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Roughly every 2–10 min, a pair of stellar-mass black holes merge somewhere in the Universe. A small
fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced
detectors such as LIGO and Virgo. The rest contribute to a stochastic background. We derive the
statistically optimal search strategy (producing minimum credible intervals) for a background of
unresolved binaries. Our method applies Bayesian parameter estimation to all available data. Using
Monte Carlo simulations, we demonstrate that the search is both “safe” and effective: it is not fooled by
instrumental artifacts such as glitches and it recovers simulated stochastic signals without bias. Given
realistic assumptions, we estimate that the search can detect the binary black hole background with about
1 day of design sensitivity data versus ≈40 months using the traditional cross-correlation search. This
framework independently constrains the merger rate and black hole mass distribution, breaking a
degeneracy present in the cross-correlation approach. The search provides a unified framework for
population studies of compact binaries, which is cast in terms of hyperparameter estimation. We discuss a
number of extensions and generalizations, including application to other sources (such as binary neutron
stars and continuous-wave sources), simultaneous estimation of a continuous Gaussian background, and
applications to pulsar timing.
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I. INTRODUCTION

Observations of gravitational waves from binary black
hole mergers imply that stellar-mass black holes coalesce
somewhere in the visible Universe every 223þ352

−115 s [1].
Binary neutron stars merge every 13þ49

−9 s [1]. The vast
majority of these events are too distant to be individually
resolved by the current generation of detectors. The most
distant event yet observed, GW170104, was measured to
have a redshift of z ¼ 0.18þ0.08

−0.07 [2]. Nonetheless, unre-
solved compact binary mergers contribute to a stochastic
background of gravitational waves, which may be detect-
able with current detectors [3]. Measuring the stochastic
background from compact binaries has the potential to
provide information about high-redshift binary black holes

and neutron stars, which complements observations of local
mergers [4].
The stochastic background is typically characterized by

the gravitational-wave energy density spectrum,

ΩgwðfÞ≡ 1

ρc

dρgw
d ln f

; ð1Þ

where dρgw is the energy density of gravitational waves
between f and f þ df and ρc is the critical energy density for
a flat universe [5]. Searches for the stochastic background
seek to measure ΩgwðfÞ > 0. In the LIGO-Virgo band
(10–2000 Hz), the best current limits on the gravitational-
wave energy density spectrum are ΩgwðfÞ < 1.7 × 10−7

(95% confidence, measured in the band 20–86 Hz) [6,7].
To date, all LIGO and Virgo searches for the stochastic

background have relied on the cross-correlation method
described by Allen and Romano [5]. A similar cross-
correlation technique is employed by pulsar timing arrays
operating in the nanohertz band [8]. The cross-correlation
method has two nice features. It is computationally cheap
and it yields a statistically optimal (minimum-variance)
measurement of ΩgwðfÞ for the case of a persistent,
Gaussian background.
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A Gaussian background is characterized entirely by
ΩgwðfÞ. The stochastic background from stellar-mass
binary black holes is highly non-Gaussian; it is rare for
different events to overlap in time [1] (within the advanced
detector band). The stochastic backgrounds from binary
neutron stars are quasi-Gaussian since the signals from
individual events overlap in time [1]. We focus initially on
the highly non-Gaussian background from stellar-mass
binary black holes, but return below to consider quasi-
Gaussian backgrounds from binary neutron stars.
The binary black hole background consists of (in

principle), clearly distinguishable, deterministic signals
[9]. Since distant events are not resolvable with current
detectors, most events are not distinguishable in practice,
but they would be with a more sensitive detector. This is in
contrast to, for example, the stochastic background from
white dwarf binaries in the millihertz band, which cannot
be distinguished in principle; see, e.g., Ref. [10]. Cross-
correlation searches are suboptimal for non-Gaussian back-
grounds. It is possible to improve the sensitivity of the
stochastic search by including a more accurate description
of the signal model.
A number of studies dating back to 2002 have outlined a

variety of strategies for developing a non-Gaussian pipe-
line. Drasco and Flanagan derived an algorithm suitable for
bursting sources [11] observed by colocated detectors with
white noise [12]. While the assumptions of white noise and
colocated detectors are not realistic, the study was impor-
tant for showing that a non-Gaussian analysis could achieve
a potentially significant improvement in sensitivity com-
pared to a cross-correlation search. Subsequently, Thrane
outlined a method for bursting sources that can be applied
in the more realistic case of spatially separated detectors
with colored noise [13]. Work by Martellini and Regimbau
has explored additional strategies [14,15]. None of these
methods have yet been used in a published search. For a
comprehensive review of stochastic background method-
ology up until this point, see Ref. [16].
In this paper, we take a step back and ask a new question:

What is the optimal method for detecting a stochastic
background of binary black holes (or any other astrophysi-
cal background)? Formally, the optimal method yields a
minimum credible interval posterior. In practical terms, the
optimal method can be more sensitive than suboptimal
techniques. Conceptually, deriving the optimal method
amounts to implementing a likelihood function, which
describes the salient features of the signal model and
measurement noise. Turning the crank of Bayesian statis-
tics, the resulting posterior distributions yield minimum
credible intervals by construction.
It turns out that this question of optimality is interesting

for several reasons. First and most obvious, it is desirable to
derive the most sensitive possible search. Depending on the
magnitude of improvement over the cross-correlation
search, an optimal pipeline could significantly reduce the

time to the detection of a stochastic background. Second,
we show below that the optimal Bayesian search yields, as
a by-product, information about the population properties
of high-redshift black holes. In particular, we automatically
obtain a posterior distribution for the coalescence rate of
binary black holes at high redshift. This information is lost
during the process of cross-correlation.
Third, our formalism provides a natural framework for

unifying the stochastic search with measurements of
unambiguous detections and even “silver-plated” candi-
dates [17] like LVT151012 [18]. As the number of detected
black hole mergers increases, the gravitational-wave com-
munity is likely to be increasingly interested in population
statements. The framework proposed here is the natural
means of combining all possible data to make statements
about populations of binary black holes (and other astro-
physical phenomena). The method is free of Malmquist
bias [19] since there is no selection of events.
Last, we outline how the method can be generalized in

order to solve a number of important problems in gravi-
tational-wave astronomy including (1) measurement of a
primordial Gaussian background in the presence of an
astrophysical foreground and (2) measurement of the
population properties of binary black holes and neutron
stars, e.g., their mass and spin distributions.
The remainder of this paper is organized as follows. In

Sec. II, we derive the optimal search for an ensemble of
binary black hole mergers. In Sec. III, we present the results
of a Monte Carlo study that demonstrates the method. In
Sec. IV, we investigate scaling relations in order to estimate
the performance of the search in various contexts. In Sec. V,
we consider complications arising from non-Gaussian
noise. In Sec. VI, we consider the feasibility of the search
given plausible computing resources.
In Sec. VII, we discuss how this method can be used to

measure the population properties of unresolved binaryblack
holes using hyperparameters. In Sec. VIII, we discuss how
the method can be generalized to similar problems including
binary neutron stars, neutron star black hole binaries,
continuous waves from rotating neutron stars, and super-
massive black hole binaries. In Sec. IX, we discuss the
simultaneous measurement of a primordial gravitational-
wave background. In Sec. X, we provide an overall assess-
ment of the feasibility of an optimal stochastic search and the
prospects for detection of a stochastic background.

