Neumann and Renyi entropy

By definition, the thermal entropy reaches a maximum at
infinite temperature. Together with Eq. (35), this implies
that when ETH holds, eigenstates at “infinite temperature”
are ones where the entanglement entropy is at its maximum.
Consider a 1D transverse field Ising model with longi-
tudinal field, H ¼ P

L
i¼1 ðσziσziþ1 þ hxσxi þ hzσ

z
i Þ. Here, the

von Neumann entropy S1 takes its maximum possible value
when the eigenvalues of the reduced density matrix are all
equivalent to one another. Thus, from counting the basis
size of the reduced Hilbert space, we expect for infinite
temperature eigenstates that each eigenvalue of the reduced
density matrix will approach 2−LA in the thermodynamic
limit when f ¼ LA=L < 1

2
. From this, it follows that the

Renyi entropies at infinite temperature satisfy

Sα ¼ LA log 2; ð21Þ
that is, they are independent of Renyi index α. The left panel
of Fig. 1 shows how the entropies S1 through S4 together
match this predicted value at the infinite temperature point for
a L ¼ 21 system with periodic boundary conditions and
subsystem size LA ¼ 4. In general, as L → ∞, the T ¼ ∞
entropy density is given by Sα=LA ¼ log 2.
Now let us instead consider a model with an additional

conservation law, namely, particle-number conservation.
Consider a 1D chain of hardcore bosons,

H ¼ −
X
i

ðtb†i biþ1 þ t0b†i biþ2 þ H:c:Þ

þ
X
i

ðVniniþ1 þ V 0niniþ2Þ; ð22Þ

where ni ≡ b†i bi. We focus on this system with periodic
boundary conditions at the nonintegrable point t ¼ V ¼ 1
and t0 ¼ V 0 ¼ 0.96. This model was previously studied and
shown to exhibit ETH in Refs. [61,62].
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Because of particle-number conservation, the reduced
density matrix from any pure state is block diagonal, with
each block corresponding to some filling number NA of the
subsystem A. The block of the reduced density matrix ρðNAÞ

A
corresponding to filling NA is a dNA

× dNA
matrix, where

dNA
≡ ðLA

NA
Þ. At infinite temperature and for LA=L < 1

2
, the

eigenvalues of ρA must be equal to one another within a
given block, but the eigenvalues in different blocks will be
different: They are proportional to ðL−LA

N−NA
Þ, the number of

microstates consistent with such a configuration in sub-
system A. Taking into account that trðρAÞ ¼ 1, one finds
that each of the dNA

≡ ðLA
NA
Þ eigenvalues of ρðNAÞ

A is given by

λNA
≡ ðL−LA

N−NA
Þ=ðLNÞ. The spectrum of ρA that we find

for a single eigenstate (as shown in Fig. 2) is in agreement

with that of the thermal reduced density matrix
ρA;canonicalðβ ¼ 0Þ studied in Ref. [40], consistent with
ETH.
With this, the von Neumann entropy at infinite temper-

ature becomes

S1 ¼ −
X
NA

dNA
λNA

log λNA
; ð23Þ

and the Renyi entropies are given by

Sα ¼ −
1

α − 1
log

�X
NA

dNA
λαNA

�
; ð24Þ

where the sums over NA are restricted to subsystem particle
fillings NA that satisfy the constraint in Eq. (10). The above
expressions are valid when LA=L < 1

2
.

Because the eigenvalues are nonuniform, the Renyi
entropies Sα at infinite temperature depend on the
Renyi index α, in contrast to an energy-only conserving
model. The right panel of Fig. 1 shows how the actual
values of S1 through S4 match those predicted by the
above counting argument. [Note that if we had instead
studied this model at half filling (i.e., “zero chemical
potential”), the Renyi entropy densities at infinite temper-
ature would again be independent of α, just like for the
energy-only conserving model.]
For comparison, we also calculate Sα analytically in the

thermodynamic limit. For simplicity, we consider the limits
L, N, LA → ∞, such that n ¼ N=L is held constant, while
LA=L → 0. In these limits, one can evaluate the expressions
in Eq. (24) using Stirling’s approximation logðx!Þ≈
x logðxÞ − x. One finds that, in the limits considered, Sα
receives contribution only from NA given by

FIG. 1. Entanglement entropies S1 through S4 for a model with no conservation law [left panel, given by Eq. (30) at L ¼ 21] and a
model with particle-number conservation [right panel, given by Eq. (22) at L ¼ 27, with filling N ¼ 6]. We use the parameters
mentioned in the text to place each model at a nonintegrable point. In each case, we consider eigenstates in the k ¼ 1 sector, with
subsystem size LA ¼ 4. The grey vertical line denotes infinite temperature (point of maximum S1), and the black circles mark the
theoretical predictions for the entanglement entropies there. The brown markers denote the theoretical values of the entropies in the limit
LA, L → ∞ while LA=L → 0, as given by Eqs. (26) and (27).

FIG. 2. Eigenvalue spectrum of the reduced density matrix of
an infinite temperature eigenstate, ρAðjψiβ¼0Þ, for the hardcore
boson model Eq. (22), with L ¼ 27, LA ¼ 4, and filling N ¼ 6.
The red lines plot the theoretical value of each eigenvalue in the
thermodynamic limit, determined from the fillingNA of the sector
in which it lies.
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N�
A ¼ LA

1þ ð1n − 1Þα : ð25Þ
Thus, Sα probes the system at the filling N�

A=LA ¼
1=f1þ ½ð1=nÞ − 1�αg, which is different than the actual
filling n, unless α ¼ 1 (which corresponds to the von
Neumann entanglement entropy). This also immediately
leads to expressions for Renyi and von Neumann entan-
glement entropies in the thermodynamic limit:

Sα=LA ¼ −
1

α − 1
log ½nα þ ð1 − nÞα� ð26Þ

and

S1=LA ¼ −½n logðnÞ þ ð1 − nÞ logð1 − nÞ�: ð27Þ
We plot these values in Fig. 1 for comparison. Remarkably,
even with the small system sizes we can access, the
difference between the exact finite-size result (obtained
by counting over all sectors) and the result valid in the
thermodynamic limit is quite small.
In the above derivation, it is also possible to relax the

restriction LA=L → 0 as LA, L → ∞. We then find that N�
A

is given by the solution to

N�
A ¼ LA

1þ
�

1−f
n−fN�

A=LA
− 1

�
α
; ð28Þ

which reduces to Eq. (25) when f → 0.
Let us note a few things about this equation:
(1) When α ¼ 1, the solution is N�

A ¼ nLA, regardless
of f. Thus, the von Neumann entropy always probes
the system at its given filling, even when f is finite.
Further analysis shows that Eq. (27) holds generally
when f < 1

2
.