II. METHOD

A. Likelihood function

We break the strain data s into convenient-sized seg-
ments. The data for segment i is denoted si. By assumption,
each segment is big enough that it might include one signal
(specifically, the merger part of the signal), but small
enough that it is unlikely to contain two such signals. In
this paper, we satisfy these criteria by using segments with
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a duration of 4 s. For binary black holes like GW150914,
the signal is in band for only ≈0.2 s, less than the segment
duration. Since the probability of observing just one event
in any given segment is small ≈2%, the probability of
observing two at once is negligibly small, ≈10−4.
Assuming Gaussian noise, the log-likelihood for a single

segment si containing a compact binary signal with
parameters θ is

log½LðsijθiÞ� ∝ −
1

2
hsi − hðθiÞ; si − hðθiÞi: ð2Þ

Here, hðθiÞ is the signal model, which depends on a vector
of parameters θi, e.g., sky location, component masses, the
time of coalescence within the segment, and so on. We have
introduced the usual noise-weighted inner product:

ha; bi≡ 4ReΔf
X
k

a�ðfkÞbðfkÞ
SnðfkÞ

; ð3Þ

whereΔf is the frequency-bin size and Re is the real part of
the sum. The variable SnðfkÞ is the detector noise power
spectral density. The sum runs over k frequency bins.
When combining data from a network of M detectors,

the likelihood function for segment i becomes

Lðs⃗ijθÞ ¼
YM
j¼1

LðsðjÞi jθiÞ; ð4Þ

where s⃗i represents the data from all M detectors and j
indexes each of the M detectors. Stochastic searches
typically rely on M ≥ 2 networks in order to distinguish
astrophysical signals from poorly modeled noise [5].
Henceforth, we assume M ≥ 2 detectors because this
enables a coherent search for subthreshold signals. The
notation s⃗i is used to indicate the strain data from M
detectors associated with segment i.
We can generalize the likelihood function in Eq. (2) to

account for the fact that we expect the data to contain a
signal plus Gaussian noise with probability ξ, or pure
Gaussian noise with probability (1 − ξ). (We defer dis-
cussion of non-Gaussian noise until Sec. V.) Hence, we
define a “generalized likelihood” for segment i, modified to
include the signal probability hyperparameter ξ [12], which
we refer to as the “duty cycle”:

Lðs⃗ijθi; ξÞ ¼ ξLðs⃗ijθiÞ þ ð1 − ξÞLðs⃗ij0Þ: ð5Þ

We note that this astrophysical duty cycle should not be
confused with the detector duty cycle, which is the fraction
of time during which a detector collects science-quality
data. Here, Lðs⃗ij0Þ is the likelihood function given the
hypothesis that no signal is present:

log½Lðs⃗ij0Þ� ∝ −
1

2
hsi; sii: ð6Þ

We marginalize over the astrophysical parameters of the
event θi [with a prior distribution πðθiÞ] in order to obtain a
likelihood for the data given the duty cycle ξ for segment i:

Lðs⃗ijξÞ ¼ ξZi
S þ ð1 − ξÞZi

N: ð7Þ

We have introduced two new terms,

Zi
S ≡

Z
dθLðs⃗ijθiÞπðθiÞ; ð8Þ

Zi
N ≡ Lðs⃗ij0Þ; ð9Þ

corresponding, respectively, to the signal evidence and
the noise evidence. These evidences are the raw output
of LIGO parameter estimation algorithms such as
LALINFERENCE [20]. We do not marginalize over the
detector noise power spectral density. The power spectral
densities that enter Eq. (3) are empirically estimated for
each data segment.
The next step is to combine data from a large set of n

segments fs⃗g. The combined likelihood for the data given
ξ is

Ltotðfs⃗gjξÞ ¼
Yn
i

Lðs⃗ijξÞ

¼
Yn
i

½ξZi
S þ ð1 − ξÞZi

N �: ð10Þ

The posterior for the duty cycle pðξjfs⃗gÞ is simply

pðξjfs⃗gÞ ∝ Ltotðfs⃗gjξÞπðξÞ; ð11Þ

where πðξÞ is the prior distribution on ξ. For simplicity we
assume a flat, uniform prior for πðξÞ, so that

pðξjfs⃗gÞ ∝ Ltotðfs⃗gjξÞ; ð12Þ

though our analysis can incorporate any suitable choice of
πðξÞ, informed, for instance, by expectations about the
average time between binary black hole mergers [1].

B. Detection statistic

In order to search for an astrophysical stochastic back-
ground, we calculate a “stochastic background evidence”:

Zstoch ¼
Z

dξLðfs⃗gjξÞπðξÞ: ð13Þ

The null hypothesis (there is no stochastic background) is
described by a null evidence:
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Z0 ¼ Lðfs⃗gjξ ¼ 0Þ: ð14Þ
We construct a Bayes factor to compare the two hypotheses:

BF ¼ Zstoch=Z0: ð15Þ

This variable is an optimal detection statistic for an astro-
physical background of compact binaries. The optimality
follows from the fact that the likelihood function describing
the data given the signal and noise models is complete.
Hence, the search produces a minimum credible-interval
posterior distribution on the duty cycle. In the remainder of
this paper, we adopt the convention that a log Bayes factor of
≈8 represents a statistically significant preference for one
hypothesis over the other [21].
Up to this point, we have, for the sake of convenience,

written our likelihoods in terms of duty cycle ξ. In the
subsequent subsections (Secs. II C–II E), we discuss how ξ
is related to other quantities including rate and energy
density.

C. Rate

In this section, we take the likelihood Ltotðfs⃗gjξÞ—a
function of duty cycle ξ—and recast it as a function of R:
the number of mergers per segment. In particular, R is the
rate of events throughout the visible Universe per segment.
This allows us to more easily relate our analysis to
observations of individual merger events. It is useful to
contrast ξ and R. While duty cycle ξ is defined on (0,1), the
rate of events per unit segment is defined on ð0;∞Þ. Even
perfect knowledge of ξ does not determine R, because the
latter is subject to cosmic variance arising from the fact that
events take place randomly following Poisson statistics.
The number of compact binary mergersN is given by the

product of the duty cycle ξ and the number of segments n:

N ¼ nξ: ð16Þ

We perform a change of variable in order to recast the
likelihood variable in terms of N:

Ltotðfs⃗gjNÞ ¼
Z

dξLtotðfs⃗gjξÞπðξjNÞ; ð17Þ

where

πðξjNÞ ¼
���� dNdξ

����πðNÞ ¼ nπðNÞ: ð18Þ

Having recast the likelihood in terms of the number of
compact binary mergers N, we can marginalize over N to
obtain

Ltotðfs⃗gjRÞ ¼
X
N

Ltotðfs⃗gjNÞπðNjRÞ; ð19Þ

where πðNjRÞ is a conditional prior for the number of
compact binary mergers N given a rate R (with units of
mergers per segment). The conditional prior is given by a
Poisson distribution:

πðNjRÞ ¼ e−R
RN

N!
: ð20Þ

The total evidence is a likelihood function for the data
given the rate hyperparameter:

Ltotðfs⃗gjRÞ ¼ ZtotðRÞ ð21Þ

¼
X
N

Ltotðfs⃗gjNÞe−R R
N

N!
: ð22Þ

The rate posterior is

pðRjfs⃗gÞ ∝ Ltotðfs⃗gjRÞπðRÞ; ð23Þ

where πðRÞ is some suitable prior on the rate R.

D. Local rate

The variable that we have been referring to as “the rate”
R—by which we mean the number of compact binary
mergers in the visible Universe per segment—is distinct
from the local merger rate R0 with units of Gpc−3 yr−1.
However, they are related. We derive the local rate R0

from R:

R
δt

¼
Z

dz
1þ z

�
dV
dz

�
RðzÞ: ð24Þ

Here, RðzÞ is the comoving merger rate in units of
Gpc−3 yr−1 as a function of redshift and δt is the segment
duration. The factor dV=dz describes how an element of
volume evolves in an expanding universe while the factor
of 1þ z comes about transforming the time variable in the
source frame to the detector frame; see Ref. [1].
The shape of RðzÞ is determined by a model, which takes

into account, e.g., the stellar formation rate as a function
of redshift and the time delay between formation and
coalescence; see, e.g., Ref. [3]. However, we can treat the
overall normalization as a free parameter so that

RðzÞ≡ R0SðzÞ; ð25Þ

where SðzÞ is a model-dependent, dimensionless shape
function [normalized so that Sðz ¼ 0Þ ¼ 1] and the local
rate R0 ≡ Rðz ¼ 0Þ is the normalization. Combining
Eqs. (24) and (25), we obtain

R0 ¼
R
δt
=
Z

dz
1þ z

�
dV
dz

�
SðzÞ ð26Þ
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It will be interesting to compare the local rate inferred from
a stochastic detection—and assuming some shape model
SðzÞ—with the local rate measured directly by resolvable
mergers. Tension in these two measurements could indicate
an inadequate shape model SðzÞ among other things.

E. Energy density

Given some model, the local rate R0 (and therefore R)
can be converted into dimensionless energy densityΩgwðfÞ
defined in Eq. (1); see, e.g., Refs. [22,23]. The fully general
expression is a bit unwieldy, so we employ two simplifying
assumptions in order to obtain an intuitive initial expres-
sion. First, we assume that the (source-frame) energy
spectrum of the event dEgw=dfs—a function of the source
frame frequency fs—is determined primarily by the chirp
mass of the binary Mc. Second, we assume that the
comoving merger rate does not depend on mass. Given
these two assumptions,

ΩgwðfÞ ¼
�
f
ρc

��Z
∞

0

dz
1þ z

R0SðzÞ
HðzÞ

�

×

�Z
dMc

dEgw

dfs
ðfsjMcÞπðMcÞ

�
; ð27Þ

where

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ zÞ3 þ ΩΛ

q
: ð28Þ

H0 is the Hubble constant, ΩM is the energy density of
matter, and ΩΛ is the energy density of the cosmological
constant. In the first set of parentheses, ρc is the critical
energy density for a flat universe. The variable πðMcÞ is the
mass distribution.
Thus, we can relate the number of events per segment R

(and/or the local rate R0) to the energy density spectrum
ΩgwðfÞ, but only by employing a model to describe the
distribution of events in redshift, mass, and so on. In the
derivation above, we assume that ΩgwðfÞ depends pri-
marily on chirp mass. However, a more general expression
for ΩgwðfÞ would include integrals over every variable that
can affect the energy spectrum, for example, the mass ratio.
Also, in general,SðzÞ can depend on variables such asMc,
in which case SðzjMc;…Þ cannot be taken out of the
Eq. (27) integral over Mc.

III. DEMONSTRATION USING GAUSSIAN NOISE

In this section, we carry out a Monte Carlo simulation in
order to demonstrate the method described in Sec. II. Our
goal is to calculate the duty cycle posterior pðξjfs⃗gÞ using
simulated data containing a population of subthreshold
black hole binaries. We seek to fulfill three criteria. First,
the method should be “safe”: it should return a null result
when applied to pure Gaussian noise. Second, the method
should be effective: it must yield a positive detection in the

presence of a sufficiently loud stochastic signal. Third, the
method should be unbiased. The duty cycle posterior ought
to, on average, peak at the injected value.
We assume a two-detector network consisting of the

LIGO Hanford and Livingston observatories operating at
design sensitivity [24]. It is straightforward to extend the
method to include additional detectors [25], but we begin
with two for the sake of simplicity. For each detector, we
generate two data sets. The noise data set consists of 1000
4-s segments of Gaussian noise. The signal data set consists
of 300 4-s segments with a binary black hole signal added
to Gaussian noise.
The signals are coherently generated (and later recovered)

using the IMRPhenomPv2 approximant [26]. The parame-
ters of each merger are drawn randomly. The orientation
angles and sky position are drawn from isotropic distribu-
tions. We marginalize over the time of coalescence, which is
drawn from a uniform distribution. The total mass is drawn
from a uniform distribution on ð48M⊙; 80M⊙Þ while the
mass ratio is drawn from a uniformdistribution on (1,8). This
mass range produces signals that fit conveniently into our 4-s
segments, given a minimum frequency of 20 Hz. The mass
ratio is within the domain of validity for IMRPhenomPv2.
The dimensionless spin magnitudes ða1; a2Þ are drawn from
a uniform distribution on (0,0.89), which is within the
domain of validity for IMRPhenomPv2. The spin unit
vectors are drawn from an isotropic distribution. The
luminosity distances are drawn from a uniform-in-volume
distribution on the interval (0.50Gpc, 5Gpc). The lower limit
of 0.50 Gpc removes most gold-plated detections, the
remainder of which are eliminated with an additional cut
described below.
Reconstructed masses and distance are affected by

redshift. The lab-frame masses ml
i¼1;2 and the luminosity

distance dL are given by

ml
i ¼ ð1þ zÞms

i ; ð29Þ

dlL ¼ð1þ zÞdM; ð30Þ

where ms
i is measured in the source frame and dM is the

comoving distance. The mass distributions described above
apply to quantities measured in the lab frame.
Luminosity distances of (0.50 Gpc, 5 Gpc) imply a

redshift interval of (0.10,0.77) within the framework of the
standard ΛCDM cosmology. In principle, we can (and
eventually will) extend the interval to d ≳ 30 Gpc
(z≳ 3.3), beyond which the stochastic signal is expected
to be marginal due to the low stellar formation
rate and expanding Universe [4]. The uniform-in-volume
distribution is then modified by the imposition of a
“Malmquist prior” [19]; we exclude gold-plated detections
that can be observed with a statistically significant coherent
matched-filter signal-to-noise ratio ρnetwork ≥ 12:
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ρnetwork ¼ max
θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

hsj; hðθÞi2
hhðθÞ; hðθÞi

vuut : ð31Þ

Here, the sum over j runs over detectors. The maximum
over θ determines the matched-filter template that best fits
the data, and so ρnetwork is the maximum-likelihood signal-
to-noise ratio. Since most binaries merge near the edge of
our 5 Gpc sphere, this cut removes ≲1% of the events.
Eventually, gold-plated events should be included in the

analysis in order to achieve a unified approach to compact
binary population inference and stochastic backgrounds.
However, we exclude them here for the sole purpose of
demonstrating that we can recover the signal from a
stochastic background of subthreshold events. A histogram
of ρnetwork is shown in Fig. 1.
Having generated mock data for the noise and signal

populations, we create mixed populations for arbitrary duty
cycles ξ by selecting at random a mixture of entries from
each distribution. We construct three data sets correspond-
ing to ξ ¼ ð0; 0.05; 1Þ with n ¼ ð500; 525; 300Þ segments,
respectively. We compute the signal evidence ZS and noise
evidence ZN for every event in each data set [Eqs. (8) and
(9)]. The calculation is carried out using LALINFERENCE.
We employ reduced order modeling and reduced order
quadrature methods to control the computational cost of the
analysis [27].
In Fig. 2, we plot pðξjfs⃗gÞ for the three values of duty

cycle. The posterior for pure noise (ξtrue ¼ 0) is indicated
by the hatched orange are. The fact that it peaks at ξ ¼ 0
shows that the method is safe. The posterior for pure signal
(ξtrue ¼ 1) is indicated by the hatched blue area. The fact
that it peaks at ξ ¼ 1, clearly excluding ξ ¼ 0, indicates

that the method is effective. Finally, the posterior for a
mixed distribution (ξtrue ¼ 0.05) is indicated by green.
The posterior peaks near the true value of ξtrue ¼ 0.05,
which shows that the method is unbiased.