(2) When the system is at half filling (n ¼ 1
2
), the

solution is N�
A ¼ 1

2
LA, regardless of f or α.

(3) When α > 1, 0 < f < 1
2
, and n ≠ 1

2
, the filling

fraction N�
A=LA probed by the Renyi entropy Sα

actually depends on f. As a result, the Renyi
entropies for a given LA depend on f. This can
be contrasted with the von Neumann entropy, which
is independent of f as long as f < 1

2
. The right panel

of Fig. 1 illustrates this nicely: the analytical f → 0
prediction for the von Neumann entropy [Eq. (27)]
matches the corresponding numerical result quite
well, but the Renyi entropies differ significantly
because f ¼ 4=27 is finite.

We expect that analogous features hold true also for the
model that conserves only energy, which we will discuss in
the later sections.

B. Subsystem energy variance

Let us also consider the average subsystem filling
variance of the particle-number conserving system given

by Eq. (22) at infinite temperature. Following the logic in
the previous subsection, the subsystem occupancy is given
by the hypergeometric distribution. While the average
subsystem filling is hNAi ¼ nLA ¼ Nf, the variance in
this quantity for a single eigenstate is

hðNA − hNAiÞ2i ¼ LAð1 − fÞnð1 − nÞ L
L − 1

: ð29Þ

Both the filling and its variance are proportional to LA as
expected, but the variance includes an additional factor
(1 − f), which causes it to be suppressed compared with the
grand canonical ensemble when f is finite. In Sec. VII Awe
will witness a similar suppression of the subsystem energy
variance when the condition LA=L → 0 is relaxed.

IV. MODEL HAMILTONIAN WITH ONLY
ENERGY CONSERVATION

To develop some understanding of the questions posed in
the Introduction, we study in detail throughout the remain-
der of the paper a finite 1D quantum spin-1=2 chain with
the following Hamiltonian:

H ¼
XL
i¼1

ðσziσziþ1 þ hxσxi þ hzσ
z
i Þ: ð30Þ

We set hx ¼ 0.9045 and hz ¼ 0.8090 such that the model is
far away from any integrable point and is thus expected to
satisfy ETH in the sense of Eq. (1), as shown in Ref. [63].
We use periodic boundary conditions throughout.
We diagonalized the Hamiltonian in Eq. (30) for system

sizes up to L ¼ 21, obtaining all eigenvalues and eigen-
states. As we hinted earlier, we assigned to each eigenstate
a temperature β−1 by finding the value β for which the
energy expectation value in the canonical ensemble
matches the energy of the eigenstate:

hψ jHjψi
hψ jψi ¼ trðHe−βHÞ

trðe−βHÞ : ð31Þ

By definition, β ¼ þ∞ for the ground state and β ¼ −∞
for the highest excited state. In practice, the range of
available β values on a finite-size system is much smaller.
With L ¼ 21, for instance, the first excited state has
β ≈ 4.0, and the second-to-highest excited state has β ≈
−0.6 [as determined from Eq. (31)]. It follows that
eigenstates outside the range 4.0≳ β ≳ −0.6 will not
appear fully thermal because of the large thermal correla-
tion length expected at low temperatures. (This can be seen,
for instance, in Fig. 3, where the finite-size corrections to
the linear scaling of the entanglement entropy become more
prominent as temperature decreases.) Another thing to
consider is that the infinite temperature eigenstate jψiβ¼0

is completely random and contains no information about
the Hamiltonian. In a finite-size system, states near infinite
temperature will also contain little information about the
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Hamiltonian and will therefore be unable to predict proper-
ties of the system at other energy densities. As a result of
these finite-size considerations, we typically study values
of β between 0.2 and 0.5 in the remainder of this paper.

V. VON NEUMANN AND RENYI ENTROPY OF
EIGENSTATES AT FINITE TEMPERATURE

A. ETH prediction for von Neumann
and Renyi entropies

Let us consider the Renyi entropy Sα ¼
−½1=ðα − 1Þ� logðtrραAðjψiβÞÞ corresponding to an eigen-
state jψiβ at inverse temperature β. Assuming that ETH, as
encoded in Eq. (2a), holds, Sα may be reexpressed as

Sα ¼ −
1

α − 1
log

�
ZðA; α; βÞ
Zð1; βÞα

�
; ð32Þ

where ZðA; α; βÞ is the partition function of the system on
an α-sheeted Riemann surface, such that subsystem A has an
effective temperature ðαβÞ−1, while subsystem Ā has an
effective temperature β−1. Zð1; βÞ is the regular partition
function of the system [3–5]. Therefore, keeping terms only to
the leading order in the subsystem size, the above expression
leads to Eq. (3) as given in the Introduction [39,40],

Sα ¼ −
1

α − 1
log

�
e−αβVAfðαβÞ−αβVĀfðβÞ

e−αβVAfðβÞ−αβVĀfðβÞ

�
ð33Þ

¼ α

α − 1
VAβðfðαβÞ − fðβÞÞ; ð34Þ

where f is the free energy density. Therefore, the wave
function at temperature β−1 can be used to calculate the free
energy at temperature ðαβÞ−1. Indeed, the same result also
follows using the approximate form in Eq. (2b). Taking the

limit α → 1 leads to the conclusion that the von Neumann
entanglement entropy S1 satisfies

S1 ¼ VAsthðβÞ; ð35Þ
where sthðβÞ ¼ S1ðρA;canonicalðβÞÞ=LA is the thermal entropy
density at temperatureβ−1.Wenote that Eqs. (33) and (34) are
consistent with recent work studying Renyi entropies in pure
states representing thermal equilibrium [64,65].