IV. TIME TO DETECTION

In this section, we estimate the time it will take to make a
confident detection of an astrophysical background
(ln BF > 8). In doing so, we study how the Bayes factor
[Eq. (15)] scales as a function of the true duty cycle ξtrue and
the number of data segments Nsegs. Recent estimates place
the binary black hole background at Ωgwðf ¼ 25 HzÞ ≈
1.1 × 10−9 [1]. In the Appendix, we show that, given our
mass and distance distributions (described above in
Sec. III), ξtrue ¼ 4 × 10−4 provides a realistic duty cycle.
We assume this value of ξtrue for the remainder of this
section. Because of computational constraints, we create
1000 noise segments for this preliminary study. This allows
us to carry out a mock study using ≈1 h of data and to
probe duty cycles ξ≳ 0.1%. In order to estimate how the

FIG. 1. Histogram of the coherent network matched-filter
signal-to-noise ratio [Eq. (31)] for a data set containing simulated
signals plus Gaussian noise. The network signal-to-noise ratio is
calculated by maximizing over all astrophysical parameters. This
is why the distribution falls off sharply near ρnetwork ¼ 1; one of
the many available templates tends to produce a reasonable fit to
the data such that ρnetwork ≳ 1, even for weak signals. The signal
distribution is generated from a population of mergers uniform in
volume between (0.50 Gpc, 5 Gpc). Gold-plated detections with
ρnetwork ≥ 12 are excluded.

(a)

(b)

FIG. 2. Duty cycle posteriors pðξjhÞ [Eq. (11)] for Monte Carlo
data sets. The orange data are pure Gaussian noise, the blue data
are a population of subthreshold binary black hole events added
to Gaussian noise, and the green data correspond to a mixture
with a true duty cycle of ξtrue ¼ 0.05. The fact that each posterior
peaks at the appropriate value shows that the method is safe,
effective, and unbiased. (a) Safe and effective duty cycle
posteriors. (b) Unbiased duty cycle posterior for Gaussian noise
containing software injections with a duty cycle ξtrue ¼ 0.05. The
vertical line shows the true duty cycle.
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algorithm will perform when applied to longer data sets
and/or lower duty cycles, it is necessary to extrapolate. Our
extrapolation provides an initial performance estimate,
which should be checked with a more computationally
expensive mock data challenge.
Our extrapolation uses a Gaussian mixture model

(GMM) [28] to fit the distributions of signal and noise
evidences [πðZSÞ, πðZNÞ] using the (1000, 300) data
segments that we have already simulated. A GMM models
the data as a superposition of independent Gaussian
distributions. The GMM fits are displayed in Fig. 3(a)
(signal data set) and Fig. 3(b) (noise data set). In each panel,
the horizontal axis is the log signal evidence while the
vertical axis is the log noise evidence. The color bar
indicates the probability density.
Using the GMM fits, we can generate large extrapolated

data sets with arbitrarily low duty cycles. In Fig. 4, we show
how the log Bayes factor [Eq. (15)] scales with the injected
duty cycle ξtrue and the number of segments Nsegs, the latter
of which is equivalent to the observation time. We average
over 1000 realizations of ðZS;ZNÞ drawn from the GMMs

(created assuming a two-detector LIGO network operating
at design sensitivity). We find that an astrophysical back-
ground with a realistic effective duty cycle ξtrue ≈ 4 × 10−4

can be detected with Nsegs ≈ 17 000 data segments, corre-
sponding to 20 h. This can be compared to a detection time
of ≳1 yr using cross-correlation [1]. The signal is created
by ≈7 subthreshold events with z < 0.77.
We expect that the improvement in sensitivity results

from two effects. First, the likelihood includes information
about the non-Gaussian nature of the binary black hole
background. Second, the likelihood includes information
about the deterministic nature of compact binary wave-
forms. Additional work is required to determine the relative
importance of these two factors.

V. NON-GAUSSIAN NOISE

Up until this point, we have chosen to model our data as
either Gaussian noise or Gaussian noise plus signal.
However, real gravitational-wave detectors are subject to
non-Gaussian transient noise called glitches. It is therefore
necessary to extend our algorithm to account for non-
Gaussian noise in order to ensure that glitches are not
mistaken for gravitational-wave signals. Failure to account
for glitches can bias the duty cycle posterior, or worse, yield
a false positive. We compute the duty cycle posterior for a
set of 600 4-s segments of data from LIGO’s first observing
run (O1). We introduce an unphysical time shift to ensure
that any real gravitational-wave signals do not produce
coherent signals in the Hanford and Livingston detectors.
The true duty cycle should therefore be zero, but the
posterior peaks at around ξ ¼ 0.4 and excludes zero.
Nonstationary noise is producing a significant bias. An
example of the undesirable effect of glitches is shown
in Fig. 5.
In order to take into account non-Gaussian noise, we

extend the likelihood expression from Eq. (7) to include
contributions from glitches. For simplicity, we consider a
two-detector network, but the results generalize. For our
glitch model, we conservatively suppose that glitches look
exactly like binary black hole waveforms except that the

(a) (b)

FIG. 3. Probability density functions for signal and noise evidences. (a) Fit for the signal data set and (b) fit for the noise data set.
The horizontal axis is the log signal evidence while the vertical axis is the log noise evidence.

FIG. 4. Contours of average lnBF as a function of the simulated
true duty cycle ξtrue and number of 4-s segments Nsegs. The blue
contour corresponds to hln BFi ¼ 8, where an astrophysical
background is detectable. The color bar saturates at ln BF ¼ 20.
The horizontal and vertical lines correspond to ξtrue ¼ 4 × 10−4

and Nsegs ¼ 17 500, respectively.
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waveform in one detector is completely uncorrelated with
the waveform in the other. Any part of a glitch that is
orthogonal to the binary black hole signal manifold will not
contribute any signal evidence ZS.
Some additional notation is necessary. We introduce

parameters ξð1Þg and ξð2Þg corresponding to the glitch duty
cycle in detectors one and two, respectively. The variables

Zð1Þ
g and Zð2Þ

g are the single-detector evidences for the
glitch hypothesis given by

Zð1Þ
g ≡

Z
dθð1ÞLðsð1Þjθð1ÞÞπðθð1ÞÞ; ð32Þ

Zð2Þ
g ≡

Z
dθð2ÞLðsð2Þjθð2ÞÞπðθð2ÞÞ: ð33Þ

Here, θð1Þ and θð2Þ are the signal parameters for (uncorre-
lated) glitches in detectors 1 and 2, respectively. The
variables sð1Þ and sð2Þ are the strain data in each detector.
We note that the glitch evidences are equivalent to single-
detector signal evidences given our conservative glitch
model. A key feature of this glitch model is that the
parameters in each detector are independent. We introduce

the variables Zð1Þ
N and Zð2Þ

N for the single-detector noise

evidences [see Eq. (9)]. The variables Zð1Þ
Sþg and Zð2Þ

Sþg are
the two-detector evidences for a coherent signal with a

glitch in one detector. Finally, the variable Zð1;2Þ
Sþg is the two-

detector evidence for a coherent signal with a glitch in both

detectors. We do not include explicit expressions for Zð1Þ
Sþg,

Zð2Þ
Sþg, and Zð1;2Þ

Sþg because—as we shall see momentarily—
they can be approximated as zero. For the sake of compact
notation, we suppress the segment number index i on every
evidence term.
Given our new definitions, the likelihood for coherent

merger events in glitchy data is

Lðs⃗ijξ; ξð1Þg ; ξð2Þg Þ ¼ ξð1 − ξð1Þg Þð1 − ξð2Þg ÞZS

þ ð1 − ξÞð1 − ξð1Þg Þð1 − ξð2Þg ÞZN

þ ð1 − ξÞξð1Þg ð1 − ξð2Þg ÞZð1Þ
g Zð2Þ

N

þ ð1 − ξÞð1 − ξð1Þg Þξð2Þg Zð1Þ
N Zð2Þ

g

þ ð1 − ξÞξð1Þg ξð2Þg Zð1Þ
g Zð2Þ

g

þ ξξð1Þg ð1 − ξð2Þg ÞZð1Þ
Sþg

þ ξð1 − ξð1Þg Þξð2Þg Zð2Þ
Sþg

þ ξξð1Þg ξð2Þg Zð1;2Þ
Sþg : ð34Þ

Each line corresponds to a distinct possibility. A probability
tree corresponding to the likelihood function is shown in
Fig. 6. Starting from the first line and reading toward the
bottom, the possibilities are (i) signal and no glitches;
(ii) no signal and no glitches; (iii) no signal and a glitch in
detector (1); (iv) no signal and a glitch in (2); (v) no signal
and a glitch in (1) and (2); (vi) signal and a glitch in (1);
(vii) signal and a glitch in (2); (viii) signal with glitches in
(1) and (2).
Note the priors for ξ, ξð1Þg , ξð2Þg all run from (0,1). They are

all independent. Each of the above possibilities corresponds
to a branching path in Fig. 6.
For the sake of simplicity, we hypothesize that the last

three terms in this likelihood contain evidences that are

small enough to safely ignore in practice: Zð1Þ
Sþg, Z

ð2Þ
Sþg, and

Zð1;2Þ
Sþg . We expect these three Z to be small because they

employ overzealous models, which tend to overfit the data.