B. Numerical results for von Neumann
and Renyi entropies

Figure 3 shows the scaling of the von Neumann entropy
S1 as a function of subsystem size LA for the eigenstates
jψiβ of our model [Eq. (30)]. As discussed in Sec. II C 1,
we expect Eq. (35) to hold as long as VA < VĀ, in the limit
VA, VĀ → ∞. This implies that in the thermodynamic limit,
the function S1ðVAÞ is expected to form an inverted triangle
shape, similar to the behavior of a random pure state
[Eq. (7)]. However, in a finite total system at any non-
infinite temperature, S1 is an analytic function of the ratio
VA=V with a negative sign for d2S1=dV2

A, as shown in
Fig. 3 (note that the sign of the curvature is fixed by the
strong subadditivity of entanglement). However, even in a
finite system, the volume law does hold to good accuracy
when VA ≲ V=2, and the finite-size scaling, discussed
below, indicates that the inverted triangle shape is recov-
ered in the thermodynamic limit.
Figure 4 shows the comparison of S1, S2, S3, and S4,

calculated for each individual eigenstate for a subsystem of
size LA ¼ 4 in a L ¼ 21 system, with their ETH predicted
canonical counterparts, Eqs. (35) and (3). We use two
different canonical counterparts corresponding to Eqs. (2a)
and (2b), the latter version being susceptible to boundary
errors, which nevertheless are expected to vanish as VA,
VĀ → ∞. The agreement for each entropy is remarkable. It
is worth reiterating that the Renyi entropies for an eigen-
state jψiβ encode the free energy densities at temperatures
different from β−1 [Eq. (3)], and these results provide an
instance of nonlocal, nonequithermal operators that satisfy
ETH. Also, note that as α becomes larger, finite-size effects
become more pronounced, because Sα probes the system at
lower temperatures ðαβÞ−1.
We also studied finite-size scaling of the von Neumann

entropy and Renyi entropies by keeping LA constant and
varying the total system size. The top panel of Fig. 5 shows
the deviation ΔS1=LA ¼ S1ðjψiβÞ=LA − sthðβÞ for eigen-
states in a range of temperatures. The difference ΔS1=LA
seemingly goes to zero faster than any inverse power of L,
and the plot is consistent with an exponential dependence
ΔS1=LA ∼ e−L or, at the very least, a power-law decay
ΔS1=LA ∼ 1=Lx with x ≫ 1 (although we should caution
that inferring the precise asymptotic finite-size scaling
behavior using exact diagonalization studies is an inherently
difficult task). The bottom panel shows a similar plot for the

FIG. 3. Scaling of the von Neumann entanglement entropy S1
with subsystem size for the L ¼ 20 system given in Eq. (30). Up
to β ¼ 0.5, the scaling is linear for small LA, suggesting that the
states obey a volume law and are thus likely to satisfy ETH. The
β ¼ 1.0 eigenstate, on the other hand, is clearly not linear, and it
is too close to the ground state at this system size to exhibit ETH.
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deviation of Renyi entropy S2 from its ETH predicted value,
Eq. (3). The finite-size scaling of ΔS2 is relatively difficult,
because unlike S1, S2 shows oscillations as a function of LA
(see, e.g., Refs. [40,66]). Despite this,ΔS2 is less than a few
percent of S2 itself.
Figure 6 plots the entropy deviationΔS1=LA for constant

ratio LA=L at all available system sizes. Although it is
difficult to do a detailed scaling analysis with so few points,
the data strongly suggest that ΔS1=LA vanishes in the
thermodynamic limit.
The finite-size scaling of Renyi entropies at constant

ratio LA=L is less conclusive, as can be seen in Fig. 7. The
analytical argument for the particle-number conserving
model suggests that the Renyi entropies Sα for α ≠ 1 do
not match their canonical counterparts when VA=V is held
fixed. The authors of Ref. [67] arrived at similar con-
clusions using a different approach.

VI. EXTRACTING THE HAMILTONIAN FROM A
SINGLE EIGENSTATE

In this section, we will present numerical results that
substantiate our conjecture that ETH is valid for all
equithermal and nonequithermal operators when VA ≪ V

as V → ∞. While our numerical results consider the case
where VA is held constant as V → ∞, we expect that all
results in this section also hold true when the limits are
taken such that f ≡ VA=V → 0 as VA, V → ∞. We focus
here on ETH in the sense of Eqs. (2a) and (2b), as the
canonical ensemble is known to be equivalent to a micro-
canonical ensemble when VA ≪ V. Focusing on the
canonical ensemble also allows us to avoid introducing
the energy width ΔE as an additional parameter in our
systematic comparisons. In Sec. VII, we will explore more
carefully the case when f < 1

2
is finite, using both the

canonical and microcanonical ensembles for comparison.
We begin by probing in detail the entanglement spectra

of individual eigenstates as well as the corresponding
Schmidt states. Specifically, we compare five different
quantities, as shown in Fig. 8, that test the validity of
Eqs. (2a)–(2c) for the model described in Sec. IV. The
agreement of the spectrum of ½−1=β� log½ρAðjψiβÞ�with that
of ½−1=β� log½ρA;canonicalðβÞ�, as well as with the actual
Hamiltonian HA in region A, implies that, essentially, the
Schmidt eigenvalues λi satisfy λi ∝ e−βEA;i, whereEA;i are the
eigenvalues ofHA. Similarly, the agreement with the expect-
ation value huijHAjuii shows that the Schmidt eigenvectors