While terms like ZS, Z
ð1Þ
g , and Zð2Þ

g employ 15 parameters

to fit a merger event or mergerlike glitch, Zð1Þ
Sþg and Zð2Þ

Sþg

employ 30 parameters to simultaneously fit a merger event

and a glitch. The Zð1;2Þ
Sþg term employs 45 parameters to fit a

merger event and two glitches. Since we expect that
mergers and glitches are easily fit with 15-parameter
models, the final three Z incur large Occam factors, which
results in small Z. This reasoning may not apply to the
special case of data that actually contain a merger and a
glitch, but we expect such events to be rare. The recent
binary neutron star event GW170817 was detected coinci-
dent with a significant glitch [29], but this does not change
our expectations. Binary neutron star signals are in band
for ≳100 s versus ≲0.3 s for high-mass binary black
holes, and so the chance of a coincident glitch is relatively
higher. Of course, one is free to retain the Sþ g terms,
but this requires modification of LALINFERENCE. We
anticipate that such modifications will be well worth
pursuing for a number of applications, including work to
extend this analysis to low-mass systems. The subtraction
of a glitch associated with GW170817 [29] using a wavelet
reconstruction is a step in this direction [30].

FIG. 5. Biased duty cycle posterior, generated with O1 back-
ground data and computed using the Gaussian likelihood
function, Eq. (5).
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If we assume that the final three Z are small enough to
ignore, the glitchy likelihood becomes

Lðs⃗jξ; ξð1Þg ; ξð2Þg Þ ≈ ξð1 − ξð1Þg Þð1 − ξð2Þg ÞZS

þ ð1 − ξÞð1 − ξð1Þg Þð1 − ξð2Þg ÞZN

þ ð1 − ξÞξð1Þg ð1 − ξð2Þg ÞZð1Þ
g Zð2Þ

N

þ ð1 − ξÞð1 − ξð1Þg Þξð2Þg Zð1Þ
N Zð2Þ

g

þ ð1 − ξÞξð1Þg ξð2Þg Zð1Þ
g Zð2Þ

g : ð35Þ

Below, we show that the “small-Z” approximation works
well when we apply this likelihood to real data. This is
convenient because it enables us to obtain results using
only existing 15-dimensional signal models.
We now show that our method is robust when applied to

real LIGO noise. Because the LIGO detectors cannot be
shielded from gravitational-wave signals, we ensure that
the analyzed data cannot contain coincident real signals by
performing “time slides” in which a relative time offset,
longer than the light-travel time between sites, is applied
between the data from the detectors. Time slides are a
common bootstrap technique for generating realistic back-
ground noise.
As before, we generate two data sets: a noise-only data

set consisting of 670 4-s background data segments from
O1, and an injection data set consisting of 60 software
injections into 4-s background data segments from O1.

FIG. 6. Probability tree for Eq. (34) assuming a two-detector network. The left-hand branches correspond to “yes” and the right-hand
branches to “no.” The probability of each branch is labeled accordingly. The “leaves” at the base of the tree show the evidence associated
with each path.

(a)

(b)

FIG. 7. Duty cycle posteriors computing using the “glitchy”
likelihood function Eq. (35). (a) Safe and effective duty cycle
posteriors for O1 background. (b) Unbiased duty cycle posterior
for O1 background containing software injections with a duty
cycle ξtrue ¼ 0.09. The vertical line shows the true duty cycle.
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The signals are generated according to the prescription
described in Sec. III. Injections are drawn from a uniform-
in-volume distribution. They are all subthreshold. We
construct three populations corresponding to ξ ¼
ð0; 0.09; 1Þ to test for effectiveness, safety, and bias. We
compute the duty cycle posterior using the glitchy like-
lihood function [Eq. (35)]. In Fig. 7, we demonstrate that
the glitch model employed in the likelihood function
Eq. (35) is safe, effective, and unbiased, as required.

VI. COMPUTATIONAL REQUIREMENTS

Figure 4 implies that, at design sensitivity, a realistic
astrophysical background with an effective z < 0.77 duty
cycle of ðξtrue ¼ 4 × 10−4Þ could be detected using
≈17 000 4-s data segments. At the time of writing, a
typical run time of LALINFERENCE on 4-s data segments is
usually no more than 10 CPU hours [27]. To produce
evidences in a two-detector network, we perform three
separate runs: a coherent analysis, which produces
ðZi

S;Z
i
NÞ, and two incoherent analyses, which produce

ðZi;ðjÞ
S ;Zi;ðjÞ

N Þ, where the index j labels the detector,
j ¼ ð1; 2Þ. We therefore estimate that an astrophysical
background is detectable in 500 000 CPU hours. This
works out to one week with 3000 dedicated CPUs.
Detecting an astrophysical background of binary black
holes is therefore feasible with current computing resources
of the LIGO Data Grid (LDG), which consists of tens of
thousands of CPUs. This cost estimate assumes relatively
high-mass signals split into 4-s data segments. Additional
work is required to investigate the cost and performance of
the search as the analysis is extended to lower-mass events.
As the minimum mass is decreased, the event rate is
expected to increase while the signal duration increases,
resulting in a higher duty cycle. We discuss some of the
associated challenges in Sec. VIII A.
While it may be possible to observe a stochastic

background by analyzing a small amount of data (with
a small computational cost), there is strong motivation for
analyzing all available data. By analyzing an entire
observing run, we can make inferences about the pop-
ulation properties of binary black holes (and with addi-
tional work, eventually binary neutron stars). We describe
this population inference in the subsequent section.
Carrying out full parameter estimation on a year of data
with existing software and hardware would require around
15 000 continuously operational CPUs in order to process
the data in real time. While this is technically possible, it
would be a costly proposition.
In order to reduce the cost, it is worthwhile to consider

the development of new computational methods and
implementation on new hardware architecture in order
to realize the ultimate goals of the search. These advances
might come, for instance, by exploring greater paralleli-
zation of parameter estimation methods through the use

of, e.g., graphical processor unit clusters or larger super-
computer clusters; see, e.g., Ref. [31]. We note in passing
that it might be possible to detect some individually
resolvable sources using parameter estimation if they
were just below the threshold for detection with matched
filter pipelines [32].