FIG. 4. The von Neumann entropy S1 and Renyi entropies S2, S3, and S4 for the system given in Eq. (30) with L ¼ 21 and LA ¼ 4.
Here, ZA ¼ trAðe−βHAÞ. The entropies of the reduced density matrix at each energy density agree remarkably with the entropies
calculated from the canonical ensemble, given by Eqs. (2a) and (2b).
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juii have the same character as the eigenvectors of the
canonical reduced density matrix. It is important to empha-
size that this agreement holds throughout the spectrum: The
agreement near the energy density of the eigenstate itself
(denoted by the dashed grey line) suggests that ETHholds for
equithermal operators, while the agreement away from this
energydensity suggests that Eq. (1) holds for nonequithermal
operators as well. (There is a slight disagreement in the
spectrum near the critical energy density e�, and we explore
this in the following section.)
To probe the Schmidt eigenvectors further, we directly

calculated the overlaps between the eigenvectors of the
reduced density matrix ρAðjψiβÞ and the eigenvectors of the
thermal density matrix ρA;canonicalðβÞ (see Fig. 9). Again, we
find excellent agreement. Again, the agreement throughout
the spectrum suggests that Eq. (1) is valid for both
equithermal and nonequithermal operators.
To quantify the extent towhich Eq. (2a) is valid, we calcu-

late the trace norm distance kρAðjψiβÞ − ρA;canonicalðβÞk1

between the reduced and canonical density matrices at
various system sizes. The trace norm distance, defined as

kρAðjψiβÞ − ρA;canonicalðβÞk1
≡ 1

2
tr
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρAðjψiβÞ − ρA;canonicalðβÞÞ2
q i

; ð36Þ

places an upper bound on the probability difference that
could result from any quantum measurement on the two
density matrices [68]. As such, it provides an excellent
measure of how distinguishable the two density matrices
are. If the trace norm distance between two finite-size
densitymatrices is zero, they are equal to each other element
by element.

FIG. 5. Scaling of the entropy deviation ΔSα ≡
SαðρA;canonicalðβÞÞ − SαðρAðjψiβÞÞ with 1=L, for constant LA,
averaged over all eigenstates in the range 0.28 < β < 0.32, for
S1 (top panel) and S2 (bottom panel). The error bars represent one
standard deviation away from the mean. For S1, this deviation is
strictly non-negative, but, for higher Renyi entropies, it can
oscillate and become negative before tending to zero as L → ∞.

FIG. 6. Scaling of the von Neumann entropy deviation ΔS1
with 1=L, for constant ratio LA=L, averaged over all eigenstates
in the range 0.28 < β < 0.32. As in Fig. 5, the error bars
represent one standard deviation away from the mean. Even
though this plot considers the case where the subsystem size LA
becomes infinite as L → ∞, the entropy deviations are going to
zero rapidly as L becomes larger.

FIG. 7. Scaling of the Renyi entropy deviation ΔS2 with 1=L,
for constant ratio LA=L, averaged over all eigenstates in the range
0.28 < β < 0.32. As in Fig. 5, the error bars represent one
standard deviation away from the mean.
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If ETH holds for all operators in subsystem A, then the
results of Ref. [16] imply that the trace norm distance should
go to zero as1=L. The suggestion that the trace normdistance
between the pure state and thermal reduced density matrices
with fixed subsystem size would tend to zero was also made
in Refs. [49,69]. We restrict ourselves to states in a β range
given by0.28 < β < 0.32. In the left panel of Fig. 10,weplot
the trace norm distance of every eigenstate in this β range at
LA ¼ 5 for a few select system sizes. For each system size,
the distribution of the trace norm distance is nearly constant
throughout the givenβ range. The right panel then takes these
data for each pair of L and LA and plots the mean and
standard deviation of the trace norm distance against 1=L.
The trace norm distance is tending toward zero at least
linearly with 1=L, perhaps even faster.
These results, taken together, strongly support the con-

jecture that ETH, as given by Eq. (1), holds for all operators
when VA ≪ V. The Schmidt eigenvalues and eigenvectors
match at all energydensities, not just the energydensity of the

eigenstate. Our results also imply that when VA ≪ V,
ETH as specified by Eq. (2a) holds. One consequence
of this is that if VA is held fixed, the density matrices
ρAðjψiβÞ and ρA;canonicalðβÞ become elementwise equal in any
basis as V → ∞.

VII. ETH WITH FINITE RATIO VA=V

In this section, we consider to what extent ETH is valid
when the ratio f ≡ VA=V < 1

2
is held fixed and finite as VA,

V → ∞. When the limits are taken in this way, the
canonical and microcanonical ensembles are no longer
equivalent, so we consider each ensemble independently.

A. Comparison with the canonical ensemble

As demonstrated in Sec. V B, the von Neumann entropy
of ρAðjψiβÞ matches the thermal entropy in the thermody-
namic limit even for finite f < 1

2
. In the current section, we

consider the extent to which other quantities match between
a single eigenstate and the canonical ensemble.
There is one notable equithermal operator for which

Eq. (1) fails when f is finite. As explained in Sec. II C 1
[see Eq. (8)], the subsystem energy variance taken from a
single eigenstate is suppressed by a factor of (1 − f)
compared with its value in the canonical ensemble. To
understand this, consider first the expectation value of the
operator H2

A − hHAi2 with respect to the canonical ensem-
ble. This will be given by [51]

hH2
A − hHAi2iρA;canonicalðβÞ ¼

R
dðδEAÞðδEAÞ2e−ðδEAÞ2=cVAR

dðδEAÞe−ðδEAÞ2=cVA
;

ð37Þ
where c is the specific heat. Note that the probability
distribution is Gaussian because it is obtained by expanding
the Boltzmann factor around its maximum. On the other
hand, in an eigenstate, the probability distribution will
acquire an extra multiplicative factor of e−ðδEAÞ2=cVĀ

because a fluctuation δEA of energy in region A is
necessarily accompanied by a fluctuation −δEA in the
region Ā since, for an eigenstate, there are no fluctuations of
energy in the total system. Thus, the expectation value of
H2

A − hHAi2 with respect to the eigenstate jψiβ is given by

hH2
A − hHAi2iρAðjψiβÞ

¼
R
dðδEAÞðδEAÞ2e−ðδEAÞ2=cVAe−ðδEAÞ2=cVĀR

dðδEAÞe−ðδEAÞ2=cVAe−ðδEAÞ2=cVĀ
: ð38Þ

Equations (37) and (38) imply

hH2
A − hHAi2iρAðjψiβÞ

hH2
A − hHAi2iρA;canonicalðβÞ

¼ 1 − VA=V: ð39Þ

To demonstrate this relationship, the top panel of Fig. 11
shows scaling of the subsystem energy variance with

FIG. 8. Comparison of the five quantities defined in the inset
for an LA ¼ 4 subsystem at L ¼ 21 and β ¼ 0.3. Each quantity
has been normalized so that the y axis has units of energy density.
The large blue circle markers show the spectrum of the canonical
reduced density matrix, while the red diamond markers corre-
spond to the eigenvalues of a reduced density matrix ρAðjψiβÞ for
a single eigenstate at temperature β−1. The yellow triangle
markers show the spectrum of the microcanonical reduced
density matrix that consists of an equal-weighted mixture of
the 50 eigenstates nearest in energy to the one under consid-
eration. The grey markers show the eigenvalues ofHA with a shift
cA ≡ ð1=βÞ logZA ¼ ð1=βÞ log trAðe−βHAÞ so that it can be di-
rectly compared with −ð1=βÞ log½ρAðjψiβÞ� in accordance with
Eq. (2b) (note, also, that the combinationHA þ cA is independent
of the shift of the spectrum of HA by an arbitrary uniform
constant). Finally, the orange markers represent the expectation
value of HA, again with a shift cA, with respect to the Schmidt
eigenvector juii of ρAðjψiβÞ. In each case, the eigenvalues/
eigenvectors are ordered from smallest to largest energy density.
The horizontal lines plot the energy density e (dashed grey line)
and the critical energy density e� ¼ eL=LA (solid brown line) of
the original eigenstate jψiβ, with respect to the ground state
energy density of HA þ cA (dotted black line).
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subsystem size LA for both a single eigenstate and the
canonical ensemble, for the model described in Sec. IV.
While the energy variance grows linearly for LA ≪ L in
both cases, the single eigenstate energy variance has an

additional term that is negative and quadratic in the
subsystem size, matching the prediction in Eq. (39).
The bottom panel of Fig. 11 shows, for comparison, the

variance of a different operator JA between a single

FIG. 9. Overlap between the Schmidt eigenvectors juji and the eigenvectors jφii of the canonical reduced density matrix, for an
L ¼ 21 system with β ¼ 0.3, and subsystem sizes LA ¼ 2, 3, 4, 5. In each case, the eigenvectors are ordered from most significant
(largest eigenvalue) to least significant (smallest eigenvalue). The locations of the energy densities e (dashed grey) and e� (solid brown)
are denoted with lines, as in Fig. 8.

FIG. 10. Trace norm distance between the canonical density matrix ρA;canonicalðβÞ and the reduced density matrix ρAðjψiβÞ for all
eigenstates jψiβ in the range 0.28 < β < 0.32. The left panel plots the trace norm distance for all such eigenstates with system sizes
L ¼ 12, 15, and 20, and subsystem size LA ¼ 5. The right panel plots the mean and standard deviation of the trace norm distance in this
β range for values of L up to 21 and LA up to 5.
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eigenstate and the canonical ensemble. The operator JA
(defined in the figure’s caption) is chosen to span the length
of subsystem A and to include the same terms as HA;
however, the coefficient of each term is different. The fact
that the variance of JA matches between a single eigenstate
and the canonical ensemble suggests that many equithermal
operators that do not explicitly involve energy conservation
will satisfy Eq. (1) at least approximately, even when VA=V
is finite.
Let us now consider an implication of the difference in

subsystem energy variance between ρAðjψiβÞ and
ρA;canonicalðβÞ. This difference, which occurs only when f
is finite, suggests that the trace norm distance kρAðjψiβÞ −
ρA;canonicalðβÞk1 vanishes only when f → 0. To explore

this more carefully, note that the trace norm distance
places a bound on the difference in expectation value of
any operator Λ that is bounded between zero and
one as [68]

jtrðρΛÞ − trðσΛÞj ≤ kρ − σk1: ð40Þ

In order to calculate a lower bound on trace norm distance
kρAðjψiβÞ − ρA;canonicalðβÞk1 due to the variance difference,
we must write the energy variance as a bounded operator
that maximally differs between the two density matrices.
Naively, one might be tempted to consider the operator
OA;β=Δ2 ≡ ðHA − hHAiβÞ2=Δ2, where for the operator to
be bounded, Δ must be chosen to be the largest energy
available to the system. Since both OA;β and Δ scale
linearly with V, the expectation value of this operator
is actually zero in the thermodynamic limit for both
ρAðjψiβÞ and ρA;canonicalðβÞ. Thus, no bound can be
placed on the trace norm distance due to this particular
operator.
Let us instead now consider a modified energy variance

operator,

ΛA;β;Δ ≡ PA;β;Δ
OA;β

Δ2
PA;β;Δ; ð41Þ

where Δ is an arbitrary energy scale and PA;β;Δ projects
onto the subspace where OA;β=Δ2 has eigenvalues in the
range [0, 1], thus making ΛA;β;Δ a bounded operator. This
operator considers the energy variance within a restricted
window of width 2Δ about the mean energy.
To arrive at an approximate bound due to this operator,

let us assume that the energy histograms of ρA;canonicalðβÞ
and ρAðjψiβÞ are given by normal distributions with
variance σ2canonical and σ2ψ ¼ ð1 − fÞσ2canonical, respectively.
Since both distributions have the same mean, the difference
in expectation values is expected to be