VII. POPULATION INFERENCE

In addition to inferring the astrophysical duty cycle,
which can be related to the local merger rate (Sec. II C)
and GW energy density (Sec. II E), we can also use this
framework to infer properties of the binaries that
contribute to the astrophysical background. These pop-
ulation properties may be encoded as hyperparameters,
which affect the prior distributions for various binary
parameters. For example, instead of assuming a flat
prior on chirp mass, we can assume that the total mass
follows a power-law distribution with some spectral
index α:

πðMÞ → πðMjαÞ ∝ Mα: ð36Þ

Using Bayesian hierarchical modeling [33,34], we can
marginalize over M to obtain a posterior on α.
Before sketching how this works, we note that there are

three good reasons for eventually developing a sophisti-
cated hyperparametrization scheme. First, there is interest-
ing information encoded in the population properties of
binary black hole coalescences, which can be used, for
example, to study binary black hole formation channels;
see, e.g., Refs. [35–41]. Second, we should hyperparame-
trize theoretically uncertain prior distributions in order to
obtain an unbiased estimate of the coalescence rate. For
example, a systematic error in the assumed mass spectrum
will lead to a systematic error in the inferred rate posterior.
Finally, by acknowledging theoretical uncertainty with
hyperparametrization, we should improve the sensitivity
of the search. This should generally be true when necessary
parameters are added to the search. For example, margin-
alizing over the unknown mass spectrum index is likely to
yield a higher Bayes factor than just assuming some value
(unless we have a strong prior belief in some particu-
lar value).
The likelihood function for a vector of hyper-parameters

Λ is obtained by introducing a conditional prior πðθjΛÞ and
then marginalizing over θ

LðhjΛÞ ¼
Z

dθLðhjθÞπðθjΛÞ ð37Þ

The distribution πðθjΛÞ is the hyperparameterized condi-
tional prior. The above integral can be computed without
performing any extra sampling by “recycling” the posterior
samples already computed by LALINFERENCE. Replacing
the likelihood by a sum over samples we obtain:
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LðhjΛÞ ≈
Yn
i

1

ni

Xni
k¼1

πðθi;kjΛÞ
πðθi;kjLALÞ

: ð38Þ

The distribution πðθjLALÞ is the prior distribution used for
the generation of the posterior samples by LALINFERENCE.
The product over i runs over the number of data segments
from 1 to n. The sum over k runs over the number of
posterior samples from 1 to ni. (Each segment has a
different number of posterior samples.)
We note that Eq. (38) can be applied as a postprocessing

step. That is, one need only run LALINFERENCE once.
As long as we use relatively uniformative priors for πðθjΛÞ,
the resulting posterior samples can be reweighted in order
to obtain the likelihood for different hyperparameter values.
The posterior for Λ and the (hypermarginalized) Bayes
factor are calculated the usual way. The first prior distri-
butions to hyperparametrize are (1) those which shed light
on the mechanisms of binary black hole formation and
(2) those which are subject to significant theoretical
uncertainty. This probably means hyperparameter descrip-
tions of the binary black hole mass spectrum and the
distribution of black hole spins. The former is the subject of
work in preparation [42].

VIII. EXTENSIONS OF THE SEARCH

In this section, we consider five possible extensions to
this search method: searches for binary neutron stars,
continuous waves, supermassive black hole binaries,
bursts, and glitch classification. We also consider the
simultaneous estimation of Gaussian background with a
non-Gaussian foreground, but the discussion requires some
depth, and so we discuss that separately in the next section.
Our goal here is twofold. First, we seek to illustrate
promising directions for future research. Second, we
endeavor to showcase that, for every astrophysical back-
ground, there is an appropriately complete likelihood
function, which can serve as the basis for an optimal search.

A. Binary neutron stars

An obvious extension of this technique is to search for
backgrounds of binary neutron stars. Recent observations
of a binary neutron star inspiral [29] suggest that the
gravitational-wave energy density Ωgw from such systems
is roughly comparable to the energy density from binary
black holes [3]. Binary neutron stars are less massive than
typical binary black holes, but they coalesce more fre-
quently. Thus, while the two backgrounds are expected to
produce comparable Ωgw, the rate of binary neutron star
mergers is much higher (by a factor of ≈17). Moreover,
binary neutron star waveforns are much longer than binary
black hole waveforms. The first binary black hole event
GW150914 was in band for ≈0.3 s [43] versus 100 s for the
first binary neutron star GW170817 [29]. It is important to
understand that while the binary neutron star background is

continuous (always present), it is still non-Gaussian: the
mergers are, for the most part, clearly separated in time [9].
These two effects all but ensure that a signal is present in

the data at any given time. At any given moment, there are
likely to be 15 binary neutron stars somewhere in the
Universe, producing gravitational waves with f > 10 Hz
(versus 0.06 for binary black holes) [1]. This violates an
assumption in our formulation of the binary black hole
search: that the vast majority of segments contain either no
signal or one signal.
All is not lost. There are probably a number of solutions.

One possibility is to treat the number of events in some data
segment as a free parameter using the local rate to inform
the prior. The formalism of reversible-jump Markov chain
Monte Carlo, where the dimensionality of the parameter
space is itself a free parameter, is potentially suited for this
problem; see, e.g., Ref. [30]. Using this plan of attack, the
algorithm could attempt, for example, to simultaneously fit
dozens of binary neutron signals simultaneously, each with
15 parameters. It is not clear if such a high-dimensional
search would be computationally feasible, but further
investigation is warranted.

B. Continuous waves

There are thought to be ≈50 000 isolated neutron stars in
the Milky Way emitting gravitational waves in the observ-
ing band of advanced detectors [44,45]. The computational
power required to search the full parameter space is so vast
that semicoherent techniques are required. The data are
analyzed coherently in small chunks of manageable size,
typically 1800 s [46]. The results from each chunk are
combined incoherently.
Since the signals overlap in time, it would not make

sense to define a duty cycle as fraction of segment that
include a signal. However, it may be possible to define a
duty cycle equal to the fraction of frequency bins that
contain a signal. To get a (very rough) idea of the duty
cycle, we can assume that continuous-wave sources are
roughly evenly distributed throughout the advanced detec-
tor observing band from 10 to 1500 Hz [46]. Assuming
1800-s segments (with frequency resolution 0.56 mHz),
there are 2.7×106 frequency bins. This implies a duty cycle
of ξ ≈ 2%, which is much less than one. We therefore
expect that this formalism can be applied relatively
straightforwardly to search for a population of Galactic
neutron stars. This proposal bears similarities to Ref. [47],
which proposes an ensemble search for known pulsars.

C. Supermassive black hole binaries

The background from supermassive black hole binaries
is analogous to the background from isolated neutron stars,
except the measurements are carried out by pulsar timing
arrays; for a review, see Refs. [48,49]. Most supermassive
black hole binaries are expected to produce nearly
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monochromatic signals that evolve slowly over the decade-
long observation period. At any one time, there might be
104–105 such binaries emitting gravitational waves in the
pulsar-timing band [50]. The probability that an inspiralling
binary emits gravitational waves on the interval ðf; f þ dfÞ
is [51]

πðfÞ ∝ f−11=3: ð39Þ

Thus, most binaries emit near the lower limit of the
observing band. Pulsar timing arrays observe in a band
1–100 nHz with a resolution of ≈1 nHz. We expect 90% of
the binaries to be observed in a narrow band of (1–2.4 nHz).
This is also the most sensitive part of the band. Thus, we
expect many thousands of binaries per frequency bin in the
relevant part of the band.
We are therefore unable to define a duty cycle as the

fraction of frequency bins containing a signal. The fre-
quency bins that contribute the signal do not contain a
signal, they contain thousands. One can imagine defining
the duty cycle in terms of sky location: the fraction of
patches of sky which contain a signal. However, given
current pulsar timing arrays, it seems unlikely that there are
enough quasi-independent patches of sky so that the
expected duty cycle is less than one; see, e.g., Ref. [53].
If so, and if we are not missing some other means of
distinguishing supermassive black hole binary signals, it
seems that the pulsar timing background is, for all intents
and purposes, Gaussian in nature, at least as measured by
foreseeable detectors.

D. Bursts

Gravitational-wave bursts are unmodeled transients,
which can be contrasted with well-modeled signals from
compact binaries. There are expected bursts from objects
like supernovae, but gravitational-wave astronomers also
search for unexpected bursts. Given the significant theo-
retical uncertainties about the loudness and rate of different
gravitational-wave bursts, it is hard to say if there is a
significant stochastic background from bursts, and if so,
whether or not it is Gaussian. If, for example, there is a
detectable background from supernovae [54], one might
expect a Gaussian background since supernovae explode in
the Universe at a rate of ≈30 s−1. Alternatively, the burst
background might be dominated by louder but less frequent
signals creating a non-Gaussian background from, e.g.,
cusps of cosmic strings.
Given these theoretical uncertainties, it seems worth-

while to carry out a non-Gaussian search for bursts. The
formalism described here can be extended. Instead of
marginalizing over compact binary parameters, one can
imagine marginalizing over arbitrary combinations of
wavelets; see, e.g., Ref. [30]. Burst waveforms that can
be easily parametrized, such as cosmic string bursts [55]

and gravitational-wave memory [56], are relatively straight-
forward to implement in this formalism.