D≡ tr½ρA;canonicalðβÞΛA;β;Δ� − tr½ρAðjψiβÞΛA;β;Δ�

¼ 1

Δ2

Z
Δ

−Δ

�
e−E

2=2σ2canonical

σcanonical
ffiffiffiffiffiffi
2π

p −
e−E

2=2σ2ψ

σψ
ffiffiffiffiffiffi
2π

p
�
E2dE: ð42Þ

Given σcanonical and f, it is possible to find Δ numerically
such that D is maximized. Although Δ is proportional toffiffiffiffi
V

p
, the value of D itself is independent of V as V → ∞,

since σcanonical also scales with
ffiffiffiffi
V

p
. The maximum quantity

D then provides a lower bound on the trace norm distance
between ρA;canonicalðβÞ and ρAðjψiβÞ in the thermodynamic
limit [70].
Let us now turn to our results on the scaling of trace

norm distance with system size when the ratio f ¼ LA=L is
held fixed as L, LA → ∞, which are shown in the left panel
of Fig. 12. Although there are few points available for each

FIG. 11. Top panel: Subsystem energy variance with respect to
subsystem size LA for both the canonical ensemble (blue circular
markers) and a single eigenstate jψiβ (red diamond markers), at
L ¼ 18 and β ¼ 0.3. The inset shows the ratio between the
energy variances at each subsystem size, which is expected to fit
1 − LA=L in the thermodynamic limit [Eq. (8)]. Bottom panel:

The variance of an operator JA ≡PLA
i¼1ðhðiÞx σxi þ hðiÞz σzi Þ þPLA−1

i¼1 JðiÞz σziσ
z
iþ1, which includes the same terms as HA but

does not relate to energy conservation, is plotted for comparison.

Here, the quantities hðiÞx , hðiÞz , and JðiÞz are each taken from the
uniform distribution ½−1; 1�.
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ratio, the trend is clearly for the trace norm distance to
decrease as L increases. The horizontal dotted lines denote
the theoretical minimum each trace norm distance can take,
given by Eq. (42). Remarkably, for each subsystem ratio,
the trace norm distance rapidly approaches this lower
bound, suggesting that the bound may actually provide
the result in the thermodynamic limit.

B. Comparison with a microcanonical ensemble

Now we consider to what extent the reduced density
matrix from a single eigenstate equals that of a micro-
canonical ensemble when the subsystem ratio f < 1

2
is

nonzero [i.e., the potential validity of Eq. (2c)]. We first
note that, unlike in the case of the canonical ensemble, the
subsystem energy variance from a single eigenstate
matches that from a microcanonical ensemble with vanish-
ing energy width, independent of system size. In particular,
the subsystem energy variance provides an example of an
operator for which ETH in the sense of Eq. (4) holds but for
which ensemble equivalence breaks down. To further
investigate the potential validity of Eq. (2c), we consider
the trace norm distance scaling in the right panel of Fig. 12.
Unlike in the case of the canonical ensemble, we know of
no examples of operators that span less than half the system
for which the comparison is known to fail, and so there is
no lower bound plotted in the figure. Indeed, the values are
uniformly closer to zero than the comparison with the
canonical ensemble, which provides strong evidence that a
microcanonical ensemble is the appropriate one to compare
a single eigenstate against, in agreement with Sec. II and
Refs. [49,50]. The trace norm distance appears to approach
zero at least linearly with 1=L, which suggests the
possibility that ETH in the sense of Eq. (4) holds

for all equithermal operators that span less than half
the system.
It is important to emphasize that, even if the trace norm

distance kρAðjψiEÞ − ρA;mcðEÞk1 indeed goes to zero in the
thermodynamic limit with VA=V fixed, this only implies
that all equithermal operators satisfy Eq. (4). When VA=V
is fixed, nonequithermal operators will have a vanishing
contribution to the trace norm distance because they probe
thermodynamically rare states. One way to investigate
whether Eq. (4) holds even for nonequithermal operators
for a nonzero subsystem fraction is to examine the
entanglement spectra.

C. Entanglement spectrum

We now turn to results on the entanglement spectrum
when f is a significant fraction of the total system size. As
discussed in Sec. II C 2, if the constraint in Eq. (20) is
violated, the entanglement spectrum of a single eigenstate
cannot match that of the canonical ensemble above a
critical energy density e� ¼ e=f [see Eq. (19)], where e
is the energy density of the state jψiβ. Figure 13 shows the
comparison of spectra of five different quantities consid-
ered in Sec. VI for several different energy densities of the
reference state jψiβ with f ¼ 1=3, at four different values
of β. With f ¼ 1=3, the energy constraint Eq. (20) is
violated, and, therefore, we expect that the entanglement
spectrum from a single eigenstate should deviate from the
actual spectrum of the Hamiltonian at least beyond the
critical energy density e� ¼ e=f. We find for each value of
β that significant deviation starts to occur essentially right
at this critical energy density.
While the entanglement spectrum from a single eigen-

state clearly differs from the actual spectrum of the
Hamiltonian and that of the canonical ensemble, it follows

FIG. 12. Left panel: Trace norm distance between the reduced density matrices as a result of a single eigenstate and the canonical
ensemble for constant ratio LA=L and 0.28 < β < 0.32. As in Fig. 10, the error bars represent one standard deviation away from the
mean. The horizontal lines indicate the approximate theoretical minimum each trace norm distance can take, based on the suppressed
energy variance given by maximizing Eq. (42). Right panel: Trace norm distance between the reduced density matrices from a single
eigenstate and a microcanonical ensemble for constant ratio LA=L, considering all eigenstates in the range 0.28 < β < 0.32. As in
Fig. 8, the microcanonical ensemble is defined as the equal mixture of 50 eigenstates nearest in energy to the one under consideration.
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closely the spectrum due to a microcanonical ensemble. In
fact, the deviation between these two spectra increases for
lower temperatures (higher β), where finite-size effects are
expected to be the largest. These results thus leave open the
possibility that the entanglement spectrum matches exactly
in the thermodynamic limit when VA, V → ∞ such that
VA=V is held constant.
Surprisingly, even though the entanglement spectrum

from a single eigenstate does not match the actual spectrum
of the Hamiltonian beyond the energy density e�, the
expectation values huijHAjuii=LA continue to match the
energy eigenvalues of the actual Hamiltonian. This sug-
gests that the eigenvectors of ρAðjψiβÞ match those of
ρA;canonicalðβÞ throughout the spectrum, even though the
eigenvalues do not agree everywhere. (This is also con-
sistent with the observation that the eigenvector overlaps
match even beyond e� in Fig. 9.) To understand this
phenomenon better, we analyze the different terms in
Eq. (17). As argued in Sec. II C 2, the only way
huijHAjuii can exceed the total energy E of the eigenstate
is if the Eboundary term,

Eboundary ≡
X
j

ffiffiffiffiffiffi
λj
λi0

s
hui0j ⊗ hvi0jHAĀjuji ⊗ jvji; ð43Þ

scales with the total system size. We find that this is
indeed the case, as shown in Fig. 14. In agreement
with the general considerations in Sec. II C 2, the
Schmidt eigenvalues deviate from their canonical ETH
predicted values beyond e� (Fig. 13) and become consid-
erably smaller.

D. Summary

In this section, we compared the reduced density
matrix from a single eigenstate to that of both the
canonical ensemble and a microcanonical ensemble when
VA=V is fixed and nonzero as the thermodynamic
limit is taken. We find evidence that a microcanonical
ensemble agrees well with a single eigenstate, and our
results are consistent with the possibility that their reduced
density matrices match precisely in the thermodynamic

FIG. 13. Comparison of the five quantities defined in the inset of Fig. 8 for eigenstates of an L ¼ 21 system, with LA ¼ 7, at β ¼ 0.2,
0.3, 0.4, and 0.5. Each inset plots a 12-bin histogram of the log of the density of states versus the energy density: the solid blue curve
from a single eigenstate ρAðjψiβÞ and the dotted cyan curve from the canonical ensemble ρA;canonicalðβÞ. We notice that, in each of the
four plots, the eigenvalues of the reduced density matrix corresponding to a single eigenstate (red diamond markers) begin to deviate
significantly from the eigenvalues of the canonical reduced density matrix (blue circle markers) as the energy density reaches the critical
value e� (solid brown line), indicating the breakdown of Eq. (2a) beyond e�.
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limit. On the other hand, we demonstrated that
while comparison with the canonical ensemble works
for many operators, it nonetheless fails both for some
equithermal and for some nonequithermal operators.

Surprisingly, while the eigenvalues between ρAðjψiβÞ
and ρA;canonicalðβÞ differ, their eigenvectors appear to match.
(We leave the understanding of this result for future
studies.)

FIG. 14. Decomposition of the energy density corresponding to an eigenstate amongst the three terms in Eq. (17) for β ¼ 0.2 (left
panel) and β ¼ 0.5 (right panel) at L ¼ 21 and LA ¼ 7. The dotted magenta line marks the ground state of HĀ. As in Fig. 8, the solid
brown line denotes the critical energy density e� for subsystem A.

FIG. 15. Equal-time correlators for an L ¼ 21 system plotted against inverse temperature β. The blue dots denote the expectation value
with respect to each eigenstate, the dashed cyan curve plots the expectation value in the canonical ensemble, and the red curve plots the
expectation value predicted from a single eigenstate at β0 ¼ 0.3 (yellow dot) by raising the LA ¼ 4 density matrix to the power β=β0 and
rescaling it to have unit trace. We also independently consider predictions from each of the 214608 eigenstates in the range
0.2 < β0 < 0.5: At each inverse temperature β, the pink shaded region contains predictions at most one standard deviation away from
the mean prediction among all such eigenstates.
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VIII. APPLICATIONS

A. Equal-time correlators as a function of temperature
from a single eigenstate

In the previous sections, we provided evidence that a
single eigenstate encodes the full Hamiltonian. As an
application of this result, we now calculate correlation
functions at arbitrary temperatures using a single eigenstate
jψiβ. The basic idea is similar to the relation between the
Renyi entropies and the free energy densities [Eq. (3)].
In particular, consider the correlation function

hOðxÞOðyÞiβ;n ¼
trAðρnAðjψiβÞOðxÞOðyÞÞ

trAðρnAðjψiβÞÞ
; ð44Þ

where x, y are located in subsystem A, away from the
boundary. Using Eqs. (2a) and (2b) to leading order in the
subsystem size, hOðxÞOðyÞiβ;n equals the expectation value
of the operator OðxÞOðyÞ at a temperature ðnβÞ−1.
Figure 15 shows the expectation values of local operators

within subsystem A as a function of β, as predicted from a
single eigenstate of Eq. (30) at inverse temperature β0
(indicated by a yellow dot on the red curve). We choose
operators that are as far away from the subsystem boundary
as possible so as to minimize the finite-size corrections.
Even though the agreement with the canonical ensemble is
not perfect, the qualitative trends and the numerical values
match incredibly well, given the modest total system sizes
to which we are restricted. These predicted correlators also
undoubtedly suffer from corrections expected due to the
conical singularity at the boundary of A in Eq. (44). To
emphasize that there is nothing special about the particular
eigenstate at β0 ¼ 0.3, we investigate predictions from
eigenstates in a broad range of energy densities, the results
of which are given by the pink shaded region in Fig. 15.
The shape of this region suggests that a large fraction of
eigenstates are indeed able to make correct qualitative and
approximate predictions at all temperatures, a remarkable
feat considering the reduced density matrix (upon which all
predictions are made) contains just four sites.

B. Free energy density as a function of temperature
from a single eigenstate

It is also possible to predict the free energy density at all
temperatures from a single eigenstate by raising the
reduced density matrix to different powers β=β0 and
rescaling to have unit trace, a notion that is consistent
with Eq. (3). As Fig. 16 shows, this quantity exhibits
remarkable agreement with the free energy density of the
system as calculated by more direct means. The prediction
of free energy at all temperatures from a single eigenstate
provides additional evidence that just one eigenstate con-
tains information about the thermodynamical properties of
a system at all temperatures.