E. Glitch classification

The method can also be repurposed to identify popula-
tions of glitches. To do this, we employ the formalism for
non-Gaussian noise. We assume that the glitches are
described by a hyperparametrized prior. Following the
method described in Sec. VII, we can estimate the hyper-
parameters of the glitch population in order to classify
populations of glitches. For example, one might find that
there is a population of transients in the LIGO Hanford
detector that are best fit by templates corresponding to
50þ 50M⊙ mergers. This idea is only a sketch, but we can
envision developing a practical tool, which could be useful
for commissioning and detector characterization. For a
related discussion, see Ref. [57].

IX. SIMULTANEOUS ESTIMATION OF GAUSSIAN
BACKGROUND WITH A NON-GAUSSIAN

FOREGROUND

In the long run, we are interested in uncovering the
primordial background likely to be lurking underneath the
astrophysical background from compact binary mergers.
Measurement of a primordial background is considered a
holy grail of gravitational-wave astronomy, potentially
allowing us to probe times well before the formation of
the cosmic microwave background and to test energy scales
that are not accessible through any other means; see, e.g.,
Ref. [58]. The problem of disentangling primordial back-
grounds from astrophysical foregrounds is therefore impor-
tant. The primordial background is likely to be Gaussian.
In this section, we sketch out how the analysis could be
extended to simultaneously measure a Gaussian back-
ground in the presence of a non-Gaussian foreground.
For the sake of readability, we suppress frequency depend-
ence as well as indices denoting segment number. The
reader should consider both of these to be implied.
As a first step, we derive the likelihood for a purely

Gaussian background. This derivation will be helpful in
order to see how the result is generalized to include
simultaneous Gaussian and non-Gaussian signals. The
likelihood of obtaining strain data s given a persistent
Gaussian signal hG is

log½LðsjhGÞ� ∝ −
1

2
hs − hG; s − hGi: ð40Þ

The inner product, defined in Eq. (3), includes an implicit
sum over detectors. Variables in bold face are vectors with a

different entry for each detector; e.g., hG ¼ ðhð1ÞG ; hð2ÞG ;…Þ.
The strain induced in two detectors α and β is not in general
the same, though the two strains are related via the overlap
reduction function γαβ [59]:
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hðhðαÞG Þ†hðβÞG i ¼ γαβSh: ð41Þ

We do not have a template for hG because it is described
by a stochastic process. Our prior for hG is

πðhGjShÞ ¼
1

detð2πΣÞ1=2 exp
�
−
1

2
hG

†Σ−1hG

�
; ð42Þ

h ¼
�
hð1ÞG

hð2ÞG

�
; ð43Þ

Σ ¼ Sh

�
γ11 γ12

γ21 γ22

�
; ð44Þ

where Sh is the signal power spectral density. Note that both
Sh and hG are implicit functions of frequency. (This
frequency dependence may be described by additional
parameters such as a spectral index.) The prior in
Eq. (42) states that hG is a Gaussian field characterized
by a power spectrum Sh and with covariance described
by Eq. (41).
Before proceeding further, we introduce a simplifying

assumption: that the detector network consists of two
colocated detectors. This assumption is by no means
necessary, but it will facilitate straightforward comparison
with Ref. [16]. Employing this assumption, we can make
the following substitutions:

hG → hG

�
1

1

�
; ð45Þ

Σ → γSh

�
1 1

1 1

�
: ð46Þ

Here, γ with no indices is the overlap reduction function
for a colocated detector pair. For comparison with
Ref. [16], we work for the time being with “effective
power” Seffh ≡ γSh.
Next, following Ref. [16] (see their Sec. IV. 2), we

marginalize over hG in Eq. (42) to obtain a marginalized
likelihood:

LðsjSeffh Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π detðCÞp exp

�
−
1

2
sTC−1s

�
; ð47Þ

where

s ¼
�
s1
s2

�
; ð48Þ

C ¼
�
Pþ Seffh Seffh

Seffh Pþ Seffh

�
: ð49Þ

Following Ref. [16], we define P≡ σ2. Remember that
there is an implied sum over frequency bins in the

expression sTC−1s and that detðCÞ includes an implied
product over frequency bins. After combining data from
multiple segments, there is, additionally, an implied sum
over segments in the expression sTC−1s and an implicit
product over segments in the expression detðCÞ.
There are two terms in the exponential of Eq. (47): an

autopower term containing s21 þ s22 and a cross-power term
containing s�1s2. The autopower terms are considered
unreliable because a detection relying on autopower
would require a a precise noise budget. If the noise power
spectral density includes a component that exceeds the
noise budget, experimentalists assume it is an unmodeled
noise, not a stochastic background. The typical solution is
to start over with a likelihood constructed only out of
cross-power [5]:

LðsjSeffh Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2πP

p exp½−ðs�1s2 − Seffh Þ2=2P2�: ð50Þ

This prescription ensures that autopower from unknown
noise does not create a false signal.
The prescription in Eq. (50) does not lend itself to our

present purposes. Fortunately, there is a Bayesian approach
that does. The notion that interferometer noise budgets are
not trustworthy enough to detect excess autopower can be
framed in terms of a prior belief. We treat P as a parameter
with a prior distribution πðPÞ peaked at P0 with some width
σP, which is wide compared to Sh:

πðPÞ ∝ exp½−ðP − P0Þ2=2σ2p�: ð51Þ
That is to say, we do not trust our measurement of the noise
at a level comparable to the size of the stochastic signal
power Sh. Marginalizing over P, we obtain an evidence
(marginalized likelihood) for each Seffh , which cannot be
tricked by excess autopower:

ZðSeffh Þ ¼
Z

dPπðPÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π detðCÞp exp

�
−
1

2
sTC−1s

�
:

ð52Þ
When σP ≫ Seffh , the stochastic signal encoded in the
autopower is lost, and we recover something close to the
cross-correlation likelihood; see Fig. 8.
In Fig. 8, we show likelihoods for a demonstration

calculation with mock data. The cross-correlation like-
lihood [Eq. (50), hatched purple area] and the marginalized
likelihood from Eq. (52) (hatched red area) are nearly
identical. Both are consistent with the injected value of Sh.
If we calculate the likelihood from Eq. (47), but do not
marginalize over uncertainty in P, we obtain the green
distribution. Since this distribution includes information
from both cross- and autopower, it is narrower than the
other distributions. However, it is also biased because an
error in P leads to an overestimate of Sh. If we do not
include a systematic error in P, the posterior peaks in the
correct place. For the purposes of this sketch, we model
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uncertainty in the noise power spectral density with a
simple expression for πðPÞ. We note in passing that
significantly more sophisticated models are available in
order to take into account, e.g., frequency-dependent
artifacts such as instrumental lines [60].
Now we are ready to sketch out a method to detect a

background with both Gaussian and non-Gaussian compo-
nents. The likelihood includes a Gaussian component hG
and a non-Gaussian component hNGðθÞ:

log½LðsjhG;hNGÞ� ∝ −
1

2
hs − hNG − hG; s − hNG − hGi:

ð53Þ
The non-Gaussian signal depends implicitly on binary
parameters θ. The bold face indicates a vector with entries
for different detectors.
Following the same reasoning we used to calculate the

Gaussian likelihood in Eq. (47), the Gaussian plus non-
Gaussian likelihood is

LðsjhNG; ShÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det 2πðCÞp

× exp

�
−
1

2
ðs − hNGÞTC−1ðs − hNGÞ

�
:

ð54Þ
By introducing a suitable prior πðPÞ and marginalizing
over uncertainty in the detector noise, it should be possible

to simultaneously infer the existence of a population of
unresolved binaries and a continuous Gaussian back-
ground:

ZðhNG; ShÞ ¼
Z

dPπðPÞLðsjhNG; ShÞ: ð55Þ

We note that, by marginalizing over uncertainty in P, we
should not hamper our ability to measure binary signals.
Individual binary signals contribute to our evidence by
matching with waveform templates, not by inducing excess
power. Indeed, parametrized noise models are a fixture of
recent transient analysis [30].
Using the Gaussian plus non-Gaussian likelihood func-

tion in Eq. (55), we can marginalize over the implicit binary
parameters θ to obtain signal and “noise” evidences
analogous to Eqs. (8) and (9):

ZSðShÞ ¼
Z

dθZðhNG; ShÞ; ð56Þ

ZNðShÞ ¼ ZðhNG ¼ 0; ShÞ: ð57Þ

These evidences are functions of the hyperparameter Sh,
which describes the Gaussian background. We refer to the
“noise” evidence with quotation marks because it contains
a Gaussian background signal. In order to calculate them
in LALINFERENCE, one must implement the revised like-
lihood function [Eq. (55)] with a new parameter Sh and a
suitable prior πðPÞ. The next step is to introduce the duty
cycle as in Eq. (5) as in Sec. II. Retracing our steps, we
obtain a posterior pðξ; Shjfs⃗gÞ analogous to Eq. (11). We
may convert Sh into ΩG, the Gaussian energy density; see,
e.g., Ref. [61]:

ΩGðfÞ ¼
2π2f3

3H2
0

Sh; ð58Þ

where H0 is the Hubble parameter.
While significant work is required to go beyond this

sketch and demonstrate this technique, we hope this
proposal provides a useful outline to construct the optimal
method to simultaneously detect Gaussian and non-
Gaussian backgrounds. In particular, we expect the optimal
method to improve upon various schemes in which astro-
physical events are fit separately and then subtracted; see,
e.g., Ref. [62]. It is worth investigating as a promising tool
for future efforts to measure primordial backgrounds.

X. CONCLUSIONS

Preliminary estimates suggest that advanced detectors,
operating at design sensitivity, can detect a stochastic
background from binary black holes in about 1 day.
These estimates rely on extrapolation using Gaussian
mixture modeling of our Bayesian evidence distributions.

FIG. 8. A comparison of likelihood and marginalized like-
lihood functions for stochastic power spectral density Sh.
We carry out a numerical experiment with toy-model data. We
plot likelihood functions LðsjShÞ using cross- and autopower
[Eq. (47), “Unmarginalized,” green], using cross-power only
[Eq. (50), “Cross correlation,” hatched purple], and using cross-
and autopower, but marginalizing over large uncertainty in the
autopower [Eq. (52), “Marginalized,” hatched red]. The purple is
nearly indistinguishable from the red. The green unmarginalized
distribution is narrower, but it is also biased because it does not
take into account uncertainty in P. (If we do not include a
systematic error in P, the posterior peaks in the correct place.)
The horizontal axis is strain power in arbitrary units and the
vertical axis is the likelihood. The black vertical line indicates the
injected value.
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The next step is to carry out a mock data challenge in which
we demonstrate the safety and efficacy of the search using
≈1 day of design sensitivity Monte Carlo data. Such a
demonstration would allow us to verify the extrapolations
made here with a modest computational cost ≈500 000
core hours.
We have highlighted new directions worthy of deeper

investigation beyond the overview we provide here. It will
be interesting to more fully develop this method for other
audio-band sources of gravitational waves including binary
neutron stars, continuous waves, unmodeled bursts, and
glitches. The method does not appear to be helpful for
pulsar timing. We look forward to demonstrating the
simultaneous detection of a Gaussian background in the
presence of a non-Gaussian foreground.
This formulation of binary black hole detection provides

a unified framework for the analysis of both resolvable
signals and a stochastic background of unresolvable
signals. It is also a natural framework to carry out analysis
of the population properties of binary black holes. Since the
resolved and unresolved binaries are analyzed as a single
data set, it is possible to eliminate selection effects.
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APPENDIX: DERIVATION OF ξtrue FOR
MONTE CARLO STUDY

In this appendix, we justify the choice of ξtrue ¼ 4 × 10−4

as a reasonable choice of duty cycle for our Monte Carlo
study in order to simulate a plausible stochastic background.
We show ξtrue ¼ 4 × 10−4 implies an energy density spec-
trum that is roughly consistent with the prediction of
Ref. [1], and that such a background cannot be detected
with cross-correlation in 1 year of design sensitivityHanford-
Livingston data.
The first step is to calculate the average gravitational-

wave power spectral density ShðfÞ for data segments in
which a signal is present:

ShðfÞ ¼
Z

dθπðθÞ jh̃þðfjθÞj
2 þ jh̃×ðfjθÞj2
N

: ðA1Þ

Here, h̃þðfjθÞ and h̃×ðfjθÞ are the þ and × components of
the Fourier transform of the metric perturbation (embedded

in a 4-s segment) given binary parameters θ. Meanwhile,
πðθÞ is the prior distribution assumed for our analysis
(described in Sec. III) and N is a normalization factor to
ensure that ShðfÞ is a power spectral density with units of
Hz−1. In practice, we carry out the integral numerically
using N Monte Carlo draws:

ShðfÞ ¼
1

N

XN
k¼1

jh̃þðfjθkÞj2 þ jh̃×ðfjθkÞj2
N

: ðA2Þ

Given a duty cycle ξ, the average power spectral density in
a data set with noise and signal is given by

S0hðfÞ ¼ ξShðfÞ: ðA3Þ

The signal amplitude spectral density ½ShðfÞ�1=2 is plotted
in Fig. 9(a) (blue line) alongside the noise amplitude
spectral density (orange line).
The energy density associated with Sh is

ΩgwðfÞ ¼
2π2f3

3H2
0

S0hðfÞ; ðA4Þ

where H0 is the Hubble parameter. In Fig. 9(b), we plot
ΩgwðfÞ for the Monte Carlo data set used in our analysis
given ξ ¼ 4 × 10−4 (solid blue line). Alongside, in the thick
black line, we plot a power-law integrated sensitivity curve
[61], which shows the 1σ sensitivity of the cross-correlation
search for the Hanford-Livingston network operating at
design sensitivity for 1 year.
Since our data set includes only binaries with luminosity

distancesdL ≤ 5 Gpc, our data set includes only a fraction of
the full stochastic background. Using Fig. 2(c) fromRef. [4],
we estimate that the full stochastic background has an energy
density about 3 times larger than the stochastic background
from events with z < 0.77. The red dashed curve shows
ΩgwðfÞ scaled by a factor of 3 to roughly estimate the total
gravitational-wave energy density including the contribution
from high redshifts. The dashed red line reaches a value of
3 × 10−10 at 25 Hz, which is just below the allowed range
predicted in Ref. [1]: Ωgwðf ¼ 25 HzÞ ¼ 1.1þ1.2

−0.7 × 10−9.
The fact that the dashed red line does not intersect the black
sensitivity curve indicates that the background is not detect-
able with a year of data using cross-correlation.
The signal-to-noise ratio of the cross-correlation search

is given by

ρcc ¼
ffiffiffiffiffiffi
2n

p �X
k

Γ2
12ðfkÞS2hðfkÞ
P1ðfkÞP2ðfkÞ

�
1=2

: ðA5Þ

See Eq. (22) in Ref. [61]. The sum over k ranges over
frequency bins. Here, P1, P2 are the noise power spectral
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densities of detectors 1 and 2. The variable Γ12 is the
overlap reduction function given in Eq. (15) of Ref. [61]
and derived in Ref. [59]. Assuming 1 year of data at design
sensitivity, we obtain ρcc ¼ 0.15 for the data set used
in our analysis, which is limited to redshifts z < 0.77.
Extrapolating to arbitrarily high redshifts, we estimate
ρcc ¼ 0.46.
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