IX. SUMMARY AND DISCUSSION

In this paper, we analyzed the structure of reduced
density matrices corresponding to the eigenstates of
generic, nonintegrable quantum systems. We argued that,
given an eigenstate jψiβ with energy density e and a
corresponding temperature β−1, the reduced density matrix
for a subsystem A is given by

ρAðjψiβÞ ¼ ρA;canonicalðβÞ;

where

ρA;canonicalðβÞ ¼
trĀðe−βHÞ
trðe−βHÞ ;

if the condition VA ≪ V is satisfied. This means that, for a
fixed eigenstate jψiβ, one can always extract the properties
of the corresponding Hamiltonian at arbitrary energy
densities by taking VA=V → 0 as the limits VA, V → ∞
are taken. Remarkably, even when VA=V (< 1=2) is taken
to be fixed and finite, one can still access many properties
of the underlying Hamiltonian. However, it is important to
be precise about which thermal ensemble is used for
comparison because ensemble equivalence breaks down
when VA=V is nonzero. While we constructed examples of
operators for which a single eigenstate and the canonical

FIG. 16. Free energy density as a function of temperature for
system size L ¼ 21. The green curve is the free energy density for
the entire system in the canonical ensemble, given by
½hHi − Sth=β�=L. The remaining curves each plot the free energy
density within theLA ¼ 4 subsystem (i.e., ½hHAi − SðρAÞ=β�=LA),
with respect to some reduced density matrix ρA in subregion A:
The blue dots consider each energy eigenstate, the dashed cyan
curve represents the canonical ensemble, and the red curve
contains the values predicted from a single eigenstate at β0 ¼
0.3 (itself shown in yellow). As in Fig. 15, the “predicted” density
matrix is obtained by raising the eigenstate’s reduced density
matrix to the power β=β0 and rescaling it to have unit trace. In fact,
the eigenstate at β0 ¼ 0.3 is not unique: The independent
predictions from each of the 214608 eigenstates in the range 0.2 <
β0 < 0.5 all fall within the region shaded in pink.
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ensemble disagree, our results are consistent with the
possibility that ETH might hold precisely in the thermo-
dynamic limit when VA=V < 1

2
, as long as a microcanon-

ical ensemble with vanishing energy window is used for
comparison [Eq. (2c)].
We also introduced the notion of equithermal and non-

equithermal operators. In a canonical ensemble at temper-
ature β−1, the expectation value of equithermal operators
depends only on the properties of the underlying
Hamiltonian at temperature β−1, while the same is not true
for nonequithermal operators. The validity of ETH for both
equithermal and nonequithermal operators implies the
ability to predict properties of a system at all temperatures
given just a single eigenstate. We provided evidence that
ETH is valid for both classes of operators, and, armed with
this knowledge, successfully predicted local correlation
functions and free energy densities at all temperatures from
a single eigenstate.
We also provided analytical results for the Renyi and von

Neumann entropies of infinite temperature eigenstates of a
particle-number conserving model. These results substan-
tiate our numerical results for the energy-only conserving
model. In particular, we find that the von Neumann
entanglement entropy for a subsystem of size VA equals
the thermal entropy for that subsystem as long as VA <
V=2 and, therefore, follows the so-called “Page curve” [58]
at all nonzero temperatures, thus generalizing the original
work of Page and others [58], and in agreement with the
recent work on large central charge CFTs [53–55].
Let us mention some of the practical implications of our

results. Firstly, the fact that a single eigenstate encodes
properties of the full Hamiltonian could potentially be a
useful numerical tool. For example, one could imagine
targeting a finite energy density eigenstate of a Hamiltonian
H by variationally minimizing the energy of the
Hamiltonian ðH − EÞ2 with respect to trial wave functions.
The techniques in this paper would then allow one to access
thermal properties of the Hamiltonian without directly
calculating the partition function, which could be extremely
helpful for Hamiltonians that suffer from the sign problem.
Secondly, owing to the recent progress in single atom

imaging techniques in cold atomic systems [71], one can
now access nonlocal operators experimentally [72–75].
This potentially allows one to check some of our predic-
tions in cold atomic systems. For example, one can perform
a quantum quench on a low entanglement state, which
would, at sufficiently long times, lead to a thermal state in
the same sense as Eq. (2a). In principle, this allows one to
determine the underlying Hamiltonian of a cold atomic
system by performing tomography on a small subsystem to
obtain the corresponding reduced density matrix and then
taking its logarithm. Recent proposals based on Ramsey
spectroscopy provide methods for directly measuring the
entanglement spectrum in systems of cold atoms [76] or in
nuclear spins [77]. Implementation of these protocols could

allow investigation of our predictions in larger systems than
would be feasible with tomography.
We conclude by posing a few questions and future

directions.
In this paper, we only considered contiguous subsys-

tems. We leave for future work a systematic study of
whether Eq. (2a) continues to hold for noncontiguous
subsystems when VA ≪ V.
In Sec. VIII A, we predicted equal-time correlators at all

temperatures using a single eigenstate. We expect such
predictions to be most successful when the thermal corre-
lation length is short compared to the subsystem size used
to take powers of the reduced density matrix. We leave for
future work a study of how the accuracy of such predictions
depends upon the subsystem size in comparison with the
thermal correlation lengths at both the base temperature
(β−10 ) and the target temperature (β−1).
It will also be interesting to see if a similar method works

for unequal-time correlators at arbitrary temperatures. The
main difference is that this requires calculating expressions
such as Eq. (44) at an imaginary exponent, and estimating
the effects due to the conical singularity in this case requires
further study.
As mentioned above, we expect that our entire discus-

sion carries over to time-evolved states as well, since such
states are also expected to have thermal behavior at long
times in the same sense as a single finite energy density
eigenstate. If so, does the timescale for thermalization for a
given operator (i.e., the time it takes for the expectation
value of the operator to become equal to its canonical
expectation value) depend on whether the operator is
equithermal or nonequithermal?
Another question concerns the subleading corrections to

the entanglement entropy. One expects that there always
exist subleading area-law contributions to the entanglement
entropy (either von Neumann or Renyi) of a single
eigenstate. Are these contributions also captured correctly
in the entanglement entropies calculated via a thermal
reduced density matrix? Perhaps a more interesting ques-
tion is whether the mutual information of two disjoint
intervals (which cancels out both the volume law contri-
bution and the area law contribution) takes the same value
for a single eigenstate and its canonical counterpart.
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